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Abstract. We prove a surprising higher regularity for solutions to the nonlinear elliptic au-
tonomous Beltrami equation in a planar domain Ω,

fz = A(fz) a.e. z ∈ Ω,

when A is linear at ∞. Namely W
1,1

loc
(Ω) solutions are W

2,2+ǫ

loc
(Ω). Here ǫ > 0 depends explicitly

on the ellipticity bounds of A. The condition “is linear at ∞” is necessary—the result is false for
the equation fz = k|fz|, for any 0 < k < 1, (k = 0 is Weyl’s lemma) and the improved regularity
is sharp, but can be further improved if, for instance, A is smooth. We also discuss the subsequent
higher regularity implications for fully non-linear Beltrami systems

fz = A(z, fz) a.e. z ∈ Ω,

There the condition “linear at ∞” also implies improved regularity for W
1,1

loc
(Ω) solutions.

1. Introduction and statement of results

The governing equations of planar geometric analysis and the theory of quasi-
conformal mappings, Teichmüller spaces and so forth are the Beltrami equations and
their nonlinear counterparts, see for instance [6, 15, 10, 11, 13, 12]. Beltrami equa-
tions come in several different flavours. As examples, let Ω ⊂ C be a domain and
let f : Ω → C be a mapping of Sobolev class W 1,1

loc (Ω) consisting of functions whose
first derivatives are locally integrable. Then we have the following types of Beltrami
equations:

• C-linear: fz = µ(z)fz, with ellipticity bound ‖µ‖L∞(Ω) < 1;

• R-linear: fz = µ(z)fz + ν(z)fz, with ellipticity bound

‖ |µ|+ |ν| ‖L∞(Ω) < 1;

• Autonomous: fz = A(fz), with ellipticity bound: there is k < 1 so that for
all ζ, η ∈ C

|A(ζ)−A(η)| ≤ k|ζ − η|

• Fully nonlinear: fz = H(z, f, fz), with ellipticity bound: there is k < 1 so
that for all z ∈ Ω, all ζ, η ∈ C

|H(z, w, ζ)−H(z, w, η)| ≤ k|ζ − η|

with additional conditions on H, see [6, Chapters 7 & 8].

A homeomorphic W 1,2
loc (Ω) solution to any such an equation is a quasiconformal map-

ping. The theory of planar quasiconformal mappings is comprehensively treated
from the perspective of partial differential equations in [6, Chapter 7 & 8]. An
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orientation-preserving homeomorphism f : Ω → Ω′ is K-quasiconformal, 1 6 K < ∞,
if f ∈ W 1,2

loc (Ω) and

(1) max
α

|∂αf(z)| 6 Kmin
α

|∂αf(z)|

for almost every z ∈ Ω.
More generally, any W 1,2

loc (Ω) solution f to any of the above equations is quasiregu-

lar and factors as f = Φ◦g with g quasiconformal and Φ: g(Ω) → C conformal—this
is the Stoïlow factorisation theorem, [18].

Each of these equations has a seminal application and they are all inter-related.
The apriori assumption that f ∈ W 1,1

loc (Ω) is so that we can even speak of f as a
“solution”. Without stronger assumptions on µ or H not much can be said, but note
for instance that µ = 0 on an open set implies f is holomorphic on that set, this is
Weyl’s Lemma. Another version of Weyl’s lemma for C-linear Beltrami equations
was given in Theorems 7 and 18 of [9] assuming coefficients in the Sobolev space
W 1,p.

However, the higher regularity theory of these equations typically assumes more
on f , for instance f ∈ W 1,q

loc (Ω) for some 1 < q ≤ 2 usually depending on the ellipticity

constant k, and in return delivers a far nicer outcome, f ∈ W 1,p
loc (Ω) for some p > 2,

again depending on k. Astala’s theorem [1] gives the optimal result in the C-linear
case and can be used to analyse other cases. Questions of existence and uniqueness
are fairly well understood through the topological properties of these mappings and
Stoïlow factorisation, see also [6, §5.5 & §6.1]. However there are intriguing subtleties
in the nonlinear case, see for instance [3, 4, 5, 14, 17].

Here we present a rather surprising higher regularity theorem for autonomous
systems. We say that A : C → C is linear at infinity if there are constants a, b ∈ C,
|a|+ |b| < 1, and α with 0 ≤ α < 1, such that

(2) A(ζ) = aζ + bζ̄ +O(|ζ |α).

The next theorem makes no ellipticity assumptions on A.

Theorem 1. (Super-regularity for autonomous systems) Let Ω ⊂ C be a planar
domain and f : Ω → C be a W 1,1

loc (Ω) solution to the autonomous Beltrami system

(3) fz = A(fz), a.e. z ∈ Ω,

where A is linear at ∞. Then f ∈ W 1,p
loc (Ω) for all p < ∞. If, in addition, |A(ζ)| ≤ k|ζ |

for some k < 1 and all ζ ∈ C, then f is also quasiregular.

For nonlinear systems, the proof of Theorem 1 provides us with the following.
General results concerning the existence, uniqueness and regularity of the solutions
to the nonlinear elliptic equations

F(z, f,∇f) = 0

for mappings g : Ω → C in two dimensions. Section 7.7 of [6] shows that under the
assumption of ellipticity, such systems reduce to

(4)
∂f

∂z
= H

(

z, f,
∂f

∂z

)

.

The existence theory for such systems can be established under surprisingly general
conditions even in the nonlinear setting, see [6, Chapter 8]. When one is looking for
solutions to these general nonlinear elliptic systems there are necessarily constraints
on H. In [6] these are for H : C×C×C → C,
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1. The homogeneity condition, that fz = 0 whenever fz = 0, equivalently,

(5) H(z, w, 0) ≡ 0, for almost every (z, w) ∈ C×C

2. The uniform ellipticity condition, that for almost every z, w ∈ C and all
ζ, ξ ∈ C,

(6) |H(z, w, ζ)−H(z, w, ξ)| 6 k|ζ − ξ|, 0 6 k < 1

3. H is Lusin-measurable: Thus
• There are compact Z1 ⊂ Z2 ⊂ · · · ⊂ C whose union has full measure.
• There are compact W1 ⊂ W2 ⊂ · · · ⊂ C whose union has full measure.
• There are compact Ξ1 ⊂ Ξ2 ⊂ · · · ⊂ C whose union has full measure.
• For each j = 1, 2, . . ., the map H : Zj ×Wj × Ξj → C is continuous.

As a consequence of our Theorem 1 we have the following.

Theorem 2. Suppose that H : Ω × Ω′ × C → C satisfies the conditions above
with ellipticity bound k and is also linear at ∞ on the W 1,1

loc (Ω) solution f . That is
there are constants a, b ∈ C such that |a|+ |b| < 1 and

(7) |H(z, f, fz)− afz − bfz| ∈ Lq
loc(Ω), for some q > 1 + k.

Then in fact f ∈ W 1,s
loc (Ω) for all s < 1 + 1/k. Hence f is quasiregular.

In the next corollary we should realise that there is no assumed connection be-
tween |a| + |b| and k. However in applications it will be obvious that typically
|a|+ |b| ≤ k.

Corollary 1. Suppose that f ∈ W 1,1
loc (Ω) is a solution to (3) for A linear at ∞,

and f satisfies a Lipschitz bound of the form

(8) |fz(z + tζ)− fz(z)| ≤ k |fz(z + tζ)− fz(z)|, |ζ | = 1,

for some k < 1 and for all 0 < t < a(z) for some continuous function a : Ω → R+,
a(z) ≤ dist(z, ∂Ω). Then:

1. f ∈ W 2,q
loc (Ω) for all q < 1 + 1/k.

2. Each member of the R-linear family

{afx(z) + bfy(z) : a, b ∈ R}

is either 1+k
1−k

-quasiregular mapping or a constant.

3. There are measurable µ, ν : Ω → C with |µ|+ |ν| ≤ k so that both directional
derivatives fx and fy satisfy the R-linear Beltrami equation,

hz = µ(z)hz + ν(z)hz , h ∈ {fx, fy}.

4. The complex gradient fz is itself quasiregular and satisifies the R linear equa-
tion

hz =
µ(z)

1− |ν(z)|2
hz +

µ(z)ν(z)

1− |ν(z)|2
hz, h = fz

and thus fz ∈ W 1,q
loc (Ω) for all

q < s = 1 + 1/k′, k′ =

∥

∥

∥

∥

|µ|

1− |ν|

∥

∥

∥

∥

∞

≤ k.
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Of course the Lipschitz bound at (8) is achieved if for instance A satisfies the
usual ellipticity assumption: A is k-Lipschitz,

(9) |A(ζ)−A(η)| ≤ k|ζ − η|, ζ, η ∈ C.

In this case one can make further claims about existence, uniqueness and higher
regularity of W 1,2

loc (Ω) solutions [6, 3, 5, 7]. An example of these which follows from
the Schauder theory would be the following.

Corollary 2. Let A : C → C be smooth and linear at ∞ with

(10) |Aζ(η)|+ |Aζ̄(η)| < 1, η ∈ C.

Then every W 1,1
loc (Ω) solution f to the equation (3) is smooth and quasiregular. After

appropriate normalisation a homeomorphic f will be unique.

Indeed [4] characterised characterised the condirions of Corollary 1 and estab-
lished surprising improved Schauder regularity properties for solutions to the Leray–
Lions divergence type equation in the plane via nonlinear Beltrami equations.

In contrast to these results however is another very interesting result of Astala
et al. [2] which shows the condition of being linear at ∞ is essential.

Theorem 3. For each k < 1 there exists an f ∈ W 1,1
loc (C) solving the equation

(11) fz = k|fz|

for which f 6∈ W 1,1+k
loc (C). Any solution to (11) which lies in W 1,q

loc (C) for some
q > 1 + k is smooth.

2. Proofs

The main result, Theorem 1, and its corollaries are a consequence of an induction
based on the following result.

Theorem 4. Let A : C → C be linear at ∞ and h ∈ Lq
loc(Ω). Then every

W 1,1
loc (Ω) solution to the equation

(12) fz = A(fz) + h

lies in W 1,q
loc (Ω).

Proof. Let η ∈ C∞

0 (Ω). We write (12) as

fz = afz + bfz +O(|fz|
α) + h

for some α < 1. We multiply this equation by η and use the fact that

(ηf)z = ηfz + ηzf, (ηf)z = ηfz + ηzf

and rearrange terms to achieve the following equation for f̃ = ηf .

(13) f̃z = af̃z + bf̃z + u,

where

u = ηh+ ηO(|fz|
α) + ηzf + aηzf + bηzf

The Sobolev embedding gives ηf ∈ Lr(C) for every r < 2 and so we can assume
u ∈ L1/α(C) ∩ Lq(C) ∩ Lr(C) for every r < 2. We therefore have to show that
any compactly supported W 1,1(C) solution to the inhomogeneous constant coefficient

equation (13) has improved regularity. If S denotes the Beurling transform, a singular
integral operator of Calderon–Zygmund type, since S ◦ ∂

∂z
= ∂

∂z
we really want to
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establish the invertibility of the constant coefficient Beltrami operator I − aS − bS
since (13) reads as

f̃z − aS(f̃z)− bS(f̃z) = u

More on Beltrami operators can be found in [6, Chapter 4].
Following [6, §15.2] we address (13) by a linear change of variables reducing it

to the inhomogeneous Cauchy–Riemann equation. Namely, for any given constants
µ, ν ∈ D we may use the transformation

f̃(ζ) =
g(z)− νg(z)

1− |ν|2
, ζ = z + µz,

which rearranges to

(14) g(z) = f̃(ζ) + νf̃(ζ), z =
ζ − µζ

1− |µ|2

and we set v(z) = u(ζ) = u(z + µz). If we make the following choices for µ and ν,

µ =
−2a

1 + |a|2 − |b|2 +
√

(1 + |a| − |b|2)2 − 4|a|2
,

ν =
−2b

1 + |b|2 − |a|2 +
√

(1 + |b| − |a|2)2 − 4|a|2
,

then since |a|+ |b| < 1 some computation reveals that indeed

|µ| 6
|a|

1− |b|2
< 1, |ν| 6

|b|

1− |a|2
< 1.

Thus we can make these transformations above and a few further elementary com-
putations shows that (13) now reads as

(15)
∂g

∂z
(z) = v(z) + ab v(z)

Hence gz ∈ L1/α(C) ∩ Lq(C) ∩ Lr(C) and since S : Lq(C) → Lq(C) is bounded, we
have gz = S(gz) ∈ L1/α(C) ∩ Lq(C) ∩ Lr(C), note that the equation gz = S(gz)

additionally uses the decay of g to be valid. Thus g (and hence f̃ and consequently
f) lies in the space W 1,s

loc (Ω), where s = min{1/α, q, r}. Iterating this construction we
achieve s = q as α → α2 and r increases to the new Sobolev embedding exponent. �

Now Theorem 1 is immediate using the result of Theorem 4, and Corollary 1
also follows as Theorem 1 promotes f to an element of W 1,2

loc (Ω) (actually better)
and so we may appeal to the main result of [12]. As for Corollary 2, the only
remark that needs to be made is that if A is smooth with the proposed bounds, and
linear at ∞, then A must satisfy some Lipschitz bound with constant less than 1.
Corollary 2 then put the solution in W 2,2

loc (Ω), the complex gradient is quasiregular,
and so Hölder continuous. Then, as noted, the Schauder bounds [6] give the desired
conclusion. Actually Lemma 3.1 of the [5] gives some details about how to express
hw as a function of hw are given in the general non-autonomous case.

3. A remark on the Hodographic transform

It is interesting to note that under the Hodographic transformation [6, §16.3] (ba-
sically a change of variables for homeomorphic solutions) and under a few regularity
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assumptions we see a relationship between conditions on f and h = f−1. The condi-
tion “linear at ∞” is simply that there is q > 1 such that |fz − afz − bfz| ∈ Lq

loc(Ω).
If h is sufficiently regular so as to change variables we find

|fz(h)− afz(h)− bfz(h)|J(w, h) = |hw − bhw − ahw|

should be an Lq
loc(Ω

′) function. That is essentially the same condition, though notice
that h will satisfy the equation

(16) hw = J(w, h)A
( hw

J(w, h)

)

.

It is not obvious how one unravels this equation to express hw as a function of
hw other than locally using the implicit function theorem, but note that |hw| =

J(w, h)|A
(

hw

J(w,h)

)

| ≤ k|hw| still holds.

4. Fully nonlinear Beltrami systems

We now discuss the immediate consequences for the fully nonlinear Beltrami
system and the proof for Theorem 2. Thus we consider the equation

(17) fz = H(z, f, fz)

with ellipticity conditions that there is k < 1 so that for all z ∈ Ω, ζ ∈ Ω′ and all
ζ, η ∈ C

|H(z, w, ζ)−H(z, w, η)| ≤ k|ζ − η|

H, (z, η, 0) ≡ 0, with additional measurability condition H(z, w, η) : Ω×Ω′×C → C is
Lusin measurable, see [6, Chapters 7 & 8] for the most general requirements. Roughly,
the condition of Lusin measurability assures us that the function is measurable in
each variable independently.

Now Theorem 2 can be established as follows. We may suppose q < 2. Put
u(z) = H(z, f, fz) − afz − bfz. Our hypotheses put u ∈ Lq

loc(Ω) and we observe

fz = afz + bfz + u(z). The proof of Theorem 4 (without using induction) puts
f ∈ W 1,q

loc (Ω). Then Astala’s theorem [1] implies that f ∈ W 1,s
loc (Ω) and the ellipticity

bound gives us this for all s < 1 + 1/k. Observe that 1 + 1/k > 2. �

However, using an induction to improve regularity offers other alternative results
for the nonlinear case. We formulate one such now. Suppose that the ellipticity and
measurability conditions following (17) hold. Specifically:

(1) There is k < 1 so that for all z ∈ Ω, ζ ∈ Ω′ and all ζ, η ∈ C

|H(z, w, ζ)−H(z, w, η)| ≤ k|ζ − η|.

(2) H, (z, η, 0) ≡ 0,
(3) H(z, w, η) : Ω× Ω′ ×C → C is Lusin measurable,
(4) That there are a, b ∈ C, |a|+ |b| ≤ k and

(18) H(z, η, ζ) = aζ + bζ + U(z, η, ζ)

and there is α < 1 and u ∈ Lq
loc(Ω) for some q > 1 + k such that

(19) |U(z, η, ζ)| ≤ A|ζ |α +B|η|2α + u(z).

Theorem 5. Let f : Ω → Ω′ be a W 1,1
loc (Ω) solution to the nonlinear equation

(17) satisfying (1)–(4) above. Then f ∈ W 1,2
loc (Ω) is a 1+k

1−k
-quasiregular mapping.
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The proof is basically the same. Initially we have f ∈ Lq
loc(Ω) for all q < 2 by

Sobolev embedding. So the first two terms will self improve in an induction. The last
term sets the limit of the improvability of the Sobolev exponent, but with the ellip-
ticity bound and Astala’s theorem this will be enough to guarantee quasiregularity.
There are other ways to reformulate the bounds on condition(19) so as to achieve a
similar result. We leave these for the reader to consider.
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