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Abstract. Let µ be a Beltrami coefficient on the unit disk, which is compatible with a finitely
generated Fuchsian group G of the second kind. In this paper we show that if |µ|2

1−|z|2 dx dy satisfies
the Carleson condition on the infinite boundary of the Dirichlet fundamental domain of G, then
|µ|2

1−|z|2 dx dy is a Carleson measure on the unit disk.

1. Introduction

A Fuchsian group is a discrete Möbius group G acting on the unit disk ∆. A
Fuchsian group is said to be of the first kind if its limit set is the entire circle and
of the second kind otherwise. A Fuchsian group G is called cocompact if ∆/G is
compact and is called convex cocompact if G is finitely generated without parabolic
elements. All cocompact groups are first kind and convex cocompact groups minus
cocompact groups are second kind. A Fuchsian group G is of divergence type if

Σg∈G(1− |g(0)|) =∞ or
∑
g∈G

exp(−ρ(0, g(0))) =∞,

where ρ(0, g(0)) is the hyperbolic distance between 0 and g(0). Otherwise, we say
that it is of convergence type. All second kind groups are of convergence type. For
more details about Fuchsian groups, see [9].

For g in G, we denote by Dz(g) the closed hyperbolic half-plane containing z,
bounded by the perpendicular bisector of the segment [z, g(z)]h. The Dirichlet funda-
mental domain Fz(G) of G centered at z is the intersection of all the sets Dz(g) with
g in G − {id}. For simplicity, in this paper we use the notation F for the Dirichlet
fundamental domain Fz(G) of G centered at z = 0.

A positive measure λ defined in a simply connected domain Ω is called a Carleson
measure if there exists some constant C which is independent of r such that, for all
0 < r < diameter(∂Ω) and z ∈ ∂Ω,

λ(Ω ∩D(z, r)) ≤ Cr.

The infimum of all such C is called the Carleson norm of λ, denoted by ‖ λ ‖∗. Let
∆ be the unit disk. In this paper, we mainly focus our attention on the case Ω = ∆.
We denote by CM(∆) the set of all Carleson measures on ∆.

We say that a measurable function µ(z) belongs to CM∗(∆) if the measure

|µ|2

1− |z|2
dx dy ∈ CM(∆).
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The importance of the class CM∗(∆) lies in the fact that it plays a crucial role
in the theory of BMOA-Teichmüller space, see [1, 5, 8, 14] etc. If G is a Fuchsian
group and µ(z) a bounded measurable function on ∆ which satisfies

||µ(z)||∞ < 1 and µ(z) = µ(g(z))g′(z)/g′(z)

for every g ∈ G, then we say µ is a G-compatible Beltrami coefficient (or complex
dilatation). We denote by M(G) the set of all G-compatible Beltrami coefficients.
For a G-compatible Beltrami coefficient µ, if the measure

|µ|2

1− |z|2
dx dy

is a Carleson measure on ∆, when the Carleson norm is small, then fµ(∂∆) is a
rectifiable (chord-arc) curve, where fµ is the quasiconformal mapping of the complex
plane C with i, 1 and −i fixed, whose Beltrami coefficient equals to µ a.e. on the unit
disk and equals to zero on the outside of the unit disk. This is essential for the proof
of the convergence-type first-kind Fuchsian groups failing to have Bowen’s property,
see [2]. It is also the method to prove that some convergence-type Fuchsian groups
fail to have Ruelle’s property, see [12, 11].

It is important to investigate under which condition the G-compatible Beltrami
coefficients belong to CM∗(∆). We call the intersection of F with the unit circle ∂∆
the boundary at infinity of F , denoted by F(∞). In this paper, we first prove:

Theorem 1.1. Let G be a convex cocompact Fuchsian group of the second kind
and F the Dirichlet fundamental domain of G centered at 0. Let µ ∈M(G): if there
exists a constant C such that, for any ξ ∈ F(∞)(i.e. ξ is in the free edges of F) and
for any 0 < r < 1, ¨

B(ξ,r)

|µ|2χF
1− |z|2

dx dy ≤ Cr,

then µ is in CM∗(∆), where χF is the characteristic function of the Dirichlet funda-
mental domain F .

Notice that Theorem 1.1 fails for the case of convex cocompact groups of the first
kind (i.e. cocompact groups), since Bowen [6] showed that cocompact groups hold a
rigidity property, now called Bowen’s property, i.e. the image of the unit circle under
any quasiconformal map whose Beltrami coefficient compatible with a cocompact
group, is either a circle or has Hausdorff dimension bigger than 1. Hence for any µ
being compatible with cocompact groups, the measure |µ|2

1−|z|2 dx dy is not a Carleson
measure.

Furthermore, Theorem 1.1 can be generalized to the finitely generated Fuchsian
group of the second kind with some parabolic elements. We have

Theorem 1.2. Let G be a finitely generated Fuchsian group of the second kind
with some parabolic elements and F the Dirichlet fundamental domain of G centered
at 0. Let µ ∈ M(G): if there exists a constant C such that, for any ξ ∈ F(∞) and
for any 0 < r < 1, ¨

B(ξ,r)

|µ|2χF
1− |z|2

dx dy ≤ Cr,

then µ is in CM∗(∆).
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This theorem means that the Carleson property of the measures which are com-
patible with the finitely generated Fuchsian groups can be checked from the points
in the set F(∞) i.e., the boundary at infinity of the Dirichlet domain F .

Notation. In this paper χA always denotes the characteristic function of the set
A.

2. Some lemmas

The following lemma will be used several times in this paper. I give a short proof
here.

Lemma 2.1. Let µ be a essentially bounded measurable function on ∆. If the
measure |µ|2

1−|z|2 dx dy is in CM(∆), then there exists a constant C such that, for any
ξ ∈ ∆ and all 0 < r < 2, ¨

B(ξ,r)∩∆

|µ|2

1− |z|2
dx dy ≤ Cr,

where the constant C depends only on the Carleson norm of the measure |µ|2
1−|z|2 dx dy

and the essential norm of µ.

Proof. We first choose 0 < r < 2 and fix it. For any ξ ∈ ∆, if ξ ∈ ∂∆, there is
nothing to prove. We suppose ξ ∈ ∆. If dist(ξ, ∂∆) ≥ 2r (this case only happens
when 0 < r < 0.5), where dist(·, ·) denotes the Euclidean distance. Then we have¨

B(ξ,r)

|µ|2

1− |z|2
dx dy ≤ ||µ||∞πr2

1− |1− r|2
=
||µ||∞πr

2− r
≤ π||µ||∞r.

For the case dist(ξ, ∂∆) ≤ 2r, we can choose a point η ∈ ∂∆ such that dist(η, ξ) <
2r. Then we have B(ξ, r) ⊂ B(η, 4r) and

(2.1)
¨
B(ξ,r)∩∆

|µ|2

1− |z|2
dx dy ≤

¨
B(η,4r)∩∆

|µ|2

1− |z|2
dx dy ≤ 4C∗r,

where C∗ is the Carleson norm of the measure
|µ|2

1− |z|2
dx dy.

Hence we let C = max{π||µ||∞, 4C∗} and the lemma follows. �

Remark. By this lemma we see that for any simply connected domain Ω ⊂ ∆,
If |µ|2

1−|z|2 dx dy is a Carleson measure on ∆, then it is also a Carleson measure on Ω.
In order to prove Theorem 1.1, we will need the following lemma which essentially

belongs to Astala and Zinsmeister, see [1], or [2].

Lemma 2.2. For a convergence-type Fuchsian group G and µ in M(G), if there
exists a 0 < t < 1 such that the support set of µχF is contained in the ball B(0, t)
with center 0 and radius t. Then µ is in CM∗(∆).

For the readers to see more clearly about the property of µ, we give the detail of
proof of this lemma here.

Proof. Recall that a sequence {zj} is called an interpolating sequence of ∆ if

(i) ∃δ > 0, ρ(zj, zk) ≥ δ if j 6= k;

(ii)
∑

(1− |zi|2)δzi ∈ CM(∆),

where δz stands for the Dirac mass at z.
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We first show that the sequence {g(0)}g∈G is an interpolating sequence of the
unit disk ∆. The sequence {g(0)}g∈G satisfies the property (i) of the interpolating
sequence immediately from the action of Fuchsian group being discrete. For the
property (ii), by a result due to Carleson [7], we know that

(3.1)
∑
g∈G

(1− |g(0)|2)δg ∈ CM(∆)

is equivalent to

(3.2) inf
gi

∏
g∈G,g 6=gi

∣∣ gi(0)− g(0)

1− gi(0)g(0)

∣∣ ≥ δ > 0.

In order to show (3.2), it is enough to prove that for any gi 6= gk,

(3.3)
∏

g∈G,g 6=gi

∣∣∣∣∣ gi(0)− g(0)

1− gi(0)g(0)

∣∣∣∣∣ ≡ ∏
g∈G,g 6=gk

∣∣∣∣∣ gk(0)− g(0)

1− gk(0)g(0)

∣∣∣∣∣ .
Note that ∣∣∣∣∣ gi(0)− g(0)

1− gi(0)g(0)

∣∣∣∣∣ = tanh 2ρ(gi(0), g(0)),

where ρ(gi(0), g(0)) denotes the hyperbolic distance between gi(0) and g(0). Similarly,∣∣∣∣∣ gk(0)− g(0)

1− gk(0)g(0)

∣∣∣∣∣ = tanh 2ρ(gk(0), g(0)).

Let γ = gk ◦ g−1
i , we have gk = γ ◦ gi and

∏
g∈G,g 6=gk

∣∣∣∣∣ gk(0)− g(0)

1− gk(0)g(0)

∣∣∣∣∣ =
∏

g∈G,g 6=gk

tanh(2ρ(gk(0), g(0)))

=
∏

g∈G,g 6=gk

tanh(2ρ(γ ◦ gi(0), g(0))) =
∏

g∈G,g 6=gk

tanh(2ρ(gi(0), γ−1 ◦ g(0)))

=
∏

g∈G,g 6=gi

∣∣ gi(0)− g(0)

1− gi(0)g(0)

∣∣.
Let gi = id and in this case

∏
g∈G,g 6=gi

∣∣∣∣∣ gi(0)− g(0)

1− gi(0)g(0)

∣∣∣∣∣ =
∏
g 6=id

|g(0)| = exp

(∑
g 6=id

ln |g(0)|

)
≥ exp

(
C
∑
g 6=id

(1− |g(0)|)

)
,

where C is some universal constant.
Thus by the definition of the convergence-type property it follows that the se-

quence {g(0)}g∈G is an interpolating sequence.
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We now prove Lemma 2.2. Suppose the support set of µχF , denoted by Supp(µF)
which is contained in the ball B(0, t). For any ξ ∈ ∂∆ and 0 < r ≤ 2, we have¨

∆∩B(ξ,r)

|µ(z)|2

1− |z|2
dx dy =

∑
g∈G

¨
g(B(0,t))∩B(ξ,r)

|µ(z)|2

1− |z|2
dx dy

=
∑
g∈G

¨
g(B(0,t))

|µ(z)|2

1− |z|2
χB(ξ,r) dx dy

≤
∑
g∈G

‖ µ ‖2
∞

¨
g(B(0,t))

1

1− |z|2
χB(ξ,r) dx dy.

It is easy to see that the hyperbolic radius tρ of the Euclidean disk B(0, t) is
ln 1+t

1−t . Hence for any g ∈ G, the disk g(B(0, t)) is a hyperbolic disk with center
g(0) and hyperbolic radius tρ. By some simple calculation or by [3] we know that the
disk g(B(0, t)) is contained in the Euclidean disk B(g(0), Rg), where the radius Rg

is equal to
(1 + |g(0)|)(1− etρ)(1− |g(0)|)

(1 + |g(0)|) + etρ(1− |g(0)|)
≤ C(1− |g(0)|),

where C is some constant depending only on t.
Combined with the above discussion, we get¨

∆∩B(ξ,r)

|µ(z)|2

1− |z|2
dx dy ≤

∑
g(0)∈B(ξ,r)

||µ||∞πR2
g

1− |1−Rg|2

≤ C ′
∑

g(0)∈B(ξ,r)

(1− |g(0)|) ≤ C∗r,

where the constant C∗ depends only on C ′ and the Carleson norm of the measure∑
g∈G(1− |g(0)|)δg(0). Hence the lemma holds. �

Remark. In [5], Bishop used the norm property of Schwarzian derivative of
holomorphic function under hyperbolic metric to give another proof of Lemma 2.2
for the case of the Beltrami coefficient µ supported on a compact subset of the surface
∆/G.

A Jordan curve γ is said to be a chord-arc curve if there exists a constant C such
that for any two points ξ1, ξ2 ∈ γ, the length of the arc γξ1,ξ2 satisfies

length(γξ1,ξ2) ≤ Cd(ξ1, ξ2),

where γξ1,ξ2 is the shorter arc of γ with endpoints ξ1, ξ2 and d(ξ1, ξ2) means the
Euclidean distance between ξ1 and ξ2.

A result from [15] says that

Lemma 2.3. [15] Let Ω be a chord-arc domain. Then the following are equiva-
lent:

(a) dν is a Carleson measure for Ω.
(b) For 0 < p <∞, and f ∈ Hp(Ω),¨

Ω

|f |p dv ≤ C

ˆ
∂Ω

|f |p ds,

whereHp(Ω) = {f : f is analytic on Ω and
´
∂Ω
|f |p ds <∞} and the constant

C depends only on the the Carleson norm of dν.
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Remark. Lemma 2.3 was first given by Carleson [[10],Theorem 3.9, P.61] when
Ω is the upper half plane. Zinsmeister proved that Carleson’s theorem remains true
for chord-arc domains, see [15].

After this preparatory work, it is time to give the proof of Theorem 1.1.

3. Proof of Theorem 1.1

Proof. Let G be a second-kind convex cocompact Fuchsian group and F be the
Dirichlet domain of G with center 0. Let µ be an element in M(G). The intersection
of the closure of F with ∂∆ contains finitely many intervals which are called free
edges of F , denoted by I1, I2, · · ·In.

For any 1 ≤ i ≤ n, let qi,1, qi,2 be the endpoints of Ii. It is well known that both
qi,1, qi,2 do not belong to the limit set. Both sides of qi,j (j = 1, or 2) are free sides
of Dirichlet fundamental domains with different centers.

By the statement of the theorem we know there exists a constant C such that for
any 1 ≤ i ≤ n, we can choose a ball Bi such that Bi ∩ ∂∆ contains no limit points of
G and Ii ⊂ Bi ∩ ∂∆ and for any point ξ ∈ Ii and 0 < r < 2,¨

B(ξ,r)∩∆

|µ(z)|2

1− |z|2
χBi∩∆ dx dy ≤ Cr,

furthermore, the set F −
⋃n
i=1(Bi ∩ F) is compact, denoted by Fc.

By Lemma 2.1, we know that the measure
|µ(z)|2

1− |z|2
dx dy

is a Carleson measure on the domain Bi ∩ F . We divide µ into two parts. Let

µ =
∑
g∈G

µχg(Fc) +
∑
g∈G

µχg(B),

where B =
⋃n
i=1(Bi ∩ F).

By Lemma 2.2, we know that the measure
∑

g∈G µχg(Fc) is a Carleson measure on
∆. In the following we only need to show that

∑
g∈G µχB is also a Carleson measure.

Without loss of generality, we may assume µ =
∑

g∈G µχB.
Let ξ be an arbitrary point of ∂∆ and r a positive real number less than 2. In

the following we will find a positive constant C∗ which does not depend on ξ and r
such that

(3.1)

¨
B(ξ,r)∩∆

|µ|2

1− |z|2
dx dy ≤ C∗r.

We first consider the following special case: there exists g ∈ G such that g(B(ξ, r)∩
∆) ⊂ F . By Lemma 2.1 we know that |µ|2

1−|z|2 dx dy is a Carleson measure on the do-
main g(B(ξ, r) ∩∆). Then we have¨

B(ξ,r)∩∆

|µ(w)|2

1− |w|2
du dv ≤

¨
g(B(ξ,r)∩∆)

|µ(g−1(z))|2

1− |g−1(z)|2
|(g−1)′(z)|2 dx dy

=

¨
g(B(ξ,r)∩∆)

|µ(g−1(z)) (g−1)′(z)
(g−1)′(z)

|2

1− |g−1(z)|2
|(g−1)′(z)|2 dx dy

=

¨
g(B(ξ,r)∩∆)

|µ(z)|2

1− |z|2
|(g−1)′(z)| dx dy.
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Since g is a Möbius transformation, the domain g(B(ξ, r)∩∆) is a chord-arc domain.
By Lemma 2.3, we have¨

g(B(ξ,r)∩∆)

|µ(z)|2

1− |z|2
|(g−1)′(z)| dx dy ≤ C1

ˆ
∂g(B(ξ,r)∩∆)

|(g−1)′(z)| ds

=

ˆ
∂(B(ξ,r)∩∆)

ds ≤ 2πC1r,

where the constant C1 depends only on the constant C in the statement of the
Theorem 1.1. Hence we have

(3.2)

¨
B(ξ,r)∩∆

|µ(w)|2

1− |w|2
du dv ≤ 2πC1r.

By the above discussion, we easily get that the measure |µ(z)|2
1−|z|2 dxdy is a Carleson

measure on Bi ∩ ∆ for any 1 ≤ i ≤ n, since Bi ∩ ∂∆ contains no limit points of G
and there are finitely many g1, · · ·, gm belonging to G such that

(Bi ∩∆) ⊂
m⋃
1

gj(F).

Now we consider the general case. Let G∗ be the set of all the elements g in
G such that g(B) ∩ B(ξ, r) 6= ∅. If g ∈ G∗ there are at most three possibilities as
follows:

(a) there exist 1 ≤ i ≤ n, g(Bi ∩ F) ⊂ B(ξ, r);
(b) there exists 1 ≤ i ≤ n, g(Bi) ∩B(ξ, r) 6= ∅ and g(Ii) ⊂ B(ξ, r) ∩ ∂∆;
(c) there exist 1 ≤ i ≤ n, g(Bi) ∩B(ξ, r) 6= ∅ and g(Ii) ∩B(ξ, r) ∩ ∂∆ 6= ∅.

In case (a), we have¨
g(Bi∩F)

|µ(w)|2

1− |w|2
du dv ≤

¨
g(Bi∩∆)

|µ(w)|2

1− |w|2
du dv

=

¨
Bi∩∆

|µ(g(z))
g′(z)

g′(z)
|2

1− |g(z)|2
|g′(z)|2 dx dy

=

¨
Bi∩∆

|µ(z)|2

1− |z|2
|g′(z)| dx dy

≤ C1

ˆ
∂(Bi∩∆)

|g′(z)|ds = C1

ˆ
∂g(Bi∩∆)

ds

≤ C1π length(g(Bi ∩ ∂∆)),

where the second above inequality holds is by Lemma 2.3 and C1 depends only on
the Carleson norm of |µ(z)|2

1−|z|2 | dx dy on Bi ∩∆.

For case (b) we have¨
g(Bi∩F)∩B(ξ,r)

|µ(w)|2

1− |w|2
| du dv ≤

¨
g(Bi∩∆)∩B(ξ,r)

|µ(w)|2

1− |w|2
| du dv

≤ πC1 length(Bi ∩ ∂∆).

For case (c), notice that g(Bi∩∆)∩B(ξ, r) is a triangle with three circle-arc and the
angle corresponding to the side g(Bi ∩ ∂∆) ∩ B(ξ, r) is bigger than some constant,
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we have

length(∂(g(Bi ∩∆) ∩B(ξ, r))) ≤ C2 length(g(Bi ∩ ∂∆) ∩B(ξ, r)).

where the constant C2 depends only on the Carleson norm of |µ(z)|2
1−|z|2 dx dy on Bi ∩∆

and the angle between ∂Bi and ∂∆.
By a similar discussion as case(a) we have¨

g(Bi∩F)

|µ(w)|2

1− |w|2
du dv ≤ πC2 length(g(Bi ∩ ∂∆) ∩B(ξ, r)).

Since for every 1 ≤ i ≤ n, the arc Bi ∩ ∂∆ does not contain the limit points of G.
Hence for g1, g2 ∈ G∗ if g1(Bi) ∩B(ξ, r) 6= ∅ and g2(Bi) ∩B(ξ, r) 6= ∅, the images of
Bi ∩ ∂∆ under maps g1, g2, respectively, do not overlap. Hence we have¨

B(ξ,r)∩∆

|µ(w)|2

1− |w|2
du dv ≤ πC∗

∑
g∈G∗

length(g(B) ∩B(ξ, r) ∩ ∂∆)

≤ πC∗ length(B(ξ, r) ∩ ∂∆) ≤ 2(π)2C∗r,

where C∗ equals to the maximum value of the constants which appeared in the proof
of this theorem and B =

⋃n
i (Bi ∩∆). This completes the proof. �

4. Proof of Theorem 1.2

Proof. Let G be a finitely generated Fuchsian group of second kind with some
parabolic elements. Since the generator of G contains finite elements, without loss
of generality, we may suppose that the generator of G contains only one parabolic
element γ and suppose ξ ∈ F(∞) be the fixed point of the parabolic element γ.

We divide µ into two parts. Let

µ =
∑
g∈G

µχg(F∗) +
∑
g∈G

µχ(g(B∩F)),

where F∗ = F−(B∩F) and B is a disk with center ξ and radius r0 (that is sufficiently
small such that ∂B intersect with the sides of F which have ξ as a common vertex).
Let γ0 be the arc of ∂B between the sides of F which have ξ as a common vertex.

By Theorem 1.1, we know that the measure
∑

g∈G µχg(F∗) is a Carleson measure
on ∆. In the following we only need to show that

∑
g∈G µχg(B∩F) is also a Carleson

measure. Without loss of generality, we may assume µ =
∑

g∈G µχg(B∩F).
We first show that the hyperbolic area of B ∩ F is finite.
By a conformal mapping ϕ(z) which maps the unit disk ∆ onto the upper half

plane H, we only need to show that the hyperbolic area of the image ϕ(B ∩ F) is
finite, since hyperbolic area is unchanged under conformal mapping. Without loss
of generality, we may suppose ϕ(ξ) = 0. The images of the sides of F with ξ as
a vertex under the mapping ϕ are contained in two circles, denoted by C1 and C2,
respectively. Let C1 be the circle

(x− r1)2 + y2 = r2
1

and C2 the circle
(x+ r2)2 + y2 = r2

2.

The tangent point of C1 and C2 is 0 , see Figure 1. The images of the arc γ0 is
contained in a circle with center 0 and radius r3.
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Then we have¨
B∩F

1

(1− |z|)2
dx dy =

¨
ϕ(B∩F)

1

4v2
du dv =

ˆ r3

0

dr

ˆ arccos( −r
2r2

)

arccos( r
2r1

)

1

4r sin2 θ
dθ.

It is easy to see that the limit

lim
r→0

ˆ arccos( −r
2r2

)

arccos( r
2r1

)

1

4r sin2 θ
dθ =

1

8

(
1

r2

+
1

r1

)
.

Hence by some easy calculation, the hyperbolic area of B ∩ F is finite.

cc

dd
ee

Figure 1.

We continue to prove Theorem 1.2. For any g ∈ G, we have¨
g(B∩F)

|µ(w)|2

1− |w|2
du dv ≤

¨
g(B∩F)

1

1− |w|2
du dv

=

¨
B∩F

|g′(z)|2

1− |g(z)|2
dx dy

=

¨
B∩F

1

1− |z|2
|g′(z)| dx dy

=

¨
B∩F

1− |g(z)|2

(1− |z|2)2
dx dy

≤ C1(1− |g(z0)|)
¨
B∩F

1

(1− |z|2)2
dx dy

≤ C(1− |g(z0)|),
where z0 is any point in γ0, C1 depends on z0 and the hyperbolic length of γ0, and C
depends on C1 and the hyperbolic area of B ∩ F . The fourth above equality holds
since

|g′(z)|
1− |g(z)|2

=
1

1− |z|2
for any g ∈ G
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and the last second above inequality holds since the hyperbolic length of γ0 is finite.
Let η be any point on the unit circle and B(η, r) the disk with center η and

radius r, here 0 < r < 1. By the proof of Lemma 2.2, we know that the sequence
{g(z0)}g∈G is an interpolating sequence. Hence the images of B ∩ F under g ∈ G
which are contained in the disk B(η, r) satisfy¨

B∩∆

|µ(w)|2

1− |w|2
du dv ≤

∑
g∈G,g(B∩F)∩B(η,r)6=∅

¨
g(B∩F)

|µ(w)|2

1− |w|2
du dv ≤ Cr,

which completes the proof of the theorem. �

In [4], Bishop showed that all divergence type Fuchsian groups have Bowen’s prop-
erty, hence Theorem 1.1 fails for the case of divergence-type groups. By Lemma 2.2
we know that for all convergence-type Fuchsian groups with compact support Bel-
trami coefficient, the result also holds. We ask the following question: does the result
holds for all convergence-type Fuchsian groups?

5. Some applications

In this section we give an application of Theorem 1.1 and 1.2. In [1, p. 617,
Theorem 7], Astala and Zinsmeister showed that there exist Fuchsian groups G of
the second kind such that the Hausdorff dimension of the quasicircle f(∂∆) is not
a real analytic function on Teichmüller space T (G). In [11], the author and Wu
Shengjian showed that the result holds for any second kind Fuchsian groups. By
Theorem 1.1 and Theorem 1.2, we can give a very short proof of the result for the
case of finitely generated Fuchsian groups of second kind. We have

Corollary 5.1. Let G be any finitely generated Fuchsian groups of the second
kind with or without parabolic elements, the Hausdorff dimension of the quasicircle
f(∂∆) is not a real analytic function on Teichmüller space T (G).

Proof. We will construct a µ ∈ CM∗(∆) ∩M(G) such that the Hausdorff di-
mension of the quasicircle fµ(∂∆), denoted by dim(fµ(∂∆)), is bigger than 1. Let
µ∗ ∈ CM(∆) such that dim(fµ∗(∂∆)) > 1, without loss of generality we may suppose
dim(∂fµ∗(F ∩ ∂∆)) > 1(the existence of such a µ∗ can be found in ([1, p. 624]).

Let µF = µ∗(z) for z ∈ F . Now we translate µF by the group G to the whole
disk ∆. We get

µ(z) =

{
µ∗(z), z ∈ F ,
µ∗(g(z)), g(z) ∈ F , g ∈ G.

By Theorem 1.1 or Theorem 1.2, we can see that µ ∈ CM∗(∆) ∩M(G). Now we
consider the mapping ψ : t → dim(ftµ). By [13] we know that there exist a ε > 0
such that, for all |t| < ε, the quasicircle ftµ(∂∆) is a rectifiable curve. This implies
that ψ can not be real analytic on ∆. �
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