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Abstract. In this paper, we establish several characterizations for quasihyperbolic mappings

in Banach spaces. As an application, we provide a partial solution to a problem left open by Väisälä

regarding the local properties of quasihyperbolic mappings.

1. Introduction and main results

The quasihyperbolic metric (briefly, QH metric) was introduced by Gehring and
his students Palka and Osgood in the 1970’s in the setting of Euclidean spaces R

n

(n ≥ 2) [5, 6]. Since its first appearance, the quasihyperbolic metric has become an
important tool in geometric function theory of Euclidean spaces.

With the aid of the quasihyperbolic metric, from late 1980’s onwards, Väisälä
developed the theory of (dimension) free quasiconformal mappings in Banach spaces
[12, 13, 14, 15, 16]. The main advantage of this approach avoids to make use of volume
integrals and conformal modulus, which allows one to study the quasiconformality
of mappings in Banach spaces with dimension infinity and metric spaces without
volume measures. This research has recently attracted substantial interest in the
research community (see e.g., [3, 7, 8, 10, 17] and reference therein).

In this paper, we will investigate a problem raised by Väisälä concerning the
quasihyperbolic mappings in the free quasiconformal mapping theory ([16]). We first
recall the definition of the quasihyperbolic mappings. In the following, we always
assume that E and E ′ are real Banach spaces with dimension at least 2.

Definition 1.1. Let D ( E and D′ ( E ′ be domains (open and connected), and
let f : D → D′ be a homeomorphism. We say that f is M-quasihyperbolic (or briefly

M-QH) if for all x and y in D,

1

M
kD(x, y) ≤ kD′(f(x), f(y)) ≤ MkD(x, y),

where kD and kD′ are the quasihyperbolic metrics of D and D′, respectively.

In geometric function theory, the class of quasihyperbolic mappings is closely
related to the classes of conformal and quasiconformal mappings. It turns out that
the quasihyperbolic mappings are useful in the study of quasiconformal extension of
R

n. For instance, Beurling and Ahlfors constructed a quasisymmetric extension from
R

1 to the half plane, which is actually quasihyperbolic [2]. In R
n, when n 6= 4, Tukia

and Väisälä demonstrated that two domains of Rn are quasihyperbolically equivalent
if and only if they are quasiconformally equivalent [11].

In [12, 16], Väisälä systematically studied the properties of QH mappings and
obtained the following results.
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Theorem A. [12, Theorem 4.7] Suppose that D ( E and D′ ( E ′ are domains,

and that f : D → D′ is M-QH. Then for any subdomain G ⊂ D, the restriction of f
on G, f |G, is 4M2-QH.

Theorem B. [16, Theorem 5.16] Suppose that f : D → D′ is a homeomorphism
and that each point has a neighborhood D1 ⊂ D such that f |D1

: D1 → f(D1) is
M-bilipschitz (or briefly f is locally M-bilipschitz). Then f is M2-QH.

Obviously, not every QH mapping is bilipchitz (cf. [12, Section 4] or [16, Sec-
tion 8]). Thus the following problem posed by Väisälä is natural.

Open Problem 1.1. [16, 13.2.13] Suppose that f : D → D′ is a homeomorphism
and that each point has a neighborhood D1 ⊂ D such that f |D1

: D1 → f(D1) is
M-QH. Is f M ′-QH with M ′ = M ′(M), where M ′(M) means that the constant M ′

depends only on M?

The main motivation of this paper is to study Problem 1.1. As the first main
result of this paper, we obtain the following equivalent characterizations of the quasi-
hyperbolic mappings.

Theorem 1.1. Let D ( E and D′ ( E ′ be domains, and let f : D → D′ be

a homeomorphism. Then the following conditions are equivalent with the constants

depending only on each other.

(1) f : D → D′ is M-QH;

(2) f and f−1 are both (L, ϑ)-locally bilipschitz;

(3) There are constants C > 0 and µ ∈ (0, 1) such that for any x, y ∈ D with

|x− y| < µdD(x),

(1.2)
1

C

|x− y|

dD(x)
≤

|f(x)− f(y)|

dD′(f(x))
≤ C

|x− y|

dD(x)
;

(4) f and f−1 are both (θ, t0)-relative with θ(t) = M0t, where 0 < t0 < 1 and

0 < t < t0;
(5) For all x ∈ D, f : B(x, dD(x)) → f(B(x, dD(x))) is M1-QH and dD′(f(x)) ≤

M2df(B(x,dD(x)))(f(x)).

Let us remark that the class of (L, ϑ)-locally bilipschitz mappings in Theo-
rem 1.1(2) (see Definition 2.2 below) was introduced by Bonk, Heinonen and Koskela
when they established the theory of uniformizing Gromov hyperbolic spaces [3]. They
also proved that a quasisymmetric and (L, ϑ)-locally bilipschitz mapping between
uniform metric spaces is quasihyperbolic (see [3, Proposition 4.36]). Based on The-
orem 1.1, we shall generalize Proposition 4.36 in [3] to the setting of Banach spaces
(see Lemma 3.5 below).

Also, we remark that the condition (1.2) is new and it is useful in the study
of the local properties of the quasihyperbolic mappings. Note that the θ-relative
mappings stated in Theorem 1.1(4) were first considered by Gehring, and also, the
relationship between θ-relative mappings and quasiconformal mappings in R

n was
investigated [4].

With the aid of Theorem 1.1, we obtain the following partial solution to Prob-
lem 1.1.

Theorem 1.2. Suppose that f : D → D′ is a homeomorphism. If there ex-

ist a constant M > 1 and a homeomorphism η : [0,∞) → [0,∞) such that for

each point x ∈ D, f : B(x, dD(x)) → f(B(x, dD(x))) is M-quasihyperbolic and η-
quasisymmetric, then f is M1-QH with M1 = M1(M, η).
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We remark that the authors in [7] recently considered Problem 1.1 in metric
spaces. However, the target spaces in [7] are always assumed to be proper. Here
a metric space being proper means that every closed ball in this space is compact.
Obviously, in all Banach spaces with dimension infinity, this condition is invalid, and
also, this condition plays a key role in the discussions in [7]. This shows that the
proof methods in [7] cannot be used to prove Theorem 1.2 in the setting of Banach
spaces with dimension infinity. We shall establish a different method to overcome
this difficulty.

Further, by Theorems 1.1 and 1.2, we get the following result.

Theorem 1.3. Suppose that f : D → D′ is a homeomorphism such that for each

point x ∈ D, f |B(x,dD(x)) is quasisimilar with data (η, L, λ). Then f is M-QH with

M = M(η, L, λ).

Remark 1.1. The concept of quasisimilarity was introduced in [3] (see Defini-
tion 2.4 below). In [3], the authors demonstrated that there is a one-to-one corre-
spondence between the quasi-isometry classes of Gromov hyperbolic spaces and the
quasisimilarity classes of uniform metric spaces (see [3, Theorem 1.1]). Note that,
in [1, 9], the authors also considered quasisimilar mappings in infinite-dimensional
Banach spaces. But these two classes of mappings are not the same.

The rest of this paper is organized as follows. In Section 2, we recall neces-
sary definitions and preliminary results, and the proofs of Theorems 1.1 ∼ 1.3 are
presented in Section 3.

2. Preliminaries

In this section, we recall some necessary terminology. Throughout this paper, we
always assume that E and E ′ denote real Banach spaces with dimension at least 2,
and that D ( E and D′ ( E ′ are domains. The norm of a vector z in E is written as
|z|, and for each pair of points z1, z2 in E, the distance between them is denoted by
|z1 − z2|, the closed line segment with endpoints z1 and z2 by [z1, z2]. The distance
from z ∈ D to the boundary ∂D of D is denoted by dD(z). For a bounded set A in
E, diamA means the diameter of A.

Let

B(x, r) = {z ∈ E : |z − x| < r}, B(x, r) = {z ∈ E : |z − x| ≤ r},

and
S(x, r) = {z ∈ E : |z − x| = r}.

The quasihyperbolic length of a rectifiable arc or a curve α with respect to the
norm metric in a domain D ( E is the number (cf. [5, 6]):

ℓk(α) =

ˆ

α

|dz|

dD(z)
.

For each pair of points z1, z2 in D, the quasihyperbolic distance kD(z1, z2) between
z1 and z2 is defined in the usual way:

kD(z1, z2) = inf ℓk(α),

where the infimum is taken over all rectifiable curves α joining z1 to z2 in D.
For all z1, z2 in D, we have the following chain of inequalities (cf. [16])

(2.1) kD(z1, z2) ≥ log

(

1 +
|z1 − z2|

min{dD(z1), dD(z2)}

)

≥

∣

∣

∣

∣

log
dD(z2)

dD(z1)

∣

∣

∣

∣

.
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Moreover, we record the following useful result.

Theorem C. [16, Theorem 3.9] Let D ( E be a domain, and let x, y ∈ D be

such that |x− y| ≤ 1
2
dD(x) or kD(x, y) ≤ 1. Then

1

2

|x− y|

dD(x)
< kD(x, y) ≤ 2

|x− y|

dD(x)
.

Next, we recall several concepts from [3, 16].

Definition 2.1. Let 0 < t0 ≤ 1, and let θ : [0, t0) → [0,∞) be an embedding
with θ(0) = 0. Suppose that f : D → D′ is a homeomorphism with D 6= E and
D′ 6= E ′. We say that f is (θ, t0)-relative if

|f(x)− f(y)|

dD′(f(x))
≤ θ

( |x− y|

dD(x)

)

for all x, y ∈ D with |x− y| < t0dD(x). If t0 = 1, then we say that f is θ-relative.

Definition 2.2. Let D ( E and D′ ( E ′ be domains. A homeomorphism
f : D → D′ is said to be (L, λ)-locally bilipschitz, where L > 0 and λ ∈ (0, 1), if for
each x ∈ D, there is a constant cx > 0 such that for all y, z ∈ B(x, λdD(x)),

cx
L
|y − z| ≤ |f(y)− f(z)| ≤ Lcx|y − z|.

Definition 2.3. A homeomorphism f : X → X ′ between two metric spaces is
said to be η-quasisymmetric if there is a homeomorphism η : [0,∞) → [0,∞) such
that

d(x, a) ≤ td(x, b) implies d′(f(x), f(a)) ≤ η(t)d′(f(x), f(b))

for each t > 0 and for each triplet x, a, b of points in X.

Definition 2.4. Let D ( E and D′ ( E ′ be domains. A homeomorphism
f : D → D′ is said to be quasisimilar with data (η, L, λ) if it is both η-quasisymmetric
and (L, λ)-locally bilipschitz.

3. Proofs of main results

3.1. Proof of Theorem 1.1. The proof consists of four lemmas: Lemma 3.1
∼ Lemma 3.4. Precisely, the equivalent relationships (1)⇐⇒(2)⇐⇒(3) are proved in
Lemma 3.1; The implications (1)⇒ (4)⇒ (3) are demonstrated in Lemmas 3.2 and
3.3, and the equivalent relationship (1)⇐⇒(5) is shown in Lemma 3.4.

Lemma 3.1. Let D ( E and D′ ( E ′ be domains, and let f : D → D′ be a

homeomorphism. Then the following conditions are equivalent with constants de-

pending only on each other:

(1) f : D → D′ is M-QH;

(2) f and f−1 are both (L, ϑ)-locally bilipschitz;

(3) there are constants C > 0 and µ ∈ (0, 1) such that for all x, y ∈ D with

|x− y| < µdD(x),

(3.1)
1

C

|x− y|

dD(x)
≤

|f(x)− f(y)|

dD′(f(x))
≤ C

|x− y|

dD(x)
.

Proof. We prove this lemma by showing the implications (1) ⇒ (2) ⇒ (3) ⇒ (1).
(1) ⇒ (2): Assume that f is M-QH. Obviously, we only need to show that f

is (L, ϑ)-locally bilipschitz for some suitable constants L ≥ 1 and ϑ ∈ (0, 1) both
depending only on M .
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For any z ∈ D and for any x, y ∈ B(z, 1
4M+1

dD(z)), we have

|x− y| ≤
2

4M + 1
dD(z) and dD(x) ≥

4M

4M + 1
dD(z),

which implies

|x− y| ≤
1

2M
dD(x).

Then, by Lemma C, we have

kD(x, y) ≤ 2
|x− y|

dD(x)
≤

1

M
.

Moreover, since f is M-QH, we get from (2.1) that

log

(

1 +
|f(x)− f(y)|

dD′(f(x))

)

≤ kD′(f(x), f(y)) ≤ MkD(x, y)(3.2)

≤ min

{

2M
|x− y|

dD(x)
, 1

}

,

and thus,
|f(x)− f(y)| ≤ (e− 1)dD′(f(x)).

This yields

|f(x)− f(y)|

dD′(f(x))
≤ e log

(

1 +
|f(x)− f(y)|

dD′(f(x))

)

≤ 2Me
|x− y|

dD(x)
.

On the other hand, by (3.2), we see that

kD′(f(x), f(y)) ≤ 1.

Again, by Lemma C, together with (2.1), we know that

log

(

1 +
|x− y|

dD(x)

)

≤ kD(x, y) ≤ MkD′(f(x), f(y)) ≤ min

{

2M
|f(x)− f(y)|

dD′(f(x))
,M

}

.

This leads to
|x− y| ≤ (eM − 1)dD(x),

and so,

|x− y|

dD(x)
≤ eM log

(

1 +
|x− y|

dD(x)

)

≤ 2MeM
|f(x)− f(y)|

dD′(f(x))
.

By letting L = 2MeM and ϑ = 1
4M+1

, we know that f is (L, ϑ)-locally bilipschitz.

(2) ⇒ (3): Assume that both f and f−1 are (L, ϑ)-locally bilipschitz for constants

L ≥ 1 and ϑ ∈ (0, 1). Let µ = ϑ2

4L2 . We are going to prove that there exists some
constant C ≥ 1 such that for any x, y ∈ D with |x− y| < µdD(x), (3.1) holds.

We first check the right hand side of the inequalities (3.1). Since f is (L, ϑ)-locally
bilipschitz, we see that there is a constant cx > 0 such that for all u ∈ B(x, ϑdD(x)),

cx
L
|x− u| ≤ |f(x)− f(u)| ≤ Lcx|x− u|.(3.3)

Let a′ ∈ ∂D′ be such that

|f(x)− a′| ≤ 2dD′(f(x)),

and let w be such that

|x− w| =
1

2
ϑdD(x) and w′ = f(w) ∈ [f(x), a′) ∩ f

(

B(x, ϑdD(x))
)

.
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Then it follows from (3.3) that

ϑcx
2L

dD(x) =
cx
L
|w − x| ≤ |w′ − f(x)| ≤ |a′ − f(x)| ≤ 2dD′(f(x)),

and so,

(3.4) |f(x)− f(y)| ≤ Lcx|x− y| ≤
4L2

ϑ

|x− y|

dD(x)
dD′(f(x)).

Since (3.4) and the choice of µ guarantee that

|f(x)− f(y)| ≤ ϑdD′(f(x)),

and since f−1 is (L, ϑ)-locally bilipschitz, similarly, we know that the left hand side
of the inequalities (3.1) is also true.

(3) ⇒ (1): Assume that there are constants C > 0 and µ ∈ (0, 1) such that for
all x, y ∈ D with |x− y| < µdD(x), (3.1) holds true. Then we infer from (3.1) that

L(x, f) := lim sup
y→x

|f(y)− f(x)|

|y − x|
≤

CdD′(f(x))

dD(x)

and

l(x, f) := lim inf
y→x

|f(y)− f(x)|

|y − x|
≥

dD′(f(x))

CdD(x)
.

Thus [16, Theorem 5.6] ensures that f is C-QH. �

Lemma 3.2. Let D ( E and D′ ( E ′ be domains, and let f : D → D′ be

a homeomorphism. If both f and f−1 are (θ, t0)-relative with θ(t) = M0t, where

0 < t0 < 1 and 0 < t < t0, then there are constants C > 0 and µ ∈ (0, 1) such that

for all x, y ∈ D with |x− y| < µdD(x),

(3.5)
1

C

|x− y|

dD(x)
≤

|f(x)− f(y)|

dD′(f(x))
≤ C

|x− y|

dD(x)
.

Proof. Let µ = t0
M0

. Since f is (θ, t0)-relative, it follows that for all x, y ∈ D with

|x− y| < µdD(x),

(3.6)
|f(x)− f(y)|

dD′(f(x))
≤ M0

|x− y|

dD(x)
,

from which the right hand side of the inequalities (3.5) follows.
Because (3.6) and the choice of µ guarantee that

|f(x)− f(y)| < t0dD′(f(x)),

and since f−1 is (θ, t0)-relative, we deduce that

|x− y|

dD(x)
≤ M0

|f(x)− f(y)|

dD′(f(x))
.

Hence the lemma is proved. �

Lemma 3.3. Let D ( E and D′ ( E ′ be domains, and let f : D → D′ be

a homeomorphism. If f is M-QH, then both f and f−1 are (θ, t0)-relative with

θ(t) = M0t, where 0 < t0 < 1 and 0 < t < t0.
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Proof. For any x, y ∈ D, if |x− y| < 1
2M

dD(x), then we see from Lemma C that

kD′(f(x), f(y)) ≤ MkD(x, y) ≤ 2M
|x− y|

dD(x)
≤ 1,

and so,
1

2

|f(x)− f(y)|

dD′(f(x))
≤ kD′(f(x), f(y)) ≤ 2M

|x− y|

dD(x)
.

By letting t0 =
1

2M
and M0 = 4M , we know that f is (θ, t0)-relative with θ(t) =

M0t.
Similarly, we see that f−1 is also (θ, t0)-relative. Hence the lemma is proved. �

Lemma 3.4. Let D ( E and D′ ( E ′ be domains, and let f : D → D′ be a

homeomorphism. Then the following conditions are equivalent:

(1) f : D → D′ is M-QH;

(2) For any x ∈ D, the restriction f : B(x, dD(x)) → f(B(x, dD(x))) is M1-QH

and

dD′(f(x)) ≤ M2df(B(x,dD(x)))(f(x)).

Proof. (1) ⇒ (2): Assume that f : D → D′ is M-QH. It follows from Theorem A
that for any x ∈ D, the restriction f : B(x, dD(x)) → f(B(x, dD(x))) is M1-QH with
M1 = 4M2.

Fix x ∈ D. On the one hand, since f : D → D′ is M-QH, we deduce from
Lemma 3.1 that there are constants C = C(M) ≥ 1 and µ = µ(M) ∈ (0, 1) such
that for all x, y ∈ D with |x− y| < µdD(x),

1

C

|x− y|

dD(x)
≤

|f(x)− f(y)|

dD′(f(x))
≤ C

|x− y|

dD(x)
.

On the other hand, since f : B(x, dD(x)) → f(B(x, dD(x))) is M1-QH, again, by
Lemma 3.1, it follows that there are constants C1 = C1(M) ≥ 1 and µ1 = µ1(M) ∈
(0, 1) such that for all x, y ∈ D with |x− y| < µ1dD(x),

1

C1

|x− y|

dB(x,dD(x))(x)
≤

|f(x)− f(y)|

df(B(x,dD(x)))(f(x))
≤ C1

|x− y|

dB(x,dD(x))(x)
.

Note that dB(x,dD(x))(x) = dD(x). By taking M2 = CC1, we know that

dD′(f(x)) ≤ M2df(B(x,dD(x)))(f(x)).

(2) ⇒ (1): Because f : B(x, dD(x)) → f(B(x, dD(x))) is M1-QH, it follows from
Lemma 3.1 that there exist constants C2 = C2(M1) ≥ 1 and µ2 = µ2(M1) ∈ (0, 1)
such that for all x, y ∈ D with |x− y| < µ2dB(x,dD(x))(x),

1

C2

|x− y|

dB(x,dD(x))(x)
≤

|f(x)− f(y)|

df(B(x,dD(x)))(f(x))
≤ C2

|x− y|

dB(x,dD(x))(x)
.

Then the facts

df(B(x,dD(x)))(f(x)) ≤ dD′(f(x)) ≤ M2df(B(x,dD(x)))(f(x))

lead to
1

C2M2

|x− y|

dD(x)
≤

|f(x)− f(y)|

dD′(f(x))
≤ C2

|x− y|

dD(x)
.

Once more, by Lemma 3.1, we know that f : D → D′ is M-QH with constant M =
M(µ2, C2,M2) = M(M1,M2). �
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3.2. Proof of Theorem 1.2. Denote by Bx = B(x, dD(x)) for x ∈ D. By
[15, Theorem 6.12], we may assume that f is η-quasisymmetric on all closed balls
B(x, dD(x)) for x ∈ D. To prove that f is M-QH, by Theorem 1.1, we only need to
check that for any x0 ∈ D,

(3.7) dD′(f(x0)) ≤ 2η(1)df(Bx0
)(f(x0)).

Let ε ∈ (0, 1/100) be such that

η(1)η(ε) ≤
1

2
.

First, the similar reasoning as in the proof of [13, Theorem 3.10] guarantees that
there is a sequence of points {xi}i∈N and an end cut γ of D emanating from x0 such
that

(1) γn = ∪n−1
i=0 [xi, xi+1) and γ = ∪∞

n=0γn, where [xi, xi+1] is a line segment in D;
(2) xi+1 ∈ S(xi, dD(xi)) and dD(xi+1) ≤ εi+1dD(xi), and
(3) limn→∞ xn = a ∈ ∂D.

No loss of generality, we assume that xi ∈ D for all i ∈ N. Then we claim that for
all i ∈ N,

|f(xi+1)− f(xi+2)| ≤
1

2
|f(xi)− f(xi+1)|.

To prove this claim, for each i ∈ N, take a point

zi+1 ∈ S(xi+1, dG(xi+1)) ∩ S(xi, dG(xi))

with zi+1 6= xi+2. Then

|f(xi+2)− f(xi+1)|

|f(zi+1)− f(xi+1)|
≤ η

( |xi+2 − xi+1|

|zi+1 − xi+1|

)

= η(1),

since f is η-quasisymmetric on B(xi+1, dD(xi+1)). Also, we have

|f(xi+1)− f(zi+1)|

|f(xi+1)− f(xi)|
≤ η

( |xi+1 − zi+1|

|xi+1 − xi|

)

≤ η(εi+1),

since f is η-quasisymmetric on B(xi, dD(xi)) and dD(xi+1) ≤ εi+1dD(xi).
These ensure that

|f(xi+1)− f(xi+2)| ≤ η(1)|f(xi+1)− f(zi+1)|

≤ η(1)η(ε)|f(xi)− f(xi+1)|

≤
1

2
|f(xi)− f(xi+1)|,

and so, the claim is true.

Now, it follows from the claim that

|f(x0)− f(xn+1)| ≤

n
∑

i=0

|f(xi)− f(xi+1)| ≤ 2|f(x0)− f(x1)|,

and thus, we infer from the condition limn→∞ xn = a ∈ ∂D that

(3.8) dD′(f(x0)) ≤ |f(x0)− f(a)| ≤ 2|f(x0)− f(x1)|.

Moreover, we have that for any point w ∈ S(x0, dD(x0)),

|f(x0)− f(x1)| ≤ η(1)|f(x0)− f(w)|,
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since f is η-quasisymmetric on the closed ball B(x0, dD(x0)). Hence

(3.9) |f(x0)− f(x1)| ≤ η(1)df(Bx0
)(f(x0)).

Easily, (3.7) follows from (3.8) and (3.9), and so, the proof of Theorem 1.2 is complete.
�

3.3. Proof of Theorem 1.3. We start the proof with the following auxiliary
result.

Lemma 3.5. Let D ( E and D′ ( E ′ be domains, and let f : D → D′ be a

homeomorphism. If f is η-quasisymmetric and (L, λ)-locally bilipschitz, then f is

M-QH with M = M(η, L, λ).

Proof. To prove the theorem, by Theorem 1.1, we only need to show that f−1 is
(L′, λ′)-locally bilipschitz. Since f is (L, λ)-locally bilipschitz, it is enough to check
that there is a constant λ′ = λ′(η, λ) such that for x′ ∈ D′,

(3.10) f−1(B(x′, λ′dD′(x′))) ⊂ B(x, λdD(x)),

where x = f−1(x′).
To this end, let λ′ ∈ (0, 1

2
) be such that

η′(λ′) < λ,

where η′(t) = η−1(t−1)−1.
Fix x′ ∈ D′, and let x = f−1(x′). For any y′ ∈ B(x′, λ′dD′(x′)), set y = f−1(y′).

Since f is η-quasisymmetric, we know that the inverse map f−1 : D′ → D is η′-
quasisymmetric. Moreover, it follows from [15, Theorem 6.12] that f−1 can be ex-
tended to an η′-quasisymmetric mapping from D′ to D, which is still denoted by f−1

for simplicity.
For any u ∈ ∂D, we have

|x− y|

|x− u|
≤ η′(

|f(x)− f(y)|

|f(x)− f(u)|
) ≤ η′(λ′) < λ.

Then the arbitrariness of u ∈ ∂D implies

|x− y| < λdD(x).

Therefore, the relation (3.10) holds true. �

Now, we are ready to prove Theorem 1.3. Assume that for each x ∈ D, the
restriction f |B(x,dD(x)) is both η-quasisymmetric and (L, λ)-locally bilipschitz. By
Lemma 3.5, we see that f |B(x,dD(x)) is M0-QH, where some M0 = M0(L, λ, η). Thus
Theorem 1.2 implies that f : D → D′ is M-QH, and hence, the proof of Theorem 1.3
is complete. �
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