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Abstract. We study when multiplication by a weight can turn a non-compact composition

operator on H2 into a compact operator, and when it can be in Schatten classes. The q-summing

case in Hp is considered. We also study when this multiplication can turn a compact composition

operator into a non-compact one.

1. Introduction

Let ϕ : D → D be an analytic self-map and Cϕ : H
2 → H2 be the associated

composition operator f 7→ f ◦ ϕ. For w ∈ H2, the multiplication operator Mw is
defined formally by f 7→ wf and the weighted composition operator by f 7→ w (f ◦ϕ).
It is known (see [5] for instance) that twisting Cϕ by some Mw can improve its
compactness properties, and even its membership in Schatten classes Sp or the decay
of its approximation numbers [7, Theorem 2.3].

In this note, we study, in a rather qualitative way, the following problem: given
a symbol ϕ, when can we find a non-trivial w ∈ H2 such that Mw has a smoothing
effect on Cϕ, namely when is MwCϕ compact if Cϕ was not? Or the other way round:
when can we find w such that MwCϕ is not compact if Cϕ was?

In [13, Proposition 2.4], it is proved that for MwCϕ to be compact for some
w ∈ H2 (w 6≡ 0), it is necessary that

(1.1) m({|ϕ∗| = 1}) = 0,

where m is the normalized Lebesgue measure on T and ϕ∗ the boundary values
function of ϕ. On the other hand, in order that MwCϕ be Hilbert–Schmidt for some
w ∈ H2, w 6≡ 0, it is sufficient that

(1.2)

ˆ

T

log(1− |ϕ∗|) dm > −∞
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[13, Proposition 2.5]. Note that (1.1) means that ϕ is not an exposed point of the
unit ball of H∞ [1], and that (1.2) means that it is not an extreme point of this unit
ball [4, Theorem 7.9].

There is a gap between these two conditions. The purpose of this work to fill
this gap in several respects, this filling explaining in passing the initial gap.

In Section 3, we show that condition (1.1) is necessary and sufficient to have a
compact weighted composition operator. We also give examples showing how small
approximation numbers we can obtain. In Section 4, we show that condition (1.2) is
necessary and sufficient to get a Hilbert–Schmidt weighted composition operator, and
we show that it is also necessary and sufficient for getting a weighted composition
operator in some, or all, Schatten classes. In Section 5, we consider the case of
Hp spaces and study the nuclearity and the summing properties of the weighted
composition operators. In Section 6 we show that a composition operator can become
non-compact by weighting it if and only if the image of the symbol touches the
boundary of the unit disk.

2. Notation

Let D be the open unit disk. The Hardy space Hp, 1 ≤ p < ∞, is the space of
analytic functions f : D → C such that

‖f‖pp := sup
0<r<1

1

2π

ˆ 2π

0

|f(reit)|p dt <∞.

Such functions have non-tangential limits f ∗(eit) almost everywhere on T = ∂D and
we have

‖f‖pp =
1

2π

ˆ 2π

0

|f ∗(eit)|p dt.

For p = 2, H2 is equivalently the space of analytic functions in D that can be written
f(z) =

∑∞
n=0 cnz

n with ‖f‖22 =
∑∞

n=0 |cn|2 < ∞. In the sequel, for convenience, we
write simply ‖ . ‖2 = ‖ . ‖.

Any analytic self-map ϕ : D → D induces a bounded operator Cϕ : H
p → Hp,

called the composition operator of symbol ϕ.
For w ∈ Hp, the multiplication operator Mw is defined, formally, by Mwf = w f ,

and the weighted composition operator MwCϕ by (MwCϕ)(f) = w (f ◦ ϕ). Note that
to get MwCϕ : H

p → Hp, it is necessary to have w ∈ Hp since (MwCϕ)(1) = w.
Throughout this paper it will be assumed that w ∈ Hp, and that w 6≡ 0. This mem-
bership is not sufficient in general; however w ∈ H∞ is sufficient (but not necessary!),
since H∞ is the set of multipliers of Hp. Note that we may consider the bounded
operator MwCϕ, even if Mw is not bounded.

Except in Section 5, we work only with the Hilbert space H2.
For convenience, we will adopt in this paper the following terminology.

Definition 2.1. We say that the symbol ϕ is

- compactifiable if MwCϕ is compact for some w ∈ H2 with w 6≡ 0;

- decompactifiable if MwCϕ is bounded but not compact for some w ∈ H2.

For ξ ∈ T = ∂D and 0 < h < 1, the Carleson window W (ξ, h) is defined as

(2.1) W (ξ, h) = {z ∈ D ; 1− h ≤ |z| and | arg(zξ)| ≤ πh}.
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If µ is a positive measure on D, the Carleson function of µ is

(2.2) ρµ(h) = sup
ξ∈T

µ[W (ξ, h)].

The measure µ is called a Carleson measure when ρµ(h) = O (h), and a vanishing
Carleson measure when ρµ(h) = o (h). By the Carleson embedding theorem, this
is equivalent to say that the canonical inclusion Jµ : H

2 → L2(µ) is respectively
bounded or compact.

It is convenient to coin the Hastings–Luecking box W̃ (ξ, h) ⊆W (ξ, h) defined by

(2.3) W̃ (ξ, h) = {z ∈ D ; 1− h ≤ |z| < 1− h/2 and − πh < arg(zξ) ≤ πh}.
We denote m the Haar measure (normalized Lebesgue measure) of T. For a

symbol ϕ, mϕ = ϕ∗(m) is the pull-back measure of m by ϕ∗ : T → C, the (almost
everywhere defined) radial limit function associated with ϕ:

(2.4) ϕ∗(ξ) = lim
r→1−

ϕ(rξ).

By definition mϕ(B) = m[ϕ∗−1(B)] for all Borel sets B ⊆ D. This measure mϕ is
always a Carleson measure, due to the Littlewood subordination principle.

The Carleson function of ϕ is that of mϕ and is denoted ρϕ:

(2.5) ρϕ(h) = sup
ξ∈T

m
(
ϕ∗−1[W (ξ, h)]

)
.

When the composition operator Cϕ is compact on H2, we have |ϕ∗| < 1 a.e., and
mϕ is supported by D. Moreover, mϕ is then a vanishing Carleson measure.

Recall that a compact operator T between separable Hilbert spaces H1 and H2 is
in the Schatten class Sp = Sp(H1, H2), p > 0, if

∑
n≥1[sn(T )]

p <∞, where
(
sn(T )

)
is

the sequence of singular numbers of T , i.e. the eigenvalues, arranged in non-increasing
order, of |T | =

√
T ∗T . For p = 2, S2(H1, H2) is the Hilbert–Schmidt class.

Let us also recall that, for p ≥ 2, we have T ∈ Sp if and only if
∑

n ‖Ten‖p <∞
for every orthonormal basis (en) of H1, and, for p ≤ 2, we have T ∈ Sp if and only
if
∑

n ‖Ten‖p < ∞ for some orthonormal basis (en) of H1 (see [6] for instance). It
follows that if S, T : H1 → H2 are two compact operators such that ‖Sx‖ ≤ ‖Tx‖ for
all x ∈ H1, then, for all p > 0, T ∈ Sp implies S ∈ Sp.

We recall Luecking’s theorem [14].

Theorem 2.2. (Luecking’s theorem) Let µ be a positive Borel measure on D.
Then the canonical inclusion Jµ : H

2 → L2(µ) is in the Schatten class Sp, p > 0, if
and only if

∞∑

n=0

2n−1∑

j=0

[2nµ(W̃n,j)]
p/2 <∞,

where W̃n,j = W̃ (e2jiπ/2
n
, 2−n).

Let us point out that the above condition can be replaced by the following variant
[8, Proposition 3.3]:

∞∑

n=0

2n−1∑

j=0

[2nµ(Wn,j)]
p/2 <∞,

where Wn,j = W (e2jiπ/2
n
, 2−n).

As usual, the notation A . B means that A ≤ cB for some positive constant c,
and A ≈ B means that A . B and B . A.
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3. Compactification

Theorem 3.1. An analytic self-map ϕ : D → D is compactifiable if and only if
m({|ϕ∗| = 1}) = 0.

Proof. The necessary part is proved in [13, Proposition 2.4]. Let us recall the
easy proof of this fact.

Indeed, suppose that T = Mw Cϕ is compact and that |ϕ∗| = 1 on E, with
m(E) > 0. Since (zn)n converges weakly to 0 in H2 and since T (zn) = wϕn, we
should have

ˆ

E

|w∗|2 dm =

ˆ

E

|w∗|2|ϕ∗|2n dm ≤
ˆ

T

|w∗|2|ϕ∗|2n dm = ‖T (zn)‖2 −→
n→∞

0 ;

but this would imply that w is null a.e. on E and hence w ≡ 0 (see [4], Theorem 2.2),
which was excluded.

Let us now prove the sufficient condition.
Assume that m({|ϕ∗| = 1}) = 0 holds. Given w ∈ H2, we can write

‖MwCϕ(f)‖2 =
ˆ

T

|w∗|2|f ◦ ϕ∗|2 dm =

ˆ

D

|f |2 dν,

where ν = νw = ϕ∗(|w∗|2m), that is ν(A) =
´

ϕ∗−1(A)
|w∗|2 dm. By the Carleson

embedding theorem (see [2, page 129]), a necessary and sufficient condition for the
operator MwCϕ : H

2 → H2 to be compact is that ν is a vanishing Carleson measure
for H2. We now produce a suitable w, w 6≡ 0.

Let

(3.1) Γh = {z ; 1− h ≤ |z| < 1}
and set

Fn = ϕ∗−1(Γ2−n) and cn = m(Fn).

Our assumption implies that cn −→
n→∞

0. We can hence find an increasing sequence

(kn)n≥1 of integers such that

(3.2)

∞∑

n=1

ckn log n <∞.

Let φn : T → R
+ be defined as

φn =

{
1
n

on Fkn ,

1 on T \ Fkn .

Let wn be the associated outer function, satisfying |w∗
n| = φn, namely wn = exp (−ψn),

with

ψn(z) =

ˆ

T

1 + z e−it

1− z e−it
log

1

φn(t)
dm(t) = log n

ˆ

Fkn

1 + z e−it

1− z e−it
dm(t).

Observe that Reψn(z) = log n
´

Fkn
Pz(t) dm(t), where Pz(t) =

1−|z|2
|1−z e−it|2 is the Poisson

kernel, so that Reψn(z) ≥ 0 and |wn(z)| ≤ 1. Moreover |w∗
n| = 1

n
on Fkn.

The condition (3.2) ensures that the infinite product w =
∏

nwn converges uni-
formly on compact subsets of D, and defines a function w ∈ H∞, bounded by 1 and
without zeros. Indeed, since Reψn ≥ 0, we see that

|1− wn(z)| ≤ |ψn(z)| ≤ logn

ˆ

Fkn

1 + |z|
1− |z| dm(t) = (ckn log n)

1 + |z|
1− |z| ;



Compactification, and beyond, of composition operators on Hardy spaces by weights 47

subsequently, the series
∑

(1−wn) converges normally on compact subsets of D, and
the infinite product

∏
wn converges uniformly on compact subsets of D, as claimed.

The weighted composition operator MwCϕ is bounded since w ∈ H∞.
Let finally 0 < h < 2−k1 and n = n(h) such that 2−kn+1 ≤ h < 2−kn. Let ξ ∈ T.

Then W (ξ, h) ⊆ Γh, so that

ϕ∗−1[W (ξ, h)] ⊆ ϕ∗−1(Γh) ⊆ ϕ∗−1(Γ2−kn ) = Fkn.

As a consequence, |w∗(u)| ≤ |w∗
n(u)| ≤ 1

n
for all u ∈ ϕ∗−1[W (ξ, h)], and

ν[W (ξ, h)] =

ˆ

ϕ∗−1[W (ξ,h)]

|w∗|2 dm ≤ 1

n2
mϕ[W (ξ, h)] ≤ 1

n2
Ch,

because we know (see [2, page 129]) that mϕ is a Carleson measure. This ends the
proof, since n = n(h) tends to ∞ when h goes to 0. �

Remark. The previous argument can be sometimes quantified, and the degree
of compactness of MwCϕ specified (even if there are limitations, as shown by the
forthcoming Theorem 4.1).

Recall that if T : X → Y is an operator between Banach spaces X and Y , its
n-th approximation number an(T ) is defined, for n ≥ 1, as

an(T ) = inf{‖T − R‖ ; R : X → Y has rank < n}.

When X and Y are Hilbert spaces, we have an(T ) = sn(T ), the n-th singular number
of T .

Theorem 3.2. For each γ with 0 < γ < 1/2, there exist a non-compact com-
position operator Cϕ : H

2 → H2 and a weight w ∈ H∞ such that, for some constant
b > 0, we have

an(MwCϕ) . exp(−b nγ).

In particular, MwCϕ belongs to all Schatten classes Sp(H
2), p > 0.

For the proof, we recall the following simple result.

Proposition 3.3. Let ν be a vanishing Carleson measure on D. Then

an(Jν) . inf
0<h<1

(
e−nh + sup

0≤t≤h

√
ρν(t)

t

)
,

where Jν : H
2 → L2(ν) is the canonical inclusion. In particular, if w ∈ H∞ and ϕ is

a symbol, we have

an(MwCϕ) . inf
0<h<1

(
e−nh + sup

0≤t≤h

√
ρν(t)

t

)
,

where ν = ϕ∗(|w∗|2m) is the pull-back measure of |w∗|2m by ϕ∗.

For the proof of Proposition 3.3, we refer to [12, Theorem 5.1], where the result
is given only for composition operators, but working exactly the same for inclusions,
except only that we have to replace the quantity

√
ρν(h)/h by sup0≤t≤h

√
ρν(t)/t.

For the special case, just use that ‖Jνf‖ = ‖(MwCϕ)f‖ for all f ∈ H2, so there exist
two contractions U : L2(ν) → H2 and V : H2 → H2 such that (MwCϕ) = UJν and
Jν = V (MwCϕ), and hence an(MwCϕ) = an(Jν).
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Proof of Theorem 3.2. We use a construction made in [8, Section 3.2]. Let
1 < β ≤ 2 and

(3.3) u(t) = | sin(t/2)|β.
There is an analytic function U : D → Π+ = {Re z > 0} whose boundary values are

(3.4) U∗(eit) = u(t) + iHu(t),
where H is the Hilbert transform. The symbol ϕ is defined, for z ∈ D, as

(3.5) ϕ(z) = exp
(
− U(z)

)
.

By [8, Lemma 3.6 and Lemma 4.3], the composition operator Cϕ : H
2 → H2 is

not compact.
Moreover, since |ϕ∗(eit)| = exp

(
− | sin(t/2)|β

)
, we have

|ϕ∗(eit)| ≥ 1− h ⇐⇒ |t| ≤
(
log

1

1− h

)1/β

≈ h1/β ;

so, if Γh is the annulus {z ; 1− h ≤ |z| < 1}, and we set

Fk = ϕ∗−1(Γ2−k),

we have
ck := m(Fk) ≈ 2−k/β.

Now, let δk = exp(−2k/β/k2). We slightly modify the example of Theorem 3.1 as
follows:

φk =

{
δk on Fk,

1 on T \ Fk.

Then, the series
∑

k≥1 ck log(1/δk) converges since ck log(1/δk) . 1/k2. As in the
proof of Theorem 3.1, we can define an outer function w such that |w∗| = ∏

k≥1 φk.
The same computation gives us, for any Carleson window W (ξ, t) and for ν =
ϕ∗(|w∗|2m):

ν[W (ξ, t)] . δ 2
j t, for 2−j−1 ≤ t < 2−j.

Let 0 < h < 1 arbitrary. There exists an integer l ≥ 0 such that 2−l−1 ≤ h < 2−l.
Then for 0 < t ≤ h, we have 2−j−1 ≤ t < 2−j for some j ≥ l; hence

ρν(t)

t
. δ 2

j ≤ δ 2
l .

Therefore Proposition 3.3 gives

an(MwCϕ) . inf
l∈N

(e−n2−l

+ δl) . inf
l≥0

(
exp(−n2−l) + exp(−2l/β/l2)

)
.

The choice l =
[

β
(β+1) log 2

log n
]

gives, for some b > 0:

an(MwCϕ) . exp
(
− b n1/(β+1)/(log n)2

)
.

Now, if 0 < γ < 1/2, we take β such that 1 < β < 1
γ
− 1 and β ≤ 2. We obtain,

with another b > 0:
an(MwCϕ) . exp(−b nγ),

as claimed. �

Remark 1. For β < 1, since we have mϕ(Γh) ≈ h1/β , the composition operator
Cϕ is already compact. When β = 1, we have mϕ(Γh) ≈ h, but it can be checked
that nevertheless Cϕ is compact and ρϕ(h) = O

(
h/ log(1/h)

)
(see [8, Remark 3,
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page 3117]). Without doing that, we can use [8, Theorem 4.1] (which is an improve-
ment of [9, Theorem 4.1]): there exists a compact composition operator with symbol
ϕ̃ such that |ϕ̃∗| = |ϕ∗|; therefore mϕ̃(Γh) = mϕ(Γh) ≈ h.

For β = 1, the above proof only gives

an(MwCϕ) . exp
(
− b n1/2/(logn)2

)
.

Though in this case Cϕ was already compact, that nevertheless allows to improve the
compactness.

Remark 2. The case β = 2 corresponds to the simple symbol ϕ(z) = 1+z
2

.
Indeed, we only used in our construction the modulus of the symbol and for this ϕ,
we have |ϕ∗(eit)| = | cos(t/2)| ≈ 1− t2/8 ≈ exp

(
− | sin(t/2

√
2)|2

)
.

We get the following result.

Theorem 3.4. Let ϕ(z) = 1+z
2

. For each decreasing sequence (εk) of positive

numbers such that (δk) = (2k/2ε2k) is decreasing, there exist a weight w ∈ H∞ and a
positive constant b such that

an(MwCϕ) . exp
(
− b n1/3εn

)
.

Proof. We only have to modify the proof of Theorem 3.2: we replace Fk by

Fk = ϕ∗−1(Γ4k/3)

so ck = m(Fk) ≈ 2−k/3, and we replace δk = exp(−2k/β/k2) = exp(−2k/2/k2) by

δk = exp(−2k/3ε2k),

where (εk)k is a given decreasing sequence of positive integers such that (δk) is de-
creasing. Note that, since (δk) is decreasing, we have ε2k . 2−k/2, so

∑
k ε2k < ∞.

We get

an(MwCϕ) . inf
l≥0

(
e−n4−l/3

+ e−2l/3ε
2l
)
,

and, with l =
[
log n/ log 2

]
, we get, since εn ≤ ε2l , for some b > 0:

an(MwCϕ) . exp
(
− b n1/3εn

)
. �

For example, with εk = 1/(log k)2, we get an(MwCϕ) . e(−b n1/3/(logn)2).
Theorem 3.4 improves a result of [7, Theorem 2.3], where for this symbol and a

given α > 0, weights w are obtained such that

an(MwCϕ) .

(
log n

n

)α

.

4. Hilbert–Schmidt and Schatten regularizations

We begin with a characterization of the symbols that can give a Hilbert–Schmidt
weighted composition operator.

Theorem 4.1. An analytic self-map ϕ : D → D can induce a Hilbert–Schmidt
weighted composition operator MwCϕ, for some weight w ∈ H2, if and only if

ˆ

T

log
( 1

1− |ϕ∗|
)
dm < +∞.
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Proof. That the condition is sufficient is proved in [13, Proposition 2.5]. For sake
of completeness, we recall the argument.

The hypothesis implies that there exists an outer function w on D such that
|w∗|2 = 1− |ϕ∗|. Then, writing T =MwCϕ, we have

∞∑

n=0

‖T (zn)‖2 =
∞∑

n=0

ˆ

T

(1− |ϕ∗|)|ϕ∗|2n dm =

ˆ

T

1

1 + |ϕ∗| dm < +∞,

and T is Hilbert–Schmidt, as claimed.
Let us prove the necessity of the condition. If w ∈ H2 exists such that MwCϕ :

H2 → H2 is Hilbert–Schmidt, we have in particular |ϕ∗| < 1 m-almost everywhere,
by the easy part of Theorem 3.1. Since MwCϕ is Hilbert–Schmidt, we have

∞∑

n=0

‖wϕn‖2 =
∞∑

n=0

‖(MwCϕ)(z
n)‖2 <∞,

i.e.
ˆ

T

|w∗|2 1

1− |ϕ∗|2 dm <∞.

The following lemma, with u = |w∗|2, v = 1 − |ϕ∗|2 and α = 1, then shows that
´

T
log 1

1−|ϕ∗|2 dm < ∞. In fact, since w ∈ H2 and w 6≡ 0, Jensen’s inequality tells

that the first condition of that lemma is satisfied. �

Lemma 4.2. Let (Ω, ν) be a measure space and u, v : Ω → (0, 1] measurable
functions such that, for some α > 0:

ˆ

Ω

| log u| dν <∞ and

ˆ

Ω

uv−α dν <∞.

Then

ˆ

Ω

| log v| dν <∞.

Proof. If we set g = v−α and f = uv−α, we have

0 ≤ log g = log f + log
1

u
≤ log+ f + | log u| ≤ f + | log u|.

By hypothesis, f (which is positive) and | log u| are integrable; hence log g is integrable
and

ˆ

Ω

| log v| dν <∞. �

In Theorem 4.1, we showed that for the outer function w such that |w∗|2 = 1−|ϕ∗|,
the weighted composition operator MwCϕ is Hilbert–Schmidt. For this weight, we
cannot expect better in general, as said by the following theorem.

Theorem 4.3. There exists a symbol ϕ satisfying
´

T
log(1−|ϕ∗|) dm > −∞ such

that, if w is any outer function satisfying |w∗| = 1 − |ϕ∗|, the weighted composition
operator MwCϕ is Hilbert–Schmidt, but MwCϕ /∈ Sp, for all p < 2.

Proof. Let, for |t| ≤ π:

u(t) = 1− exp(− e1/|t|).

We have 0 < 1− exp(− e1/π) ≤ u(t) ≤ 1; hence
´ π

−π
log u(t) dt > −∞; therefore there

is an outer function ϕ ∈ H∞ such that |ϕ∗(eit)| = u(t).
Moreover, we also have

´

T
log(1− |ϕ∗|) dm ≈

´ π

−π
log

(
1− u(t)

)
dt > −∞. Hence

if w is an outer function such that |w∗|2 = 1−|ϕ∗|, the weighted composition operator
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MwCϕ is Hilbert–Schmidt. We are going to show that MwCϕ does not belong to any
Schatten class for p < 2.

For that, we use Theorem 2.2. The weighted composition operator MwCϕ can be
viewed as an inclusion Jν : H

2 → L2(ν), where ν = ϕ∗(|w∗|2m). Here, we also have
dν(z) = (1− |z|) dmϕ(z).

Since p < 2, we have

2n−1∑

j=0

[2nν(W̃n,j)]
p/2 ≥

( 2n−1∑

j=0

2nν(W̃n,j)

)p/2

= [2nν(Γ̃2−n)]p/2,

where Γ̃h = {z ∈ D ; 1− h ≤ |z| ≤ 1− h/2}. But ν(Γ̃2−n) ≈ 2−nmϕ(Γ̃2−n) and

mϕ(Γ̃h) ≈
1

(log 1/h)(log log 1/h)2
·

In fact, we have ϕ∗(eit) ∈ Γ̃h if and only if h/2 ≤ exp(− e1/|t|) ≤ h, which is equivalent
to

1

log log 2/h
≤ |t| ≤ 1

log log 1/h

and

1

log log 1/h
− 1

log log 2/h
≈ 1

(log log 1/h)2
log

(
1 +

log 2

log 1/h

)

≈ 1

(log 1/h)(log log 1/h)2
·

Hence

2nν(Γ̃2−n) &
1

n (logn)2

and we obtain
+∞∑

n=0

2n−1∑

j=0

[2nν(W̃n,j)]
p/2 &

+∞∑

n=0

1

np/2 (log n)p
= ∞ ,

since p/2 < 1. Luecking’s theorem tells that MwCϕ /∈ Sp. �

If Theorem 4.3 does not allow to have a better behavior for MwCϕ than Hilbert–
Schmidt when w is an outer function such that |w∗| = 1 − |ϕ∗|, an improvement is
possible by taking another weight.

Theorem 4.4. Assume that the composition operator Cϕ can induce a Hilbert–
Schmidt weighted composition operator. Then there exists another weight w ∈ H2

such that MwCϕ ∈ Sp for every p < 2.

Proof. By Theorem 4.1, we have
´

D
log 1

1−|z| dmϕ(z) <∞.

We will use the following version of the du Bois–Reymond lemma. For sake of
completeness, we will give a short proof of this lemma, but we postpone it.

Lemma 4.5. (du Bois–Reymond lemma) Let µ be a continuous positive measure
on [0, 1) and f a positive µ-integrable function. Then there exists a positive function

g on [0, 1) such that g(t)−→
t→1

∞ and
´ 1

0
f(t) g(t) dµ(t) <∞.

So, let g : [0, 1) → R+ with g(t)−→
t→1

∞ and
´

D
g(|z|) log 1

1−|z| dmϕ(z) <∞. Then

there is an outer function w such that |w∗| = (1− |ϕ∗|)g◦|ϕ∗|.
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Take an integer K > 1/p and let wK be an outer function such that |w∗
K| =

(1− |ϕ∗|)K . We point out that

‖w∗
K(ϕ

∗)n‖L∞(T) ≤ sup
t∈(0,1)

(1− t)Ktn .
1

nK

Hence we have, for some positive constant C (depending on K but not on n):

‖(MwK
Cϕ)(z

n)‖2 =
ˆ

T

|w∗
K |2|ϕ∗|2n dm ≤ C

n2K
·

It follows that ‖(MwK
Cϕ)(z

n)‖p ≤ Cp/2/nKp and hence
∞∑

n=1

‖(MwK
Cϕ)(z

n)‖p <∞,

since Kp > 1. That implies that MwK
Cϕ ∈ Sp.

But g(t)−→
t→1

∞, so g(t) ≥ K for t close enough to 1 and it follows that |w∗| . |w∗
K|

(up to a constant depending on K only). Hence ‖(MwCϕ)f‖ . ‖(MwK
Cϕ)f‖ for all

f ∈ H2, and it follows that MwCϕ ∈ Sp. �

Proof of Lemma 4.5. The classical du Bois–Reymond lemma states that, for any
convergent series

∑
un of positive numbers, there is a sequence of positive numbers

αn increasing to ∞ such that
∑

n αnun < ∞. It is an easy exercise to show that.

Now if
´ 1

0
f dµ < ∞, we take un =

´ 1− 1

n+1

1− 1

n

f dµ. We get the result in taking g =
∑∞

n=1 αn1[1− 1

n
,1− 1

n+1
). �

Theorem 4.6. For every p < ∞, if MwCϕ ∈ Sp for some weight w, then there
exists another weight w̃ for which Mw̃Cϕ is Hilbert–Schmidt.

Proof. For p ≤ 2, this is obvious, with the same weight, since Sp ⊆ S2. So we
assume p > 2. We have

∑∞
n=0 ‖(MwCϕ)(z

n)‖p <∞, i.e.
∞∑

n=0

(
ˆ

T

|w∗|2|ϕ∗|2n dm
)p

<∞.

When
∑∞

n=0 |cn|p < ∞, the Hölder inequality implies that, for β > 1/q (q is the
conjugate exponent of p), we have

∞∑

n=0

1

nβ
|cn| ≤

( ∞∑

n=0

1

nβq

)1/q( ∞∑

n=0

|cn|p
)1/p

<∞.

Now,

(1− |ϕ∗|2)−β =

∞∑

n=0

(−β
n

)
(−1)n|ϕ∗|2n,

and, by the Stirling formula
(−β

n

)
(−1)n ≈ nβ−1. Hence if we take β such that 1/q <

β < 1 and set α = 1− β, we have α > 0 and
ˆ

T

|w∗|2(1− |ϕ∗|2)−α dm ≈
∞∑

n=0

1

nβ

ˆ

T

|w∗|2|ϕ∗|2n dm <∞.

It follows from Lemma 4.2 that
´

T
| log(1 − |ϕ∗|2)| dm < ∞, and then, from Theo-

rem 4.1, that there is a weight w̃ for which Mw̃Cϕ is Hilbert–Schmidt. �

Let us put together Theorem 4.1, 4.4 and 4.6.
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Theorem 4.7. For any symbol ϕ, the following assertions are equivalent:

1) there is a weight w, with w ∈ H2, such that MwCϕ is Hilbert–Schmidt;
2) there is a weight w̃, with w̃ ∈ H∞, such that Mw̃Cϕ ∈ Sp for all p > 0;
3) there exist p <∞ and a weight wp, with wp ∈ H∞, such that MwpCϕ ∈ Sp;

4)

ˆ

T

log
1

1− |ϕ∗| dm <∞.

As a consequence, we see that in general, the condition m({|ϕ| = 1}) = 0 cannot
give better than a compactification.

Theorem 4.8. There exists a compactifiable symbol ϕ, i.e. m({|ϕ∗| = 1}) = 0,
such that, whatever the weight w, MwCϕ is not in any Schatten class Sp, with p <∞.

Proof. It suffices to find a symbol ϕ such that m({|ϕ∗| = 1}) = 0 but such that
´

T
log 1

1−|ϕ∗| dm = ∞, i.e. an element of the unit ball of H∞ that is an extreme point

of that unit ball but not an exposed point. If we set u(t) = 1 − e−1/|t| for |t| ≤ π,
then 0 < 1 − e−1/π ≤ u(t) ≤ 1, so

´

|t|≤π
log u(t) dt > −∞, so there exists an outer

function ϕ ∈ H∞ such that |ϕ∗(eit)| = u(t). Clearly, this function works. �

5. Weighted composition operators on H
p

In this section we assume that 1 ≤ p < +∞. We are interested here in finding
a characterization of the symbols that can give a weighted composition operator
belonging to some specific ideal of operators. In particular, we focus on the ideal of
nuclear operators and the ideal of absolutely summing operators.

First let us recall:

- An operator T : X → Y between Banach spaces X and Y is nuclear if there
are elements yn ∈ Y and linear forms x∗n ∈ X∗ with

∑∞
n=0 ‖x∗n‖ ‖yn‖ < ∞

such that Tx =
∑∞

n=0 x
∗
n(x)yn for all x ∈ X.

- An operator T : X → Y between Banach spaces X and Y is r-summing,
1 ≤ r <∞, if there is a positive constant C such that

( n∑

k=1

‖Txk‖r
)1/r

≤ C sup
x∗∈BX∗

( n∑

k=1

|〈x∗, xk〉|r
)1/r

for all finite sequence (x1, . . . , xn) in X.

The main result of this section is the following theorem.

Theorem 5.1. Let ϕ : D → D be a symbol. The following assertions are equiv-
alent.

(1) There exists a weight w such that MwCϕ : H
p → Hp is a nuclear operator for

every p ≥ 1.
(2) There exists a weight w such that MwCϕ : H

p → Hp is 1-summing for every
p ≥ 1 (and hence is r-summing for every r ≥ 1).

(3) There exists a weight w such that MwCϕ : H
p → Hp is r-summing for some

r ≥ 1 and some p ≥ 1.

(4)

ˆ

T

log
1

1− |ϕ∗| dm <∞.

Proof. Clearly (1) implies (2), which implies (3).
The weighted composition operator (MwCϕ) can be viewed as the Carleson em-

bedding Jνp : H
p → Lp(νp) where νp = ϕ∗(|w∗|pm) is a finite measure on D.
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Assume (3). Then Jνp is actually r-summing on Hs where s = min(2, p) thanks
to [11, Theorem 8.4]. By [11, Proposition 2.3, 1)], we have

ˆ

T

|w∗|p
(1− |ϕ∗|)s/2 dm =

ˆ

D

dνp(z)

(1− |z|)s/2 <∞.

By Lemma 4.2, that implies that
´

T
log 1

1−|ϕ∗| dm <∞ and (4) is satisfied.

Now assume that (4) is satisfied. For every f ∈ Hp, we denote by f̂(n) its nth

Taylor coefficient. We point out that the functional f ∈ Hp 7→ f̂(n) has norm 1.
Then, for any operator T : Hp → Y satisfying

∑∞
n=0 ‖Ten‖ < ∞ where en(z) = zn,

it is easy to check that T is a nuclear operator.
Our assumption implies that there exists an outer function w such that |w∗| =

(1 − |ϕ∗|)2 a.e. and we already pointed out that ‖w∗(ϕ∗)n‖L∞(T) ≤ C
n2 , for some

constant C > 0. Hence

‖(MwCϕ)(en)‖p =
(
ˆ

T

|w∗|p|ϕ∗|pn dm
) 1

p

≤ C

n2
·

We get that
∑

n ‖(MwCϕ)(en)‖p <∞ and hence that (MwCϕ) is a nuclear oper-
ator. �

6. Decompactification

6.1. An initial example. We refer to [15, page 27] (see also [10]) for the
definition of the lens map λθ of parameter θ, 0 < θ < 1.

We saw in [7, Theorem 4.1] that multiplication by a second symbol w can improve
the degree of compactness of a composition operator Cϕ. For example, if ϕ = λθ,
which satisfies [10, Theorem 2.1]:

e−b1
√
n . an(Cλθ

) . e−b2
√
n

(implying in particular that Cλθ
is in all Schatten classes Sp(H

2), p > 0), we exhibited
functions w ∈ H∞ such that

e−b′
1
n/ logn . an(MwCϕ) . e−b′

2
n/ logn.

We wish to prove here that, conversely, multiplication by w can in some sense “de-
compactify” Cϕ while keeping it bounded. We shall begin with an explicit example.

Theorem 6.1. Let λθ be a lens map, 0 < θ < 1, and let w(z) = (1 − λθ(z))
a

where a = 1
2

(
1 − 1

θ

)
< 0. Then w ∈ H2 and the weighted composition operator

MwCλθ
is bounded but not compact on H2, though Cλθ

is in all Schatten classes
Sp(H

2), p > 0.

Proof. We first observe that w ∈ H2 since |1− λ∗θ(ξ)| ≈ |1− ξ|θ when ξ ∈ T (see
[10, Lemma 2.5]) and 2 a θ = θ − 1 > −1. Let now f ∈ H2. Then we have, formally:

‖MwCϕ(f)‖2 =
ˆ

T

|1− λ∗θ(ξ)|2a |f ◦ λ∗θ(ξ)|2 dm(ξ) =

ˆ

D

|f(u)|2 dµ(u),

where

dµ = |1− u|2a dmλθ
(u),

with mλθ
= λ∗θ(m).

It is sufficient to prove that µ is a Carleson measure, but not a vanishing one, for
H2. We can restrict ourselves to the Carleson windows W (1, h) centered at 1.
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We know ([10, Lemma 2.5]) that, for some constants C > c > 0, depending on
θ, we have c |t|θ ≤ 1 − |λ∗θ(eit)| ≤ C |t|θ and | arg[λ∗θ(eit)]| ≤ Cπ |t|θ; it follows easily
that mλθ

[W (1, h)] ≈ h1/θ. Hence

µ[W (1, h)] =
∞∑

n=0

µ[W (1, 2−nh) \W (1, 2−n−1h)]

≈
∞∑

n=0

(2−nh)2amλθ
[W (1, 2−nh) \W (1, 2−n−1h)]

.

∞∑

n=0

(2−nh)2a(2−nh)1/θ . h

∞∑

n=0

2−n = 2h

(since 2a+ 1/θ = 1), proving that µ is a Carleson measure.
On the other hand, if we consider the modified Hastings–Luecking boxes:

˜̃
W (1, h) = {z ∈ D ; (c/2C) h ≤ 1− |z| ≤ h and | arg(z)| ≤ πh},

we have mλθ

(˜̃
W (1, h)

)
& h1/θ, because if (h/2C)1/θ ≤ |t| ≤ (h/C)1/θ, we have

1 − |λ∗θ(eit)| ≤ C |t|θ ≤ h, 1 − |λ∗θ(eit)| ≥ c |t|θ ≥ (c/2C) h and | arg[λ∗θ(eit)]| ≤
Cπ |t|θ ≤ π h, so λ∗θ(e

it) ∈ ˜̃
W (1, h). It follows that

µ[W (1, h)] ≥ µ
(˜̃
W (1, h)

)
& h2amλθ

(˜̃
W (1, h)

)
& h2ah1/θ = h,

so µ is not a vanishing Carleson measure. �

6.2. The general case. We now turn to the general case, with a less explicit
construction, under the following form.

Theorem 6.2. An analytic self-map ϕ : D → D is decompactifiable if and only
if ‖ϕ‖∞ = 1.

Proof. First assume that ‖ϕ‖∞ < 1. Let w ∈ H2 and (fn) a weakly null
sequence in H2; this implies that fn −→

n→∞
0 uniformly on compact subsets of D, so

that ‖fn ◦ ϕ‖∞ −→
n→∞

0. But then

‖MwCϕ(fn)‖2 ≤ ‖w‖2 ‖fn ◦ ϕ‖∞ −→
n→∞

0.

This shows that MwCϕ is compact for any w ∈ H2.
Now, assume that ‖ϕ‖∞ = 1. We are going to show that ϕ is decompactifiable.

We need to find a weight w ∈ H2 such that the finite (since w ∈ H2) measure
ν = ϕ∗(|w∗|2m), namely:

ν(A) =

ˆ

ϕ∗−1(A)

|w∗|2 dm

is Carleson (ensuring that MwCϕ : H
2 → H2 is bounded), but not vanishing Carleson

(implying that MwCϕ : H
2 → H2 is not compact).

If Cϕ is not compact, it suffices to take w = 1.
We now assume that Cϕ is compact. Then m({|ϕ∗| = 1}) = 0. This fact and

the hypothesis ‖ϕ‖∞ = 1 clearly imply that mϕ(Γn) > 0 for each n, where Γn is the
annulus {z ∈ D ; 1− 2−n ≤ |z| < 1}. If we set

Cl = {z ∈ D ; 1− 2−l ≤ |z| < 1− 2−l−1},
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we have Γn =
⋃

l≥nCl, so that mϕ(Cl) > 0 for some l ≥ n. We can therefore find an
increasing sequence (kn) of integers such that mϕ(Ckn) > 0 for each n. Splitting in
the natural way Ckn into 2kn Hastings–Luecking boxes, we can find a sequence (ξn)

of points of T such that, with W̃kn = W̃ (ξn, 2
−kn):

mϕ(W̃kn) > 0.

We define our weight w as an outer function w ∈ H2 with boundary values w∗.
Let

u = 1 +
∞∑

n=1

2−kn

mϕ(W̃kn)
1ϕ−1(W̃kn)

;

Then u ≥ 1, so log u ≥ 0, and

0 ≤
ˆ

T

log u dm ≤
ˆ

T

(u− 1) dm =

∞∑

n=1

2−kn ≤ 1 <∞;

Hence log u ∈ L1(T) and there is an outer function w ∈ H2 such that |w∗|2 = u (see
[4, page 24]).

Now, if ν = ϕ∗(|w∗|2m) = ϕ∗(um), we have

ν(A) = mϕ(A) +

∞∑

n=1

2−kn

mϕ(W̃kn)
mϕ(A ∩ W̃kn),

and ν is not a vanishing Carleson measure since, with Wkn =W (ξn, 2
−kn):

ν(Wkn) ≥ 2−kn
mϕ(W̃kn ∩Wkn)

mϕ(W̃kn)
= 2−kn.

Let now W = W (ξ, h) be an arbitrary Carleson window. Without loss of gen-
erality, we can assume h = 2−N for some positive integer N , and we observe that

if z ∈ W ∩ W̃kn, then 1 − 2−N ≤ |z| ≤ 1 − 2−kn−1, implying kn ≥ N − 1. Hence

W ∩ W̃kn = ∅ for kn < N − 1 and:

ν(W ) = mϕ(W ) +
∑

kn≥N−1

2−kn
mϕ(W̃kn ∩W )

mϕ(W̃kn)

≤ mϕ(W ) +
∑

kn≥N−1

2−kn ≤ mϕ(W ) +
∑

l≥N−1

2−l

= mϕ(W ) + 4h.

Since Cϕ is bounded, mϕ is a Carleson measure and mϕ(W ) = O (h); therefore
ν(W ) = O (h) and hence ν is a Carleson measure. This shows that Cϕ is decompact-
ified by Mw and that completes the proof. �

Remark. For p ≥ 1, if we set w̃ = w2/p, then w ∈ Hp and the same proof
shows that the weighted composition operator Mw̃Cϕ : H

p → Hp is bounded but not
compact.
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