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Abstract. The connections between quasi-Assouad dimension and tangents are studied. We

apply these results to the calculation of the quasi-Assouad dimension for a class of planar self-

affine sets. We also show that sets with decreasing gaps have quasi-Assouad dimension 0 or 1 and

exhibit an example of a set in the plane whose quasi-Assouad dimension is smaller than that of

its projection onto the x-axis, showing that quasi-Assouad dimension may increase under Lipschitz

mappings. Moreover, for closed sets, we show that the Hausdorff dimension is an upper bound for

the quasi-lower Assouad dimension.

1. Introduction

Recently, a number of authors have investigated the Assouad and lower-Assouad
dimensions of subsets of Rd; see [6] and the many papers referenced there. These
dimensions differ from the well-known Hausdorff and box dimensions as they provide
information about the extreme behaviour of the local geometry of the set. The quasi-
Assouad dimensions give less extreme, but still local, geometric information. As in
the case of Assouad dimensions, quasi-Assouad dimensions take into account relative
scales locally at any position in the set, but the difference is that the ‘minimal depth’
of the relative scales increases as the size of the considered neighborhood decreases,
and this has a moderating effect. These dimensions were introduced by Lü and Xi
in [21] and shown to be an invariant quantity under quasi-Lipschitz maps, unlike the
Assouad dimension. In this note, we develop further properties of the quasi-Assouad
dimensions.

To give their definitions we first introduce notation. For a subset A ⊆ Rd, let
Nr(A) be the least number of balls of radius r needed to cover A and let Nr,R(E) =

maxx∈E Nr(E∩B(x,R)). The upper and lower box dimensions, denoted dimBE and
dimBE respectively, are given by

dimBE = lim sup
r→0

logNr(E)

log r
, dimBE = lim inf

r→0

logNr(E)

log r

If the two values coincide, we refer to it as the box dimension, dimB E. Given
0 ≤ δ < 1, define

hE(δ)

= inf

{

α ≥ 0: ∃b, c > 0 such that ∀ 0 < r ≤ R1+δ ≤ R ≤ b, Nr,R(E) ≤ c

(

R

r

)α}

https://doi.org/10.5186/aasfm.2021.4618
2010 Mathematics Subject Classification: Primary 28A80, 28A78.
Key words: Assouad dimension, weak tangents, orthogonal projections.



280 Ignacio García and Kathryn Hare

and

hE(δ)

= sup

{

α ≥ 0: ∃b, c > 0 such that ∀ 0 < r ≤ R1+δ ≤ R ≤ b, Nr,R(E) ≥ c

(

R

r

)α}

.

These functions are monotone and by taking limits we obtain the quasi-Assouad
dimension of E, dimqA E, and the quasi-lower Assouad dimension of E, dimqLE:

dimqA E = lim
δ→0

hE(δ), dimqL E = lim
δ→0

hE(δ).

The Assouad and the lower-Assouad dimensions are given by

dimA E = hE(0), dimL E = hE(0).

For any bounded set E these dimensions are ordered in the following way:

(1) dimLE ≤ dimqLE ≤ dimBE ≤ dimBE ≤ dimqAE ≤ dimAE.

It is known that all these dimensions coincide for self-similar sets satisfying the open
set condition, but for more general sets, strict inequalities are possible throughout,
cf. [6, 21] and Example 11 in Section 3. Moreover, in that section we show that
inequality dimqL E ≤ dimH E holds for closed sets. This inequality is not true in
general, since dimH Q = 0 but dimqL Q = 1.

Generalizations of tangents of a set are a useful concept when considering the
Assouad dimension. These are essentially limits, in the Hausdorff metric, of sequences
of magnifications of local parts of the set. Tangents often have simpler structure
than the original set and their Assouad dimensions are always lower bounds for the
Assouad dimension of the original set [6, 22, 23]. In Section 2, we show that if the
convergence to the tangent is sufficiently fast, and the lower-Assouad and Assouad
dimensions of the tangent coincide, then this value is a lower (upper) bound for the
quasi-(lower) Assouad dimension of the original set. From this, we show that the
quasi-(lower) Assouad dimensions of a class of self-affine carpets are the same as
their Assouad dimensions.

In Section 3 we observe that if dimBE = 0, then the same is true for the quasi-
Assouad (but not necessarily, the Assouad) dimension of E and show that the quasi-
Assouad dimension of a sequence in R with decreasing gaps is either 0 or 1. This
same dichotomy was shown to hold for Assouad dimensions (although not necessarily
with the same value for the Assouad and quasi-Assaoud dimensions) in [17]. We also
give an example to illustrate that, like the Assouad dimension (but not the Hausdorff
or box dimensions), the quasi-Assouad dimension can rise when taking projections.

2. Quasi-Assouad dimension and tangent structure

In this section we find bounds on the quasi-Assouad dimension of a set by di-
mensions of its ‘tangents’. We begin by recalling some definitions and results. Given
X, Y ⊂ Rd compact subsets, their Hausdorff distance is

distH(X, Y ) = max{pH(X, Y ), pH(Y,X)},

where

pH(X, Y ) = sup
x∈X

inf
y∈Y

‖x− y‖.
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Definition 1. Let F and F̂ be compact subsets of Rd. We say that F̂ is a weak

tangent of F if there is a compact subset X ⊂ Rd, that contains both F and F̂ ,
and a sequence of bi-Lipschitz maps Tk : R

d → Rd, with Lipschitz constants ak, bk
satisfying

ak‖x− y‖ ≤ ‖Tk(x)− Tk(y)‖ ≤ bk‖x− y‖

and sup bk/ak < ∞, such that distH(Tk(F ) ∩X, F̂ ) → 0 as k → ∞. In the case that

the contraction ratios, bk, are unbounded we call F̂ a generalized tangent of F .

The usefulness of tangents is that they can be used to obtain lower bounds for
the Assouad dimension of the original set, namely

Theorem 1. If F̂ is a weak tangent of F, then

(2) dimA F̂ ≤ dimA F.

If, in addition, there is some θ > 0 such that for all r > 0 and x ∈ F̂ there is some

y ∈ F̂ such that B(y, rθ) ⊆ B(x, r) ∩X, then

(3) dimL F ≤ dimL F̂ .

The above result is due to Fraser [6, Prop. 7.7]. A version using similarities to
define tangents (the usual definition) was previously obtained by Mackay and Tyson,
see [22, Prop. 2.9] or [23, Prop. 6.1.5].

There is no loss of generality in assuming that X = [0, 1]d since the Assouad
dimension of any set can be characterized by its tangents in this sense. To be specific

(4) dimA F = max
{

dimH F̂ : F̂ is a generalized tangent of F with X = [0, 1]d
}

.

We refer the reader to [3], [15], [16] and [19], noting that the terminology there
is quite different: microsets and star dimension are used instead of tangents and
Assouad dimension. Moreover, for the lower-Assouad dimension, an analogous result
holds:

(5) dimL F = min{dimH E : E ∈ GF}

where the elements in GF are weak tangents intersecting (0, 1)d and obtained by
magnifications with homotheties; see [9].

We call the set F̂ a pseudo-tangent of F if there is a sequence of bi-Lipschitz maps
Tk, as above, with sup bk = ∞, such that we have the ‘one-sided’ pseudo-distance,
pH(F̂ , Tk(F )) → 0 as k → ∞. The convenience of this definition is that it does not
require the intersection with the set X or the two-sided comparison of distance, and
still the inequality dimA F̂ ≤ dimA F holds in this case; see [8], where the definition
and proof are made for similarities, but the same proof applies in the bi-Lipschitz
setting.

Returning to the quasi-Assouad dimension, we first give an example where (2)
fails when Assouad is replaced by quasi-Assouad dimension. The following result is
useful for this task; a more general version in Rd was obtained recently [14], but here
we include a different proof.

Proposition 2. A subset F ⊆ R has Assouad dimension 1 if and only if [0, 1]
is a generalized tangent of F .

Proof. By (2), the Assouad dimension of any tangent is a lower bound for the
Assouad dimension of the set. On the other hand, by [23, Thm. 5.1.8], the assumption
that dimA F = 1 is equivalent to the fact that F is not uniformly disconnected. Thus
for each k there are distinct points, zk0 , . . . , z

k
n ∈ F , such that |zi−zi+1| < |z0−zn|/k,
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where z0 < zi < zn and |z0 − zn| goes to 0. The last condition ensures that [0, 1] is a
generalized tangent (and not just a weak tangent).

Let Tk be the affine transformation that maps [z0, zn] to [0, 1]. For xi = Tk(zi)
we have

|xi − xi+1| =
|zki − zki+1|

|zkn − zk0 |
<

1

k

and hence for 0 ≤ j < k each interval
[

j/k, (j + 1)/k
)

contains at least one of the

xi’s. This shows the sets Tk({z
k
0 , . . . , z

k
n}) converge in the Hausdorff metric to [0, 1]

and therefore, distH(Tk(F ) ∩ [0, 1], [0, 1]) → 0 as k → ∞. �

Corollary 3. If F ⊆ R has dimqA F < 1 = dimA F, then F̂ = [0, 1] is a general-

ized tangent of F with

1 = dimH F̂ = dimqA F̂ > dimqA F.

More generally, from (2) and (4), any compact set F has a generalized tangent

F̂ for which dimH F̂ = dimA F̂ = dimA F . This shows that inequality (2) fails
when Assouad is replaced by quasi-Assouad dimension if we consider a set F with
dimqA F < dimA F . Also, for the lower-Assouad dimension case, by (5) there is a weak
tangent E of F such that dimL F = dimH E ≥ dimqL E, where the last inequality
holds by Proposition 10 in Section 3.2. So, if dimL F < dimqL F , then inequality
(3) may also fail when lower-Assouad is replaced by quasi-lower Assouad. Below,
in Theorem 6, we show that inequalities (2) and (3) hold for quasi and quasi-lower
Assouad dimensions provided we restrict the family of tangents; the analog of (3)
requires a similar hypothesis. However, in general it is not possible to characterize
the quasi or quasi-lower Assouad dimension of a set in terms of the (Hausdorff)
dimension of its tangents. The following example is useful to illustrate this fact.

Example 4. Fix 0 < α < 1 and for each k ≥ 1 put Dk = {(i1, . . . , ik) : 1 ≤ ij ≤
2j, 1 ≤ j ≤ k}. We construct the set inductively, beginning with Iφ = [0, 1] at step 0.
Having constructed the step k−1 Cantor intervals, Ii1...ik−1

, for (i1, . . . , ik−1) ∈ Dk−1,
to construct the Cantor intervals of step k we take the 2k closed subintervals, Ii1...ik−1l,

1 ≤ l ≤ 2k, uniformly distributed inside Ii1...ik−1
, with equal lengths 2−k/α|Ii1...ik−1

|.
The Cantor-like set Fα is given by

Fα =
⋂

k≥1

⋃

i∈Dk

Ii.

Example 1.17 from [21] is a special case and it follows from the arguments given
there that dimqA Fα = dimqL Fα = α, while dimA Fα = 1. Moreover, since the ratio
between the lengths of a complementary open interval from step k and a closed
interval from the same step goes to infinity, it follows that dimL Fα = 0.

Moreover, this example turns out to be quite pathological with respect to tan-
gents.

Proposition 5. Any generalized tangent of the set Fα of the example above is

either a finite set or an interval.

Proof. For notational ease, we will omit the subscript α. Let F̂ be a generalized
tangent of F and denote by Tk the associated bi-Lipschitz maps. By a gap of F̂ we
mean a bounded complementary (maximal) open interval of the complement of F̂ .

If F̂ has no gaps, then it is an interval (which may be a singleton). So, assume that
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F̂ contains at least one gap. Choose one of maximal length, say J = (a, b), where

a, b ∈ F̂ . Below we show that i) if x ∈ F̂ and x < a, then a− x ≥ |J |, or ii) if x ∈ F̂

and x > b, then x− b ≥ |J |. This statements imply, by the maximality of J , that F̂
is a finite equidistributed set in some subinterval of [0, 1].

We show only i) since ii) follows by a symmetric argument. So assume that x < a

with x ∈ F̂ . One consequence of the Hausdorff convergence is that for each sufficiently
small ǫ > 0 (much smaller than |J | and a − x), and all sufficiently large k, the sets
(a− ǫ, a+ ǫ) and (b− ǫ, b+ ǫ) contain points of Tk(F ), while (a+ ǫ, b− ǫ)∩Tk(F ) = ∅.
Hence there is a gap Gk of F from some step k in the construction of F such that

(a + ǫ, b− ǫ) ⊆ Tk(Gk) ⊆ (a− ǫ, b+ ǫ).

Suppose ILk is the closed interval from step k in the construction of F that shares
an endpoint with Gk and is placed on its left. The set F has the property that
|ILk |/|Gk| → 0 and as the maps Tk are bi-Lipschitz with constants satisfying sup bk/ak
< ∞, this ensures that Tk(I

L
k ) ⊆ (a − 2ǫ, a + 2ǫ) for large enough k. Note that the

gap GL
k , adjacent to ILk but on its left, and whose existence is guaranteed because of

the existence of x and the choice of ǫ, is a gap from some step k̃ < k. Note also that
the lengths gk−1 and gk of any gaps from steps k − 1 and k verify gk/gk−1 → 0 as
k → ∞. In particular, for every k sufficiently large we get bk|Gk| ≤ ak|G

L
k |.

Thus

|J | − 2ǫ ≤ |Tk(Gk)| ≤ |Tk(G
L
k )|,

so any point in F̂ to the left of a, and not contained in (a−2ǫ, a+2ǫ), must be at least
distance |J |−2ǫ from a for some constant c > 0. But since ǫ can be made arbitrarily

small, an easy argument shows that F̂ ∩ (a − 2ǫ, a + 2ǫ) = {a}, and therefore we
conclude that i) holds by letting ǫ → 0. �

Note that the above example also illustrates that there is no way to select a
subfamily from the tangents to F so that the identity (4) remains valid for the quasi-
Assouad dimension. However, we can extend Theorem 1 above to the quasi-Assouad
dimensions if we restrict to tangents for which the convergence is sufficiently quick.

Definition 2. We say that the generalized tangent F̂ to the set F is a generalized

fast tangent if the following decay condition is satisfied: there are constants C, ǫ > 0
such that

distH(Tk(F ) ∩ [0, 1]d, F̂ ) ≤ Cb−ǫ
k ,

where Tk and bk are as in the definition of a generalized tangent. In this case we
say that F̂ is a generalized fast tangent of order ǫ. We similarly define fast pseudo-

tangents by the requirement that the pseudo-tangent F̂ verifies pH(F̂ , Tk(F )) ≤ Cb−ǫ
k .

The relation between tangents and quasi-Assouad dimensions is given in the next
result, where we have chosen to weaken some hypotheses for clarity of the exposition;
see Remark 2 for more general statements.

Theorem 6. Suppose F̂ ⊂ Rd is a non-empty, generalized fast tangent of F ⊂
Rd given by bi-Lipschitz maps Tk with Lipschitz constants ak, bk satisfying sup bk =
∞ and sup bk/ak < ∞.

(i) For the quasi-Assouad dimension of F we have the lower bound

dimBF̂ ≤ dimqA F.
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If, in addition, there is some C ′ such that bk+1 ≤ C ′bk, then

dimqA F̂ ≤ dimqA F.

(ii) Assume that F̂ contains an interior point of [0, 1]d. Then, for the quasi-lower

Assouad dimension we have the upper bound

dimqL F ≤ dimB F̂ .

If, in addition, there is some C ′ such that bk+1 ≤ C ′bk and furthermore, there

is θ > 0 such that for any r ∈ (0, 1] and x ∈ F̂ there is y ∈ F̂ such that

B(y, rθ) ⊂ B(x, r) ∩ [0, 1]d, then

dimqL F ≤ dimqL F̂ .

Remark 1. In order to better understand how the inhomogeneity of a set de-
pends on the scale, Fraser and Yu [12] considered the refined parametric variants
of the quasi-Assouad and quasi-lower Assouad dimensions, dimθ

A F and dimθ
L F , for

θ ∈ (0, 1), known as the Assouad spectrum and lower spectrum of E respectively; see
[12] for the precise definitions. Similar statements as in Theorem 6 can be made for
dimθ

A F and dimθ
L F , where the allowable θ depend on the choice of ε. For example,

if F̂ is a generalized fast tangent of order ǫ such that dimB F̂ = s, then dimθ
A F ≥ s

for any 1/(1 + ǫ) ≤ θ < 1. We leave the technical details for the reader.

Notation: When we write xk ≈ Xk we mean there are positive constants a, b such
that aXk ≤ xk ≤ bXk for all k.

Proof. (i) Let dimBF̂ = s. We may assume s > 0, else the result is trivial.
Temporarily fix η > 0. Then

Nr(F̂ ) ≥ r−(s−η)

for all sufficiently small r.
Since F̂ is a generalized fast tangent, there are constants C, ǫ > 0 such that

distH(Tk(F ) ∩ [0, 1]d, F̂ ) ≤ Cb−ǫ
k . Put rk = Cb−ε

k , let R = diam F̂ and pick any

y0 ∈ F̂ . Then, for each k we can find m = mk

(

≈ r
−(s−η)
k

)

points, y1, . . . , ym ∈

F̂ ∩ B(y0, R) that are 3rk-separated. The assumption on F̂ implies, in particular,

that pH(F̂ , Tk(F )) ≤ rk, and this ensures that we can choose x0, x1, . . . , xm ∈ Tk(F )
such that ‖xi − yi‖ ≤ rk for each i = 0, . . . , m. We have xi ∈ B(x0, R + 2rk) and
‖xi − xj‖ ≥ rk for all 1 ≤ i 6= j ≤ m.

For 0 ≤ i ≤ m, we consider the preimages zi = T−1
k (xi) ∈ F , which satisfy

zi ∈ B
(

z0,
1

ak
(R + 2rk)

)

and ‖zi − zj‖ ≥
rk
bk

.

This shows that

N rk
bk

(

F ∩B(z0,
1

ak
(R + 2rk))

)

≥ m.

Note that m ≈
(

(R+2rk)/ak
rk/bk

)s−η

(and hence dimA F ≥ s). An easy calculation shows

rk
bk

≤

(

1

ak
(R + 2rk)

)1+ε/2

for large k, and, of course, (R + 2rk)/ak → 0, consequently dimqA F ≥ s − η. As η
> 0 is arbitrary, dimqA F ≥ s.

Now suppose that dimqA F̂ = t and there is some C ′ such that bk+1 ≤ C ′bk for all
k. Again, temporarily fix η > 0. Then there is some 0 < δ < 1 and arbitrarily small
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r, R with r ≤ R1+δ and y0 ∈ F̂ such that Nr(B(y0, R) ∩ F̂ ) ≥ (R/r)t−η. Choose k
such that b−ε

k+1 ≤ R ≤ b−ε
k . As above, we deduce that for suitable z0 ∈ F we have

(6) N r
bk

(

F ∩ B(z0,
1

ak
(R + 2r))

)

≥

(

R

r

)t−η

.

Since R ≈ b−ε
k and r ≤ R1+δ, one can easily verify that r/bk ≥ ((R + 2r)/ak)

1+σ for
a choice of σ > 0 (depending on δ and ε). It follows that dimqA F ≥ t.

(ii) Let dimB F̂ = s. Given any η > 0 we have Nrk(F̂ ) ≤ r
−(s+η)
k if k is sufficiently

large, where as before rk = Cb−ǫ
k with C and ǫ given by the definition of the gen-

eralized fast tangent. The generalized fast tangent hypothesis implies that for each
x ∈ Tk(F ) ∩ [0, 1] there is some x̂ ∈ F̂ such that ‖x− x̂‖ ≤ rk and this ensures that

N3rk(Tk(F ) ∩ [0, 1]d) ≤ r
−(s+η)
k .

Also, by hypothesis, there are ŷ ∈ F̂ and θ > 0 such that B(ŷ, 2θ) ⊂ [0, 1]d and
thus, for k sufficiently large there is a point yk ∈ Tk(F ) so that B(yk, θ) ⊂ [0, 1]d. It
follows that

N3rk(Tk(F ) ∩B(yk, θ)) ≤ r
−(s+η)
k .

Defining r = 3rka
−1
k , R = θb−1

k and zk = T−1
k (yk) ∈ F , we get

Nr(F ∩B(zk, R)) ≤

(

R

r

)s+η

(and hence dimL F ≤ s). It is easily seen that r ≤ R1+ǫ/2, therefore, dimqL F ≤ s.

Finally, suppose that dimqL F̂ = t, so given η > 0 there is some 0 < δ < 1 and

arbitrarily small r, R with r ≤ R1+δ and ŷ ∈ F̂ such that

Nr(B(ŷ, R) ∩ F̂ ) ≤ (R/r)t+η.

The geometric condition involving θ allows us to assume that B(ŷ, R) ⊂ [0, 1]d. Now
choose k such that Cb−ǫ

k+1 ≤ r ≤ Cb−ǫ
k , where C, ǫ are as before. Then, there is

y ∈ Tk(F ) ∩ [0, 1]d such that ‖y − ŷ‖ ≤ Cb−ǫ
k and moreover, B(y, 1

2
R) ⊂ [0, 1]d

(for k sufficiently large). Defining rk = 3Cb−ǫ
k and Rk = R/2, it follows that for k

sufficiently large,

Nrk

(

Tk(F ) ∩B(y, Rk)
)

≤ Nr(F̂ ∩ B(ŷ, R)) ≤ (R/r)t+η ≈

(

Rk

rk

)t+η

,

where in the last equivalence we used the fact that bk+1 ≤ C ′bk for some constant
C ′. For an appropriate zk ∈ F and a constant C ′′, we get

N rk
ak

(

F ∩B
(

z,
Rk

bk

)

)

≤ C ′′
(

Rk/bk
rk/ak

)t+η

.

It is easily seen that rk/ak ≤ (Rk/bk)
1+δ/2 for k sufficiently large, and therefore

dimqL F ≤ dimqL F̂ . �

Corollary 7. Suppose that F̂ ⊂ Rd is a generalized fast tangent of F such that

dimB F̂ = s. Then dimqL F ≤ s ≤ dimqA F whenever F̂ contains an interior point of

[0, 1]d.

Remark 2. The statements from Theorem 6 can be improved.

a) Part (i) only needs the one-sided hypothesis, pH(F̂ , Tk(F )) ≤ Cb−ǫ
k → 0, i.e.,

F̂ is a fast pseudo-tangent of F . This is immediate from the proof.
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b) A quick inspection of the proof of (ii) shows that we have dimL F ≤ dimB F̂
even if the convergence to the generalized tangent is not fast. Obviously by
(5), this bound can be improved by replacing the upper box dimension by the
Hausdorff dimension.

Remark 3. Consider the following simple example. Suppose that F ⊂ [0, 1] and
that (a, b) ⊂ [0, 1] with a, b ∈ F , but (a, b)∩ F = ∅. By considering Tkx = 2k(x− a),

it is easily seen that F̂ = {0} is a fast tangent of F , so, unless dimqL F = 0, the
conclusion in (ii) is false in this case. This example illustrates that for the quasi-
lower Assouad dimension, an additional hypothesis that ensures the tangent ‘carries’
information about the interior of F is necessary. In the statement of (ii), we have

chosen to put this hypothesis directly on F̂ . Alternatively, we could have put an
additional hypothesis on the approximations of the tangent, for example requiring
that pH(F∩B(zk, Ca−1

k ), F̂ ) ≤ Cb−ǫ
k , where zk ∈ F . The proof is a slight modification

of the one given here.

As an application of our results, we calculate the quasi-Assouad dimensions of
a class of planar self-affine sets. Recall that an iterated function system (IFS) is a
family {f1, . . . , fm} of contractions fi : R

d → Rd, and that the attractor of the IFS
is the unique non-empty compact set E that satisfies the identity

E =
m
⋃

i=1

fi(E).

If the maps of the IFS are contracting similarities (affine maps), the attractor is
called a self-similar set (self-affine set, respectively).

In [6, Sec. 2.3], Fraser determines the (lower) Assouad dimensions of self-affine
carpets that are the attractor of an IFS in the extended Lalley-Gatzouras and
Barański classes. These families, denoted E, contain the Bedford-McMullen class
and are generated by an IFS with maps of the form Si(x, y) = (cix, diy) + (ai, bi),
for some ci, di ∈ (0, 1), 1 ≤ i ≤ m, where ci 6= di for at least one i. (See [6] for their
complete definitions.) Let π1 denote the projection onto the x-axis and π2 the pro-
jection onto the y-axis. Let Slice1,i(E) (resp., Slice2,i(E)) be the vertical (horizontal)
slice of E through the fixed point of Si. Fraser proves that if the self-affine carpet E
is of mixed type, i.e., there are i 6= i′ such that ci > di and ci′ < di′, then

dimAE = max
i

max
k=1,2

(

dimB πk(E) + dimB Slicek,i(E)
)

,

dimLE = min
i

min
k=1,2

(

dimB πk(E) + dimB Slicek,i(E)
)

.

Applying Corollary 7 we obtain the following result. We observe that the quasi-
Assouad dimension of the Bedford-McMullen carpets was obtained in [21].

Proposition 8. For the above carpets we have dimqA E = dimAE, and similarly

for the quasi-lower Assouad dimension.

Proof. To see this, we give the following sketch of the proof (see [6, Sec 7.2] for
more details on the definitions). We assume

max
i

max
k=1,2

(

dimB πk(E) + dimB Slicek,i(E)
)

= dimB π1(E) + dimB Slice1,i(E)

for some 1 ≤ i ≤ m, that now we fix. Consider the approximate square Qk(i, j),

centred at the point
⋂

l≥1 S
k
j ◦S

l
i([0, 1]

2), with height dkj and width ckj c
l(k)
i , where l(k)



Properties of quasi-Assouad dimension 287

is an integer chosen so that

ckj c
l(k)+1
i ≤ dkj ≤ ckj c

l(k)
i .

Take the maps Tk that stretch by d−k
j in height and by

(

ckj c
l(k)
i

)−1
in width, and map

the corner of Qk to the origin. One can check these maps satisfy the required Lipschitz

properties with bk = d−k
j and ak =

(

ckj c
l(k)
i

)−1
. Take Fi = π1(E) × π2(Slice1,i(E)).

This is a product of two self-similar sets satisfying the open set condition and hence

dimB Fi = dimB π1(E) + dimB Slice1,i(E).

From the structure of the carpet, and since l(k) > k logci(dj/cj), it can be seen that

distH(Tk(Qk), Fi) ≤ max
n

dl(k)n ≤ dkβj

for a suitable β > 0. Appealing to the corollary gives the result. �

We finish the section with the following remark on the quasi-Assouad dimension
of self-similar sets.

Remark 4. For self-similar sets, the weak separation property (WSP) is a sepa-
ration property (on an IFS) that, although weaker than the classical open set condi-
tion, ensures nice properties on the attractor; see [24] for the definition. This property
has been essential to describe the behaviour of the Assouad dimension of self-similar
sets. If it holds, then dimB E = dimAE, so in particular, dimqA E = dimB E. More-
over, if it does not hold, then dimAE ≥ 1; see [8]. These results establish, in R, the
precise dichotomy that dimAE is either dimB E or 1 depending on whether the WSP
holds or not.

In absence of the WSP, the behaviour of the quasi-Assouad dimension is unknown.
However, it still remains valid in R that dimqAE = dimB E in the case that the
IFS does not have super-exponential concentration of cylinders. This is because,
under this hypothesis, equality dimθ

A E = dimB E holds for all 0 < θ < 1 by [12,
Corollary 4.2], and also dimqA F = limθ→1 dim

θ
A F for any F ⊂ R by [7, Corollary 2.2].

The super-exponential concentration of cylinders property was introduced by
Hochman in his celebrated paper [18] to give a substantial improvement on the folk-
lore conjecture that, in absence of exact overlaps, the Hausdorff (and box) dimension
of a self-similar set coincides with the minimum between its similarity dimension and
1. He proved that if the conjecture does not hold, then there is super-exponential
concentration of cylinders. This property is verified (trivially) in the case that the
IFS produces exact overlaps. However, super-exponential concentration does not
imply exact overlaps, as was recently shown independently in [1] and [2].

Although difficult to check in general, there are overlapping examples that do not
have super-exponential concentration. An example is given by the IFS {x/4, (x +
3)/4, (x + t)/4}. This IFS does not have super-exponential concentration for any
t ∈ R \ Q (by the same proof of [18, Theorem 1.6]), and t can be chosen so that
the WSP does not hold (see the example in [8, Section 4.1]). In particular, there are
examples of self-similar sets with box dimension smaller than 1, that do not verify the
WSP but also do not have super-exponential concentration of cylinders. This implies
that for the quasi-Assouad dimension there is no such dichotomy as that mentioned
above for the Assouad dimension case.
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3. Further properties

3.1. Dimensions of sequences with decreasing gaps. In [17] it was shown
that sequences in R with decreasing gaps have Assouad dimension 0 or 1. It is easy
to see that the same statement is true for the quasi-Assouad dimension.

Proposition 9. (i) If dimB E = 0, then dimqAE = 0.
(ii) If E = {aj}j ⊆ [0, 1], where {aj − aj+1}j is a decreasing sequence, then

dimqAE = 1 if dimB E > 0 and otherwise dimqA E = 0.

Proof. (i) Fix ε, δ > 0. The assumption that dimB E = 0 ensures that for all
sufficiently small r, Nr(E) ≤ r−δε. Thus for any R ≥ r1−δ and any x ∈ E, we have

Nr(B(x,R) ∩ E) ≤ Nr(E) ≤ r−δε ≤

(

R

r

)ε

,

from whence the conclusion is immediate.
(ii) In [12, Thm. 6.2] it is shown that if E is a sequence with decreasing gaps, then

for all θ ∈ (0, 1), dimθ
A E = min

(

dimB E
1−θ

, 1
)

. Thus if dimBE > 0, then dimqA E ≥

supθ<1 dim
θ
A E = 1. �

Remark 5. Although it is also true that dimA E = 0 or 1 for sequences with
decreasing gaps, the criterion is different. Indeed, as noted in [13, Ex. 6.3], E =
{e−

√
n}n is a set with decreasing gaps having dimBE = 0 = dimqA E, but dimA E = 1.

3.2. Quasi-lower Assouad dimension and Hausdorff dimension. The
following proposition establishes the relation between these dimensions.

Proposition 10. If E is a closed subset of Rd, then dimqLE ≤ dimH E.

Proof. Our proof is based on the method of proof of [20, Theorem 6]. If dimqLE =
0 there is nothing to prove, so assume α < dimqLE for some α > 0 and pick any
small δ > 0 such that α < hE(δ). We will show dimH E ≥ α/(1+ δ). This will prove
the proposition.

Recall that the r-packing number of a subset F ⊂ Rd, Pr(F ), is the maximum
number of disjoint balls of radius r centred in F . It is easily seen that there is a
constant c > 0 such that for any bounded F ⊆ Rd and r > 0, we have P2r(F ) ≥
cNr(F ). Therefore, since α < hE(δ), there is ρδ > 0 such that for any x ∈ E and any

r ≤ R1+δ ≤ R ≤ ρδ,

P2r(B(x,R) ∩ E) ≥ (R/r)α.

In particular, P2R1+δ(B(x,R) ∩ E) ≥ R−δα.
Fix x ∈ E and R1 ≤ ρδ. There are x1, . . . , xR−δα

1

points in E∩B(x,R1) such that

the balls B(xj , 2R
1+δ
1 ) are disjoint for j = 1, . . . , Rδα

1 . Now let R2 = R1+δ
1 and notice

that

B(xj , 2R2) ⊆ B(x,R1 + 2R1+δ
1 ) ⊆ B(x, 2R1)

(as we can take 2Rδ
1 < 1). We let C0 = B(x, 2R1), C1 =

⋃R−δα
1

j=1 B(xj , 2R2) and refer
to the balls B(xj , 2R2) as the Cantor balls of level 1.

Repeating this procedure, we see that for each j,

P2R1+δ
2

(B(xj , R2) ∩ E) ≥ R−δα
2
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so there are xj,1, . . . , xj,R−δα
2

∈ B(xj , R2) ∩ E, such that {B(xj,k,2R
1+δ
2 )}

R−δα
2

k=1 are

pairwise disjoint. Put R3 = 2R1+δ
2 . Furthermore,

B(xj,k, 2R3) ⊆ B(xj , R2 + 2R3) ⊆ B(xj , 2R2) ⊆ C1,

so all these balls are disjoint. Let

C2 =

R−δα
2
⋃

k=1

R−δα
1
⋃

j=1

B(xj,k, 2R3)

and call these the Cantor balls of level 2.
Inductively, given disjoint balls B(xj1,...,jk−1

, 2Rk), then, for l = 1, . . . , R−δα
k , we

find points

xj1,...,jk−1,l ∈ B(xj1,...,jk−1
, Rk) ∩ E

such that {B(xj1,...,jk−1,l, 2R
1+δ
k )}l are disjoint. Put Rk+1 = R1+δ

k and let

Ck =
⋃

ji∈{1,...,R−δα
i }

i=1,...,k

B(xj1,...,jk , 2Rk+1) ⊆ Ck−1,

Ck being a union of balls of level k.

We have Rk+1 = R1+δ
k = R

(1+δ)k

1 . Also, notice Ck is disjoint union of M balls,
where

M =

k
∏

j=1

R−δα
j =

k
∏

j=1

R
−δα(1+δ)j−1

1 = R
−α((1+δ)k−1)
1 .

Let C =
⋂∞

k=1Ck. As each element of C is a limit point of the centre of the Cantor
balls and E is closed, then C ⊆ E. We will use the mass distribution principle to
check dimH C ≥ α/(1 + δ); see [4, Proposition 2.1].

Let µ be the probability measure that assigns equal mass on the Cantor balls of

each level, i.e., each ball in Ck gets measure M−1 = R
α((1+δ)k−1)
1 . We want to show

that there is some constant A = A(α,E) such that µ(U) ≤ A(diam(U))
α

1+δ for all
Borel sets U.

Without lost of generality we assume U = B(y, r), where 2Rk+1 < r ≤ 2Rk,
y ∈ E. Any ball of radius 2Rk that intersects U will have its centre in B(y, 4Rk).
Let Ad be the constant depending on the space Rd such that P2Rk

(B(y, 4Rk)) ≤ Ad

for all y ∈ E and all k. As Cantor balls at level k− 1 are disjoint, of radius 2Rk and
centred in E, at most Ad of such balls can intersect U . Thus U intersects at most
AdR

−δα
k level k Cantor balls, so

µ(U) ≤ AdR
−δα
k · R

α((1+δ)k−1)
1 =

Ad

Rα
1

R
α(1+δ)k−1

1 ≤ A(diam(U))
α

1+δ .

Hence the mass distribution principle implies α/(1 + δ) ≤ dimH C ≤ dimH E, com-
pleting the proof. �

3.3. Different values for different dimensions. Given any six numbers
in [0, 1], appropriately ordered, there is a compact set E ⊆ [0, 1] which have those
numbers as the Assouad-type and box dimensions. For simplicity in the exposition,
we assume that the upper and lower box dimensions do not coincide and construct
Cantor sets to illustrate this. The case in which the box dimension exists is more
involved and will be not treated here.
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We make use of the following formulas for the box and quasi-Assouad dimensions
of a Cantor set E with ratios of dissection rk at step k; see [17] and [21].

dimBE = lim sup
n

n log 2

| log r1 · · · rn|
, dimA E = lim sup

n
sup
k

n log 2

| log rk+1 · · · rk+n|
.

If inf rk > 0 , then

dimqA E = lim
δ→0

lim sup
n

sup
k∈Sn,δ

n log 2

| log rk+1 · · · rk+n|
,

where Sn,δ = {k : rk+1 · · · rk+n ≤ (r1 · · · rk)
δ}. For the lower box and (quasi)-lower

Assouad dimensions replace sup and lim sup by inf and lim inf respectively.

Example 11. Assume 1 ≤ a ≤ α ≤ u < v ≤ β ≤ b < ∞ are given. There
is a Cantor set E ⊆ [0, 1] with dimAE = 1/a, dimqA E = 1/α, dimBE = 1/u,
dimBE = 1/v, dimqL E = 1/β and dimL E = 1/b.

The example we will construct is a generalization of [21, Ex. 1.18] and so we
will only sketch the ideas. To begin, we choose a sequence of integers sj tending to

infinity very rapidly. For convenience, put t2j = s2j
(

v−α
u−α

)

and t2j+1 = s2j+1

(

β−u
β−v

)

.

(If u = α put t2j = s2j and similarly if v = β.) We will define the ratios of dissection
at the various steps as follows:

Ratio At steps
2−v t2j−1 + j, . . . , s2j
2−α s2j + 1, . . . , t2j
2−a t2j + 1, . . . , t2j + j
2−u t2j + j + 1, . . . , s2j+1

2−β s2j+1 + 1, . . . , t2j+1

2−b t2j+1 + 1, . . . , t2j+1 + j

Provided sj tends to infinity sufficiently quickly, the ratios at steps {t2j+1, . . . , t2j+j}
and {t2j+1 +1, . . . , t2j+1 + j} will not influence the long run averages that determine
the box and quasi-(lower) Assouad dimensions. But these ratios will determine the
(lower) Assouad dimensions. The construction ensures that the quasi-Assouad di-
mension is determined by choosing R to be the length of the Cantor intervals at
step s2j and r to be the length of Cantor intervals at step t2j , while the quasi-lower
dimensions arise with R the length at step s2j+1 and r the length at step t2j+1. The
choice of t2j and t2j+1 are made to ensure that the geometric means of the ratios stay
within the range [2−v, 2−u] (in the limit) so that the box dimensions are determined
along the subsequences of lengths of Cantor intervals at steps sj . The details are left
to the reader.

3.4. Dimensions of orthogonal projections. For our last example, we will
show that, as in the case of Assouad dimension (see [6] and also [11]), the quasi-
Assouad dimension may increase under orthogonal projections. As before, we will
let πx (resp., πy) denote the projection onto the x (resp. y) axis.

Proposition 12. There is a subset E ⊆ R2 such that

dimqA πx(E) = 1 > 1/2 = dimqA E.

Proof. We will construct an example to show this. For each j and i = 1, . . . , 2j,
let xij = 2−j + (i − 1)2−2j. The points xij belong to [2−j, 2−(j−1)) and are spaced
2−2j apart. Let yij, i = 1, . . . , 2j, be the endpoints, ordered from left to right, of the
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gaps created at step j in the standard construction of the Cantor set with ratio of
dissection 1/4; these gaps have length 2−2j+1. Put Ej = {(xij, yij) : i = 1, . . . , 2j}
and E = ∪jEj . See Figure 1 below. Of course, πx(E) =

⋃

j{xij : i = 1, . . . , 2j}. By

checking Nr(B(x0, R) ∩ πx(E)) for x0 = 2−j, R = 2−j and r = 2−2j , it is easy to see
that dimqA πx(E) = 1.

E1E2E3· · ·

0 11
2

1
4

1
8

Figure 1. The sets E1, E2 and E3 in the construction of E.

To determine the quasi-Assouad dimension of E, it is convenient to take as the
definition of a ‘ball’, B(x0, R) in R2, the square with centre x0 and sides of length
R. Fix such a ball with x0 = (xij , yij) ∈ E and assume 2−2(s+1) < R ≤ 2−2s for some
s ∈ N. The size of R ensures that the interval πy(B(x0, R)) can intersect only one
Cantor interval of step s. Choose any r < R, say 2−2t < r ≤ 2−2(t−1).

First, note that
(

B(x0, R) ∩ E
)

∩
(

[0, 2−2t)× [0, 1]
)

:= Ω

is contained in [0, 2−2t)×(union of Cantor intervals of step t contained in πy(B(x0, R)).
There are at most 2t−s such Cantor intervals, each of length 2−2t. Hence Nr(Ω) ≤
2t−s.

Next, for each m ∈ {t+ 1, . . . , 2t} consider the elements of
(

B(x0, R) ∩ E
)

∩
(

[2−m, 2−(m−1))× [0, 1]
)

:= Ωm.

The y-coordinates of these points are the endpoints of the gaps at step m lying
within the one Cantor interval of step s that πy(B(x0, R)) intersects. There are
2m−t of these contained within each Cantor sub-interval of step t. As the distance
between consecutive x-coordinates is 2−2m, the total horizontal distance between the
points whose y-coordinates lie in a (fixed) Cantor interval of step t is 2−2m(2m−t) =
2−(m+t) ≤ 2−2t, while the total vertical distance is the width of the Cantor subinterval,
2−2t. Consequently, such points lie within a square of side length 2−2t and hence we
can cover Ωm with 2t−s squares of side length 2−2t for each such m.

Finally, observe that the cardinality of the remainder of B(x0, R) ∩ E, which is
contained in [2−t, 1]× [0, 1], is dominated by 2 times the number of gaps of step ≤ t
within a Cantor interval of step s, and this is bounded above by 2t−s+1. Combining
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together all these observations, we see that

Nr(B(x0, R) ∩ E) ≤ (t+ 1)2t−s + 2t−s+1.

It follows that for each δ > 0, hE(δ) ≤ 1/2 and thus dimqA E ≤ 1/2. It is not
difficult to see that these estimates are essentially sharp and thus we actually have
dimqA E = 1/2. �

Remark 6. The classical Marstrand projection theorem, and its more recent
variants, (cf. [5]) states that the orthogonal projections of planar sets have the same
dimension at almost every angle, where here dimension can be Hausdorff, upper/lower
box or packing. This is not the case for the Assouad dimension. Indeed, it is shown in
[11] that for any s with log5 3 < s < 1, there exists a self-similar set F ⊂ R2 and two
non-empty intervals I, J such that dimA πθF = s for all θ ∈ I, while dimA πθF = 1
for almost all θ ∈ J . Here πθ denotes the projection onto the line passing through
the origin with angle θ. Indeed, the situation can be more dramatic. It is shown in
[10] that the Assouad dimension of orthogonal projections can take on a countable
number of distinct values on a set of projections with positive measure.

It is unknown what the situation is for the quasi-Assouad dimension. The set
F from [11] does not seem to be helpful for resolving this problem. Since it is a
Sierpinski triangle with contraction factor c, for some c ∈ (1/5, 1/3), its orthogonal
projections are self-similar sets Ft attractors of iterated functions systems of the
form Ic,t = {cx, cx + 1 − c, cx + t}, up to rescaling. Then, if c is algebraic, for
almost every t, these projections does not have super exponential contraction of
cylinders (see Theorem 1.6 in [18] and the comment after its proof). Hence by
Remark 4, for almost every t we have dimqA Ft = dimB Ft, and thus the Marstrand
projection theorem implies that the quasi-Assouad dimensions of the projections of F
are constant almost everywhere. On the other hand, if c is not algebraic, it is unknown
in general if there are super exponential contraction of cylinders in the projections, so
their quasi-Assouad dimension is unknown. Note that there are uncountably many
pairs (c, t) such that for Ic,t there are no exact overlaps but exponential concentration
of cylinders; see [2, Theorem 2.2].
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