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Abstract. We derive a formula for the number of pre-images under a non-degenerate harmonic
mapping f , using the argument principle. This formula reveals a connection between the pre-images
and the caustics. Our results allow to deduce the number of pre-images under f geometrically
for every non-caustic point. We approximately locate the pre-images of points near the caustics.
Moreover, we apply our results to prove that for every k = n, n+ 1, . . . , n2 there exists a harmonic
polynomial of degree n with k zeros.

1. Introduction

Harmonic mappings in the plane, i.e., functions f : Ω → C with ∆f = 0 on an
open set Ω ⊆ C, regained attention in the last decades, starting from the seminal
work of Clunie and Sheil-Small [10]. See, e.g., the large collection of open problems by
Bshouty and Lyzzaik [9] and references therein. While we consider here multivalent
harmonic mappings, also (locally) univalent harmonic mappings are of interest, see,
e.g., Duren’s textbook [11], especially in the context of quasi-conformal mappings [1].

Numerous authors have studied the number and location of zeros of harmonic
mappings, i.e., the solutions of f(z) = 0. Of particular interest have been harmonic
polynomials of the form f(z) = p(z) − z [19, 13], or f(z) = p(z) + q(z) and the
questions related to Wilmshurst’s conjecture [38, 20, 16]. Also, the zeros of rational
harmonic mappings of the form f(z) = r(z)− z have been studied intensively [17, 7,
25, 26, 22], since these are of interest when modeling the phenomenon of gravitational
lensing [18, 29, 5].

Here we focus on solutions of f(z) = η for given (but arbitrary) η ∈ C. As shown
in [21] for rational harmonic mappings of the form f(z) = r(z) − z, the number of
solutions can vary significantly under changes of η. Moreover, changes only occur
when η is “moved” through the caustics of f ; see Figure 1. This paper is devoted
to study this effect for a more general class of harmonic mappings. We show the
following:

(1) In Section 3 we derive (local and global) formulas for the number of pre-
images of η under a non-degenerate harmonic mapping f (Definition 3.1) in terms of
the poles and the winding number of the caustics about η, e.g.,

(1.1) Nη(f) = P (f) + 2
∑
γ∈crit

n(f ◦ γ; η);
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see Theorem 3.4. An immediate consequence of (1.1) is that the number of pre-
images changes by ±2 when η changes from one side to the other of a single caustic
arc; see Figure 1.

(2) In Section 4 we complement Lyzzaik’s study [27] of the local behavior of light
harmonic mappings at their critical points. We approximately locate pre-images of
η near a fold caustic point, which makes the pre-images also accessible for compu-
tations. Moreover, we determine for which η near a fold we have locally two or no
pre-images; see Theorem 4.2.

(3) In Section 5 we apply the results from Sections 3 and 4 to harmonic polynomi-
als. In particular we prove that for all k ∈ {n, n+ 1, . . . , n2} there exists a harmonic
polynomial f(z) = p(z) + q(z) with deg(p) = n and deg(q) < n with exactly k
zeros, i.e., every number between the minimum and maximum can be attained; see
Corollary 5.6. This generalizes a result of Bleher et al. [7, Thm. 1.1].

Figure 1. Number of pre-images of η under f(z) = z− z2/(z3 − 0.63) for an η in the respective
regions; see also Example 3.9 below. The black lines mark the caustics (critical values) of f . The
number of pre-images of η in the outer tile corresponds to the number of poles of f (including ∞).

2. Preliminaries

The key ingredient to derive the formulas for the exact number of pre-images in
Section 3 is the argument principle for harmonic mappings, applied on the critical
set. In preparation, we collect and extend several known results in this section.

A harmonic mapping is a function f : Ω→ C defined on an open set Ω ⊆ C and
with

∆f = ∂xxf + ∂yyf = 4∂z∂zf = 0,

where ∂z and ∂z denote the Wirtinger derivatives of f ; see e.g. [11, Sect. 1.2]. If f is
harmonic in the open disk D = {z ∈ C : |z − z0| < r}, it has a local decomposition

(2.1) f(z) = h(z) + g(z) =
∞∑
k=0

ak(z − z0)k +
∞∑
k=0

bk(z − z0)k, z ∈ D,

with analytic functions h and g in D, which are unique up to an additive constant;
see [12, p. 412] or [11, p. 7]. If f is harmonic in the punctured disk D = {z ∈ C : 0 <
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|z − z0| < r}, it has a local decomposition

f(z) =
∞∑

k=−∞

ak(z − z0)k +
∞∑

k=−∞

bk(z − z0)k + c log|z − z0|, z ∈ D;(2.2)

see [35, 14]. We consistently use the notation from (2.1) and (2.2).
The Jacobian of a harmonic mapping f at z ∈ Ω is

(2.3) Jf (z) = |∂zf(z)|2 − |∂zf(z)|2 = |h′(z)|2 − |g′(z)|2,
where f = h + g is a local decomposition (2.1). We call f sense-preserving at z if
Jf (z) > 0, sense-reversing at z if Jf (z) < 0, and singular at z if Jf (z) = 0. Moreover,
we call f singular, if f is singular at one of its zeros. If ϕ is an analytic function,
then f ◦ ϕ is again a harmonic mapping and

(2.4) Jf◦ϕ(z) = Jf (ϕ(z))|ϕ′(z)|2.
In particular, if ϕ′(z) 6= 0, the maps f at ϕ(z) and f ◦ ϕ at z are simultaneously
sense-preserving, sense-reversing, or singular, respectively.

2.1. Critical set and caustics. The points at which a harmonic mapping f is
singular form the critical set

(2.5) C = {z ∈ Ω: Jf (z) = 0},
which consists of the level set of an analytic function, and certain isolated points, as
we see next.

The second complex dilatation of a harmonic mapping f is

ω(z) =
∂zf(z)

∂zf(z)
=
g′(z)

h′(z)
,

with the decomposition f = h + g from (2.1); see [11, p. 5], [1, p. 5] or [35, p. 71].
We assume that ∂zf = h′ has only isolated zeros in Ω, so that ω is analytic in {z ∈
Ω: ∂zf(z) 6= 0}, and the singularities of ω in Ω are poles or removable singularities
(which we assume to be removed). Moreover, we assume that |ω| 6≡ 1 on an open set
(harmonic mappings with this property are characterized in [27, Lem. 2.1]).

Let z0 ∈ Ω. If h′(z0) 6= 0, then Jf (z0) = |h′(z0)|2 − |g′(z0)|2 = 0 is equivalent to
|ω(z0)| = 1, and if h′(z0) = 0, then Jf (z0) = 0 is equivalent to g′(z0) = 0. Hence,
|ω(z0)| = 1 implies Jf (z0) = 0, but the converse is not true in general. Define

(2.6) M = {z ∈ C : |ω(z)| 6= 1}.
By the above computation,

M = {z ∈ Ω: h′(z) = g′(z) = 0 and lim
ζ→z
|ω(ζ)| 6= 1}.

For z0 ∈M, there exists a neighborhood of z0 containing no other point in C; see [27,
Lem. 2.2]. By construction,

C \M = {z ∈ Ω: |ω(z)| = 1}
is a level set of the analytic function ω. Hence, C \ M consists of analytic curves,
which intersect in z0 ∈ C \M if and only if ω′(z0) = 0. More precisely, if ω(k)(z0) = 0
for k = 1, . . . , n−1 and ω(n)(z0) 6= 0, then 2n analytic arcs meet at z0 with equispaced
angles [36, p. 18]; see also Example 3.11.

At points z ∈ C \M with ω′(z) 6= 0, the equation

(2.7) ω(γ(t)) = eit
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implicitly defines a local analytic parametrization z = γ(t) of C \M. We can write
it locally as γ(t) = ω−1(eit) with a continuous branch of ω−1. The corresponding
tangent vector at z = γ(t) is

(2.8) γ′(t) = i
ω(z)

ω′(z)
.

By construction f is sense-preserving to the left of γ, and sense-reversing to the right
of γ.

The image of the critical set under a harmonic mapping f plays a decisive role
for the number of pre-images. We call the set of critical values of f , i.e., f(C), the
set of caustic points, or simply the caustics of f . An η ∈ C has a pre-image under f
on the critical set if, and only if, η is a caustic point.

The next lemma characterizes a tangent vector to the caustics and the curvature
of the caustics; see [27, Lem. 2.3].

Lemma 2.1. Let f be a harmonic mapping, z0 ∈ C \M with ω′(z0) 6= 0, and
let z0 = γ(t0) with the parametrization (2.7). Then f ◦ γ is a parametrization of a
caustic and the corresponding tangent vector at f(z0) is

τ(t0) =
d

dt
(f ◦ γ)(t0) = e−it0/2ψ(t0),

with
ψ(t0) = 2 Re(eit0/2h′(γ(t0))γ

′(t0)),

where f = h+ g is a decomposition (2.1) in a neighborhood of z0. In particular, the
rate of change of the argument of the tangent vector is

d

dt
arg(τ(t))

∣∣
t=t0

= −1

2

at points where ψ(t0) 6= 0, i.e., the curvature of the caustics is constant with respect
to the parametrization f ◦ γ. Moreover, ψ has either only finitely many zeros, or is
identically zero, in which case f is constant on γ.

Definition 2.2. In the notation of Lemma 2.1, assume that the tangent τ(t0)
exists. Then, the point (f ◦ γ)(t0) is called

(1) a fold caustic point or simply a fold, if the tangent is non-zero,
(2) a cusp of the caustic, if ψ has a zero with a sign change at t0.

Remark 2.3. (1) If (f ◦γ)(t0) is a fold, then f is light (i.e., f−1({η}) is empty or
totally disconnected for every η ∈ C) in a neighborhood of z0 = γ(t0). Indeed, if
C \M can be parametrized according to (2.7), then Jf is not identically zero. Also,
f ◦ γ is not constant near t0. Hence, f is light in a neighborhood of z0 by [27,
Thm. 2.1].

(2) At a cusp, the tangent vector becomes zero and the argument of the tangent
vector jumps by +π. Note that the caustic either has only a finite number of cusps,
or degenerates to a single point by Lemma 2.1.

(3) In [27, Def. 2.2], a critical point z0 = γ(t0) is called a critical point of (i) the
first kind, if f(z0) is a cusp, (ii) the second kind, if h′(z0) = 0 or g′(z0) = 0, and if
ψ(t0) = 0 but ψ does not change its sign, and (iii) the third kind, if ω′(z0) = 0.

The curvature and the cusps of the caustics of f are apparent in the examples
in Figure 4. The next lemma characterizes the fold caustic points in terms of the
coefficients in (2.1).
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Lemma 2.4. Let f be a harmonic mapping, z0 ∈ C \M with ω′(z0) 6= 0 and
h′(z0) 6= 0, and let z0 = γ(t0) with the parametrization (2.7). We consider the
decomposition (2.1) of f at z0 and define θ ∈ [0, π[ by b1 = a1e

i2θ. Then the following
are equivalent:

(1) ψ(t0) 6= 0,

(2) Im

(
1

eit0/2a1

(
a2
a1
− b2
b1

))
6= 0,

(3) Im

(
a2
a1
eiθ +

(
b2
b1
eiθ
))
6= 0.

Proof. Using (2.8), eit0 = ω(z0) = b1/a1 and ω′(z0) = 2 b2a1−b1a2
a21

, we have

0 6= ψ(t0) = 2 Re

(
eit0/2h′(z0)i

ω(z0)

ω′(z0)

)
= Re

(
ieit0/2a1

b1a1
b2a1 − b1a2

)
.

Since Re(z) 6= 0 if and only if Re(1/z) 6= 0 (for z 6= 0), this is equivalent to

0 6= Re

(
−i 1

eit0/2a1

b2a1 − b1a2
b1a1

)
= − Im

(
1

eit0/2a1

(
a2
a1
− b2
b1

))
.

Write a1 = |a1|eiα, then b1 = a1e
it0 = a1e

−i2θ implies ei(2α+t0) = e−i2θ, and hence
eit0/2a1 = ±|a1|e−iθ, which yields the equivalence of (2) and (3). �

2.2. The argument principle for harmonic mappings. Let f be continuous
and non-zero on the trace of a curve γ : [a, b] → C. Then the winding of f on γ is
defined as the change of argument of f(z) as z travels along γ from γ(a) to γ(b),
divided by 2π, i.e.,

(2.9) W (f ; γ) =
1

2π
∆γ arg(f(z)) =

1

2π
(θ(b)− θ(a)),

where θ : [a, b] → R is continuous with θ(t) = arg(f(γ(t)); see [3, Sect. 2.3] or [4,
Ch. 7] for details.

Let now γ be a closed curve. We denote the winding number of γ about η ∈
C \ trace(γ) by n(γ; η), which is related to the winding through

(2.10) W (f ; γ) = n(f ◦ γ; 0) and n(γ; η) = W (z 7→ z − η; γ).

In particular, W (f ; γ) is an integer. Note that W (f ; γ) = n(f ◦ γ; 0) = 0 if f is
constant on γ. Moreover, the winding is also called the degree or topological degree
of f on γ; see [23, p. 3] or [34, p. 29].

The argument principle for a continuous function f relates the winding of f to
the indices of its exceptional points. A point z0 ∈ C is called an isolated exceptional
point of a function f , if f is continuous and non-zero in a punctured neighborhood
D = {z ∈ C : 0 < |z − z0| < r} of z0, and if f is either zero, not continuous, or not
defined at z0. Then the Poincaré index of f at z0 is defined as

(2.11) ind(f ; z0) = W (f ; γ),

where γ is a closed Jordan curve in D about z0 oriented in the positive sense, i.e.,
with n(γ; z0) = 1. The Poincaré index is also called the index [23, Def. 2.2.2] or the
multiplicity [34, p. 44]. Similarly, ∞ is an isolated exceptional point of f , if f is
continuous and non-zero in D = {z ∈ C : |z| > R}. We define ind(f ;∞) = W (f ; γ),
where γ is a closed Jordan curve in D which is negatively oriented and surrounding
the origin, such that ∞ lies on the left of γ on the Riemann sphere Ĉ = C ∪ {∞}.
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In either case the Poincaré index is independent of the choice of γ. We get with
ϕ(z) = z−1

(2.12) ind(f ;∞) = W (f ; γ) = W (f ◦ ϕ;ϕ−1 ◦ γ) = ind(f ◦ ϕ; 0).

The Poincaré index generalizes the multiplicity of zeros and order of poles of an
analytic function; see e.g. [34, p. 44].

The following version of the argument principle for continuous functions can be
obtained from [3, Sect. 2.3], or [34, Sect. 2.3]. Special versions for harmonic mappings
are given in [12] and [35, Thm. 2.2].

Theorem 2.5. (Argument principle) Let D be a multiply connected domain in
Ĉ whose boundary consists of Jordan curves γ1, . . . , γn, which are oriented such that
D is on the left. Let f be continuous and non-zero in D, except for finitely many
exceptional points z1, . . . , zk ∈ D. We then have

n∑
j=1

W (f ; γj) =
k∑
j=1

ind(f ; zj).

Using the argument principle and the definition of the Poincaré index at infinity
yields the following theorem.

Theorem 2.6. Let f be defined, continuous and non-zero on Ĉ, except for
finitely many isolated exceptional points z1, . . . , zn in Ĉ, then

n∑
j=1

ind(f ; zj) = 0.

The exceptional points of a harmonic mapping f are its zeros and points where f
is not defined. We determine their indices, beginning with the zeros; see [12, p. 413]
or [35, p. 66].

Proposition 2.7. Let f be a harmonic mapping with a zero z0, such that the
local decomposition (2.1) is of the form

f(z) =
∞∑
k=n

ak(z − z0)k +
∞∑
k=n

bk(z − z0)k, n ≥ 1,

where an or bn can be zero, then

(2.13) ind(f ; z0) =

{
+n if |an| > |bn|,
−n if |an| < |bn|,

and, in particular,

(2.14) ind(f ; z0) =

{
+1 if f is sense-preserving at z0,
−1 if f is sense-reversing at z0.

A zero z0 of a harmonic mapping f with ind(f ; z0) ∈ Z \ {−1, 1} is a singular
zero by the above result. Proposition 2.7 covers non-singular zeros and the zeros
in M; see (2.6). If |an| = |bn| 6= 0, then z0 is a singular zero in C \ M, in which
case the determination of the index is more challenging; see [24] for the special case
f(z) = h(z)− z.

Remark 2.8. Zeros of f in M can be interpreted as multiple zeros of f . For
a zero z0 ∈ M of f , there exists r > 0 such that f is defined, non-zero and either
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sense-preserving or sense-reversing in D = {z ∈ C : 0 < |z − z0| ≤ r}. For 0 < |ε| <
m = min|z−z0|=r|f(z)| and z with |z − z0| = r we have

|f(z) + ε− f(z)| = |ε| < m ≤ |f(z)|,

which implies W (f + ε; γ) = W (f ; γ) = ind(f ; z0) by Rouché’s theorem; see e.g. [32,
Thm. 2.3]. Since f + ε has no poles in D and f(z0) + ε 6= 0, it has |ind(f ; z0)| many
distinct zeros in D by the argument principle.

Isolated exceptional points where f is not defined are classified according to the
limit limz→z0 f(z); see [35, Def. 2.1], [34, p. 44], and the classical notions for real-
valued harmonic functions, e.g. [15, §15.3, III].

Definition 2.9. Let f be a harmonic mapping in a punctured disk around z0 ∈
C. Then z0 is called

(1) a removable singularity of f , if limz→z0 f(z) = c ∈ C,
(2) a pole of f , if limz→z0 f(z) =∞,
(3) an essential singularity of f , if limz→z0 f(z) does not exist.

If one defines f(z0) = c at a removable singularity, then f is harmonic in z0;
apply [15, Thm. 15.3d] to the real and imaginary parts of f . In the sequel, we
assume that removable singularities have been removed. If c = 0, then z0 is a zero of
f , and still an exceptional point.

For most poles of harmonic mappings, the Poincaré index can be determined
from the decomposition (2.2).

Proposition 2.10. Let f be a harmonic mapping in a punctured neighborhood
of z0, such that the local decomposition (2.2) is of the form

f(z) =
∞∑

k=−n

ak(z − z0)k +
∞∑

k=−n

bk(z − z0)k + c log|z − z0|,

where a−n or b−n can be zero, then

ind(f ; z0) =


−n if n ≥ 1 and |a−n| > |b−n|,
+n if n ≥ 1 and |a−n| < |b−n|,

0 if n = 0 and c 6= 0.

Moreover, in each case z0 is a pole of f . In the first case, f is sense-preserving
near z0, and in the second it is sense-reversing near z0. In the third case, z0 is an
accumulation point of the critical set of f .

Proof. See [35, Lem. 2.2, 2.3, 2.4] for the first two cases. In the third case, we
have ind(f ; z0) = 0 by [35, pp. 70–71]. Moreover, ω can be continued analytically to
z0 /∈ Ω with |ω(z0)| = limz→z0|ω(z)| = 1, since ∂zf(z) = c

2
1

z−z0 +
∑∞

k=1 akk(z− z0)k−1

and ∂zf(z) = c
2

1
z−z0 +

∑∞
k=1 bkk(z− z0)k−1. Hence z0 is an accumulation point of the

critical set of f by the maximum modulus principle for ω. �

Remark 2.11. If n ≥ 1 and |a−n| = |b−n| 6= 0, we have that:
(1) z0 is an accumulation point of the critical set of f , as in the proof,
(2) z0 is a pole or an essential singularity of f , and both cases occur. Consider

f1(z) = z−2 + z−1 + z−2 and f2(z) = z−2 + z + z−2, for which z0 = 0 is an
isolated exceptional point. The origin is a pole of f1, since limz→0 f1(z) =∞,
and ind(f1; 0) = 0; see [35, Ex. 2.6]. In contrast, limz→0 f2(z) does not exist
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(compare the limits on the real axis and the lines with Re(z−2) = 0), i.e., f2
has an essential singularity at 0.

3. The number of pre-images

For non-degenerate harmonic mappings f , we derive explicit formulas for the
number of pre-images of a non-caustic point η, in terms of the poles of f and of the
winding number of the caustics of f about η. The proofs are based on the argument
principle. Moreover, we deduce geometrically the number of pre-images from the
caustics.

Definition 3.1. We call a harmonic mapping f non-degenerate, if the following
conditions hold:

(1) f is defined in Ĉ with the possible exception of finitely many poles,
(2) at a pole z0 ∈ C of f , the decomposition (2.2) has the form

(3.1) f(z) =
∞∑

k=−n

ak(z − z0)k +
∞∑

k=−n

bk(z − z0)k + c log|z − z0|,

with n ≥ 1 and |a−n| 6= |b−n|. And if ∞ is a pole of f , then

(3.2) f(z) =
n∑

k=−∞

akz
k +

n∑
k=−∞

bkzk + c log|z|, for |z| > R,

with n ≥ 1 and |an| 6= |bn|, and R > 0,
(3) the critical set C of f is bounded.

Remark 3.2. (1) The first item in Definition 3.1 allows to apply the argument
principle globally. By the second item, we can determine the Poincaré index of
a pole with Proposition 2.10, and the poles are not accumulation points of C; see
Remark 2.11. In particular, C is a closed subset of C.

(2) Harmonic polynomials f(z) = p(z) + q(z) with deg(p) > deg(q), and rational
harmonic mappings f(z) = r(z) − z with limz→∞ f(z) = ∞ are non-degenerate.
For these functions, the number of zeros or pre-images is intensively studied; see
e.g. [38, 19, 17, 13, 7, 25, 26, 32, 20, 21, 22, 5, 16].

(3) We discuss the difference between non-degenerate harmonic mappings and the
maps in [27, 28]. By [27, Thm. 2.1], a harmonic mapping is either (a) light, (b) has a
zero Jacobian, or (c) is constant on an analytic subarc of C \M. While Lyzzaik [27]
and Neumann [28] consider harmonic mappings that are light (case (a)) and have
no poles, we allow cases (a) and (c) and certain poles. For example, the harmonic
mapping f(z) = 1

z
− z, modeling the Chang–Refsdal lens in gravitational lensing [2],

is non-degenerate with poles at 0 and ∞, and with critical set C = {z ∈ C : |z| = 1}.
It is not light, since f(C) = {0}.

(4) It is possible that different arcs of the critical set are mapped onto the same
caustic arc; see Example 5.1.

3.1. A formula for the number of pre-images. To count the number of
pre-images under f with the argument principle, we separate the regions where f is
sense-preserving and sense-reversing.

Let f be a non-degenerate harmonic mapping. In particular, the critical set C
is bounded and closed. For each connected component Γ of C \M, we construct a
single closed curve γ parametrizing Γ and traveling through every critical arc exactly
once, according to (2.7). There are two possibilities.



Number and location of pre-images under harmonic mappings in the plane 233

(1) If ω′ is non-zero on Γ, then Γ is the trace of a closed Jordan curve γ.
(2) If ω′ has zeros on Γ, then Γ consists of Jordan arcs that meet at the zeros of

ω′, and we proceed as follows. We interpret the component Γ as a directed
multigraph with intersection points as vertices and critical arcs as arcs of the
graph, directed in the sense of (2.7). At a vertex corresponding to an (n−1)-
fold zero of ω′, 2n arcs meet. Due to the orientation of the arcs, the same
number of arcs are incoming and outgoing. Hence we find an Euler circuit in
the graph [8, Sect. I.3], which corresponds to the desired parametrization γ
of Γ.

We call the above γ a critical curve, and denote the set of all these curves by crit;
see Figure 4 below for examples.

The critical set induces a partition of Ĉ\C into open and connected components
A, where ∂A ⊆ C and f is either sense-preserving or sense-reversing on A (more
precisely on A minus the poles of f). Such a component may or may not be simply
connected; see Figure 4 (top left). Denote the component containing ∞ by A∞. For
A 6= A∞, note that ω has at least one zero/pole in A if f is sense-preserving/sense-
reversing in A, by the minimum modulus principle/maximum modulus principle for
ω. If ω is identically zero/infinity, then f is analytic/anti-analytic, and there is only
one component. Otherwise, ω has only finitely many zeros and poles on the compact
set Ĉ \ A∞, and there are at most finitely many other components, and we write
(3.3) A = {A1, . . . , Am}.
This generalizes a similar partition for rational harmonic mappings of the form f(z) =
r(z)− z from [21, Sect. 2].

For A ∈ A, we construct parametrizations γ1, . . . , γn according to (2.7) of the
connected components Γ1, . . . ,Γn of Γ = (∂A) \ M. If ω′ is non-zero on Γj, then
there exists a closed Jordan curve γj with trace(γj) = Γj as before. Otherwise we
interpret Γj as a directed multigraph and show the existence of an Euler circuit as
above. For a zero z0 ∈ Γj of ω′ the set Aε = {z ∈ A : 0 < |z − z0| < ε} consists
of k connected components for ε > 0 sufficiently small. Every component of Aε
produces one ingoing and one outgoing arc at the vertex corresponding to z0; see
Figure 2 (left). Hence, there exists an Euler circuit in Γj and we denote by γj a
parametrization according to (2.7) of this circuit. Applying the above construction
to all A ∈ A yields not necessarily a disjoint partition of C \M, see Figure 4 (bottom
left), and hence cannot be used in Theorem 3.4. In particular γj is potentially not a
critical curve.

++

+

−

− −

z0
++

+

−

− −

z0

Figure 2. Left: Aε (shaded) and oriented critical arcs near a zero z0 of ω′. Right: Deformation
of γj in the proof of Theorem 3.3. The +/− signs indicate regions where f is sense-preserving/sense-
reversing.
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We determine the number of pre-images in one component A ∈ A.
Theorem 3.3. Let f be a non-degenerate harmonic mapping, A ∈ A, and let

γ1, . . . , γn be a parametrization of Γ = (∂A)\M as above. Moreover, let z1, . . . , zk be
the poles of f in A, and define P (f ;A) =

∑k
j=1|ind(f ; zj)|. Then, for η ∈ C \ f(∂A),

the number Nη(f ;A) of pre-images of η under f in A is

(3.4) Nη(f ;A) = P (f ;A) +
n∑
j=1

n(f ◦ γj; η).

Proof. We apply the argument principle to fη = f − η on A. Note that fη is
also non-degenerate, Jf = Jfη , and fη has the same poles with same index as f , so
that P (fη;A) = P (f ;A). Since fη is non-zero on ∂A, it has no zeros in M ∩ A.
Moreover, fη has only finitely many zeros in A. For a bounded A this holds since
non-singular zeros are isolated [12, p. 413]. For A∞, assume that fη has infinitely
many zeros in A∞ and hence in some {z ∈ C : |z| ≥ R}. Then fη(1/z) has infinitely
many non-singular zeros in {z ∈ C : |z| ≤ 1/R}, which contradicts the fact that such
zeros are isolated.

First, suppose that Γ is non-empty and that γ1, . . . , γn are closed Jordan curves.
If fη is sense-preserving in A, then A lies to the left of γ1, . . . , γn. The argument
principle implies

n∑
j=1

W (fη; γj) = N0(fη;A) +
k∑
j=1

ind(fη; zj) = Nη(f ;A)− P (f ;A),

where we used that fη is sense-preserving and hence the index at a zero is +1
by (2.14) and negative at a pole by Proposition 2.10. We obtain (3.4) in this case
with W (fη; γj) = n(f ◦ γj; η); see (2.10). Recall that n(f ◦ γj; η) = 0 if f ◦ γj is
constant. If fη is sense-reversing in A, then A lies to the right of γ1, . . . , γn, and the
index of f at a zero is −1 by (2.14) and positive at a pole by Proposition 2.10, and
hence

n∑
j=1

W (fη;−γj) = −Nη(f ;A) + P (f ;A),

where −γj denote the reversed curves. Since W (f ;−γj) = −W (f ; γj), we ob-
tain (3.4).

If some γj is not a Jordan curve, then it self-intersects at a zero z0 of ω′, as
indicated in Figure 2 (left). However, fη is continuous and non-zero at z0. Hence,
by an arbitrary small manipulation of γj, we obtain a Jordan curve on which fη has
the same winding. This is illustrated in Figure 2 (right). The proof then remains
unchanged with the new curves.

Finally, if Γ is empty, then A is the only component in A and Nη(f) = P (f)
follows from Theorem 2.6. �

Summing over all A ∈ A gives the total number of pre-images.

Theorem 3.4. Let f be a non-degenerate harmonic mapping. Then Nη(f), the
number of pre-images in Ĉ of η ∈ C \ f(C) under f , is

Nη(f) = P (f) + 2
∑
γ∈crit

n(f ◦ γ; η).
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Here P (f) =
∑

A∈A P (f ;A) denotes the number of poles of f in Ĉ counted with the
absolute values of their Poincaré indices, as in Theorem 3.3.

Proof. The function fη = f − η has no zeros on C, since η is not a caustic point.
Let A = {A1, . . . , Am} and denote by γ1,j, . . . , γnj ,j a parametrization of (∂Aj) \M
as above. Applying Theorem 3.3 for A1, . . . , Am yields

Nη(f) =
m∑
j=1

Nη(f ;Aj) =
m∑
j=1

(
P (f ;Aj) +

nj∑
k=1

n(f ◦ γk,j; η)

)
= P (f) + 2

∑
γ∈crit

n(f ◦ γ; η).

Here we used that every γk,j consists of arcs which are boundary arcs of exactly two
components in A, and that the critical curves are a (disjoint) parametrization of
C \M according to (2.7). �

Remark 3.5. Theorems 3.3 and 3.4 not only contain a formula for counting the
pre-images of η, but also allow to determine how the number of pre-images changes
if η changes its position relative to the caustics of f . More precisely, the number of
pre-images in A ∈ A changes by ±1 if η “crosses” a single caustic arc from f(∂A);
see Theorem 3.3.

For large enough |η|, the pre-images are near the poles. This generalizes [21,
Thm. 3.1]. We write Dε(z0) = {z ∈ C : |z − z0| < ε}.

Theorem 3.6. Let f be a non-degenerate harmonic mapping with poles z1, . . . ,
zn, let ε > 0 be such that the sets D∞ = {z ∈ C : |z| > ε−1} and Dε(z1), . . . , Dε(zn)
are disjoint, and such that on each set f is either sense-preserving or sense-reversing.
Then, for every η ∈ C with |η| large enough, we have

Nη(f ;Dε(zk)) = |ind(f ; zk)| and Nη(f ;D∞) = |ind(f − η;∞)|.
Moreover, all pre-images of η are in D =

⋃n
k=1Dε(zk) ∪D∞.

Proof. Let η ∈ C be such that |f(z)| < |η| for z ∈ ∂D, which is possible since
∂D is compact and f continuous. To apply Rouché’s theorem (e.g. [32, Thm. 2.3])
to fη = f − η and g(z) = −η, note that

|fη(z)− g(z)| = |f(z)| < |η| for z ∈ ∂D.
Since f is either sense-preserving or sense-reversing on Dε(zk), we have

0 = W (g; γk) = W (fη; γk) = ±Nη(f ;Dε(zk)) + ind(f ; zk),

with γk : [0, 2π] → C, γk(t) = zk + εeit. Hence, Nη(f ;Dε(zk)) = |ind(f ; zk)| as in
Theorem 3.3. Similarly, let γ∞ : [0, 2π]→ C, γ∞(t) = ε−1e−it, then

0 = W (g; γ∞) = W (fη; γ∞) = ±Nη(f ;D∞) + ind(fη;∞).

By increasing |η|, so that η lies outside all caustics, i.e., n(f ◦ γ; η) = 0 for all
γ ∈ crit, we have with Theorem 3.4

Nη(f) = P (f) =
n∑
j=1

Nη(f ;Dεj(zj)) +Nη(f ;D∞).

This implies that all pre-images of η are in D. �

Note that the number of pre-images determined in Theorem 3.6 is not necessarily
the minimal number of pre-images as η ranges over C \ f(C); see Example 3.10 and
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Figure 4. For non-singular harmonic polynomials, however, this is the lower bound
for the number of zeros; see the discussion at the beginning of Section 5.

We now consider η as variable parameter, and deduce the number of pre-images
of η2 from the number of pre-images of another point η1, e.g., with sufficiently large
|η1| as in Theorem 3.6.

The caustics induce a partition of C\f(C) into open and connected components,
which we call caustic tiles. This partition does not coincide with f(A) in general,
since f has not the open mapping property; see also Figure 4, where Ĉ \ C and
C \ f(C) have a different number of (connected) components. The winding number
of f ◦ γ about η depends on the position of η with respect to the caustics, i.e., to
which caustic tile η belongs to. The next theorem is an immediate and very useful
consequence of Theorem 3.4.

Theorem 3.7. For a non-degenerate harmonic mapping f and non-caustic points
η1, η2 ∈ C \ f(C), we have

(3.5) Nη2(f) = Nη1(f) + 2
∑
γ∈crit

(
n(f ◦ γ; η2)− n(f ◦ γ; η1)

)
,

and in particular:
(1) If η1 and η2 are in the same caustic tile, then the number of pre-images under

f is the same, i.e., Nη2(f) = Nη1(f).
(2) If η1 and η2 are separated by a single caustic f ◦ γ, then the number of

pre-images under f changes by two, i.e., Nη2(f) = Nη1(f)± 2.
(3) Nη1(f) is odd if, and only if, Nη2(f) is odd.
(4) Let η1, η2 ∈ C. If Nη1(f) is even and Nη2(f) is odd, then η1 or η2 is a caustic

point of f .

We obtain a formula similar to (3.5) for each set A ∈ A, using Theorem 3.3
instead of Theorem 3.4. This yields Nη2(f ;A) = Nη1(f ;A) in (1). In (2), the number
of pre-images increases/decreases by 1 in the sets A adjacent to the critical arc γ,
and stays the same in all other sets A.

Items (3) and (4) are in the spirit of the “odd number of images theorem” from
the theory of gravitational lensing in astrophysics [30, Thm. 11.5].

3.2. Counting pre-images geometrically. We determine geometrically whe-
ther the number of pre-images increases or decreases in item (2) of Theorem 3.7.
The key ingredient is the curvature of the caustics (Lemma 2.1), which allows to
spot their orientation in a plot; see Figure 3. Then, the change of the winding
number n(f ◦ γ; η2)− n(f ◦ γ; η1) can be determined with the next result.

Proposition 3.8. ([31, Prop. 3.4.4]) Let γ be a smooth closed curve and η /∈
trace(γ). Let further R be a ray from η to ∞ in direction eiϕ, such that R is not a
tangent at any point on γ. Then R intersects γ at finitely many points γ(t1), . . . , γ(tk)
and we have for the winding number of γ about η

n(γ; η) =
k∑
j=1

itj(γ;R),

where the intersection index itj of γ and R at γ(tj), is defined by

itj(γ;R) =

{
+1, if Im(e−iϕγ′(tj)) > 0,

−1, if Im(e−iϕγ′(tj)) < 0.
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Recall that eiϕ and γ′(tj) form a right-handed basis if Im(e−iϕγ′(tj)) > 0, and a
left-handed basis if the imaginary part is negative.

−2 pre-images

f ◦ γ

τ

η1

η2
R

n(f ◦ γ; η2) = n(f ◦ γ; η1)− 1

+2 pre-images

f ◦ γ

τ

η1

η2
R

n(f ◦ γ; η2) = n(f ◦ γ; η1) + 1

Figure 3. Intersection index and caustics in the η-plane.

Let η1, η2 be in two adjacent caustic tiles separated by a single caustic arc. We
call two sets adjacent, if they share a common boundary arc. Consider the ray R
from η1 to ∞ through η2, and let it intersect the caustic between η1 and η2 at a fold
point (f ◦γ)(t0). Although the caustics are only piecewise smooth, we can smooth the
finitely many (see Lemma 2.1) cusps as in [16, p. 16] to obtain a smooth curve with
same winding numbers about η1 and η2. Then n(f ◦γ; η1) = n(f ◦γ; η2)+ it0(f ◦γ;R)
by Proposition 3.8, and equivalently

n(f ◦ γ; η2)− n(f ◦ γ; η1) = −it0(f ◦ γ;R),

where the intersection index is +1 if η2−η1 and τ(t0) form a right-handed basis, and
−1 if the two vectors form a left-handed basis; see Figure 3.

Caustic tiles have three different shapes. We call a caustic tile B deltoid-like
(respectively cardioid-like), if for every point z0 ∈ ∂B, for which the tangent to the
caustics exists and is non-zero, there exists an open disk D centered at z0 such that
the intersection of D and the tangent line to ∂B at z0 is contained in B (respectively
contained in C \B). We call a caustic tile mixed, if it is neither deltoid nor cardioid-
like. In Figure 4 (middle right), the tiles with the number 6 are deltoid-like, the
tile with the number 2 is cardioid-like, and the tile with the number 4 is a mixed
caustic tile. Entering a deltoid-like tile gives two additional pre-images, entering a
cardioid-like tile gives two fewer pre-images, for a mixed tile both occur according to
the shape of the “crossed” caustic arc; see Figure 3 and Example 3.10.

Example 3.9. Consider the non-degenerate rational harmonic mapping

f(z) = z −
(

z2

z3 − 0.63

)
.

Figure 4 (top) shows the critical set and the caustics of f . We have P (f) = 4, since
f has four simple poles (∞ with index −1, the others with index 1); see Proposi-
tion 2.10. Thus, for η in the outer region, i.e., with n(f ◦ γj; η) = 0 for j = 1, 2, we
have Nη(f) = 4 + 2 · 0 = 4. For η = 0, we have n(f ◦ γ1; 0) = 1 and n(f ◦ γ2; 0) = 2,
so that f has N0(f) = 4 + 2 · 3 = 10 zeros.

Certain rational harmonic mappings are studied in gravitational lensing in astro-
physics; see e.g. [18, 25]. Also transcendental functions such as f(z) = z − k/ sin(z)
appear in this context [6].
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Figure 4. Critical curves (left) and caustics (right) of the functions in Examples 3.9 (top), 3.10
(middle), and 3.11 (bottom). The +/− signs indicate the regions where f is sense-preserving/sense-
reversing. The numbers indicate the number of pre-images of an η in the respective caustic tile.
The dotted line in the bottom right plot marks a zoom-in.
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Example 3.10. Figure 4 (middle) shows the critical curves and caustics of the
non-degenerate harmonic mapping

f(z) = z2 +
1

z
+

1

z + 1
+ 2 log|z|.

We have P (f) = 4 from the simple poles at 0 and −1 with index +1 and the double
pole at ∞ with index −2; see Proposition 2.10. Consequently, any η in the outer
region (i.e., with n(f ◦ γ; η) = 0) has 4 pre-images. Note the effect of deltoid-like,
cardioid-like and mixed caustic tiles described above: the tiles where η has 6 pre-
images are deltoid-like, the tile where η has 2 pre-images is cardioid-like, and the
outer tile is mixed.

Example 3.11. The non-degenerate harmonic polynomial

f(z) = p(z) + q(z) = zn + (z − 1)n + izn − i(z − 1)n, n ≥ 1,

has the maximum number of n2 zeros [38, p. 2080]. Its critical set consists of n − 1
circles, intersecting in 0 and 1, and can be parametrized as discussed in Section 3.1.
Figure 4 (bottom) shows the critical set and caustics for n = 3.

4. Location of pre-images near the critical set

In Section 3, we omitted the case when η is on a caustic. Here, we study the
local effect when η “crosses” a caustic, i.e., when the number of pre-images changes.
Since this is a local effect, the harmonic mappings are neither required to be globally
defined nor to be non-degenerate.

Non-singular pre-images persist under a small change of η, which is an immediate
consequence of the inverse function theorem.

Proposition 4.1. Let f be a harmonic mapping defined in the open set Ω ⊆ C
and let f be non-singular at z0 ∈ Ω. Then there exist open neighborhoods U ⊆ Ω \C
of z0 and V of f(z0) such that each η ∈ V has exactly one pre-image under f in U .

Lyzzaik [27] investigated the local behavior of light harmonic mappings, defined
on an open and simply connected subset ofC. His analysis relies upon the local trans-
formation of f near a critical point z0 ∈ C into standard mappings h2◦f ◦h−11 (z) = zn

or h2◦f◦h−11 (z) = zn, where h1 and h2 are sense-preserving homeomorphisms; see [27,
Sect. 3] for details. If such a standard mapping exists we write fz0 ∼ zn and fz0 ∼ zn

respectively. One of Lyzzaik’s results is the following: Let f(z0) be a fold and U be a
neighborhood of z0. Then there exists a partition U1, U2 of U \ C with fz0 ∼ z in U1

and fz0 ∼ z in U2. Similarly, if f(z0) is a cusp and h′(z0) 6= 0, we have fz0 ∼ z3

in U1, fz0 ∼ z in U2 or fz0 ∼ z in U1, fz0 ∼ z3 in U2; see [27, Thm. 5.1]. This allows
to determine the valence

V (f ;U) = sup
η∈C

Nη(f ;U) = sup
η∈C
|{z ∈ U : f(z) = η}|

of f in U . In particular we have

(4.1) V (f ;Dε(z0)) =

{
2, if f(z0) is a fold,
3, if f(z0) is a cusp with h′(z0) 6= 0,

for sufficiently small ε > 0; see [27, Thm 5.1]. However, the above transformations
are not immediately available for practical computations in general.

We complement Lyzzaik’s work by investigating which values near a fold η =
f(z0) have actually 2, 1 or no pre-images under f in Dε(z0), and by approximately
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locating the pre-images for certain η. For this we use convergence results on the
harmonic Newton iteration

(4.2) zk+1 = zk −
h′(zk)f(zk)− g′(zk)f(zk)

Jf (zk)
, k ≥ 0,

from [33]. If the sequence (4.2) converges and all iterates zk are in D ⊆ C, then there
exists a zero of f in D. The proof of the next theorem relies on this strategy.

Theorem 4.2. Let f be a light harmonic mapping and z0 ∈ C \M, such that
η = f(z0) is a fold. Moreover, let

f(z) =
∞∑
k=0

ak(z − z0)k +
∞∑
k=0

bk(z − z0)k and c = −
(
a2b1
a1

+
b2a1

b1

)
.

Then, for each sufficiently small ε > 0, there exists a δ > 0, such that for all 0 < t < δ
we have:

(1) η + tc has exactly two pre-images under f in Dε(z0),
(2) η has exactly one pre-image under f in Dε(z0),
(3) η − tc has no pre-image under f in Dε(z0).

In case (1), each disk {z ∈ C : |z−z±| ≤ const·t}, where z± = z0±i
√
t b1/a1, contains

one of the two pre-images, and f is sense-preserving at one and sense-reversing at
the other.

Proof. Since z0 ∈ C and f(z0) is a fold, we have h′(z0) 6= 0, and hence |g′(z0)| =
|h′(z0)| 6= 0. Then there exists θ ∈ [0, π[ with b1 = a1e

i2θ, and

c = −a1eiθ
(
a2
a1
eiθ +

b2
b1
eiθ
)

is non-zero by Lemma 2.4.
(1) We apply the harmonic Newton iteration (4.2) to the shifted function fη+tc =

f − (η + tc) with initial points z±. By [33, Lem. 5.1, Thm. 5.2] and their proofs, the
respective sequences of iterates remain in D±, and converge to two distinct zeros of
fη+tc for all sufficiently small t > 0. Thus, η + tc has exactly two pre-images under
f in Dε(z0), using (4.1).

(2) Since f is light and f(z0) = η, there exists ε > 0 such that z0 is the only
pre-image of η in Dε(z0).

(3) We show first that the “direction” c is not tangential to the caustic, and hence
that η + tc and η − tc are not in the same caustic tile. Since η = f(z0) is a fold, we
have with z0 = γ(t0) and the tangent τ from Lemma 2.1

τ(t0)c = −ψ(t0)e
it0/2a1e

iθ

(
a2
a1
eiθ +

b2
b1
eiθ
)

= ∓ψ(t0)|a1|
(
a2
a1
eiθ +

b2
b1
eiθ
)
,

since eit0/2eiθa1 = ±|a1|; see the proof of Lemma 2.4. Since ψ is real, and non-zero at
a fold, we have Im(τ(t0)c) 6= 0 by Lemma 2.4. Hence, for a sufficiently small t > 0,
the points η+ tc and η− tc are on different sides of the caustic f ◦γ, where γ denotes
the critical curve through z0. Thus, there are either 2+2 = 4 or 2−2 = 0 pre-images
of η−tc under f in Dε(z0); see Theorem 3.4 if f is non-degenerate, and [28, Thm. 6.7]
for light harmonic mappings. Since V (f ;Dε(z0)) = 2 by (4.1), only the latter case is
possible.
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Moreover, the two pre-images of η + tc in (1) lie on different sides of the corre-
sponding critical arc, and hence f is sense-preserving at one pre-image and sense-
reversing at the other; see Theorem 3.3 and Remark 3.5 if f is non-degenerate, and
again [28, Thm. 6.7] for light harmonic mappings. �

z-plane

γ
z1

z2

η-plane

f ◦ γ

η

γ

z1

z1

z3

z2 f ◦ γ

η

Figure 5. Behavior at a fold (top) and cusp (bottom); cf. [21, Figs. 4, 7].

Figure 5 (top) illustrates the effect in Theorem 4.2. The points z1, z2 are the
pre-images of η + tc under f , i.e., the limits of the harmonic Newton iteration for
f − (η + tc) with initial points z±.

Remark 4.3. (1) From the proof of Lemma 2.4 we have Im(τ(t0)c) > 0, i.e., τ(t0)
and c form a right-handed (R-)basis. Combining Theorem 4.2 with Proposition 4.1
allows to replace c by any direction d with Im(τ(t0)d) > 0 without changing the
number of pre-images in Dε(z0). More generally, if η̃ is in the same caustic tile as
η+tc (the tile containing the tangent) and close enough to η, then η̃ has 2 pre-images
under f in Dε(z0), and similarly in the other cases.

(2) For a fold η with several pre-images in C, the effect of Theorem 4.2 happens
at all points in f−1({η}) ∩ C simultaneously; see Example 4.4.

(3) Theorem 4.2 only covers pre-images in Dε(z0). All other non-singular pre-
images of η under f persist by Proposition 4.1, when going from η to η± tc, provided
that t > 0 is sufficiently small.

When η is a cusp as in (4.1), we have a similar result, which is also based on the
harmonic Newton iteration; see [33, Thm. 5.2, 2.]. For η̃ close enough to η on one
side of the caustic, there are 3 pre-images by [27, Thm 5.1], and on the other side
there is only 1 pre-image by Proposition 4.1 and Theorem 4.2; see Figure 5 (bottom).

The next example illustrates the local behavior near critical points corresponding
to a fold, a cusp, and a double fold, and near a point inM.

Example 4.4. We consider the harmonic mapping f(z) = 1
3
z3 + 1

2
z2, which is

similar to the one in [28, Ex. 5.17]. Since Jf (z) = |z|2 − |z|4, we have C = ∂D ∪ {0}
andM = {0}. The caustics of f are shown in Figure 6, together with certain points
η1, . . . , η6. While “moving” η from η1 = −0.4 to η6 = 0.9 we reach a double fold,
a point in f(M), a fold and a cusp. The respective pre-images of ηj under f are
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shown in Figure 7, and have been computed with the harmonic Newton method [33].
The background is colored according to the phase fηj/|fηj | of the shifted function
fηj = f − ηj; see [37] for an extensive discussion of phase plots. The Poincaré
index of f at z0 corresponds to the color change on a small circle around z0 in the
positive direction. In particular, we have ind(fηj ; z0) = +1 for zeros z0 in C \D, and
ind(fηj ; z0) = −1 for zeros z0 in D \ {0}; see also Proposition 2.7. A feature is the
zero 0 ∈ M of f , for which ind(f ; 0) = −2 by (2.13). This reflects the fact that two
pre-images where f is sense-reversing merge together at 0; see Remark 2.8.

Figure 6. Caustics of f(z) = 1
3z

3 + 1
2z

2; see Example 4.4.

Figure 7. Phase plots of fηj (z) =
1
3z

3 + 1
2z

2 − ηj (see Figure 6). Black dots indicate zeros of
fηj . The critical set C = ∂D ∪ {0} is displayed in black.
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5. On the number of zeros of harmonic polynomials

We consider harmonic polynomials

(5.1) f(z) = p(z) + q(z) =
n∑
k=0

akz
k +

m∑
k=0

bkzk, n ≥ m,

with an 6= 0 6= bm. These are non-degenerate if and only if |an| 6= |bn|, where we
define bn = 0 for n > m. Such functions have at most n2 zeros and this bound is
sharp [38]. By the argument principle, f has at least n zeros, if none of them is
singular. If f has fewer than n zeros, at least one has to be inM. However, counting
the zeros with their Poincaré indices as multiplicities gives again at least n zeros in
total.

For n > m ≥ 1, we study the maximum valence of harmonic polynomials

Vn,m = max{N(p(z) + q(z)) : deg(p) = n, deg(q) = m},

where N(f) denotes the number of zeros of f . We have Vn,m ≤ n2 from [38], but
the quantity Vn,m is only known in special cases, namely Vn,1 = 3n− 2 from [19, 13]
and Vn,n−1 = n2 from [38]. We show in this section, that for given n > m ≥ 1
and every k ∈ {n, n + 1, . . . , Vn,m}, there exists a harmonic polynomial (5.1) with k
zeros, i.e., every number of zeros between the lower and upper bound occurs. This
generalizes [7, Thm. 1.1]. More precisely, we can achieve all these numbers by just
changing a0, which is equivalent to considering the pre-images of a certain η instead
of the zeros.

If η crosses a single caustic arc at a fold, the number of pre-images changes by
±1 (η on the caustic) and ±2 (η on the “other side” of the caustic) by Theorems 3.7
and 4.2. The key difficulty now is to handle multiple caustic arcs, i.e., caustic arcs
which are the image of several different critical arcs.

Example 5.1. Consider f(z) = 1
2
p(z)2 + p(z) with p(z) = z2− 1. Then Jf (z) =

|p′(z)|2(|p(z)|2 − 1), and C = {z ∈ C : |p(z)| = 1} consists of the two curves γ±(t) =
±
√

1 + e−it, −π ≤ t ≤ π. Since p(γ+(t)) = p(γ−(t)), the harmonic mapping f maps
γ± onto the same caustic.

More generally, let γ be a closed curve with |g′(w)/h′(w)| = 1 on trace(γ), and
let w = p(z) such that trace(γ) has k ≥ 2 disjoint pre-images under p. Then these
pre-images are in the critical set of f(z) = h(p(z)) + g(p(z)) and are mapped to the
same caustic. In particular, h(z) = 1

n
zn, g(z) = 1

m
zm with n > m ≥ 1 provides

an example of a non-degenerate harmonic polynomial with k critical curves that are
mapped onto the same caustic.

Multiple caustic arcs can be eliminated by a polynomial perturbation of f . We
write Cf and CF for the critical sets of f and F , respectively.

Lemma 5.2. Let f be a harmonic mapping, and z1, z2 ∈ Cf , z1 6= z2, with
f(z1) = f(z2). Then there exists a polynomial p with deg(p) = 3, such that z1, z2 ∈
CF for F = f + p, but F (z1) 6= F (z2).

Proof. Let ε > 0, and let p be the (unique) Hermite interpolation polynomial
of degree 3 with p(z1) = ε, p(z2) = −ε, and p′(z1) = 0 = p′(z2). We then have
JF (z1) = 0 = Jf (z1), and the same for z2, but F (z1) 6= F (z2). �

Next, we show that sufficiently small perturbations do not decrease the number
of non-singular zeros.
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Lemma 5.3. Let f and g be harmonic mappings, such that f has only finitely
many zeros, which are all non-singular, and such that g has no singularities at the
zeros of f . Then N(f) ≤ N(f + εg) for all sufficiently small ε > 0.

Proof. Let z1, . . . , zn be the zeros of f . Since non-singular zeros are isolated [12,
p. 413], there exists δ > 0, such thatDδ(zj)∩C = ∅, f and g have no other exceptional
points than zj in Dδ(zj) for j = 1, . . . , n, and Dδ(zj) ∩Dδ(zk) = ∅ for j 6= k.

Define Γ = ∪nk=1∂Dδ(zk) and let ε > 0 such that

ε ·max{|g(z)| : z ∈ Γ} < min{|f(z)| : z ∈ Γ}.

Then we have for z ∈ Γ

|f(z)− (f(z) + εg(z))| = ε|g(z)| < |f(z)|.

By Rouché’s theorem (e.g. [32, Thm. 2.3]) and the argument principle applied on
each ∂Dδ(zk), we get

N(f) =
n∑
k=1

N(f ;Dδ(zk)) ≤
n∑
k=1

N(f + εg;Dδ(zk)) ≤ N(f + εg),

which settles the proof. �

With the Lemmas 5.2 and 5.3 we get the following result on the possible number
of zeros of harmonic polynomials.

Theorem 5.4. Let n > m ≥ 1 and k ∈ {n, n+ 1, . . . , Vn,m}. Then there exists a
harmonic polynomial f(z) = p(z) + q(z) with deg(p) = n and deg(q) = m, and with
k zeros. Moreover, if k and n have different parity (n− k is odd), then f is singular,
i.e., 0 is a caustic point of f . If k and n have the same parity, then there exists a
non-singular f as above.

Proof. Let f(z) = p(z) + q(z) be a harmonic polynomial with deg(p) = n,
deg(q) = m, and with Vn,m zeros, which exists by the definition of Vn,m. Without
loss of generality, we can assume that f has no multiple caustic arcs. Indeed, when
n = 2 the only critical curve of f is the image of the unit circle under a Möbius
transformation, and hence there are no multiple caustic arcs. If n ≥ 3 and if f has
multiple caustic arcs we resolve them by Lemma 5.2 with a polynomial perturbation
of degree 3, such that no other multiple caustic arcs occur. For sufficiently small
ε > 0, the resulting harmonic polynomial has at most Vn,m zeros, and at least Vn,m
zeros by Lemma 5.3. This gives a harmonic polynomial with Vn,m zeros and without
multiple caustic arcs.

By Theorem 3.6, there exists an ηn ∈ C with Nηn(f) = n. Let φ be a curve from
ηn to 0, which intersects the caustics only in folds corresponding to a single caustic
arc. Such a curve exists since (possible) multiple caustic arcs are already resolved,
and since the zeros of ψ are isolated by Lemma 2.1. Note that f is light since any f−η
has at most n2 zeros. Then by Theorems 3.7 and 4.2, all k = n, n+1, . . . , Vn,m appear
as number of pre-images under f for an appropriate ηk ∈ trace(φ), i.e., Nηk(f) = k,
and hence f − ηk is a harmonic polynomial with k zeros.

The second part follows from Theorem 3.7 and the fact that ηn can be chosen in
C \ f(C); see Theorem 3.6. �

Remark 5.5. Let n > m ≥ 1. By the proof of Theorem 5.4, there exists a
harmonic polynomial f(z) = p(z) + q(z) with deg(p) = n, deg(q) = m, and ηn, . . .,
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ηVn,m ∈ C, such that f − ηk has k zeros. Moreover, ηn+1, ηn+3, . . . are on the caustics
of f , and ηn, ηn+2, . . . can be chosen in caustic tiles.

Since Vn,n−1 = n2, we have the following corollary.

Corollary 5.6. Let n ≥ 2. For each k ∈ {n, n + 1, . . . , n2}, there exists a
harmonic polynomial as in (5.1) with k zeros.

6. Outlook

A further study of the geometry of the caustics should be of interest, e.g., the
number of cusps. This is an important open problem posed by Petters [29, p. 1399]
for certain harmonic mappings from gravitational lensing.

While we considered harmonic mappings on the Riemann sphere (minus possible
poles) in this work, also harmonic mappings in bounded domains (similar to [28]) and
on more general Riemann surfaces might be of interest. We expect similar results for
these domains of definition.

The results in Section 5 could probably be generalized to a broader class of
harmonic mappings, e.g., non-degenerate rational harmonic mappings f(z) = r(z) +

s(z), using the same approach as above. However, one would have to handle multiple
caustic arcs in a different way.
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