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Abstract. We generalize a result of Freedman and He [4, Theorem 2.5], concerning the duality

of moduli and capacities in solid tori, to sufficiently regular metric spaces. This is a continuation

of the work of the author and Rajala [12] on the corresponding duality in condensers.

1. Introduction

Given a metric measure space (T, d, µ), with µ Borel-regular, and a collection Γ
of paths in T , the p-modulus of Γ is the number

modpΓ := inf
ρ

ˆ

T

ρp dµ,

where the infimum is taken over non-negative Borel-functions ρ that satisfy

(1)

ˆ

γ

ρ ds > 1

for all locally rectifiable γ ∈ Γ. The path modulus is a widely used tool in geometric
function theory, especially in connection to quasiconformal mappings [7, 14, 15].

In the 1960s, Gehring [6] and Ziemer [16] proved that the moduli of paths con-
necting two compact and connected sets in R

n are dual to the moduli of surfaces
that separate the two sets. The moduli of surface families are defined as above, but
instead of condition (1) we require

ˆ

S

ρ dHn−1 > 1,

where Hn−1 denotes the (n−1)-Hausdorff measure. To describe these duality results
in more detail, we need to introduce some notation. Given a connected bounded
open subset G of any metric space, and disjoint connected compact sets E, F ⊂ G,
denote by Γ(E, F ;G) the family of paths in G that intersect both E and F , and
by Γ∗(E, F ;G) the family of compact subsets of G that separate E and F . We say
that a set S separates E and F in G if E and F belong to different components of
G − S. Triples (E, F,G) are called condensers. Let p∗ = p

p−1
be the dual exponent

of 1 < p <∞. By Gehring and Ziemer we then have

(2) (modpΓ(E, F ;G))
1

p (modp∗Γ
∗(E, F ;G))

1

p∗ = 1

in R
n with n > 2.
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It was shown by the author and Rajala that a version of (2) holds in Ahlfors q-
regular metric spaces that support a 1-Poincaré inequality. In more detail, a special
case of what is shown in [12] is

(3)
1

C
6 (modqΓ(E, F ;G))

1

q (modq∗Γ
∗(E, F ;G))

1

q∗ 6 C

for some constant C that depends only on the data of the space, i.e. the constants
that appear in the definitions (see Section 2) of Ahlfors regularity and the Poincaré
inequalities. Here E, F and G are as in (2), and the sets in Γ∗ are equipped with the
(q − 1)-dimensional Hausdorff measure.

It should be noted that the inequalities (2) and (3) are very similar to the recip-
rocality condition found in [13] and [8]. One could also equip the surfaces with the
so-called perimeter measures instead of the Hausdorff measure. In this direction a
result similar to (3) has recently been proved by Jones and Lahti [9].

In this paper we aim to prove a different kind of duality result. Instead of
condensers we consider spaces T homeomorphic to the solid torus S

1 × D. It is
natural to ask if the duality results above remain valid for the family of paths that
go around the ’hole’ and the family of surfaces which are bounded by meridians on
the boundary torus. It turns out that this is not the case. Freedman and He [4]
studied conformal moduli on riemannian tori in connection with their research on
divergence-free vector fields. They showed that the path-modulus can be arbitrarily
small compared to the corresponding surface modulus, even in the smooth setting.
However, they managed to prove a duality result by replacing the path modulus with
a certain capacity.

Suppose now that T is equipped with a metric d and a Borel-regular measure µ,
so that (T, d, µ) is Ahlfors q-regular. That is, there are constants a, A > 0 such that

arq 6 µ(B) 6 Arq

for all balls B with radius r < diam(T ).
Following Freedman and He [4] we consider the degree 1 capacity instead of the

path modulus. It is defined by

cappT := inf
φ

ˆ

T

Lip(φ)p dµ,

where the infimum is taken over pointwise Lipschitz constants

Lip(φ)(x) := lim sup
r→0

sup
y∈B(x,r)

|φ(x)− φ(y)|

r

of Lipschitz maps φ : T → S
1 of degree 1. Loosely speaking, a map is said to have

degree 1 if it takes (oriented) loops which generate the corresponding fundamental
group to (oriented) generating loops in S

1. We assume S
1 is equipped with a metric

that makes it isometric to a euclidean circle of length 1 equipped with its geodesic
metric.

The surface modulus modpT is defined to be the p-modulus of all level sets of
continuous functions of degree 1, see Section 2, equipped with the (q−1)-dimensional
Hausdorff measure. The main results of this paper imply the following.

Theorem 1.1. Let (T, d, µ) be a compact Ahlfors q-regular metric measure space
that supports a weak 1-Poincaré inequality. Suppose T is homeomorphic to the solid
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torus S1 ×D. Let 1 < p <∞. If cappT is nonzero, then

1

C
6 (cappT )

1

p (modp∗T )
1

p∗ 6 C

where C is a constant that depends only on the data of T . Moreover cappT = 0 if
and only if modp∗T = ∞.

A similar result, with C = 1, was proved by Freedman and He [4, Theorem 2.5]
for smooth solid tori equipped with riemannian metrics.

Theorem 1.1 is obtained from slightly more general statements. These are Theo-
rems 2.2 and 2.3, and they correspond to the lower and upper bounds of the inequality
in Theorem 1.1, respectively. The proof of the lower bound is essentially the same as
the proof of the lower bound of (3) found in [12]. The main difficulty of the proof of
Theorem 1.1 is then the upper bound.

In [12] the proof of the upper bound boils down to showing that given any path
γ that connects the two continua E and F , and a neighborhood Nγ of |γ|, there is a
function admissible for the modulus of surfaces separating E and F that is supported
in Nγ . This approach cannot be adopted in our current situation, since the paths
have been replaced with Lipschitz maps. Instead, given any level set S of a map of
degree 1 and a neighborhood NS of S, we construct a Lipschitz map of degree 1 that
is constant outside NS. Note that this implies that the pointwise Lipschitz constant
of this map can be assumed to be supported in NS. This approach seems to be new.
It can be seen as a dual to the one in [12], and as such it can in fact be used to
reprove (3).

Section 2 contains some definitions and the main results. Theorems 2.2 and 2.3
are proved in Sections 3 and 4, respectively.

Acknowledgement. The author expresses his thanks to the anonymous referee,
whose comments led to several improvements.

2. Main results and definitions

For the rest of this text we fix a compact metric measure space (T, d, µ) that
supports a weak 1-Poincaré inequality. We also assume that µ is doubling. In order
to apply the theory of covering spaces later on, we also have to assume that T is
semilocally simply connected (local and global path connectedness follow from the
1-Poincaré inequality [7, 8.3.2]).

We call a measure µ doubling if it is Borel-regular and there exists a constant
Cµ > 1, such that for every ball B = B(x, r) with radius r < diam(T )

0 < µ(2B) < Cµµ(B) <∞.

Here 2B = B(x, 2r).
Let M be a set of Borel-regular measures on T and let 1 6 p < ∞. We define

the p-modulus of M to be

modpM = inf

ˆ

T

ρp dµ,

where the infimum is taken over all Borel measurable functions ρ : T → [0,∞] with

(4)

ˆ

T

ρ dν > 1
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for all ν ∈ M . Such functions are called admissible functions of M . If there are no
admissible functions we define the modulus to be infinite. If ρ is an admissible func-
tion for M −N where N has zero p-modulus, we say that ρ is p-weakly admissible

for M . As a direct consequence of the definitions we see that the p-modulus does
not change if the infimum is taken over only p-weakly admissible functions. If some
property holds for all ν ∈ M − N we say that it holds for p-almost every ν in M .

Given a family Γ of paths in T , the path p-modulus of Γ is denoted and defined
like the modulus of a family of measures, but instead of (4) it is required that

ˆ

γ

ρ ds > 1

for every locally rectifiable path γ ∈ Γ.
A Borel function ρ : T → [0,∞] is an upper gradient of a function u : T → Y ,

where (Y, dY ) is a metric space, if

(5) dY (u(γ(a)), u(γ(b))) 6

ˆ

γ

ρ ds

for all rectifiable paths γ : [a, b] → T . The target Y = [−∞,∞] is also allowed,
but with an additional requirement that the right-hand side of (5) has to equal ∞
whenever either |u(γ(a))| = ∞ or |u(γ(b))| = ∞. If the family of paths for which (5)
fails has zero p-modulus, we say that ρ is a p-weak upper gradient. The inequality
(5) is called the upper gradient inequality for the pair (u, ρ) on γ.

A p-integrable p-weak upper gradient ρ of u is minimal if for any other p-
integrable p-weak upper gradient ρ′ of u we have ρ 6 ρ′ µ-almost everywhere. By [7,
Theorem 6.3.20] minimal p-weak upper gradients exist whenever p-integrable upper
gradients do.

The space T is said to support a weak p-Poincaré inequality with constants CP

and λP if all balls in T have positive and finite measure, and

−

ˆ

B

|u− uB| dµ 6 CPdiam (B)

(

−

ˆ

λPB

ρp dµ

)
1

p

for all locally integrable functions u and all upper gradients ρ of u. Here

uB = −

ˆ

B

u dµ =
1

µ(B)

ˆ

B

u dµ.

In this paper we consider toroidal spaces, meaning that we assume the fundamen-
tal group of T to be isomorphic to Z with respect to any basepoint. Fix a generator
[αx0

] ∈ π1(T, x0). We say that a loop γ with basepoint x ∈ T is a degree 1 loop if it is

loop-homotopic to αx = γxx0
∗αx0

∗
←
γ xx0

for some path γxx0
that starts at x and ends

at x0. It can be shown that the equivalence class [αx] ∈ π1(T, x) does not depend on
the choice of γxx0

.
For every continuous map f : T → R/Z there is a unique integer deg f , called the

degree of f , so that for every x ∈ T and every degree 1 loop γ based at x the push-
forward f∗γ = f ◦ γ is loop-homotopic to [f(x)] + deg f · β, where β : [0, 1] → R/Z is
the path β(t) = [t].

Now let 1 < p <∞. We define the degree 1 p-capacity of T to be the number

cappT := inf

ˆ

T

ρpf dµ,
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where the infimum is taken over all Lipschitz maps f : T → R/Z with deg f = 1, and
ρf denotes the minimal p-weak upper gradient of f . Note that for Lipschitz maps
the minimal upper gradient agrees almost everywhere with the pointwise Lipschitz
constant Lip(f), see [3] and [7, 13.5.1]. We assume here and hereafter that R/Z is
equipped with the metric

|[x]− [y]| = inf
a∈Z

|x+ a− y|,

where the equivalence classes of R/Z are denoted by brackets. Observe that with
this metric R/Z is isometric to a 1-dimensional euclidean sphere of total length 1
equipped with its intrinsic length metric.

Denote by Γ∗ the family of all level sets φ−1[0] with finite codimension 1 spherical
Hausdorff measure, where φ : T → R/Z is a continuous map of degree 1. The
codimension 1 spherical Hausdorff measure is defined by

H(A) := sup
δ>0

Hδ(A),

where

Hδ(A) := inf
∑

i

µ(Bi)

ri
,

and the infimum is taken over countable covers {Bi} of A by balls with radii ri 6 δ.
By the Carathéodory construction H is a Borel-regular measure. A simple application
of a coarea estimate, see Proposition 3.1, shows that almost all level sets of Lipschitz
maps have finite H-measure. On the other hand, the relative isoperimetric inequality
(Lemma 4.6) shows that level sets of Lipschitz maps of degree 1 must have nonzero
H-measure.

As a dual counterpart to cappT we consider the surface modulus of Γ∗. We
abbreviate

(6) modp∗T = modp∗{H S | S ∈ Γ∗}.

The definitions of cappT and modp∗T are rather trivial if Lipschitz maps of degree
1 do not exist. Although path-connected topological spaces with fundamental groups
isomorphic to Z can fail to admit maps of nonzero degree, it seems to be unknown
whether the existence of such a map is implied by the additional structure of (T, d, µ).
To make life easier we simply assume that there exists at least one Lipschitz map
f : T → R/Z of degree 1.

Let us gather all of the assumptions into one place for clarity and future reference.

Assumptions 2.1. The metric measure space (T, d, µ) is doubling and supports
a weak 1-Poincaré inequality. The space T is compact and semilocally simply con-
nected. The fundamental group of T with respect to any basepoint is isomorphic to
Z and there exists at least one Lipschitz map φ : T → R/Z of degree 1.

With these assumptions our main results are the following

Theorem 2.2. Let 1 < p <∞. If cappT > 0, then

1

C
6 (cappT )

1

p (modp∗T )
1

p∗ ,

where the constant C depends only on the data of T . If cappT = 0, then modp∗T = ∞.

Theorem 2.3. Let 1 < p <∞. If modp∗Γ
∗ <∞, then

(cappT )
1

p (modp∗T )
1

p∗ 6 C,
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where the constant C depends only on the data of T . If modp∗T = ∞, then
cappT = 0.

We say that a constant C > 0 depends only on the data of T , denoted C = C(T ),
if it depends only on the constants Cµ, CP and λP appearing in the definitions of
doubling measures and Poincaré inequalities. The same symbol C will be used for
various different constants.

If we let the metric measure space (T, d, µ) be as in Theorem 1.1, it satisfies
Assumptions 2.1. The existence of Lipschitz maps of degree 1 follows from Propo-
sition 4.5. In Ahlfors q-regular spaces the H-measure is comparable to the (q − 1)-
dimensional Hausdorff measure, so the surface moduli defined using either measure
are comparable. Therefore Theorem 1.1 is just a combination of Theorems 2.2 and
2.3.

Note that the conclusions in Theorems 2.2 and 2.3 are invariant under biLipschitz
changes of metrics. Also recall that a complete metric space supporting a Poincaré
inequality is C-quasiconvex for some C = C(T ). This means that the change of
metrics (T, d) → (T, d′) is C-biLipschitz, when d′ is the intrinsic length metric induced
by d. It follows that we may assume without any loss of generality that d is the length
metric. It is then implied by compactness that (T, d) is in fact geodesic. Note that
in geodesic spaces we can choose λP = 1. For these facts see Theorem 8.3.2 and
Remark 9.1.19 in [7].

3. Proof of Theorem 2.2

The proof of Theorem 2.2 is exactly the same as the proof of Theorem 3.1 in [12],
but with a different coarea estimate.

Proposition 3.1. Let u : T → R/Z be Lipschitz and let ρ be a p-integrable
upper gradient of u in T . Let g : T → [0,∞] be a p∗-integrable Borel function. Then

(7)

ˆ ∗

R/Z

ˆ

u−1(t)

g dH dt 6 C

ˆ

T

gρ dµ

for some C = C(T ).

Proposition 3.1 follows by applying [12, Proposition 4.1] in small enough balls.

Proof of Theorem 2.2. First assume that cappT > 0. If modp∗T = ∞, there is

nothing to prove. Otherwise let g ∈ Lp∗(T ) be admissible for modp∗T . Let u : T →
R/Z be Lipschitz with degree 1 and note that u must be surjective. Let ρ be an upper
gradient of u. We may assume that ρ is p-integrable. Note that by (7) H(u−1(t)) <∞
for almost every t. Proposition 3.1 and Hölder’s inequality give

1 6

ˆ ∗

R/Z

ˆ

u−1(t)

g dH dt 6 C

ˆ

T

gρ dµ 6 C

(
ˆ

T

gp
∗

dµ

)
1

p∗
(
ˆ

T

ρp dµ

)
1

p

.

The lower bound follows by taking infima over admissible functions g and ρ. The same
argument would lead to a contradiction if modp∗T was finite when cappT = 0. �

4. Proof of Theorem 2.3

Theorem 2.3 follows, once we have shown that there is a non-negative Borel
function ρ0 defined on T , such that

cappT =

ˆ

T

ρp0 dµ,
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and that

(8) cappT 6 C(T )

ˆ

S

MC(T )/n(ρ
p−1
0 ) dH

for all S ∈ Γ∗ and all large enough n, depending on S. Here Mr for r > 0 denotes the
restricted Hardy–Littlewood maximal operator, see [7, Chapter 3.5] for its definition
and basic properties. Indeed, letting n → ∞ and applying the general Fuglede’s
lemma [5, Theorem 3] we find that

(9) cappT 6 C(T )

ˆ

S

ρp−10 dH

for modp∗-almost every S. Now suppose modp∗T <∞. If cappT = 0, there is nothing
to prove. Otherwise it follows from (9) that the function

C(T )

cappT
ρp−10

is weakly admissible for modp∗T . Thus

(modp∗T )
1/p∗ 6

C(T )

cappT

(
ˆ

T

ρ
p∗(p−1)
0 dµ

)1/p∗

= C(T )(cappT )
−1/p.

The same calculation shows that modp∗T must be finite if cappT is nonzero. This
proves Theorem 2.3. The rest of this section is focused on finding ρ0 and proving (8).

Let us begin by constructing ρ0. We would like to apply the usual method of con-
structing minimizers for capacities or moduli. This method would consist of picking
a minimizing sequence (φi)i of Lipschitz maps of degree 1 and their upper gradients
(ρi)i, applying weak compactness properties of Lp-spaces and Mazur’s lemma to find
a subsequence of convex combinations of ρi that converges strongly to some limit ρ0,
and finally showing that ρ0 is an upper gradient of a Lipschitz map of degree 1. The
obvious flaw with this method is that it is not clear whether the proposed minimizer
ρ0 or the convex combinations of the functions ρi are upper gradients of Lipschitz
maps of degree 1.

To fix this, we replace the collection of upper gradients of degree 1 Lipschitz maps
by a slightly larger collection F and show in Proposition 4.3 that the capacity does
not change if we take the infimum over functions of F instead. The collection F is
defined using the universal cover (T̃ , π) of T , and consists of those non-negative Borel
functions ρ on T for which the function ρ ◦ π is an upper gradient of a Newtonian
map, which satisfies an analogue of the degree 1 -property. See Subsection 4.2 for the
definition of Newtonian maps. Once we have set the proper definition of F , it is easy
to see that it is convex, and by applying the proofs of existing compactness results
on Newtonian spaces we show in Proposition 4.4 that the limit ρ0 is a member of F
as well.

4.1. Universal cover and lifts. We denote the universal cover of T by (T̃ , π).

The metric d̃ on T̃ is defined as the path metric induced by pulling back the length
functional of T with π. This means that given points x̃, ỹ ∈ T̃ we define

d̃(x̃, ỹ) = inf
γ
ℓ(π ◦ γ),

where the infimum is taken over all paths in T̃ that connect x̃ and ỹ, and ℓ(π ◦ γ) is
the length of the path π ◦ γ. With this metric π becomes a local isometry.
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We equip T̃ with the Borel-regular measure µ̃ that satisfies

µ̃(A) :=

ˆ

π(A)

N(x, π, A) dµ(x),

for all Borel sets A ⊂ T̃ . Here N(x, π, A) denotes the cardinality of π−1(x)∩A. The
area formula

ˆ

T̃

f dµ̃ =

ˆ

T

∑

y∈π−1(x)

f(y) dµ(x)

holds for every integrable Borel-function f .
Denote by τ : T̃ → T̃ the unique deck transform that satisfies

τ(γ̃(0)) = γ̃(1),

for all lifts γ̃ : [0, 1] → T̃ of all degree 1 loops γ : [0, 1] → T . With the additional metric
and measure theoretic structure the classic lifting theorems imply the following.

Lemma 4.1. Suppose f : T → R/Z is a Lipschitz map of degree 1 and let ρ be

one of its upper gradients. There exists a function f̃ : T̃ → R, called the lift of f ,
that satisfies the following properties.

(1) [f̃ ] = f ◦ π. In particular f̃ is locally Lipschitz.

(2) ρ ◦ π is an upper gradient of f̃ .

(3) f̃ ◦ τ − f̃ = 1.

Moreover, if f̃ ′ is another lift that satisfies the properties above, then there is a k ∈ Z

such that f̃ ′ = f̃ ◦ τk = f̃ + k.

Claim (2) follows from the identity
ˆ

γ

ρ ◦ π ds =

ˆ

π◦γ

ρ ds,

which holds for every rectifiable path γ in T̃ .
Conversely, we have the following.

Lemma 4.2. For every locally Lipschitz g : T̃ → R with g ◦ τ − g = 1 there is
a Lipschitz map f : T → R/Z of degree 1, that satisfies [g] = f ◦ π. Moreover, if ρf
is the minimal p-weak upper gradient of f in T , then ρf ◦ π is the minimal p-weak

upper gradient of g in T̃ .

Proof. We define f locally by

f = [g ◦ π−1].

Then f is well defined due to the property g ◦ τ − g = 1. It is certainly locally
Lipschitz, has degree 1, and satisfies [g] = f ◦ π.

It remains to show the relation between the upper gradients. Given any x ∈ T̃
there is a ball B′ that contains x and on which π is an isometry onto B = π(B′).
Clearly ρ ◦ π|−1B′ is a p-weak upper gradient of f in B whenever ρ is a p-weak upper

gradient of g in B′. Thus, if ρf ◦ π is a p-weak upper gradient of g in T̃ , it must be
the minimal one.

Now let γ : [0, 1] → B′ be a rectifiable path, so that the upper gradient inequality
holds for the pair (f, ρf ) on every subpath of π ◦γ. Almost every path in B′ is such a
path, since ρf is a p-weak upper gradient of f , and as an isometry π|B′ preserves all
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path moduli. Continuity of g implies that we can decompose γ into γ = γ1 ∗ · · · ∗ γk,
so that γi = γ|[ti,ti+1] and

(10) |g(γi(ti+1))− g(γi(ti))| = |[g(γi(ti+1))]− [g(γi(ti))]|

for all i = 1, . . . , k. On these subpaths we have
ˆ

γi

ρf ◦ π ds =

ˆ

π◦γi

ρf ds > |f(π(γi(ti+1)))− f(π(γi(ti)))|

= |[g(γi(ti+1))]− [g(γi(ti))]|.

Combining this with triangle inequality and (10) yields

|g(γ(1))− g(γ(0))| 6

ˆ

γ

ρf ◦ π ds.

Given an open set U ⊂ T̃ , denote the set of all paths in U on which the upper
gradient inequality fails for the pair (g, ρf◦π) by ΓU . We need to show that modpΓT̃ =

0. Cover T̃ by countably many balls B′i, on which π is an isometry onto π(B′i). Note
that if the upper gradient inequality fails for the pair (g, ρf ◦ π) on some path η, it
must fail on some subpath of η that is contained in one of the balls B′i. In other
words, for every path in the collection ΓT̃ there is a subpath in one of the collections
ΓB′

i
. Now

modpΓT̃ 6 modp

(

⋃

i

ΓB′

i

)

6
∑

i

modpΓB′

i
= 0,

since the first part of the proof shows that modpΓB′

i
= 0 for all i. �

4.2. Minimizers. Motivated by Lemmas 4.1 and 4.2 we find an alternative
definition for the capacity.

We say that a function f : T̃ → R belongs to the Newtonian space N1,p(T̃ ) if
f is p-integrable and admits a p-weak upper gradient that is also p-integrable. See
[7, Chapter 7] or [1, Chapter 5] for further properties of these spaces. We say that

f ∈ N1,p
loc

(T̃ ) if f |U ∈ N1,p(U) for every open U ⊂⊂ T̃ (note that T̃ is proper). The
space N1,p(U) is equipped with the seminorm

‖f‖N1,p(U) := ‖f‖Lp(U) + inf
ρ
‖ρ‖Lp(U),

where the infimum is taken over all p-weak upper gradients ρ of f in U .
Let F be the collection of all positive Borel functions ρ on T , for which ρ ◦ π is

a p-weak upper gradient of some f ∈ N1,p
loc

(T̃ ) with f ◦ τ − f = 1 almost everywhere.
Define

capFp T := inf
ρ∈F

ˆ

T

ρp dµ.

Note that by Lemma 4.1 every upper gradient of a map admissible for cappT belongs
to F . Therefore

capFp T 6 cappT.

The reverse inequality is also valid, but requires a bit more work.

Proposition 4.3.

cappT = capFp T.
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Proof. We must first show that locally Lipschitz functions of degree 1 are dense
in the space of degree 1 functions of N1,p

loc
(T̃ ). Here having degree 1 means satisfying

the property f ◦ τ − f = 1 almost everywhere. A result by Björn and Björn [2,
Theorem 8.4.] shows that locally Lipschitz functions are dense in N1,p

loc
(T̃ ). A simple

modification of the proof of this result shows that the approximating locally Lipschitz
maps can be chosen to be of degree 1 whenever the limit is of degree 1. We provide
the main points of this modification.

Following the proof of Theorem 8.4 of [2], we start by choosing for every x ∈ T̃
a ball Bx centered at x, so that

• the 1-Poincaré inequality and the doubling property hold within Bx, in the
sense of [2],

• the covering map π is an isometry on Bx.

Let Ux := π−1(π(1
4
Bx)). The space T is compact, so there is a finite subcollection

{Uxi
}mi=1 that covers T̃ . Write Bj =

1
4
Bxj

and Uj = Uxj
. Note that Uj can be written

as a disjoint union Uj =
⋃

k∈Z τ
kBj . We denote cUj =

⋃

k∈Z τ
k(cBj) for any c > 0.

For each j pick a Lipschitz function ψ′j : Bj → R that satisfies χBj
6 ψ′j 6 χ2Bj

.

Extend these to Lipschitz functions ψj : T̃ → R first by defining ψj |τk(2Bj ) := ψ′j ◦τ
−k

in 2Uj and then extending as zero to the rest of T̃ . Next, define Lipschitz maps

ϕj : T̃ → R recursively with ϕ1 = ψ1 and for j > 1

ϕj = ψj ·

(

1−

j−1
∑

k=1

ϕk

)

.

Then
∑i

k=1 ϕk = 1 in Ui and ϕj = 0 in Ui for all j > i. Therefore {(ϕj , Uj)}j is a
partition of unity.

Now let f ∈ N1,p
loc (T̃ ) be a degree 1 map, f ◦ τ − f = 1. Let ε > 0. By Lemma 8.5

of [2] there are locally Lipschitz functions vj : 2Bj → R with

‖f − vj‖N1,p(2Bj) 6
ε

1 + Lj

,

where Lj is the Lipschitz constant of ϕj. Extend vj to 2Uj with

vj |τk(2Bj) = k + vj ◦ τ
−k.

Then vj ◦ τ − vj = 1, and for all k

‖f − vj‖N1,p(τk(2Bj )) 6
ε

1 + Lj
.

As in [2] we get

(11) ‖ϕj(f − vj)‖
p
N1,p(τk(2Bj ))

6 2εp.

The function v :=
∑m

j=1 ϕjvj is locally Lipschitz, and satisfies the degree 1 property
v ◦ τ − v = 1.

Now (11) gives

‖v − f‖N1,p(U) 6 C(U)ε,

for any domain U ⊂⊂ T̃ . This proves the density of degree 1 locally Lipschitz
functions in the space of N1,p

loc (T̃ )-functions of degree 1.
Now if we let ρ ∈ F , the function ρ ◦ π is a p-weak upper gradient of some

f ∈ N1,p
loc (T̃ ), and we find a sequence of locally Lipschitz functions (vj) of degree 1,
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such that

‖vj − f‖N1,p(U)
j→∞
−→ 0.

for every U ⊂⊂ T̃ . Let wj be the Lipschitz projections of vj , given by Lemma 4.2.
Then the minimal upper gradients satisfy ρvj = ρwj

◦ π. Now

(12) ‖ρvj − ρf‖Lp(Bi)
j→∞
−→ 0

for all i. Let A1 = π(B1) and for 1 6 j 6 m − 1 define Aj+1 := π(Bj+1)−
⋃j

i=1Aj .
Let πj : Bj ∩ π

−1(Aj) → Aj be the restriction of π and define ρ′f :=
∑

j χAj
ρf ◦ π

−1
j .

The Borel sets Aj are disjoint and cover T , so a quick calculation shows that

(13) ‖ρ′f‖
p
Lp(T ) 6 ‖ρ‖pLp(T ),

since by definition of ρ we have ρf 6 ρ ◦ π almost everywhere. Finally, note that

‖ρwj
− ρ′f‖

p
Lp(T ) =

m
∑

j=1

‖ρwj
− ρ′f‖

p
Lp(Aj)

6

m
∑

j=1

‖ρvj − ρf‖
p
Lp(Bj)

,

and thus (12) implies

(14) lim
j→∞

‖ρwj
‖pLp(T ) = ‖ρ′f‖

p
Lp(T ),

since there are only finitely many sets Aj . Combining (13) and (14) yields

cappT 6 ‖ρ‖pLp(T ),

which finishes the proof. �

Proposition 4.4. There is a unique minimizer ρ0 ∈ F , i.e.

cappT = capFp T =

ˆ

T

ρp0 dµ.

Moreover, for any other p-integrable ρ ∈ F

(15) cappT 6

ˆ

T

ρp−10 ρ dµ.

Proof. Note that F is convex. Once we know the existence of a minimizer, the
proof of the variation inequality (15) is standard. See for example [12, Lemma 5.2.].
Uniqueness of the minimizer follows from the convexity of F and the uniform con-
vexity of Lp(T ).

We now show the existence of a minimizer. First recall that we have assumed in
Assumptions 2.1 that there exists at least one Lipschitz map of degree 1. It follows
that cappT is finite. Let (fi)i be a sequence of locally Lipschitz maps fi : T → R/Z
of degree 1, so that for each i the function ρi is an upper gradient of fi, and

cappT = lim
i→∞

ˆ

T

ρpi dµ.

We claim that the lifts f̃i of the maps fi can be chosen so that the sequence (f̃i) is
Lp-bounded in any bounded domain of T̃ .

To this end, note that the length of any loop-homotopically non-trivial loop γ
must satisfy

(16) ℓ(γ) > c

for some c > 0. This is implied by the existence of Lipschitz maps of degree 1.
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Let {xi}
N
i=1 be a c

16
-net in T , where c is the constant from (16). Note that by the

net property of {xi} any two balls Bi := B(xi,
c
8
) are connected by a chain of balls

of the same form. By a chain we mean a sequence of balls, in which adjacent ones
have nonempty intersection. The same chaining property holds for the balls 2Bi, but
now additionally we find that the connecting chains (2Bik)k can be chosen so that
for each k there is a ball B′k ⊂ 2Bik ∩ 2Bik+1

of radius c/8.
Note that by (16) the balls 2Bi are evenly covered. In fact, π is an isometry

when restricted to any component of π−1(2Bi). Fix a component B̃1 of π−1(B1).
Set V1 = B̃1. For k > 1 we define domains Vk recursively by adding components of
π−1(Bi) for suitable Bi. At step k + 1 we choose exactly one component of π−1(Bi),
call it B̃i, to be added to Vk if and only if π−1(Bi) intersects Vk and there are no
components of π−1(Bi) that are contained in Vk.

After at most N steps no new balls can be added. Let V = VN . It follows from
the construction that V is a bounded domain on which π is surjective. It may happen
that the previous construction does not define B̃i for all Bi. If so, just let B̃i be a
component of π−1(Bi) that is contained in V . Thus

V =
N
⋃

i=1

B̃i.

Denote by 2B̃i the component of π−1(2Bi) that contains B̃i.

By adding integers if necessary, we may now fix the lifts f̃i by requiring

(17) 0 6 (f̃i)2B̃1
< 1.

If j 6= 1, by construction there is a chain (2B̃jk)
l
k=1 with j1 = 1, jl = j and l 6 N ,

so that for every 1 6 k < l there is a ball B̃′k ⊂ 2B̃jk ∩ 2B̃jk+1
of radius c/8. Let

m := min{µ(Bi)} > 0. By the Poincaré inequality and the doubling condition

|(f̃i)2B̃jk
− (f̃i)B̃′

k
| 6 C −

ˆ

2B̃jk

|f̃i − (f̃i)2B̃jk
| dµ̃ 6 C‖ρi‖

p
Lp(2Bjk

),

where C = C(T, p,m, c), and the same calculation shows

|(f̃i)2B̃jk+1

− (f̃i)B̃′

k
| 6 C‖ρi‖

p
Lp(2Bjk+1

)

as well. Thus by the triangle inequality and (17)

|(f̃i)2B̃j
| 6 CN‖ρi‖

p
Lp(T ) + 1.

Now by the Sobolev–Poincaré inequality, see [7, Thm. 9.1.2], and the local isometry
of π

ˆ

2B̃j

|f̃i − (f̃i)2B̃j
|p dµ̃ 6 C(T, p,m, c)‖ρi‖Lp(T ).

It follows that the sequence (f̃i)i is bounded in Lp(2B̃j).

Since V is covered by finitely many balls 2Bj, we find that both sequences (f̃i)i
and (ρi ◦ π)i are bounded in Lp(V ), and also in every Lp(Wk), where

Wk :=

k
⋃

l=−k

τ lV.

Note that W0 = V . Now by extracting enough subsequences we may assume that
(f̃i)i and (ρi ◦ π)i converge weakly to functions f̃ 0 and ρ̃0 in Lp(W0). By Lemma 3.1

of [10] there exist sequences of convex combinations (f̃ 0
k ) and (ρ̃0k) of the functions f̃i



Duality of moduli in regular toroidal metric spaces 15

and ρi ◦π, respectively, that converge strongly to f̃ 0 and ρ̃0. Moreover ρ̃0 is a p-weak
upper gradient of f̃ 0 in W0.

This allows us to define sequences (f̃k+1
i ) and (ρ̃k+1

i ) recursively to be the se-
quences in Lp(Wk+1) that are obtained by applying the argument above on Wk+1

instead of W0 and on sequences (f̃k
i ) and (ρ̃ki )i instead of (f̃i)i and (ρi ◦π)i. Let f̃k+1

and ρ̃k+1 be the corresponding limits in Lp(Wk+1). It follows that f̃k+1|Ωk
= f̃k and

ρ̃k+1|Ωk
= ρ̃k. Define f̃ and ρ̃ : T̃ → R by setting f̃ |Wk

= f̃k and ρ̃|Wk
= ρ̃k. It is

immediate that ρ̃ is a p-weak upper gradient of f̃ .
Consider the diagonal sequences (f̃ j

j )j and (ρ̃jj)j . These maps are still convex

combinations of the functions f̃i and ρi◦π, respectively. It follows that these sequences
converge to f̃ and ρ̃ in Lp

loc
(T̃ ). Moreover f̃ ◦ τ − f̃ = 1 and ρ̃ ◦ τ − ρ̃ = 0 almost

everywhere, since these hold everywhere for all maps in the respective sequences.
The latter equality allows us to define ρ0 by projecting ρ̃. Therefore ρ0 ∈ F and

capFp T =

ˆ

T

ρp0 dµ,

since (ρ̃jj) is still a minimizing sequence, due to convexity of F . �

4.3. Competing admissible maps. Now that the minimizer ρ0 has been
found, the proof of Theorem 2.3 is only missing the proof of (8). Recall that (8) says
that for all S ∈ Γ∗

cappT 6 C(T )

ˆ

S

MC(T )/n(ρ
p−1
0 ) dH,

where M denotes the Hardy–Littlewood maximal operator. Given an S ∈ Γ∗ we
construct suitable Lipschitz maps of degree 1 that are constant outside a small neigh-
borhood of S. Then we can apply the variation inequality (15) of Proposition 4.4 on
the upper gradients of these Lipschitz maps to conclude (8).

In this subsection we construct these Lipschitz maps. It turns out that the
same construction can be used to obtain Lipschitz maps of degree 1 out of general
(continuous) maps of any nonzero degree. We only need to consider maps of positive
degree by composing with the antipodal map of R/Z if necessary.

To simplify the notation, we omit some parentheses and write for example φ−1[0]

and πφ̃−1(0) instead of φ−1([0]) and π(φ̃−1(0)) from now on.

Proposition 4.5. Let φ : T → R/Z be a continuous map of nonzero positive
degree. There is a number N = N(φ), such that for all n > N there is a finite
pairwise disjoint collection of balls {Bi} of radius 1/n in T , such that for all i

H(φ−1[0] ∩ Bi) > C(T )nµ(Bi)

and such that the Borel function

ρ = n
∑

i

χ5Bi

is an upper gradient of a Lipschitz map ψ : T → R/Z of degree 1.

Proof of (8) assuming Proposition 4.5. Let S ∈ Γ∗. Then S = φ−1[0] for some
degree 1 map φ. Let {Bi} be the collection of balls and let ρ be the Borel function
that is obtained by applying Proposition 4.5 for some large enough n. Now

H(S ∩Bi) > C(T )nµ(Bi)
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for all i. Applying this along with the variation inequality (15) of Corollary 4.4, the
doubling property of µ and the definition of the Hardy-Littlewood maximal operator
gives

cappT 6

ˆ

T

ρρp−10 dµ 6 C(T )
∑

i

nµ(Bi)−

ˆ

5Bi

ρp−10 dµ

6 C(T )
∑

i

H(S ∩Bi) inf
x∈Bi

MC(T )/n(ρ
p−1
0 )(x)

6 C(T )

ˆ

S

MC(T )/n(ρ
p−1
0 ) dH,

which is exactly (8). �

The rest of the section is focused on proving Proposition 4.5. Let φ : T → R/Z
be a continuous map of nonzero positive degree. Let x0 ∈ φ−1[0], x̃0 ∈ π−1(x0) and

let φ̃ : T̃ → R be the lift of φ that satisfies φ̃(x̃0) = 0. Compactness of T implies that

(18) δ := min

{

d

(

πφ̃−1
(

±
1

8

)

, πφ̃−1(0)

)

, d

(

πφ̃−1
(

±
1

4

)

, πφ̃−1
(

±
1

8

))}

is strictly positive. Denote U+ = πφ̃−1(0, 1/4) and U− = πφ̃−1(−1/4, 0]. Denote also

S = πφ̃−1(0). Observe that S ⊂ φ−1[0], and if degφ = 1, then S = φ−1[0].
For our intents and purposes the relative isoperimetric inequality takes the fol-

lowing form.

Lemma 4.6. (Relative isoperimetric inequality) There are constants C = C(T )
and λ = λ(T ) > 1 such that

min

{

µ(B ∩ U+)

µ(B)
,
µ(B ∩ U−)

µ(B)

}

6 C
r

µ(λB)
H(S ∩ λB)

for all balls B = B(x, r) for which λB ⊂ πφ̃−1(−1/4, 1/4).

This formulation is essentially the same as the one used in [12, Lemma 5.1],
which is just an application of Theorems 6.2 and 1.1 of [11]. The same proof is
valid here as well. Note that restricting the balls to φ−1(−1/4, 1/4) ensures that
∂U+ ∩ λB ⊂ S ∩ λB.

Denote by Γ the set of all paths γ that connect πφ̃−1(−1/8) to πφ̃−1(1/8) inside

πφ̃−1(−1/4, 1/4).

Corollary 4.7. For every n > 1
δ

and γ ∈ Γ there is a ball Bn
γ that is centered

on γ, has radius 1
n

and satisfies

H(S ∩ Bn
γ ) > Cnµ(Bn

γ )

for some constant C = C(T ).

Proof. The proof is essentially contained in the discussion following Lemma 5.1
in [12]. We sketch the idea here for completeness. Given a path γ : [0, 1] → T of
Γ, we consider the balls Bt := B(γ(t), 1

2λn
), where λ is as in Lemma 4.6. We may

assume that |γ| is contained in πφ̃−1[−1/8, 1/8], and therefore by the definition of δ

each Bt is contained in πφ̃−1(−1/4, 1/4). Now the function

Φ: t 7→
µ(U+ ∩ Bt)

µ(Bt)
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vanishes when t is near 0 and is equal to 1 when t is near 1. Pick

t0 := sup{t ∈ (0, 1) | Φ(t) 6 1/2}

and choose Bn
γ := 2λBt0 . The lower bound on the measure of the boundary is then

given by the relative isoperimetric inequality. �

Now let Fn be the collection of balls Bn
γ that arise from the paths in Γ as in

Corollary 4.7 with n fixed. Apply the 5r covering theorem on Fn to find a pairwise
disjoint subcollection Gn with the property

⋃

B∈Fn

B ⊂
⋃

B∈Gn

5B.

Note that Gn must be finite due to the compactness of T . Write Gn = {Bi}
N
i=1. Define

a positive Borel function ρ : T → R with

ρ := n

N
∑

i=1

χ5Bi
.

Let Ω be the open set that consists of the points that can be connected to πφ̃−1(−1/8)

by a rectifiable path inside πφ̃−1(−1/4, 1/4). Define a function ψ̃ : T → R inside Ω
with

ψ̃(x) := inf
γx

ˆ

γx

ρ ds,

where the infimum is taken over all rectifiable paths γx that connect πφ̃−1(−1/8) to

x inside πφ̃−1(−1/4, 1/4). Extend ψ̃ as zero to the rest of T . Finally, the desired
competing admissible map ψ : T → R/Z is defined by

ψ(x) := [min{1, ψ̃(x)}].

Lemma 4.8. The mapping ψ is Lipschitz and ρ is one of its upper gradients.

Proof. It is straightforward to prove that ρ is an upper gradient of both ψ̃ and
min{1, ψ̃} in Ω, see e.g. [1, Lemma 5.25]. Let γ be a rectifiable path in T that
connects two points x, y ∈ T . The upper gradient inequality for the pair (ψ, ρ) on γ
is immediate if x, y ∈ Ω and |γ| ⊂ Ω, or if ψ(x) = ψ(y).

In order to prove the upper gradient inequality in the other possible situations
we need to show that ψ̃ > 1 on πφ̃−1(1/8, 1/4)∩Ω. To this end, let η be a rectifiable

path that connects πφ̃−1(−1/8) to a point x ∈ πφ̃−1(1/8, 1/4) inside πφ̃−1(−1/4, 1/4).
Then η has a subpath η′ ∈ Γ. Let Bn

η′ ∈ Fn be the ball obtained by applying Corollary
4.7 on η′. Now

ˆ

η

ρ ds >

ˆ

|η′|

ρ dH1 > n

N
∑

i=1

H1(|η′| ∩ 5Bi) > nH1(|η′| ∩Bn
η′) > 1,

since Bn
η′ is covered by the balls 5Bi. This holds for every connecting path η, which

implies that ψ̃(x) > 1.

Next assume x, y ∈ Ω with ψ̃(x), ψ̃(y) ∈ (0, 1) and |γ| 6⊂ Ω. Note that min{1, ψ̃}

equals 0 in πφ̃−1(−1/4,−1/8) ∩ Ω, since ρ vanishes there. This means that there
exist subpaths γ1 = γ|[0,t1] and γ2 = γ|[t2,1] of γ that satisfy |γ1| ∪ |γ2| ⊂ Ω and
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ψ(γ(t1)) = ψ(γ(t2)) = [0]. Therefore

|ψ(x)− ψ(y)| 6 |ψ(x)− ψ(γ(t1))|+ |ψ(γ(t2))− ψ(y)|

6

ˆ

γ1

ρ ds+

ˆ

γ2

ρ ds 6

ˆ

γ

ρ ds.

The same argument can be applied in the case of x ∈ Ω, y 6∈ Ω. We omit the details.
The upper gradient inequality implies that ψ is Lipschitz, since T is geodesic and

ρ is bounded. �

4.4. Degree of ψ. In this subsection we prove that degψ = 1.
Pick a rectifiable degree 1 loop γ and a point a ∈ (1/8, 1/4). We may now assume

that the endpoints of γ are on πφ̃−1(a). Since T is geodesic and semilocally simply
connected, we may assume that γ has finite length. This, and moving the starting
point if necessary, allows us to decompose γ into

(19) γ = (γ1 ∗ η1) ∗ · · · ∗ (γk ∗ ηk),

so that each γi intersects πφ̃−1(a) precisely at the endpoints, and none of the paths

ηi intersect πφ̃−1(−a).

For the next lemma we denote for brevity ζ := min{1, ψ̃}.

Lemma 4.9. Let η : [0, 1] → Ω be a rectifiable path. Suppose that the endpoints
of ζ∗η belong to {0, 1}. Then ψ∗η is loop-homotopic to ζ∗η(1) − ζ∗η(0) times the
standard generator of π1(R/Z, [0]).

Proof. If the starting point is 0 and the end point is 1, the homotopy is given by
H : [0, 1]2 → R/Z,

H(s, t) = [sζ∗η(t) + (1− s)t].

It is straightforward to check all the requirements. The other cases are similar. �

Corollary 4.10. The paths ψ∗ηi and φ∗ηi are loop-contractible.

Proof. The endpoints of the path ηi must be in the set πφ̃−1(a). Since γ has
finite length, ηi can be decomposed into

ηi = η1i ∗ · · · ∗ η
l
i,

where the endpoints of each ηji are in πφ̃−1(a), and if |ηji | 6⊂ Ω, then there are no

other intersections with πφ̃−1(a).

Now if ηji is contained in Ω, Lemma 4.9 implies that it is loop-contractible.

Otherwise ψ∗η
j
i is already a constant path. Therefore ψ∗ηi is loop-contractible as

well. The path φ∗ηi cannot be surjective, so it is loop-contractible. �

Let α : R/Z → R/Z be the isomorphism α[x] = [x − a]. Note that α∗φ∗γi and
ψ∗γi are all loops with the same basepoint [0].

Denote the domain of γi by [ai, bi]. Let γ′i : [ai, bi] → R be the unique lift of
α∗φ∗γi for which γ′i(ai) = 0. Further decompose each γi into

γi = γ1i ∗ γ
2
i ∗ γ

3
i ,

where γ1i and γ3i intersect πφ̃−1(±a) exactly at their endpoints.

Lemma 4.11. The lifted path γ′i intersects integer multiples of degφ exactly at
its endpoints. In particular γ′i(bi) = ±degφ or γ′i(bi) = 0. Moreover, γ1i (respectively
γ3i ) is contained in Ω if and only if γ′i is negative in a neighborhood of ai (γ′i 6 γ′(bi)
in a neighborhood of bi).
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Proof. Let γ̃i : [ai, bi] → T̃ be the lift of γi that satisfies φ̃∗γ̃i(ai) = a. Then

due to uniqueness of lifts we have γ′i = φ̃∗γ̃i − a. Since φ̃ is a lift of φ, we have

φ̃ ◦ τk = k · degφ + φ̃ for any integer k. It follows that γ′i(t) = k · degφ if and only

if φ̃(τ−k(γ̃i(t))) = a, which can be combined with the lifting property π∗γ̃i = γi to

conclude that γ′i(t) equals an integer multiple of degφ if and only if γi(t) ∈ πφ̃−1(a).
By construction the latter happens if and only if t equals either endpoint of [ai, bi].
This proves the first assertion of the lemma.

The definitions of γ1i , γ
3
i and Ω imply that these paths are contained in Ω if and

only if they are contained in πφ̃−1[−a, a]. Therefore γ1i is contained in Ω if and only

if the part of γ̃i corresponding to γ1i is contained in φ̃−1(k · degφ+ [−a, a]) for some

fixed integer k. This k must be 0, since we chose φ̃∗γ̃i(ai) = a. Thus γ′i = φ̃∗γ̃i − a is
negative in a neighborhood of ai if and only if γ1i is contained in Ω. The path γ3i can
be treated similarly. �

Corollary 4.12. The paths α∗φ∗γi and degφ · ψ∗γi are loop-homotopic.

Proof. We need to check four different cases, corresponding to γ1i and γ3i being
or not being contained in Ω. The proofs are essentially the same, so we write down
only one of them.

Assume that γ1i is not contained in Ω but γ3i is. Then ψ∗γ
1
i is a constant path, and

ψ∗γ
3
i is loop-homotopic to the standard generator by Lemma 4.9. Arguing exactly as

in the proof of Corollary 4.10, we see that ψ∗γ
2
i is loop-contractible. Therefore ψ∗γi

is loop-homotopic to the standard generator.
By Lemma 4.11 the lift γ′i satisfies γ′i(ai) = 0 and γ′i(bi) = ±degφ or γ′i(bi) = 0.

We also find that γ′i is positive in a neighborhood of ai, and less than γ′i(bi) in a
neighborhood of bi. Combining these gives γ′i(bi) = degφ, which means precisely
that α∗φ∗γi is loop-homotopic to deg φ times the standard generator. �

Applying Corollaries 4.10 and 4.12 to the decomposition (19) yields

α∗φ∗γ ≃ degφ · ψ∗γ.

Now by applying the identity deg (α ◦ φ) = degφ, we see that ψ∗γ is loop-homotopic
to the standard generator. Therefore degψ = 1 and the proof of Proposition 4.5 is
finished.
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