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Abstract. Following a Maz’ya-type approach, we adapt the theory of rough traces of functions

of bounded variation (BV ) to the context of doubling metric measure spaces supporting a Poincaré

inequality. This eventually allows for an integration by parts formula involving the rough trace

of such functions. We then compare our analysis with the study done in a recent work by Lahti

and Shanmugalingam, where traces of BV functions are studied by means of the more classical

Lebesgue-point characterization, and we determine the conditions under which the two notions

coincide.

1. Introduction

This paper aims at investigating traces of BV functions and integration by parts
formulæ in metric measure spaces. The setting is given by a complete and separable
metric measure space (X, d, µ) endowed with a doubling measure µ and supporting
a weak (1, 1)-Poincaré inequality. We prove an integration by parts formula on open
sets of finite perimeter with some regularity; the basic idea of the proof is to use the
notion of essential boundary and to define the rough trace of a BV function on such
boundary using its super-level sets.

Sets with finite perimeter in metric measure spaces were defined for instance in
[33] and studied by Ambrosio in [1, 2]. The main fact we use is that, for a set with
finite perimeter, the perimeter measure is concentrated on the essential boundary
of the set itself, [2]. The notion of essential boundary is good enough to perform
the strategy given by Maz’ya in his book [32]. In the Euclidean case, the reduced
boundary was used instead, and an integration by parts formula was proved. Also, the
continuity of the trace operator was investigated and equivalent conditions for such
continuity were given. In the metric space setting—except for the case of RCD(K,N)
spaces [3, 10]—we have so far no good notion of reduced boundary, but for our aims
the essential boundary suffices.

Properties of the trace operator have been recently investigated in [28] and suffi-
cient conditions for the continuity of such operator were given in terms of a “measure-
density condition” on the boundary of the selected domain. We compare this notion
of trace with the rough trace proving almost-everywhere equality of the two functions
on the boundary of the open set under investigation. In this way, two different char-
acterizations of the trace values of a function with bounded variation are available,
the two being equivalent.

https://doi.org/10.5186/aasfm.2021.4625
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The paper is organized as follows. In Section 2 we review the basic tools of
our analysis, namely the concept of a metric measure space (X, d, µ) equipped with
a doubling measure and supporting a weak Poincaré inequality, the notions of BV
function and of Caccioppoli set, along with the fundamental results related to them,
such as the Coarea Formula, the Isoperimetric Inequality and of course the remarkable
Theorem by L. Ambrosio on the Hausdorff representation of the perimeter measure,
[2, Theorem 5.3].

In Section 3 we rewrite, after [32], the notion and the properties of the rough
trace of BV functions defined on an open domain Ω ⊂ X. In particular, we re-
investigate the conditions under which a BV function admits a summable rough
trace and we consider the issue of the extendability of u ∈ BV (Ω) to the whole of X.
The latter part of the Section is then devoted to an integration by parts formula for
functions of bounded variation in terms of a suitable class of “vector fields” (actually,
bounded Lipschitz derivations), a formula which, as shown in Theorem 3.20, features
implicitly the rough trace of u ∈ BV (Ω).

The topic of integration by parts formulæ, especially in connection with BV
functions and sets of finite perimeter, has been an object of interest for quite a few
decades now. After the pioneering work of G. Anzellotti [8] in 1983, who introduced
the class of divergence-measure vector fields—namely, those vector fields whose dis-
tributional divergence is a finite Radon measure—to prove an integration by parts
formula for BV functions on domains with Lipschitz boundary, such research area has
been flourishing again since the early 2000’s, when several authors started devoting
considerable attention to the subject, leading to notable applications to sets of finite
perimeter in the Euclidean setting, namely, the validity of (generalized) Gauss-Green
formulæ in terms of the normal traces of divergence-measure fields (see [4, 15, 34, 35],
and also the latest developments given in [14, 17, 18, 19, 20, 21, 29, 30]).

More recently, the issue has been attacked also in less regular settings, like metric
measure spaces, [10, 11, 12, 31], and stratified groups, [16]. In particular, in [31]
the authors operated in the context of a doubling metric measure space equipped
with Cheeger’s differential structure [13] and satisfying a Poincaré inequality; in
their analysis, they found the so-called regular balls to be the appropriate class of
domains where a certain integration by parts formula holds. The results of [31]
were then reprised by [11] and later refined in [12]; both these works rely on the
differential structure developed in [23], which allows to extend the previous analysis
of [31] to the very abstract context of a metric measure space satisfying no specific
structural assumptions, where regular domains1 serve as a generalization of regular
balls. In particular, [12] specializes the discussion for RCD(K,∞) spaces and BV
functions. Lastly, in the more recent paper [10], a Gauss–Green formula for sets
of finite perimeter was proved in the context of an RCD(K,N) space by means of
Sobolev vector fields in the sense of [23].

In Section 4, finally, we compare our approach with the results recently obtained
in [28] about the trace operator for BV functions defined by means of Lebesgue
points. Our analysis eventually allows to find the optimal conditions to impose on
the domain Ω in order to ensure the coincidence in the Sh-almost everywhere sense—
Theorem 4.4—between the rough and the “classical” traces, u∗(x) = Tu(x).

Sections 3 and 4 extend and refine the results contained in [11, Section 7.2].

1See Remark 3.21 for the definition of regular domains.
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2. Preliminaries

Throughout this paper, (X, d, µ) will be a complete and separable metric measure
space equipped with a non-atomic, non-negative Borel measure µ such that 0 <
µ (Bρ(x)) < ∞ for any ball Bρ(x) ⊂ X with radius ρ > 0 centered at x ∈ X. By
non-atomic we mean that for every x ∈ X one has µ({x}) = 0.

We shall assume µ to be doubling : in other words, there exists a constant c ≥ 1
such that

(1) µ(B2ρ(x)) ≤ cµ (Bρ(x)) , ∀ x ∈ X, ∀ ρ > 0.

The minimal constant appearing in (1) is called doubling constant and will be
denoted by cD; s := ln2 cD is the homogeneous dimension of the metric space X and
it is known that the following property holds:

(2)
µ(Br(x))

µ(BR(y))
≥

1

c2D

( r

R

)s

,

for every y ∈ X, x ∈ BR(y), and for every 0 < r ≤ R < ∞ (see for example [9,
Lemma 3.3]).

The Lebesgue spaces Lp(X, µ), 1 ≤ p ≤ ∞ are defined in the usual way, [25];
since in a complete doubling metric measure space balls are totally bounded, we can
equivalently set Lp

loc(X, µ) to denote the space of functions that belong to Lp(K,µ)
for any compact set K or that belong to Lp(Bρ(x0), µ) for any x0 ∈ X and any ρ > 0.

Given a Lipschitz function f : X → R, we define the pointwise Lipschitz constant

of f as

Lip(f)(x) := lim sup
y→x

|f(x)− f(y)|

d(x, y)
.

We assume that the space supports a weak (1, 1)-Poincaré inequality, which means
that there exist constants cP > 0, λ ≥ 1 such that for any Lipschitz function f

(3)

ˆ

Bρ(x)

|f(y)− fBρ(x)| dµ(y) ≤ cPρ

ˆ

Bλρ(x)

|Lip(f)(y)| dµ(y),

where fE is the mean value of f over the set E, i.e. if µ(E) 6= 0

fE :=
1

µ(E)

ˆ

E

f(y) dµ(y).

We recall also the definition of upper gradient; we say that a Borel function g : X →
[0,+∞] is an upper gradient for a measurable function f if for any rectifiable Lipschitz
curve γ : [0, 1] → X with endpoints x, y ∈ X we have that

|f(x)− f(y)| ≤

ˆ

γ

g :=

ˆ 1

0

g(γ(t))‖γ′(t)‖ dt

where ‖γ′(t)‖ = Lip(γ)(t).
In what follows, we shall also need to quantify how “dense” is a set at a certain

point of the space; then, the upper and lower µ-densities of E ⊂ X at x ∈ X are
given by

Θ∗
µ(E, x) := lim sup

ρ→0

µ(E ∩ Bρ(x))

µ(Bρ(x))
,

and

Θ∗,µ(E, x) := lim inf
ρ→0

µ(E ∩ Bρ(x))

µ(Bρ(x))
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respectively. The common value between the two limits will be called the µ-density

of E at x ∈ X, denoted by

Θµ(E, x) := lim
ρ→0

µ (E ∩ Bρ(x))

µ (Bρ(x))
.

When we work with the reference measure µ only and there is no ambiguity, we shall
drop the suffix from the notation and the above will be simply referred to as the
(upper, lower) density of E at x.

The left continuity of the maps ρ 7→ µ(E ∩ Bρ(x)) for any Borel set E implies
that the maps x 7→ µ(E ∩ Bρ(x)) are lower semicontinuous. From this, one deduces
that functions Θ∗(E, x) and Θ∗(E, x) are Borel.

Following the characterization given for instance in [6, Definition 3.60], for a
Borel set E ⊂ X we shall denote by E(t), t ∈ [0, 1], the set of points where E has
density t, namely

E(t) :=

{

x ∈ X : Θ(E, x) = lim
ρ→0

µ (Bρ(x) ∩ E)

µ (Bρ(x))
= t

}

.

In particular, the sets E(0) and E(1) will be called the measure-theoretic (or, essential)
exterior and interior of E, respectively.

The measure-theoretic (or, essential) boundary of E is then defined as

(4) ∂∗E := X\(E(0) ∪ E(1)).

Note that we could equivalently characterize ∂∗E as the set of points x ∈ X where
both E and its complement Ec have positive upper density.

The lower and upper approximate limits of any measurable function u : X → R

at x ∈ X are defined by

(5) u∧(x) := sup

{

t ∈ R : lim
ρ→0

µ (Bρ(x) ∩ Et)

µ (Bρ(x))
= 1

}

and

(6) u∨(x) := inf

{

t ∈ R : lim
ρ→0

µ (Bρ(x) ∩ Et)

µ (Bρ(x))
= 0

}

,

respectively, where for t ∈ R, Et denotes the super-level sets of the function u, namely

Et := {x : u(x) ≥ t} .

We observe that the density condition in (5) is of course equivalent to ask that
Θ(Ec

t , x) = 0. The notion of approximate limits allows for the characterization of a
jump set of the function u:

(7) Su := {x ∈ X : u∧(x) < u∨(x)} .

So in particular, when u = 1E, one gets Su = ∂∗E.
We also notice that, if u is bounded above and t > ess - sup u, then µ(Et) = 0,

hence u∨(x) ≤ ess - sup u. In the same way, if u is bounded below, u∧(x) ≥ ess - inf u.
Following [2, 7, 33], we now briefly recall the basic notions and properties of

functions of bounded variation on metric measure spaces. Given an open set Ω ⊂ X,
we define the total variation of a measurable function u : Ω → R by setting

‖Du‖(Ω) = inf
Au

{

lim inf
j→+∞

ˆ

Ω

Lip(uj)(y) dµ(y)

}

,
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where

Au :=
{

(uj)j∈N ⊂ Liploc(Ω) : uj → u in L1
loc(Ω)

}

.

Definition 2.1. Given u ∈ L1(Ω), we say that u has bounded variation in Ω,
u ∈ BV (Ω), if ‖Du‖(Ω) < +∞. A set E ⊂ X is said to have finite perimeter in X if
1E ∈ BV (X), and similarly to have finite perimeter in Ω if 1E ∈ BV (Ω).

Sets of finite perimeter will be also referred to as Caccioppoli sets.
A function u ∈ BV (Ω) defines a non-negative Radon measure ‖Du‖, the total

variation measure; when u is the characteristic function of some set E, u = 1E, then
‖D1E‖ is called perimeter measure.

A very important tool for our work will be the Coarea Formula, [33], which asserts
that for u ∈ BV (Ω), then for almost every t ∈ R the set Et has finite perimeter in
Ω and for any Borel set A

‖Du‖(A) =

ˆ

R

‖D1Et
‖(A) dt.

The Poincaré inequality and the Sobolev embedding Theorem (see for instance [2],
[24] or [33]) imply the following local isoperimetric inequality: for any set E with
finite perimeter and for any ball Bρ(x), we have that

min
{

µ(E ∩ Bρ(x)), µ(Bρ(x)\E)
}

≤ cI

(

ρs

µ(Bρ(x))

)
1

s−1

‖D1E‖ (Bλρ(x))
s

s−1 ,
(8)

where cI > 0 is known as the isoperimetric constant.
We also mention that a weaker version of the Poincaré inequality holds for BV

functions as well: given any ball Bρ(x) ⊂ X, for every u ∈ BV (X) there holds

(9)

ˆ

Bρ(x)

|u− uB| dµ ≤ cPρ‖Du‖(Bλρ(x)) .

Of course, both in (8) and (9) the notation is the same as in (3).
Two important properties of the perimeter measure of Caccioppoli sets, which

we shall use extensively, are its absolute continuity with respect to the spherical
Hausdorff measure and its localization inside the essential boundary, [2].

Let us denote by Sh the spherical Hausdorff measure defined in terms of the
doubling function

h(Bρ(x)) =
µ(Bρ(x))

diam(Bρ(x))
.

If E ⊂ X is a Caccioppoli set in X, then we have the following result.

Theorem 2.1. [2, Theorem 5.3] The measure ‖D1E‖ is concentrated on the set

Σγ =

{

x : lim sup
ρ→0

min

{

µ (E ∩Bρ(x))

µ (Bρ(x))
,
µ (Ec ∩Bρ(x))

µ (Bρ(x))

}

≥ γ

}

⊂ ∂∗E,

where γ = γ (cD, cI , λ). Moreover, Sh (∂∗E\Σγ) = 0, Sh (∂∗E) < ∞ and

‖D1E‖(B) =

ˆ

B∩∂∗E

θE dSh

for any Borel set B ⊂ X and for some Borel map θE : X → [α,∞) with α =
α (cP , cI , λ) > 0.
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Remark 2.2. We explicitly observe that by [7, Theorem 4.6] one actually has
θE ∈ [α, cD]; thus, with the same notation as in Theorem 2.1, we are given the bounds

αSh(B ∩ ∂∗E) ≤ ‖D1E‖(B) ≤ cDS
h(B ∩ ∂∗E).

Definition 2.2. [7] The space (X, d, µ) will be called local if, given any two
Caccioppoli sets E,Ω ⊂ X with E ⊂ Ω, one has that the maps arising from Theorem
2.1, θE and θΩ, coincide Sh-almost everywhere on ∂∗Ω ∩ ∂∗E.

For instance, Rn equipped with the Euclidean distance and with the n-dimensio-
nal Lebesgue measure, is of course a local space; among other examples, we men-
tion non-collapsed RCD(K,N) spaces, Carnot groups of step 2 and certain classes
of “weighted” spaces. See also [7, Section 7] for a detailed discussion on possible
examples of local spaces.

Remark 2.3. In [7, Theorem 5.3], it was proved that for any function u ∈
BV (Ω), Ω ⊂ X open set, the total variation measure ‖Du‖ admits a decomposition
into an “absolutely continuous” and a “singular” part, and that the latter is decom-
posable into a “Cantor” and a “jump” part. In other words, for any Borel set B ⊂ Ω
the following holds:

‖Du‖(B) = ‖Du‖a(B) + ‖Du‖s(B) = ‖Du‖a(B) + ‖Du‖c(B) + ‖Du‖j(B)

=

ˆ

B

a dµ+ ‖Du‖c(B) +

ˆ

B∩Su

ˆ u∨(x)

u∧(x)

θ{u≥t}(x) dt dSh(x),

where a ∈ L1(B) is the density of the absolutely continuous part, θ{u≥t} is given as
in Theorem 2.1 and Su is the jump set as in (7).

Another fact which we shall use is the following localization property: if E ⊂ Ω
has finite perimeter in an open set Ω, then for all x ∈ Ω the function

mE(x, ρ) := µ(E ∩Bρ(x))

is monotone non-decreasing as a function of ρ. If it is differentiable at ρ > 0, then

(10) ‖D1E∩Bρ(x)‖(Ω) ≤ m′
E(x, ρ) + ‖D1E‖

(

Ω ∩ Bρ(x)
)

.

The proof of (10) follows by considering a cut–off function

ηh(y) =
1

h
min{max{ρ+ h− d(x, y), 0}, 1}

and defining uh = ηh1E. Since

‖Duh‖(Ω) ≤
1

h

ˆ

Bρ+h(x)\Bρ(x)∩Ω

1E(y) dµ(y) + ‖D1E‖ (Bρ+h(x) ∩ Ω) ,

passing to the limit as h → 0 (which is possible since we are assuming mE(x, ρ) to be
differentiable with respect to ρ > 0) and using the lower semicontinuity of the total
variation, we get (10). If in particular ‖D1E‖ (Ω ∩ ∂Bρ(x)) = 0, we then get

‖D1E∩Bρ(x)‖ (∂Bρ(x) ∩ Ω) ≤ m′
E(x, ρ).

3. Rough trace

In this section we extend the notion of rough trace of a BV function to the
metric measure space setting. The discussion will follow the monograph by Maz’ya
[32, Section 9.5] and metric versions of the results contained therein will be given.
In particular, we shall focus on the issue of the integrability of the rough trace with



Rough traces of BV functions in metric measure spaces 315

respect to the perimeter measure of the domain. We shall relate this issue with some
geometric properties of the domain.

Below, Ω ⊂ X shall always denote an open set. We always write ‖D1Ω‖(X) < ∞
to intend 1Ω ∈ BV (X), and similarly, when E ⊂ Ω, ‖D1E‖(Ω) < ∞ to intend
1E ∈ BV (Ω), that is, to mean that the sets are of finite perimeter in X and Ω,
respectively.

Definition 3.1. (Rough Trace) Given u ∈ BV (Ω), we define its rough trace at
x ∈ ∂∗Ω as the quantity

(11) u∗(x) := sup
{

t ∈ R : ‖D1Et
‖(X) < ∞, x ∈ ∂∗Et

}

.

Of course, when u has a limit value at x ∈ ∂∗Ω from the interior of the domain,
then

u∗(x) = lim
Ω∋y→x

u(y).

Remark 3.1. We explicitly observe that, according to (11), it might occur that
u∗(x) = −∞, which obviously corresponds to the case when

{

t ∈ R : ‖D1Et
‖(X) < ∞, x ∈ ∂∗Et

}

= ∅.

We start with the following result.

Lemma 3.2. If ‖D1Ω‖(X) < ∞ and u ∈ BV (Ω), then u∗ is Sh- measurable on
∂∗Ω and

(12) Sh ({x ∈ ∂∗Ω : u∗(x) ≥ t}) = Sh (∂∗Ω ∩ ∂∗Et)

for almost every t ∈ R.

Proof. We fix a set I ⊂ R such that |I| = 0 and Et has finite perimeter for any
t ∈ R\I. We define

At := {x ∈ ∂∗Ω: u∗(x) ≥ t} and Bt := ∂∗Et ∩ ∂∗Ω.

Observe that Bt and ∂∗Ω are Borel sets, and that the definition of rough trace allows
us to write

At =
⋃

s∈D; s>t

Bs,

for some countable, dense set D ⊂ R\I. Therefore, At is a Borel set and then u∗ is
a Borel function.

Now, instead of (12), we shall prove that for every t ∈ R\I - except at most
countably many values - it holds

Sh (At△Bt) = 0,

where △ denotes the symmetric difference between two sets, A△B := (A\B)∪(B\A).
If x ∈ Bt, the definition of u∗ implies that u∗(x) ≥ t and then the inclusion Bt ⊂ At

holds. We then reduce ourselves to prove that Sh (Ft) = 0, where Ft := At\Bt. Since
for s < t we have that Et ⊂ Es ⊂ Ω, we also get

µ(Et ∩Bρ(x))

µ(Bρ(x))
≤

µ(Es ∩ Bρ(x))

µ(Bρ(x))
≤

µ(Ω ∩ Bρ(x))

µ(Bρ(x))
,

whence

Θ∗(Et, x) ≤ Θ∗(Es, x) ≤ Θ∗(Es, x) ≤ Θ∗(Ω, x)
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and so the inclusion Bt ⊂ Bs holds true. From this we deduce that the sets Ft are
disjoint; indeed if s < t,

Ft ∩ Fs = (At\Bt) ∩ (As\Bs) = At ∩ As ∩ Bc
t ∩Bc

s = At ∩ Bc
s = At\Bs = ∅

since, if x ∈ At, then there exists τ ∈ [t, u∗(x)] such that x ∈ ∂∗Eτ ∩ ∂∗Ω = Bτ ⊂ Bs.
The inclusion Ft ⊂ ∂∗Ω then implies that the set

{

t ∈ R\I : Sh (Ft) > 0
}

is at most countable, and this concludes the proof. �

The result below is simply a combination of [32, Section 9.5, Lemma 4 and
Corollary 2], so we just state it, leaving the proof to the interested reader.

Proposition 3.3. For any u ∈ BV (Ω) and for Sh-almost every x ∈ ∂∗Ω, one
has

−u∗(x) = (−u)∗ (x).

Consequently, if we decompose u = u+ − u− in its positive and negative part, then

(u∗)+ =
(

u+
)∗

, (u∗)− =
(

u−
)∗

and then

u∗ =
(

u+
)∗

−
(

u−
)∗

.

Remark 3.4. Throughout the remainder of the paper, we shall always work
in the hypothesis that Ω ⊂ X is an open set with finite perimeter in X; that is,
‖D1Ω‖(X) < ∞.

Moreover, E ⊂ Ω will always be a Caccioppoli set in Ω, which means ‖D1E‖(Ω) <
∞. We observe that, since in each of the next statements we shall assume ∂Ω\∂∗Ω
to be Sh-negligible, this will imply that ‖D1E‖(X) < ∞ as well. Indeed, by The-
orem 2.1, ‖D1Ω‖(X) < ∞ implies Sh(∂∗Ω) < ∞, and therefore the condition
Sh(∂Ω\∂∗Ω) = 0 forces Sh(∂Ω) < ∞; therefore, as ‖D1E‖(Ω) < ∞, an applica-
tion of [26, Proposition 6.3] yields ‖D1E‖(X) < ∞ as claimed.

In the next results, we will often make use of the following simple property of
the rough trace:

Remark 3.5. Let Ω ⊂ X be such that ‖D1Ω‖(X) < ∞. If E ⊂ Ω is a Cac-
cioppoli set in Ω, then 1

∗
E(x) = 0 for all x ∈ ∂∗Ω\∂∗E and 1

∗
E(x) = 1 for all

x ∈ ∂∗Ω ∩ ∂∗E.
Indeed, when considering the characteristic function of E one of course has

Et = {x ∈ Ω: 1E ≥ t} =











∅, t > 1,

Ω, t ≤ 0,

Ω ∩ E = E, t ∈ (0, 1].

This means, obviously,

∂∗Et =











∅, t > 1,

∂∗Ω, t ≤ 0,

∂∗ (Ω ∩ E) = ∂∗E, t ∈ (0, 1].

So, when t ∈ (0, 1], the definition of rough trace (11) forces 1
∗
E(x) = 1 for every

x ∈ ∂∗E.
Let us then assume t ≤ 0; again by (11), in order to have x ∈ ∂∗Et = ∂∗Ω, it must

be 1
∗
E(x) = 0 for every x therein. Thus, combining with the conclusion right above,
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we infer that 1
∗
E(x) = 0 for all x ∈ ∂∗Ω\∂∗E and 1

∗
E(x) = 1 for all x ∈ ∂∗Ω ∩ ∂∗E,

proving the claim.

With these preliminary facts at our disposal, we can start discussing the summa-
bility of the rough trace.

Theorem 3.6. Let ‖D1Ω‖ (X) < ∞ and assume Sh (∂Ω\∂∗Ω) = 0. In order for
any u ∈ BV (Ω) to satisfy

(13) inf
c∈R

ˆ

∂Ω

|u∗(x)− c| dSh(x) ≤ k1 ‖Du‖ (Ω)

with k1 > 0 independent of u, it is necessary and sufficient that the inequality

(14) min
{

‖D1E‖ (Ω
c) , ‖D1Ω\E‖ (Ω

c)
}

≤ k2‖D1E‖ (Ω)

holds for any E ⊂ Ω with finite perimeter in Ω.

Proof. Necessity. Let E ⊂ Ω be such that ‖D1E‖ (Ω) < ∞, and apply Re-
mark 3.4 to infer that ‖D1E‖(X) < ∞. Then, since Sh(∂Ω\∂∗Ω) = 0, by Remark 3.5
we get

inf
c∈R

ˆ

∂∗Ω

|1∗
E(x)− c| dSh(x) = min

c∈R

{

|1− c|Sh(∂∗E ∩ ∂∗Ω) + |c|Sh(∂∗Ω\∂∗E)
}

.

Now observe that the function

Φ(c) := |1− c|Sh(∂∗E ∩ ∂∗Ω) + |c|Sh(∂∗Ω\∂∗E),

c ∈ R, clearly attains its minima when c = 0 and c = 1 respectively, so we actually
have

inf
c∈R

ˆ

∂∗Ω

|1∗
E(x)− c| dSh(x) = min

{

Sh(∂∗Ω ∩ ∂∗E),Sh(∂∗Ω\∂∗E)
}

≥
1

cD
min

{

‖D1E‖(Ω
c), ‖D1Ω\E‖(Ω

c)
}

by Remark 2.2.
Since by hypothesis

inf
c∈R

ˆ

∂Ω

|1∗
E(x)− c| dSh(x) ≤ k1 ‖D1E‖ (Ω),

we then obtain our claim.
Sufficiency. Let u ∈ BV (Ω); then for every t, Sh (∂Ω ∩ ∂∗Et) is a non-increasing

function of t. In fact, if x ∈ ∂∗Ω ∩ ∂∗Et and τ < t, then Ω ⊃ Eτ ⊃ Et and the same
holds as well for the essential boundaries; moreover,

Θ∗(Et, x) ≤ Θ∗(Eτ , x) ≤ Θ∗(Ω, x).

This means, by hypothesis and by the definition of essential boundary (4), that
x ∈ ∂∗Ω ∩ ∂∗Eτ . In a similar manner we can show that Sh (∂Ω\∂∗Et) is a non-
decreasing function of t. By the Coarea Formula, Remark 2.2 and (14), there holds

k2 ‖Du‖ (Ω) = k2

ˆ

R

‖D1Et
‖ (Ω)dt

≥ α

ˆ

R

min
{

Sh (∂Ω ∩ ∂∗Et) ,S
h (∂Ω\∂∗Et)

}

dt.

If we now set

t0 := sup
{

t : ‖D1Et
‖ (X) < ∞, Sh (∂Ω ∩ ∂∗Et) ≥ Sh (∂Ω\∂∗Et)

}

,
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then we get, by recalling Lemma 3.2,

k2 ‖Du‖ (Ω) ≥ α

(
ˆ +∞

t0

Sh (∂Ω ∩ ∂∗Et) dt+

ˆ t0

−∞

Sh (∂Ω\∂∗Et) dt

)

= α

(
ˆ +∞

t0

Sh ({x ∈ ∂Ω: u∗(x) ≥ t}) dt

+

ˆ t0

−∞

Sh ({x ∈ ∂Ω: u∗(x) ≤ t}) dt

)

= α

(
ˆ

∂Ω

[u∗(x)− t0]
+ dSh(x) +

ˆ

∂Ω

[u∗(x)− t0]
− dSh(x)

)

= α

ˆ

∂Ω

|u∗(x)− t0| dS
h(x).

In other words,

k2
α

‖Du‖ (Ω) = k′‖Du‖(Ω) ≥ inf
c∈R

ˆ

∂Ω

|u∗(x)− c| dSh(x). �

Definition 3.2. Let A ⊂ Ω. We shall denote by 0 < ζ
(α)
A < ∞ the infimum of

those k > 0 such that [‖D1E‖ (Ω
c)]α ≤ k ‖D1E‖ (Ω) for all sets E ⊂ Ω which satisfy

the condition µ (E ∩ A) + Sh (A ∩ ∂∗E) = 0.

Theorem 3.7. Let ‖D1Ω‖ (X) < ∞ and assume Sh (∂Ω\∂∗Ω) = 0. Then, if
A ⊂ Ω, for every u ∈ BV (Ω) such that u|A∩Ω = 0 and u∗|A∩∂∗Ω = 0, there is a

constant c > 0, depending on ζ
(1)
A and on cD, such that

ˆ

∂Ω

|u∗(x)| dSh(x) ≤ c ‖Du‖ (Ω).

Proof. By Cavalieri’s Principle,
ˆ

∂Ω

|u∗(x)| dSh(x)

=

ˆ +∞

0

[

Sh ({x ∈ ∂Ω: u∗(x) ≥ t}) + Sh ({x ∈ ∂Ω: − u∗(x) ≥ t})
]

dt.

Notice that, by Lemma 3.2 and Remark 2.2,
ˆ +∞

0

Sh ({x ∈ ∂Ω: u∗(x) ≥ t})dt =

ˆ +∞

0

Sh(∂∗Ω ∩ ∂∗Et)dt

≤
1

α

ˆ +∞

0

‖D1Et
‖ (Ωc)dt ≤

ζ
(1)
A

α

ˆ +∞

0

‖D1Et
‖(Ω)dt,

where we used the definition of ζ
(1)
A and the fact that, by our hypotheses, we get

µ (A ∩ Et) + Sh (A ∩ ∂∗Et) = 0 for almost every t > 0.
Similarly, we find

ˆ +∞

0

Sh ({x ∈ ∂Ω: − u∗(x) ≥ t}) dt ≤
1

α

ˆ 0

−∞

∥

∥D1Ω\Et

∥

∥ (Ωc) dt

≤
ζ
(1)
A

α

ˆ 0

−∞

‖D1Et
‖ (Ω)dt.

Therefore, letting c :=
ζ
(1)
A

α
gives the assertion. �
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Remark 3.8. In particular, if in Theorem 3.7 we substitute u with 1E ∈ BV (Ω),
E ⊂ Ω, by Remark 3.5 we would simply have

‖1∗
E(x)‖L1(∂Ω,Sh) =

ˆ

∂Ω

|1∗
E(x)|dS

h(x) = Sh(∂∗Ω ∩ ∂∗E) ≤
1

α
‖D1E‖(Ω

c)

≤
ζ
(1)
A

α
‖D1E‖(Ω) = c‖D1E‖(Ω),

where we explicitly used the assumption Sh(∂Ω\∂∗Ω) = 0.

The most important result of the present section is the following metric version
of [32, Theorem 9.5.4].

Theorem 3.9. Let Ω ⊂ X be a bounded open set such that ‖D1Ω‖ (X) < ∞
and assume Sh (∂Ω\∂∗Ω) = 0. Then, every u ∈ BV (Ω) satisfies

‖u∗‖L1(∂Ω,Sh) ≤ c ‖u‖BV (Ω)

with a constant c > 0 independent of u, if and only if there exists δ > 0 such that
for every E ⊂ Ω with diam(E) ≤ δ and with ‖D1E‖ (Ω) < ∞ there holds

(15) ‖D1E‖ (Ω
c) ≤ c′ ‖D1E‖ (Ω)

for some constant c′ > 0 independent of E.

Proof. Necessity. We start by recalling that by Remark 3.5, one has 1
∗
E(x) = 1

on ∂∗Ω ∩ ∂∗E and 1
∗
E(x) = 0 on ∂∗Ω\∂∗E. Therefore,

‖1∗
E‖L1(∂Ω) =

ˆ

∂Ω

1
∗
E(x) dS

h(x) = Sh (∂∗Ω ∩ ∂∗E) ,

since by hypothesis Sh (∂Ω\∂∗Ω) = 0.
Now, let ρ > 0 to be fixed in the sequel. We have the following

Claim. There exists 0 < δ < ρ such that, for any x0 ∈ Ω,

µ(Bρ(x0)\Bδ(x0)) ≥ µ(Bδ(x0)).

Assume by contradiction that for any δ > 0 there exists xδ ∈ Ω such that

µ(Bρ(xδ)\Bδ(xδ)) < µ(Bδ(xδ)).

By taking δ = 1/j, j ∈ N, we construct a sequence (xj)j∈N ⊂ Ω such that

µ(Bρ(xj)\B1/j(xj)) < µ(B1/j(xj)).

By the compactness of Ω, up to subsequences we may assume xj → x0. If we set

εj := d(xj , x0),

by the inclusions Bρ−εj(x0)\B1/j+εj(x0) ⊂ Bρ(xj)\B1/j(xj) and B1/j(xj) ⊂ B1/j+εj(x0)
we would find that

µ(Bρ−εj(x0)\B1/j+εj(x0)) < µ(B1/j+εj(x0)).

Passing to the limit as j → +∞, we obtain

µ(Bρ(x0)\{x0}) < µ({x0}).

Since µ is non-atomic, we get a contradiction. The claim follows.
Let now E ⊂ Ω ∩ Bδ(x0) be a set with finite perimeter; then

µ(E) = µ(E ∩Bδ(x0)) = µ(E ∩Bρ(x0))

= min{µ(E ∩Bρ(x0)), µ(Bρ(x0)\E)}.
(16)
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If we consider the estimate

‖u∗‖L1(∂Ω) ≤ c‖u‖BV (Ω)

with u = 1E we get, by the definition of the BV -norm,

(17) ‖1∗
E‖L1(∂Ω) ≤ c (µ(E) + ‖D1E‖(Ω)) .

Recall that under our hypotheses, E has finite perimeter also in X by Remark 3.4;
therefore, we also have the estimate

(18) ‖D1E‖(Ω
c) = ‖D1E‖(∂Ω) ≤ cDS

h(∂∗Ω ∩ ∂∗E) = cD‖1
∗
E‖L1(∂Ω).

Applying the Poincaré inequality for BV functions, we obtain
ˆ

Bρ(x0)

∣

∣

∣
1E − (1E)Bρ(x0)

∣

∣

∣
dµ =

ˆ

Bρ(x0)

∣

∣

∣

∣

1E −
µ (E ∩ Bρ (x0))

µ (Bρ (x0))

∣

∣

∣

∣

dµ

≤ cρ ‖D1E‖ (Bλρ (x0)) .

(19)

Since Bρ (x0) = E ∪ (Bρ (x0) \E), computing the integral in (19) gives

µ (E ∩Bρ (x0))

(

1−
µ (E ∩Bρ (x0))

µ (Bρ (x0))

)

+
µ (E ∩Bρ (x0))

µ (Bρ (x0))
µ (Bρ (x0) \E)

=
µ (E ∩Bρ (x0))

µ (Bρ (x0))
µ (Bρ (x0) \E) +

µ (E ∩ Bρ (x0))

µ (Bρ (x0))
µ (Bρ (x0) \E)

= 2
µ (E ∩Bρ (x0))

µ (Bρ (x0))
µ (Bρ (x0) \E)

= 2µ (E ∩Bρ (x0))

(

1−
µ (Bρ (x0) ∩ E)

µ (Bρ (x0))

)

.

As µ (Bδ (x0)) ≤ µ (Bρ (x0) \Bδ (x0)), by (16) and again by the Poincaré inequality
we get

µ (E ∩Bρ (x0)) ≤ 2µ (E ∩Bρ (x0))

(

1−
µ (Bρ (x0) ∩ E)

µ (Bρ (x0))

)

≤ cρ ‖D1E‖ (Bλρ (x0)) = cρ ‖D1E‖ (X)

= cρ (‖D1E‖ (Ω) + ‖D1E‖ (∂Ω))

= cρ (‖D1E‖ (Ω) + ‖D1E‖ (Ω
c)) ,

which, by the estimate ‖D1E‖ (Ω
c) ≤ cD (‖D1E‖ (Ω) + µ(E)) previously found by

combining (17) and (18), entails

‖D1E‖ (Ω
c) ≤ cD (‖D1E‖ (Ω) + µ (E ∩Bρ (x0)))

≤ cD (‖D1E‖ (Ω) + cρ ‖D1E‖ (Ω) + cρ ‖D1E‖ (Ω
c))

= cD (1 + cρ) ‖D1E‖ (Ω) + cD · cρ ‖D1E‖ (Ω
c) ,

whence

‖D1E‖ (Ω
c) ≤ cD

1 + cρ

1− cD · cρ
‖D1E‖ (Ω) = c′ ‖D1E‖ (Ω),

where we of course require ρ < 1
cD·c

.
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Sufficiency. Assume that (15) holds for any finite perimeter set E ⊂ Ω with
diameter less then δ. This in particular implies that, by Remark 2.2,

Sh(∂∗E ∩ ∂∗Ω) ≤
1

α
‖D1E‖ (∂

∗Ω) =
1

α
‖D1E‖(∂Ω)

=
1

α
‖D1E‖ (Ω

c) ≤
c′

α
‖D1E‖(Ω).

Let us fix then u ∈ BV (X) and assume u ≥ 0; by Lemma 3.2 and Cavalieri’s
Principle, we obtain that

‖u∗‖L1(∂Ω,Sh) =

ˆ ∞

0

Sh({x ∈ ∂∗Ω: u∗(x) ≥ t}) dt =

ˆ ∞

0

Sh(∂∗Et ∩ ∂∗Ω) dt.

Take t ∈ [0,∞) such that Et has finite perimeter in Ω and set E = Et. We fix r > 0
such that 2r < δ and consider a covering of X made of balls of the type Br(xi),
i ∈ I ⊂ N, such that B2r(xi) have overlapping bounded by co > 0. We also select
ri ∈ (r, 2r) such that mE(x, ·) is differentiable at ri and

m′
E(x, ri) ≤

2mE(x, 2r)

r
.

This is possible since ρ 7→ mE(x, ρ) is monotone non decreasing and
ˆ 2r

r

m′
E(x, ρ) dρ ≤ mE(x, 2r)−mE(x, r) ≤ mE(x, 2r),

so that
∣

∣

∣

∣

{

t ∈ (r, 2r) : m′
E(x, t) > 2

mE(x, 2r)

r

}
∣

∣

∣

∣

<
r

2
.

We shall denote Bi := Bri(xi). Notice that for any measurable set E, we have
∂∗E ∩ Bi ⊂ ∂∗(E ∩ Bi). Indeed, for any x ∈ E ∩ Bi, there exists ρ0 > 0 such that
Bρ(x) ⊂ Bi for any ρ < ρ0, hence

µ(E ∩Bi ∩ Bρ(x))

µ(Bρ(x))
=

µ(E ∩Bρ(x))

µ(Bρ(x))
.

Therefore, we have

Sh(∂∗E ∩ ∂∗Ω) ≤
∑

i∈I

Sh(∂∗E ∩ ∂∗Ω ∩ Bi) ≤
∑

i∈I

Sh(∂∗(E ∩ Bi) ∩ ∂∗Ω).

From this, using (10), Remark 2.2 and the fact that ri < δ, by assumption,

Sh(∂∗E ∩ ∂∗Ω) ≤
∑

i∈I

Sh(∂∗(E ∩ Bi) ∩ ∂∗Ω) ≤
1

α

∑

i∈I

‖D1E∩Bi
‖ (∂∗Ω)

=
1

α

∑

i∈I

‖D1E∩Bi
‖ (Ωc) ≤

c′

α

∑

i∈I

‖D1E∩Bi
‖(Ω)

≤
c′

α

∑

i∈I

(

m′
E(xi, ri) + ‖D1E‖(Ω ∩ Bri)

)

≤
c′

α

∑

i∈I

(

mE(xi, 2r)

r
+ ‖D1E‖(Ω ∩B2r(xi))

)

≤
c′co
α

(µ(E ∩ Ω) + ‖D1E‖(Ω)) .
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So, recalling that E = Et, we have just obtained the estimate

Sh(∂∗Et ∩ ∂∗Ω) ≤
c′co
α

(µ(Et ∩ Ω) + ‖D1Et
‖(Ω)) .

Integrating this inequality and using Coarea formula, we conclude that

‖u∗‖L1(∂Ω,Sh) ≤
c′co
α

(

‖u‖L1(Ω) + ‖Du‖(Ω)
)

.

The general case u ∈ BV (Ω) can be done by splitting u = u+ − u− into its positive
and negative part. �

It is worth observing that the condition δ < ρ < 1
cD·c

found in the proof of The-
orem 3.9 tells us that the nature of this result is very local, as it holds at sufficiently
small scales only.

We end this discussion by considering the issue of the extendability of a BV
function by a constant in terms of its rough trace. For this purpose, we first re-
adapt the main arguments of [32] and then discuss an alternative result for the
zero-extension of a function u ∈ BV (Ω) to the whole of X.

Definition 3.3. Let Ω ⊂ X be an open set and let u ∈ BV (Ω). We define its
β-extension to X, β ∈ R, by setting

uβ(x) :=

{

u(x), x ∈ Ω,

β, x ∈ Ωc.

We then have the following:

Lemma 3.10. Assume Ω ⊂ X is an open set such that ‖D1Ω‖(X) < ∞ and
Sh (∂Ω\∂∗Ω) = 0. Let β ∈ R and u ∈ BV (Ω). Then, one has

‖Duβ‖(X) ≤ ‖Du‖(Ω) + cD‖(u− β)∗‖L1(∂Ω,Sh).

Proof. By the Coarea Formula, one obviously has

‖Du‖(Ω) =

ˆ

R

‖D1Et
‖(Ω) dt.

Since any two functions differing by an additive constant have the same total varia-
tion, the following holds:

(20) ‖Du‖(Ω) = ‖D(u− β)‖(Ω) =

ˆ

R

‖D1{u−β≥t}‖(Ω) dt.

Therefore, when computing the total variation of uβ on X one is obviously entitled
to write

‖Duβ‖(X) =

ˆ

R

‖D1{uβ−β≥t}‖(X) dt

=

ˆ

R

‖D1{uβ−β≥t}‖(Ω) dt+

ˆ

R

‖D1{uβ−β≥t}‖(Ω
c) dt

=

ˆ

R

‖D1{u−β≥t}‖(Ω)dt +

ˆ

R

‖D1{uβ−β≥t}‖(∂Ω) dt

= ‖Du‖(Ω) +

ˆ

R

‖D1{u−β≥t}‖(∂Ω )dt,

(21)

where we made use of (20) together with the facts that uβ − β = u − β on Ω and
that the total variation of uβ at the boundary ∂Ω takes into account the “jump” of u
therein (namely, how uβ = u and uβ = β “join” at ∂Ω).
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Let us then estimate the second term at the rightmost side of (21); by Remark 2.2
and Lemma 3.2 we obtain
ˆ

R

‖D1{u−β≥t}‖(∂Ω) dt =

ˆ 0

−∞

‖D1{u−β≥t}‖(∂Ω)dt +

ˆ +∞

0

‖D1{u−β}‖(∂Ω) dt

≤ cD

(
ˆ 0

−∞

Sh({x ∈ ∂Ω; (u− β)∗(x) ≤ t}) dt

+

ˆ +∞

0

Sh({x ∈ ∂Ω; (u− β)∗(x) ≥ t}) dt

)

= cD

ˆ

∂Ω

|(u− β)∗|dSh = cD‖(u− β)∗‖L1(∂Ω,Sh). �

Remark 3.11. It is clear that Lemma 3.10 gives an upper bound for ‖Duβ‖(X),
but without any further assumptions it does not allow us to conclude that uβ ∈
BV (X). However, if we reformulate the statement in the hypotheses of Theorem 3.9,
then it turns out that the zero-extension of u ∈ BV (Ω) to the whole of X, u0, has BV
norm ‖u0‖BV (X) bounded by the BV norm of u in Ω. In other words, u0 ∈ BV (X).

Actually, by assuming the function u to be also essentially bounded, it is possible
to get u0 ∈ BV (X) under weaker hypotheses:

Proposition 3.12. Assume Ω ⊂ X is an open set such that ‖D1Ω‖(X) < ∞
and Sh (∂Ω\∂∗Ω) = 0; let E ⊂ Ω be such that ‖D1E‖(Ω) < ∞. Then, one has
‖D1E‖(X) < ∞. Under the same assumptions, for any u ∈ BV ∩ L∞(Ω) one has
u0 ∈ BV (X).

Proof. The first part of the statement can be actually seen as a particular case
of [26, Proposition 6.3], so we refer to our previous Remark 3.4 for more comments.

Let us take u ∈ BV ∩ L∞(Ω) and let us start by first assuming u ≥ 0. Then,
since for any t > 0

Ēt := {u0 ≥ t} = {x ∈ Ω: u(x) ≥ t} = Et,

we obtain that

‖Du0‖ (X) =

ˆ ∞

0

‖D1{u0≥t}‖(X) dt =

ˆ +∞

0

‖D1Et
‖ (X) dt

≤

ˆ +∞

0

[

‖D1Et
‖ (Ω) + cD Sh

(

∂∗Ω ∩ ∂∗Ēt

)]

dt.

Since u ∈ L∞(Ω), we can consider a Borel representative of u such that for any
t > ‖u‖∞, Et = ∅; then we obtain the estimate

‖Du0‖(X) ≤ ‖Du‖(Ω) + cDS
h(∂∗Ω)‖u‖∞,

whence u0 ∈ BV (X).
The general case u ∈ BV ∩ L∞(Ω) follows by considering the decomposition

u = u+ − u− into its positive and negative part. �

Remark 3.13. We recall that in [27, Lemma 3.2] it was proved that for any
function u ∈ BV (X) its approximate limits satisfy

−∞ < u∧(x) ≤ u∨(x) < ∞

for Sh-almost every x ∈ X.
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Consequently, if we assume the hypotheses of Proposition 3.12 to be satisfied, or
if we re-state Lemma 3.10 including the hypotheses of Theorem 3.9, we can conclude
that

−∞ < u0
∧(x) ≤ u0

∨(x) < ∞

for Sh-almost every x ∈ X.

3.1. An integration by parts formula for BV functions. Summarizing
the previous results, we can state that

‖D1Ω‖(X) < ∞ and Sh (∂Ω\∂∗Ω) = 0

are the underlying conditions for the domain Ω which, thanks to Theorem 3.9, ensure
that the rough trace u∗(x) of any function u ∈ BV (Ω) is in L1

(

∂Ω,Sh
)

.
This conclusion motivates us, as already done in [11], to proceed towards an

integration by parts formula for functions of bounded variation by means of a suitable
class of vector fields.

To this aim, we shall refer to the characterization of BV functions given in [22] by
means of Lipschitz derivations: naïvely, linear operators acting on Lipschitz functions
and satisfying a Leibniz rule. This class of objects was previously introduced, in more
generality, by N. Weaver in his seminal paper [36]. In [22], Lipschitz derivations
served as the ideal tool to define a BV space via an integration by parts formula and
to recover a familiar representation formula for the total variation of a BV function
on any domain Ω ⊂ X. Moreover, as shown in [22, Theorem 7.3.7], this version of
the BV space turns out to be equivalent to the “relaxed” one of [33] that we are
using in the present work. We also observe that this equivalence is independent
of structural assumptions on the ambient space, as [22] operated in the context of
a complete, separable metric measure space (X, d, µ) endowed with a non-negative
Radon measure µ giving finite mass to bounded sets. Here, however, for our purposes
we continue to assume that (X, d, µ) is a doubling metric measure space supporting
a weak (1, 1)-Poincaré inequality.

We now recall, after [22], the basic notions and properties regarding Lipschitz
derivations. We shall also present the construction of the respective BV space and
discuss the essential properties of this characterization, including the equivalence
with the definition via relaxation. Observe that, while in [22] Lipschitz derivations
are taken to act on Lipschitz functions with bounded support, Lipbs(X), here we shall
define them on the space Lipc(X) of compactly supported Lipschitz maps, since in
our case the ambient space is proper and then the two classes of functions coincide.
The symbol L0(X) will be used to denote the space of µ-measurable functions (with
no summability requirements), while M(X) will indicate the space of finite, signed
Radon measures on X.

Definition 3.4. By a Lipschitz derivation we shall intend any linear map δ :
Lipc(X) → L0(X) satisfying the following:

(1) Leibniz rule. For any f, g ∈ Lipc(X), there holds δ(fg) = δ(f)g + fδ(g).
(2) Weak locality. There exists some function g ∈ L0(X) such that, for all f ∈

Lipc(X),

(22) |δ(f)| ≤ g · Lipa(f) µ-almost everywhere.

The smallest function g satisfying (22) will be denoted by |δ|.
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In the weak locality condition, Lipa(f) denotes the asymptotic Lipschitz constant,
defined as

Lipa(f)(x) := lim
ρ→0

Lip(f, Bρ(x)),

for any ball Bρ(x) ⊂ X, where, for any set E ⊂ X, we define

Lip(f, E) := sup
x,y∈E; x 6=y

|f(x)− f(y)|

d(x, y)
.

The set of all Lipschitz derivations in X will be denoted by Der(X). Moreover, we
shall write δ ∈ Lp(X) to intend |δ| ∈ Lp(X).

Together with the above notion of derivations, one can define the divergence by
imposing an integration by parts formula.

Definition 3.5. Let δ ∈ L1
loc(X). We define the divergence of δ, written div(δ),

as the linear operator such that

Lipc(X) ∋ f 7→ −

ˆ

X

δ(f) dµ.

We shall write div(δ) ∈ Lp(X), p ∈ [1,∞], when this operator admits an integral
representation via an Lp map: div(δ) = h ∈ Lp(X) if

−

ˆ

X

δ(f) dµ =

ˆ

X

fh dµ =

ˆ

X

f div(δ) dµ.

We observe that div(δ) ∈ Lp(X) implies its uniqueness. Together with Der(X), for
p, q ∈ [1,∞] let us also consider the spaces

Der
p(X) :=

{

δ ∈ Der(X) : δ ∈ Lp(X)
}

,

and

Der
p,q(X) :=

{

δ ∈ Der(X) : δ ∈ Lp(X), div(δ) ∈ Lq(X)
}

.

In particular, we shall concentrate on Derb(X) := Der
∞,∞(X), namely the subspace

of bounded Lipschitz derivations which will be used in the definition of BVDer below.

Remark 3.14. We observe that by [22, Lemma 7.1.2], for any δ ∈ Der(X)
and any u ∈ L0(X) there holds |uδ| = |u| · |δ|. In particular, if u ∈ Lipb(X) and
δ ∈ Der

p,q(X), p, q ∈ [1,∞], then uδ ∈ Der(X) is such that

div(uδ) = udiv(δ) + δ(u) and uδ ∈ Der
p,r(X),

with r = max{p, q}.

We can now define the space of BV functions by means of Lipschitz derivations.

Definition 3.6. Let u ∈ L1(X). We say that u ∈ BVDer(X) if there exists a
linear and continuous operator Lu : Derb(X) → M(X) such that

(23)

ˆ

X

dLu(δ) = −

ˆ

X

u div(δ) dµ ∀ δ ∈ Derb(X),

such that Lu(hδ) = hLu(δ) for every h ∈ Lipb(X) and every δ ∈ Derb(X).

Remark 3.15. We observe that Definition 3.6 is well posed, in the sense that
it does not depend on the particular map Lu realizing (23). To see this, for u ∈
BVDer(X) and δ ∈ Derb(X), let Lu and L̃u be any two maps as in the definition
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of BVDer(X). Then, for any h ∈ Lipb(X), apply Remark 3.14 to find that hδ ∈
Derb(X), so by (23) and by the Lipschitz-linearity we get

ˆ

X

h dLu(δ) =

ˆ

X

dLu(hδ) = −

ˆ

X

u div(hδ) dµ,

and the same holds with L̃u in place of Lu. In particular,
ˆ

X

h dLu(δ) =

ˆ

X

h dL̃u(δ),

so by the arbitrariness of h ∈ Lipb(X) we get Lu(δ) = L̃u(δ).
With a slight abuse of notation, for u ∈ BVDer(X) this common value will be

denoted as du(δ).

Proposition 3.16. [22, Theorem 7.3.3] Let u ∈ BVDer(X). Then, there exists
a finite, non-negative Radon measure ν on X such that, for every Borel set B ⊂ X,
one has

(24)

ˆ

B

du(δ) ≤

ˆ

B

|δ|∗ dν,

where |δ|∗ denotes the upper semicontinuous envelope of |δ|. The smallest mea-
sure satisfying (24) will be denoted by ‖du(δ)‖, the weak total variation of du(δ).
Moreover,

‖du(δ)‖(X) = sup
{

|du(δ)(X)| : δ ∈ Derb(X), |δ| ≤ 1
}

.

As one may expect, this definition of BV via integration by parts allows for a
familiar representation formula for the weak total variation:

Theorem 3.17. [22, Theorem 7.3.4] Let u ∈ BVDer(X). Then, for every open
set Ω ⊂ X,

‖du(δ)‖(Ω) = sup

{
ˆ

Ω

f div(δ) dµ : δ ∈ Derb(X), |δ| ≤ 1, supp(δ) ⋐ Ω

}

.

The set of bounded Lipschitz derivations δ ∈ Derb(X) such that supp(δ) ⋐ Ω
will be denoted by Derb(Ω).

It turns out that the definition of BVDer via Lipschitz derivations produces the
same BV space introduced by [33].

Theorem 3.18. [22, Theorem 7.3.7] One has the equivalence

BV (X) = BVDer(X).

In particular, the respective notions of total variation coincide, so for every u ∈
BV (X), there holds

(25) ‖Du‖(X) = ‖du(δ)‖(X).

for all δ ∈ Derb(X) with |δ| ≤ 1.

Of course, Theorem 3.18 and in particular (25) continue to hold true—with the
obvious readaptations—if we replace X with any open set Ω ⊂ X.

Remark 3.19. Let u ∈ BV (Ω), Ω ⊂ X open set. We want to discuss some easy
properties of the measure du(δ), δ ∈ Derb(Ω).

(1) We first observe that Proposition 3.16 combined with Theorems 3.17–3.18
immediately yields the absolute continuity of du(δ) with respect to ‖Du‖. Therefore,
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by the Radon–Nikodým Theorem there exists a density F δ ∈ L1(‖Du‖) such that
du(δ) = F δ‖Du‖.

Let now E ⊂ Ω be such that ‖D1E‖(Ω) < ∞. Then, an application of Theo-
rem 2.1 gives

d1E(δ)(Ω
c) =

ˆ

Ωc

d1E(δ) =

ˆ

Ωc

F δ

E d‖D1E‖

=

ˆ

Ωc ∩ ∂∗E

F δ

E θE dSh =

ˆ

∂Ω∩∂∗E

F δ

E θE dSh

=

ˆ

∂Ω

F δ

E d‖D1E‖ =

ˆ

∂Ω

d1E(δ) = d1E(δ)(∂Ω),

where we wrote F δ

E to keep into account the fact that, a priori, this density might
depend also on the set where we localize.

(2) Let B ⊂ Ω be a Borel set. By combining Cavalieri’s Principle with Fubini’s
Theorem, we find

du(δ)(B) =

ˆ

B

du(δ) = −

ˆ

B

u div(δ) dµ = −

ˆ

B

(
ˆ +∞

−∞

1Et
dt

)

div(δ) dµ

= −

ˆ +∞

−∞

ˆ

B

1Et
div(δ) dµ dt =

ˆ +∞

−∞

d1Et
(δ)(B) dt.

In particular, when B = Ω, the above clearly becomes

du(δ)(Ω) =

ˆ +∞

−∞

d1Et
(δ)(Ω) dt.

Theorem 3.20. Let Ω ⊂ X be a bounded open set such that ‖D1Ω‖(X) < ∞
and Sh(∂Ω\∂∗Ω) = 0. Then, for every u ∈ BV (Ω) and every δ ∈ Derb(X), one has

(26)

ˆ

Ω

du(δ) +

ˆ

Ω

u div(δ) dµ = −

ˆ

∂Ω

Θδ

Et
(u∗(x)) dSh(x)

for some function Θδ

Et
∈ L1(∂Ω,Sh), where, as usual, Et := {x ∈ Ω; u(x) ≥ t}.

Proof. Let us first start with u = 1E, where E ⊂ Ω is a Caccioppoli set in
Ω. Then, writing Ω = X\Ωc, one gets, by the property (1) in Remark 3.19 and by
noticing that the hypotheses grant that 1E ∈ BV (X) by Remark 3.4,

ˆ

Ω

d1E(δ) =

ˆ

X

d1E(δ)−

ˆ

Ωc

d1E(δ) = −

ˆ

X

1E div(δ) dµ−

ˆ

∂Ω

d1E(δ).(27)

Observe that the second integral at the rightmost side in (27) is actually on ∂Ω∩∂∗E
since, by (1) in Remark 3.19, d1E(δ) ≪ ‖D1E‖ and the latter is concentrated on
∂∗E by Theorem 2.1.

Now, assume 0 ≤ u ∈ BV (Ω) for simplicity; the proof for a general function
u ∈ BV (Ω) will follow by splitting u into its positive and negative parts. Since
u ∈ BV (Ω), we can use both the properties (1)–(2) in Remark 3.19 and Theorem 2.1
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to rewrite (27) as
ˆ

Ω

du(δ) =

ˆ +∞

0

d1Et
(δ)(Ω) dt =

ˆ +∞

0

dt

ˆ

Ω

d1Et
(δ)

= −

ˆ +∞

0

dt

(
ˆ

X

1Et
div(δ) dµ+

ˆ

∂Ω

d1Et
(δ)

)

= −

ˆ +∞

0

dt

(
ˆ

Ω

1Et
div(δ) dµ+

ˆ

∂∗Ω∩∂∗Et

F δ

Et
θEt

dSh

)

= −

ˆ

Ω

u div(δ) dµ−

ˆ +∞

0

dt

(
ˆ

∂∗Ω∩∂∗Et

F δ

Et
θEt

dSh

)

= −

ˆ

Ω

u div(δ) dµ−

ˆ +∞

0

dt

(
ˆ

{x∈∂∗Ω; u∗(x)≥t}

F δ

Et
θEt

dSh

)

= −

ˆ

Ω

u div(δ) dµ−

ˆ

∂Ω

Θδ

Et
(u∗(x)) dSh,

where we exploited the fact that Sh(∂∗Ω ∩ ∂∗Et) = Sh({x ∈ ∂∗Ω; u∗(x) ≥ t}) by
Lemma 3.2 and we defined

Θδ

Et
(u∗(x)) :=

ˆ u∗(x)

0

F δ

Et
θEt

dt.

Therefore, (26) follows. �

Remark 3.21. Let us add some comments on Theorem 3.20.
(1) We observe that the property (1) in Remark 3.19 obviously holds for d1Ω(δ)

as well, so that, besides the localization on ∂∗E

d1E(δ) = F δ

E θE Sh ∂∗E

for d1E(δ), always by virtue of Theorem 2.1 there holds an analogous localization
for d1Ω(δ): that is,

d1Ω(δ) = F δ

Ω θΩ Sh ∂∗Ω.

In the same spirit of Definition 2.2, we shall say that (X, d, µ) is strongly local if,
together with the condition θE = θΩ Sh-almost everywhere on ∂∗Ω ∩ ∂∗E, one also
has

F δ

E = F δ

Ω Sh-almost everywhere on ∂∗Ω ∩ ∂∗E.

(2) We can apply Theorem 3.20 to the special case where Ω is a regular domain
in the sense of [11]: that is, an open set of finite perimeter coinciding with the upper
inner Minkowski content of its boundary,

‖D1Ω‖(X) = M
∗
in(∂Ω) := lim sup

t→0

µ (Ω\Ωt)

t
.

Here, by Ωt we intend the super-level sets of the distance function:

Ωt := {x ∈ Ω: dist (x,Ωc) ≥ t} ,

t > 0. Thus said, if we also require that Sh (∂Ω\∂∗Ω) = 0, we can show that for
every u ∈ BV (Ω) there exists a trace operator

T: BV (Ω) → L1 (∂Ω, ‖D1Ω‖)
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such that, for every δ ∈ Derb(X), one has
ˆ

Ω

du(δ) +

ˆ

Ω

u div(δ) dµ = −

ˆ

∂Ω

u∗(x) (δ · ν)−∂Ω d ‖D1Ω‖

:=
〈

Tu, (δ · ν)−∂Ω
〉

.

Here, the map (δ·ν−
∂Ω) ∈ L1(∂Ω, ‖D1Ω‖) is the inner normal trace of δ on ∂Ω. Indeed,

in this case we can use the defining sequence (ϕε)ε>0 ⊂ Lipc(Ω) of the regular domain
Ω, [11, Remark 7.1.5], and we are entitled to repeat the proof of [11, Theorem 7.1.7].
As a concrete example of such sets, we observe that for all x ∈ X and for almost-every
ρ > 0, any ball Bρ(x) is a regular domain, [11, 12].

We refer also to [12, Section 4] for refined versions of the results of [11] in terms
of essentially bounded divergence-measure vector fields and of an alternative notion
of BV functions defined via the differential machinery of [23].

4. Trace comparison

In this last section we compare the foregoing discussion on the rough trace with
[28], where the authors investigate the properties of the trace operator for BV func-
tions by means of the more classical Lebesgue-points characterization.

We start by summarizing the salient definitions and results of [28] which will be
of relevance to us.

Definition 4.1. Let Ω ⊂ X be an open set and let u be a µ-measurable function
on Ω. Then, we shall say that a function Tu : ∂Ω → R is a trace of u if for Sh-almost
every x ∈ ∂Ω one has

lim
ρ→0+

−

ˆ

Ω∩Bρ(x)

|u− Tu(x)| dµ = 0.

The zero extension of a measure µ from Ω to Ω, written as µ̄, is given by µ̄(A) :=

µ(A ∩ Ω) whenever A ⊂ Ω; in a similar fashion, we shall write S
h

to intend the
spherical Hausdorff measure on ∂Ω corresponding to the measure µ̄ on Ω.

Accordingly, for any measurable function u in Ω, its zero-extension to Ω will be
written as ū; ū∨ and ū∧ will therefore denote the approximate limits of ū computed
in terms of the extended measure µ̄.

Proposition 4.1. [28, Proposition 3.3] Let Ω ⊂ X be a bounded open set sup-
porting a (1, 1)-Poincaré inequality and assume that µ is doubling on Ω. Let Ω be
equipped with the extended measure µ̄. If u ∈ BV (Ω), then its zero-extension ū to
Ω is such that ‖ū‖BV (Ω) = ‖u‖BV (Ω), whence

‖Dū‖ (∂Ω) = 0.

Definition 4.2. We say that an open set Ω satisfies a measure-density condition

if there exists a constant C > 0 such that

(28) µ (Bρ(x) ∩ Ω) ≥ Cµ (Bρ(x))

for Sh-almost every x ∈ ∂Ω and for every ρ ∈ (0, diam(Ω)).

Theorem 4.2. [28, Theorem 3.4] Let Ω ⊂ X be a bounded open set that sup-
ports a (1, 1)-Poincaré inequality, and assume that µ is doubling on Ω. Then, there
exist q > 1 depending only on the doubling constant in Ω and a linear trace operator
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T on BV (Ω) such that, given u ∈ BV (Ω), for S
h
-almost every x ∈ ∂Ω we have

(29) lim
ρ→0+

−

ˆ

Ω∩Bρ(x)

|u− Tu(x)|
q

q−1 dµ = 0.

If Ω also satisfies the measure-density condition (28), the above holds for Sh-almost
every x ∈ ∂Ω.

Remark 4.3. In the proof of [28, Theorem 3.4], the authors used the condition

‖Dū‖(∂Ω) = 0 found in Proposition [28, Proposition 3.3] to infer that S
h
(Sū ∩ ∂Ω)

= 0; this of course arises from the decomposition of the total variation measure given
in Remark 2.3 and entails that the equality

ū∧(x) = ū∨(x)

holds for S
h
-almost every x ∈ ∂Ω.

Always in the proof of [28, Theorem 3.4], (29) was actually found to hold in the
form

lim
ρ→0+

−

ˆ

Ω∩Bρ(x)

|u− ū∧(x)|
q

q−1 dµ = 0.

Then, one sets Tu(x) = ū∧(x), which in turn equals ū∨(x) for S
h
-almost every

x ∈ ∂Ω by the above considerations. In particular, if Ω satisfies the measure-density
condition (28), these latter equalities are fulfilled for Sh-almost every x ∈ ∂Ω as well.

Next, we prove that the rough trace of a BV function is bounded by the approx-
imate limits of its zero-extension to Ω, and that Tu = u∗ on ∂Ω.

Theorem 4.4. Let Ω ⊂ X be an open set and let u ∈ BV (Ω). Then, for every
x ∈ ∂∗Ω such that u∗(x) > −∞, we have that

ū∧(x) ≤ u∗(x) ≤ ū∨(x).

In particular, if Ω is a bounded open set supporting a (1,1)-Poincaré inequality and
µ is doubling on Ω, then

Tu(x) = ū∧(x) = ū∨(x) = u∗(x)

for S
h
-almost every x ∈ ∂Ω. If in addition the measure-density condition (28) is

satisfied, then the above equality holds Sh-almost everywhere on ∂Ω.
Finally, assume also that ‖D1Ω‖(X) < ∞ and Sh(∂Ω\∂∗Ω) = 0. Then, one has

‖Tu‖L1(∂Ω,Sh) ≤ c‖u‖BV (Ω)

with a constant c > 0 independent of u, if and only if there exists δ > 0 such that
for every E ⊂ Ω with diam(E) ≤ δ and ‖D1E‖(Ω) < ∞ there holds

‖D1E‖(Ω
c) ≤ c′‖D1E‖(Ω)

with a constant c′ > 0 independent of E.

Proof. Recall that, by Definition 3.1, u∗(x) is the supremum of those t ∈ R for
which ‖D1Et

‖(X) < ∞ and x ∈ ∂∗Et, which explains the requirement u∗(x) > −∞
in our statement.

We have that

ū∨(x) = inf

{

t ∈ R : lim
ρ→0

µ̄({ū > t} ∩ Bρ(x))

µ̄(Bρ(x))
= 0

}

.
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Here, the balls have to be understood as balls on the metric space Ω; then, from the
definition of µ̄ we get

µ̄({ū > t} ∩Bρ(x))

µ̄(Bρ(x))
=

µ̄({ū > t} ∩ Bρ(x) ∩ Ω)

µ̄(Bρ(x) ∩ Ω)
=

µ({u > t} ∩ Bρ(x))

µ(Bρ(x) ∩ Ω)
,

where we have also taken into account that {u > t} ⊂ Ω.
If ū∨(x) = +∞ there is nothing to prove; otherwise, if t > ū∨(x) and x ∈ ∂∗Ω

we obtain that

lim sup
ρ→0

µ({u > t} ∩ Bρ(x))

µ(Bρ(x))
= lim sup

ρ→0

µ({u > t} ∩Bρ(x))

µ(Bρ(x) ∩ Ω)
·
µ(Bρ(x) ∩ Ω)

µ(Bρ(x))

≤ lim
ρ→0

µ({u > t} ∩Bρ(x))

µ(Bρ(x) ∩ Ω)
= 0.

As a consequence, noticing that for t > s > ū∨(x), {u > t} ⊆ {u ≥ t} ⊆ {u > s},

we deduce x ∈ E
(0)
t for any t > ū∨(x) and then x 6∈ ∂∗Et. Hence, u∗(x) ≤ t for any

t > ū∨(x), and so u∗(x) ≤ ū∨(x).
In the same way, if ū∧(x) = −∞ there is nothing to prove, otherwise if t < ū∧(x)

and x ∈ ∂∗Ω, we get that

lim sup
ρ→0

µ({u < t} ∩Bρ(x))

µ(Bρ(x))
= 0,

and then Θ∗
µ({u < t}, x) = 0 and then x ∈ E

(1)
t , i.e. x 6∈ ∂∗Et for any t < ū∧(x). Since

u∗(x) > −∞, we have that x ∈ ∂∗Et for some t ∈ R, and the previous computation
implies that t ≥ ū∧(x). So we can conclude that ū∧(x) ≤ u∗(x).

The other assertions in the Theorem follow from Theorem 3.9, Proposition 4.1
and Theorem 4.2. �

Remark 4.5. (Comments and open problems) In conclusion, our discussion al-
lowed us to find the conditions to impose on a domain Ω ⊂ X in order to ensure that
the “classical” trace Tu and the rough trace u∗ of a BV function coincide Sh-almost
everywhere on the boundary of such domain.

Actually, our results also address the L1-summability of the trace Tu; indeed,
as we can see from Theorem 4.4, if we introduce the additional assumption that for
some δ > 0 and for any set E ⊂ Ω with finite perimeter in Ω and diam(E) ≤ δ it
holds

‖D1E‖(Ω
c) ≤ c‖D1E‖(Ω)

for some constant c > 0 independent of E, which is namely the fundamental condition
(15) of Theorem 3.9, then we get that Tu ∈ L1(∂Ω,Sh) as well.

In [28, Section 5], the authors tackle the issue of the summability of the trace
Tu by working again in terms of the measure-density condition (28) and assuming
an additional “surface-density” condition for ∂Ω, namely that there is a constant
c = c∂Ω > 0 such that

Sh(Bρ(x) ∩ ∂Ω) ≤ c
µ(Bρ(x))

ρ

for any x ∈ ∂Ω and any ρ ∈ (0, 2diam(Ω)).
Thus said, one question arises naturally: how does the requirement (15) in The-

orem 3.9 relate with the measure-density condition (28) and with the surface-density
condition above?
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Answering to such a question would be of general interest as it would provide us
with a better understanding of the domains where the “nice” properties of traces of
BV functions are satisfied, and therefore we would have a more consistent and more
comprehensive theory of traces of BV functions.

Acknowledgements. The authors wish to thank the referees for their useful com-
ments and suggestions on the preliminary version of the manuscript.
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