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Abstract. In [12] it has been shown that a (p, q) Sobolev inequality with p > q implies

the doubling condition on the underlying measure. We show that even weaker Orlicz–Sobolev

inequalities, where the gain on the left-hand side is smaller than any power bump, imply doubling.

Moreover, we derive a condition on the quantity that should replace the radius on the righ-hand

side (which we call ‘superradius’), that is necessary to ensure that the space can support the Orlicz–

Sobolev inequality and simultaneously be non-doubling.

1. Introduction

There has been a lot of interest in the theory of Sobolev-type inequalities in
metric spaces in the past two decades, and it has seen great developments, see for
instance [1, 6, 7, 9, 10, 18] and references therein. A special interest in Sobolev-
type inequalities arises in the study of regularity of solutions to certain classes of
degenerate elliptic and parabolic PDEs, see for instance [1, Chapters 7–14], [2, 4,
11, 13, 14] and references therein. In the classical case of an elliptic operator, the
Moser or DeGiorgi iteration technique can be used together with a Sobolev inequality
to obtain higher regularity of solutions [16, 3]. In the subelliptic case, a somewhat
similar technique can be used to obtain Hölder continuity of weak solutions [5, 17].
In this case, the Sobolev inequality on metric balls is used together with a certain
accumulating sequence of Lipschitz cutoff functions to perform the Moser iteration.

In most literature, the doubling condition is central in both the process of per-
forming the Moser iteration, and in the proof of Sobolev inequality itself. This
condition provides a homogeneous space structure, which makes it possible to adapt
many classical tools available in the Euclidean space [9, 18]. A somewhat surprising
result [12] says that a classical (p, q) Sobolev inequality with p > q actually implies
the doubling condition on the underlying measure. It is known, however, that there
are versions of Sobolev inequality for which the doubling condition is not necessary.
For example, some versions of Sobolev inequality have been established for lower
Ahlfors regular spaces [15] under the assumption of a weak Poincaré type inequality,
as well as logarithmic Sobolev inequalities for Gaussian measure [8].

A more general, weaker, version of Sobolev inequality (an Orlicz–Sobolev in-
equality) has been recently proved for certain non-doubling metric measure spaces,
and then successfully applied in the DeGiorgi iteration scheme to prove regularity
of solutions to infinitely degenerate elliptic equations [13]. This poses a question of
what types of Sobolev inequalities do imply the doubling condition. In this paper we
prove that a Sobolev inequality with a sufficiently large Orlicz bump does also imply
the doubling condition. We also derive a lower bound on the quantity that should
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be put on the right-hand side of the Orlicz–Sobolev inequality in place of the radius,
so that it does not imply the doubling condition.

The paper is organized as follows. In Section 2 we give a brief overview of
Sobolev spaces on metric spaces, and state our first main result, that a version of
Orlicz–Sobolev inequality implies the doubling condition on the measure. Section 3
is dedicated to the proof of this result, Theorem 2.4. In Section 4 we derive a lower
bound on the superradius, necessary for the measure to be non-doubling. Finally,
the last section contains an explicit calculation of the superradius in the setting of
subunit metric spaces.

2. Orlicz–Sobolev implies doubling

We first briefly review the theory of Sobolev spaces in metric spaces, the reader is
referred to [1, Chapters 1–5], [2, Sections 1–5], [11, Sections 1–3] for further details.
The following overview can be found in [12, Section 1.1].

Let (X, d) be a metric space. For y ∈ X and R > 0 the d-ball centered at y
with radius R is defined as Bd(y, R) := {x ∈ X : d(x, y) < R}. Given a function
u : X → [−∞,∞], a non-negative Borel function g : X → [0,∞] is called an upper

gradient of u if for all curves (i.e. non-constant rectifiable continuous mappings)
γ : [0, lγ] → X it holds

|u(γ(0))− u(γ(lγ))| ≤

ˆ

γ

g ds.

In particular, if for some L ≥ 1, u : X → R is an L-Lipschitz function, i.e., |u(x)−
u(y)| ≤ Ld(x, y) for every x, y ∈ X, then the function lip(u) defined for x ∈ X as

(2.1) lip(u)(x) := lim inf
r→0+

sup
y∈Bd(x,r)

|u(x)− u(y)|

r

is an upper-gradient for u (see [1, Proposition 1.14]). Notice also that lip(u)(x) ≤ L
for every x ∈ X.

Let µ be a Borel measure on (X, d) such that 0 < µ(B) < ∞ for every d-ball
B ⊂ X. For 1 ≤ p <∞ and u ∈ Lp(X, µ) set

‖u‖pN1,p :=

ˆ

X

|u|p dµ+ inf
g

ˆ

X

gp dµ,

where the infimum is taken over all the upper-gradients g of u. Given a d-ball B ⊂ X,
its Newtonian space with zero boundary values is defined as

N1,p
0 (B) := {f |B : ‖f‖N1,p <∞ and f ≡ 0 on X \B}.

First, we recall a classical Sobolev inequality

Definition 2.1. Let (X, d, µ) be as above. Given 1 ≤ p < ∞ and 1 < σ < ∞,
we say that the triple (X, d, µ) admits a weak (pσ, p)-Sobolev inequality with a (finite)
constant CS > 0 if for every d-ballB := Bd(y, r) ⊂ X and every function w ∈ N1,p

0 (B)
it holds true that

‖w‖Lpσ(µB) ≤ CSr (B) ‖g‖Lp(µB)(2.2)

for all upper-gradients g of w.

In the above definition and everywhere below we use the notation

dµB :=
dµ

µ(B)
.
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It has been proved in [12] that the above Sobolev inequality (2.2) implies that the
measure µ is doubling on (X, d). We are now interested in the question of whether
some weaker versions of Sobolev inequality also imply the doubling property of the
measure. We first show by a simple counter example, that (p, p)-Sobolev inequality
does not necessarily imply doubling.

Example 2.2. In R
2 consider the operator L defined as L = divA∇ with A =

A(x, y) = diag{1, e1/|x|}, (x, y) ∈ R
2. Let d be a subunit metric associated to L

(see, for example, [17, Definition 4] and [13, Chapter 7]), and µ = | | the Lebesgue
measure. Then it was shown in [13, Conclusion 45] that the measure of a metric ball
centered at the origin satisfies the following estimate

|B(0, r)| ≈ r4e−
1

r

which is easily seen to be non-doubling. On the other hand, if w ∈ W 1,p
0 (B) then

|w(x, y)| =

∣∣∣∣
ˆ x

−∞

∂

∂t
w(t, y) dt

∣∣∣∣ ≤
ˆ ∞

−∞

∣∣∣∣
∂

∂t
w(t, y)

∣∣∣∣dt ≤
ˆ ∞

−∞

|∇w(t, y)| dt

Raising to the power p and integrating we obtain
¨

B

|w|p dµ ≤ Crp
¨

B

|∇w|p dµ

where we used Hölder inequality and the fact that w(x, y) = 0 for |x| > r.

We now look for a stronger form of Sobolev inequality weaker than (2.2) that
would still imply the doubling property of the measure. Roughly speaking we want
to put a “bump” in the norm on the left-hand side, smaller than any power bump.
One natural class of function spaces to consider is the class of Orlicz spaces. We now
give the relevant definitions. Suppose that µ is a σ-finite measure on a set X, and
Φ: [0,∞) → [0,∞) is a Young function, which for our purposes is a convex piecewise
differentiable (meaning there are at most finitely many points where the derivative
of Φ may fail to exist, but right and left hand derivatives exist everywhere) function
such that Φ (0) = 0 and

Φ (x)

x
→ ∞ as x→ ∞, and

Φ (x)

x
→ 0 as x→ 0.

We also note here that from the assumptions on Φ it follows that the function

Ψ(x) :=
Φ(x)

x

is increasing and satisfies

Ψ(x) → ∞ as x→ ∞, and Ψ(x) → 0 as x→ 0.

Let LΦ
∗ be the set of measurable functions f : X → R such that the integral

ˆ

X

Φ (|f |) dµ,

is finite, where as usual, functions that agree almost everywhere are identified. Since
the set LΦ

∗ may not be closed under scalar multiplication, we define LΦ to be the
linear span of LΦ

∗ , and then define

(2.3) ‖f‖LΦ(µ) ≡ inf

{
k ∈ (0,∞) :

ˆ

X

Φ

(
|f |

k

)
dµ ≤ 1

}
.
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The Banach space LΦ (µ) is precisely the space of measurable functions f for which
the norm ‖f‖LΦ(µ) is finite.

Definition 2.3. Let (X, d, µ) be as above. Given a Young function Φ, we say
that the triple (X, d, µ) admits an Orlicz–Sobolev inequality with a bump Φ and a
(finite) constant CS > 0, if for every d-ball B := Bd(y, r) ⊂ X and every function
w ∈ N1,1

0 (B) it holds true that

(2.4) ‖w‖LΦ(µB) ≤ CSr (B) ‖g‖L1(µB) , suppw ⊂ B,

for all upper-gradients g of w.

Here is our first main result

Theorem 2.4. Suppose that the triple (X, d, µ) admits an Orlicz–Sobolev in-
equality (2.4). Assume also that the function Φ satisfies

(2.5) Φ(t) ≥ t (ln t)α , ∀t > 1,

for some α > 1. Then, the measure µ is doubling on (X, d). More precisely, there
exists a constant CD ≥ 1, depending only on α and CS, such that

µ(Bd(y, 2r)) ≤ CD µ(Bd(y, r)) ∀y ∈ X, r > 0.

3. Proof of Theorem 2.4

Given a d-ball B := Bd(y, r) set B∗ := Bd(y, 2r) and define a family of d-
Lipschitz functions {ψj}j∈N ⊂ N1,1

0 (B) ⊂ N1,1
0 (B∗) as follows: for j ∈ N set r1 = r,

limj→∞ rj =
1
2
r, rj − rj+1 =

c
jγ
r for a uniquely determined constant c and γ > 1 and

(3.1) ψj(x) :=

(
rj − d(x, y)

rj − rj+1

)+

∧ 1.

Also for j ∈ N, define the d-balls Bj as

1

2
B ⊂ Bj := {x ∈ X : d(x, y) ≤ rj} ⊂ B ⊂ B∗ = 2B.

Our first step will be to apply the Orlicz–Sobolev inequality (2.4) to ψj on B∗ by
choosing the upper-gradient gj := lip(ψj) as defined in (2.1). In particular, it follows
that

(3.2) gj(x) ≤
1

c

jγ

r
χBj

(x) and 0 ≤ ψj(x) ≤ 1 ∀x ∈ X.

Then, by the Orlicz–Sobolev inequality (2.4) applied to each ψj on B∗ = 2B (and
using the fact that each ψj is supported in Bj , so that B∗ can be replaced by Bj in
the integrals), we obtain

(3.3) ‖ψj‖LΦ(µB∗ ) ≤ CSr (B) ‖g‖L1(µB∗ ) = 2CSr

ˆ

Bj

gj
dµ

µ(B∗)
≤

2CS

c
jγ
µ(Bj)

µ(B∗)

where in the last inequality we used (3.2). We now denote C̃S = 2CS/c and note
that this constant depends only on CS and γ. Using definition (2.3) the norm bound
(3.3) implies

ˆ

Φ

(
ψj

C̃Sjγ
µ(Bj)

µ(B∗)

)
dµ

µ(B∗)
≤ 1.
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From (3.1) we then have ψj = 1 on Bj+1 and thus

(3.4) Φ

(
1

C̃Sjγ
µ(Bj )

µ(B∗)

)
≤

µ(B∗)

µ(Bj+1)
.

Using the notation

Pj :=
µ(B∗)

C̃Sjγµ(Bj)
,

and condition (2.5) we obtain from (3.4)

Pj+1 ≥ Pj
(lnPj)

α

C̃S(j + 1)γ
.

We now show by induction that Pj ≥ P1e
j−1 ∀j ≥ 1, provided P1 is sufficiently large

depending on C̃S. The base case j = 1 is trivially true. Assume Pj ≥ P1e
j−1 for

some j ≥ 1, then

Pj+1 ≥ P1e
j (lnP1 + j − 1)α

eC̃S(j + 1)γ
.

Since α > 1 we can choose 1 < γ < α so there holds

(lnP1 + j − 1)α

eC̃S(j + 1)γ
→ ∞ as j → ∞.

Thus we can arrange
(lnP1 + j − 1)α

eC̃S(j + 1)γ
≥ 1 ∀j ≥ 1

by choosing P1 ≥ C(C̃S, α, γ). This would give Pj → ∞ as j → ∞, which is a
contradiction since

Pj =
µ(B∗)

C̃Sjγµ(Bj)
≤

µ(B∗)

C̃Sjγµ(1/2B)
→ 0 as j → ∞.

Therefore, it must be that

P1 ≤ C(C̃S, α, γ) =⇒
µ(B∗)

µ(B1)
=
µ(2B)

µ(B)
≤ C,

so the measure µ is doubling.

Remark 3.1. Note that we cannot conclude the doubling property without im-
posing the condition Φ(t) ≥ t(ln t)α, α > 1. In particular, non-doubling measure met-
ric spaces may support Orlicz–Sobolev inequalities with “weak enough” bumps, e.g.
log-Sobolev inequalities with Gaussian measure [8] which correspond to Φ(t) = t ln t.

4. Superradius estimates

We now introduce a weaker version of Orlicz–Sobolev inequality

Definition 4.1. Let (X, d, µ) be as before. Given a Young function Φ, we say
that the triple (X, d, µ) admits a weak Orlicz–Sobolev inequality with superradius
ϕ(r) and a (finite) constant CS > 0 if for every d-ball B := Bd(y, r) ⊂ X and every
function w ∈ N1,1

0 (B) it holds true that

(4.1) ‖w‖LΦ(µB) ≤ CSϕ(r) (B) ‖g‖L1(µB) , suppw ⊂ B,

for all upper-gradients g of w. Here ϕ(r) is nondecreasing and ϕ(r) ≥ r.
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We would now like to derive an estimate on the superradius ϕ(r) that is necessary
for the space (X, d, µ) to simultaneously support a weak Orlicz–Sobolev inequality
(4.1) and allow the measure to be non-doubling.

Theorem 4.2. Suppose that the triple (X, d, µ) admits a weak Orlicz–Sobolev
inequality (4.1) with superradius ϕ(r). Assume also that the function Φ satisfies

(4.2) Φ(t) ≥ t (ln t)α , ∀t > 1,

for some α > 1. Then for every ε > 0 the superradius ϕ satisfies

(4.3)
ϕ(r(B))

r(B)
≥ Cε

(
ln

[
µ(B)

µ
(
1
2
B
)
])α−1−ε

,

where the constant Cε > 0 depends on ε, α and CS. In particular, if ϕ(r) = r, the
measure µ is doubling on (X, d).

Proof. Proceeding as in the proof of Theorem 2.4 we arrive at

(4.4) Φ

(
1

C̃S(r)jγ
µ(Bj )

µ(B∗)

)
≤

µ(B∗)

µ(Bj+1)
,

where now

C̃S(r) =
2CS

c

ϕ(2r)

2r
.

The inequality we have for Pj =
µ(B∗)

C̃S(r)jγµ(Bj )
is

Pj+1 ≥ Pj
(lnPj)

α

C̃S(r)(j + 1)γ
.

The induction assumption Pj ≥ P1e
j−1 gives

Pj+1 ≥ P1e
j (lnP1 + j − 1)α

eC̃S(r)(j + 1)γ
.

We now derive a condition on P1 that will guarantee that Pj+1 ≥ P1e
j . We need

(4.5) lnP1 + j − 1 ≥ e1/αC̃S(r)
1/α(j + 1)γ/α.

Choosing 1 < γ < α and using Young’s inequality with p = α
γ
, p′ = α

α−γ
we have

e1/αC̃S(r)
1/α(j + 1)γ/α ≤

α− γ

α
(eC̃S(r))

1

α−γ +
γ

α
(j + 1).

To satisfy (4.5) it is then sufficient to require

lnP1 ≥ 2 +
α− γ

α
(eC̃S(r))

1

α−γ ,

and we then arrive at a required contradiction Pj → ∞ as j → ∞. The condition

C̃S(r) ≥ C(α, γ)(lnP1)
α−γ

is thus necessary and is guaranteed by

ϕ(2r)

2r
≥ C(CS, α, γ)

(
ln

[
µ(2B)

µ (B)

])α−γ

.

Since γ can be chosen arbitrarily close to 1, this concludes (4.3). �
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5. Example

In this section we restate Theorem 2.4 in the setting of a metric measure space
related to (degenerate) elliptic operators. We then consider a concrete example of
Orlicz–Sobolev inequality in such a space, and calculate the quantities in (4.3). This
example suggests that the exponent on the right hand side of (4.3) is not sharp and
could be improved to α.

5.1. Subelliptic version of main theorem. We follow the terminology and
notation of [12] (see also [17, Section 1]). Consider an open subset Ω ⊂ R

n (in the
Euclidean topology) and let

Q : Ω → {non-negative semi-definite n× n matrices}

be a locally bounded function on Ω. For a Lipschitz function u : Ω → R (throughout
this subsection, Lipschitz means Lipschitz with respect to the Euclidean distance),
define its Q-gradient Lebesgue-a.e. in Ω as

[∇u]Q := (∇uTQ∇u)
1

2 .

Let d be any metric on R
n.

Definition 5.1 (Standard sequence of accumulating Lipschitz functions). Let
Ω be a bounded domain in R

n. Fix r > 0 and x ∈ Ω. We define a (Q, d)-
standard sequence of Lipschitz cutoff functions {ψj}

∞
j=1 at (x, r), along with sets

B(x, rj) ⊃ supp(ψj), to be a sequence satisfying ψj = 1 on B(x, rj+1), r1 = r,
r∞ ≡ limj→∞ rj =

1
2
r, rj − rj+1 = c

jγ
r for a uniquely determined constant c and

γ > 1, and ‖[∇ψj ]Q‖∞ ≤ K jγ

r
.

For 1 ≤ p < ∞, let W1,p
Q (Ω, dx) denote the closure of the Lipschitz functions on

Ω under the norm

‖u‖W1,p
Q

(Ω,dx) := ‖u‖Lp(Ω,dx) + ‖[∇u]Q‖Lp(Ω,dx).

We say that (Ω, d, Q) admits an Orlicz–Sobolev inequality with a (finite) constant
CS > 0 if for every d-ball B := Bd(y, r) ⊂ X, with 0 < r < dist(y, ∂Ω)/2, and every
function w ∈ W1,1

Q (Ω, dx) with supp(w) ⊂ B it holds true that

‖w‖LΦ(µB) ≤ CSr (B) ‖[∇w]Q‖L1(µB) , suppw ⊂ B,(5.1)

where dµB now stands for dx/|B|, and |B| is the Lebesgue measure of B. We have
the following version of Theorem 2.4

Theorem 5.2. Suppose that the structure (Ω, d, Q) admits accumulating se-
quences of Lipschitz cut-off functions as well as an Orlicz–Sobolev inequality (5.1).
Assume also that the function Φ satisfies

Φ(t) ≥ t (ln t)α , ∀t > 1,

for some α > γ. Then, the Lebesgue measure is doubling on (Ω, d). More pre-
cisely, there exists a constant CD ≥ 1, depending only on α, CS, and γ and K from
Definition 5.1 such that

|Bd(y, 2r)| ≤ CD |Bd(y, r)| ∀y ∈ X, r > 0.

Proof. Given a d-ball B := Bd(y, r), with 0 < r < dist(y, ∂Ω)/2, just as in the
proof of Theorem 2.4, apply the weak-Sobolev inequality (5.1) to the accumulating
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sequence of Lipschitz cut-off functions {ψj} on the d-ball B∗ := Bd(y, 2r) and, for
j ∈ N, set Bj := supp(ψj), to obtain

‖ψj‖LΦ(µB∗ ) ≤ CSr (B) ‖[∇ψj ]Q‖L1(µB∗ ) ≤ CS ‖[∇ψj ]Q‖∞ ‖1‖L1(µB∗ ) ≤ CSKj
γ µ(Bj)

µ(B∗)
.

Note that this is precisely (3.3) with CSK in place of CS/c. With the notation

C̃S = CSK the rest of the proof repeats verbatim the proof of Theorem 2.4. �

Finally, we can also restate Theorem 4.2 and the proof will follow similarly

Theorem 5.3. Suppose that the structure (Ω, d, Q) admits accumulating se-
quences of Lipschitz cut-off functions as well as an Orlicz–Sobolev inequality with
superradius ϕ(r)

‖w‖LΦ(µB) ≤ CSϕ(r (B)) ‖[∇w]Q‖L1(µB) , suppw ⊂ B.

Assume also that the function Φ satisfies

Φ(t) ≥ t (ln t)α , ∀t > 1,

for some α > γ. Then for every ε > 0 the superradius ϕ satisfies

(5.2)
ϕ(r(B))

r(B)
≥ Cε

(
ln

[
|2B|

|B|

])α−1−ε

,

where the constant Cε > 0 depends on ε, α and CS. In particular, if ϕ(r) = r, the
Lebesgue measure is doubling on (Ω, d).

5.2. Example. The following example suggests that the estimate (5.2) might
not be sharp. More precisely, there exists a matrix Q, metric d, and a subset Ω ⊆ R

n

such that

(5.3) ‖w‖LΦ(µB) ≤ Cϕ(r (B)) ‖[∇w]Q‖L1(µB) ,

for all w ∈ W1,1
Q (Ω, dx) with supp(w) ⊂ B, where

(5.4) Φ(t) = t(ln t)α, α > 1, ∀t > 1

and ϕ(r) satisfies

(5.5)
ϕ(r(B))

r(B)
≈

(
ln

[
|2B|

|B|

])α

.

Therefore, we expect the same lower bound on the superradius might be necessary,
i.e. it should be possible to improve (5.2) to

ϕ(r(B))

r(B)
≥ C

(
ln

[
|2B|

|B|

])α

.

Estimate (5.5) is a consequence of [13, Proposition 80]. More precisely, let n = 2,
Q(x, y) = diag{1, f 2(x)} where f(x) = exp(−1/|x|σ), 0 < σ < 1, and let d be the
metric subunit to Q, see [17, Definition 4]. Then the function F (x) := − ln f(x) =
1/|x|σ satisfies the condition of [13, Proposition 80] provided σα < 1. Proposition
80 then says that Orlicz–Sobolev inequality (5.3) with Φ satisfying (5.4) holds in the
ball B = B(0, r) with

ϕ(r) = C|F ′(r)|αrα+1

provided limr→0 ϕ(r) = 0. Now, if F (x) = 1/|x|σ and σα < 1 we have

ϕ(r) = C|F ′(r)|αrα+1 = C
rα+1

rα(σ+1)
= C

r

rασ
→ 0, as r → 0.
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We therefore only need to check estimate (5.5). Using the estimate from [13, Con-
clusion 45] we have

|B(0, r)| ≈
f(r)

|F ′(r)|2
≈ r2(σ+1)e−

1

rσ ,

and therefore (
ln

[
|2B|

|B|

])α

≈
1

rσα
≈
ϕ(r)

r
.
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