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Abstract. We study geometric aspects of the imaginary Schwarzian S2f for curves in 3-space,

as introduced by Ahlfors in [1]. We show that S2f points in the direction from the center of the

osculating sphere to the point of contact with the curve. We also establish an important law of

transformation of S2f under Möbius transformations. We finally study questions of existence and

uniqueness up to Möbius transformations of curves with given real and imaginary Schwarzians. We

show that curves with the same generic imaginary Schwarzian are equal provided they agree to sec-

ond order at one point, while prescribing in addition the real Schwarzian becomes an overdetermined

problem.

1. Introduction

In [1] the author introduces two differential operators for smooth parametrized
curves in R

n that represent generalizations of the real and imaginary parts of the
Schwarzian derivative

Sf =

(

f ′′

f ′

)′

−
1

2

(

f ′′

f ′

)2

of a locally injective analytic mapping f . A parametrized curve f : I → R
n defined

on an interval I ⊂ R is said to be regular if f ′ 6= 0. For such curves the real and
imaginary Schwarzians are given by

(1.1) S1f =
〈f ′, f ′′′〉

|f ′|2
− 3

〈f ′, f ′′〉2

|f ′|4
+

3

2

|f ′′|2

|f ′|2
,

and

(1.2) S2f =
f ′ ∧ f ′′′

|f ′|2
− 3

〈f ′, f ′′〉

|f ′|4
f ′ ∧ f ′′.

Here, for ~a,~b ∈ R
n, ~a ∧~b is the antisymmetric bivector with components (~a ∧~b)ij =

aibj − ajbi and norm (
∑

i<j(aibj − ajbi)
2)1/2. Ahlfors indicated that he was led to

these seemingly esoteric definitions by a direct identification of Re{zζ} with the inner
product 〈z, ζ〉 of the 2-dimensional vectors z, ζ and the far from obvious identification
of Im{zζ} with the corresponding ζ ∧ z based on the fact that (Im{zζ})2 = |ζ ∧ z|2.
The operators S1, S2 can be expressed in terms of the geometric quantities commonly
associated with a curve [7]. If v = |f ′| denotes speed and k the curvature, then one
can see that

(1.3) S1f = (v′/v)
′
−

1

2
(v′/v)

2
+

1

2
v2k2,
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where the derivatives are with respect to the variable x ∈ I. For the imaginary
Schwarzian one obtains

S2f = vk′(t̂ ∧ n̂) + v2kτ(t̂ ∧ b̂),

where τ is the torsion and n̂, b̂ are the unit normal and binormal satisfying

t̂ ′ = kvn̂

and

n̂′ = −kvn̂ + vτ b̂.

In [7] it was shown that the complex number

S1f + i|S2f |

has a natural interpretation in terms of the osculating sphere to the curve and is
invariant under Möbius transformations of Rn. Thus, S1f and |S2f | are separately
invariant. It was also shown there that questions regarding the injectivity of f depend
just on S1f , a result that has found several applications in the study of curves [2, 3],
as well as in the conformal immersion of planar domains into higher dimensional
euclidean space [4, 5, 6] (see also [9, 10]).

The purpose of the present paper is to investigate the role of the S2 operator in
3 dimensions, where the wedge product can be interpreted as the vector product ×.
Based on this identification we may rewrite S2f as

(1.4) S2f = vk′b̂− v2kτn̂.

In light of the classical formulas for the center of the osculating sphere, it will become
evident that S2f points in the direction from the center of the osculating sphere to
the point on the curve. In particular, S2 is normal to the osculating sphere at the
point of contact with the curve. With R the radius of this sphere, it will follow
that the quantity Rv2k2|τ | is Möbius invariant. Also, planes and spheres can be
characterized as the only surfaces on which all curves have imaginary Schwarzian
normal to the surface, while generic surfaces may allow for isolated points where this
condition is met. For an arbitrary Möbius transformation T we will establish the
important transformation rule

(1.5) S2(T ◦ f) = ±
1

|DT |
DT (S2f),

with ± depending on whether T preserves the balls bounded by the respective oscu-
lating spheres, or not.

In the final section, we will address the issue of existence and uniqueness of curves
with given Schwarzians. Since for any curve f the tangent direction t̂ is always
orthogonal to S2f , we see that a curve is planar if and only if S2f does not change
direction. For such curves, uniqueness up to Möbius transformation follows from the
classical theory and the above identification of S1f, S2f with the complex number
S1f + i|S2f |. For non-planar curves, the complex number S1f + i|S2f | is far from
determining the curve up to Möbius transformations. For an imaginary Schwarzian
of non-constant direction, two curves with equal S2 that agree to second order at a
given point, will be the same. Also, the S1 operator of such a curve will be uniquely
determined. This is perhaps unexpected since, for example, spherical curves may have
been thought as equivalent to planar curves, where S2 alone does not determine the
curve up to Möbius transformations. Our results imply that prescribing generically
S1 and S2 becomes an overdetermined problem. In the same vein, prescribing S2
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and requiring that the curve be arc-length parametrized is also overdetermined. The
analysis will rely on deriving a two-by-two system of differential equation in the
speed of the curve and an appropriate angle of its tangent direction in the plane
orthogonal to S2, that will correspond to the curve having the prescribed imaginary
Schwarzian. An analysis of the solutions to this system will also give existence of
curves with prescribed S2 of non-constant direction. Whether or not two curves with
equal real and imaginary Schwarzian are the same without any assumptions on an
initial condition remains an open question.

2. The geometry of S2

It is well known from differential geometry that at each point a smooth curve in
space admits a sphere to which it agrees to order three. When τ 6= 0 then the center
C is found to be

C = P +
1

k
n̂−

k′

k2τ
b̂,

see, e.g., [11]. When τ = 0 the osculating sphere reduces to the osculating plane and
C is to be interpreted as the point at infinity. Here ′ denotes differentiation with
respect to the arc-length parameter s and P is the point of contact on the curve. We
begin with a simple result that follows from this.

Proposition 2.1. Let f : I → R
3 be a smooth parametrized curve with f ′ 6= 0.

Then S2f points in the direction from the center of the osculating sphere to the
point of contact on the curve. In particular, S2f is normal to the osculating sphere
at the point of contact with f . If R denotes the radius of the osculating sphere, then
Rv2k2|τ | is a Möbius invariant quantity.

Proof. Let f : I → R
3 be a smooth parametrized curve with f ′ 6= 0, and recall

formula (1.4) for S2f where ′ denotes differentiation with respect to the parameter
of the curve, say x. Since d/dx = vd/ds we see that

(2.1) C = P −
1

v2k2τ
S2f,

and it follows that S2f points in the direction from the center C to the point P
on the curve. In particular, S2f is normal to the osculating sphere at the point of
contact. Finally, since

R = |P − C| =
|S2f |

v2k2|τ |
,

we conclude that Rv2k2|τ | is Möbius invariant because of the invariance of |S2f |. �

If f represents a planar curve then we see from (1.4) that S2f will be parallel to
the binormal vector because τ = 0, thus S2f will be normal to the plane. Similarly,
for a spherical curve f , S2f will be normal to the sphere because of the previous
proposition. No other surfaces will meet this condition for all curves lying on it, as
the next result states. We include a geometric proof even though it will also follow
from the characterization of a single point on a surface on which the condition is met.

Theorem 2.2. Let S ⊂ R
3 be a (connected) smooth surface on which all curves

have imaginary Schwarzian normal to S. Then S is part of a plane or a sphere.

Proof. If two surfaces have the condition, then the curve of intersection must
have imaginary Schwarzian normal to both surfaces, and will therefore vanish. It
follows from (1.4) that k is constant and that τ = 0, so that such an intersection
must be a piece of a straight line or a circle. For P ∈ S we consider the normal
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sections obtained by intersecting S with planes containing the normal vector, which
will be (pieces of) lines or circles. If S is not a plane, then at most one of the normal
sections is a line, and it is not difficult to see that the curves obtained by intersecting
S with planes parallel to the tangent plane at S will render circles only in the case
when all normal sections are circles of the same radius, meaning that near P , the
surface S is a piece of a sphere. �

We conclude this section with a local version of this theorem.

Theorem 2.3. Let P ∈ S ⊂ R
3 be a point on a smooth surface with the

property that every curve on S through P has imaginary Schwarzian at P normal to
S. Then P is umbilic and the second fundamental form of S has vanishing covariant
derivative at S.

Proof. We choose local coordinates near P so that, up to order three, S is
represented by z = ax2 + by2 +Ax3 +Bx2y + Cxy3 +Dy3. We will show that a = b
and that A = B = C = D = 0. The argument presented in the proof Theorem 2.2
shows that the normal sections of S at P must have vanishing imaginary Schwarzian
at that point. Since these sections are already planar, we see from (1.4) that k′ = 0
at that point. It is easy to see that the planar section x → (x, 0, ax2 + Ax3) has
k′(0) = 0 exactly when A = 0. Similarly, we find that D = 0. By considering the
normal section corresponding to y = ±x we find that B = C = 0.

In order to show that a = b we consider an arc-length parametrized curve f given
by (x(s), y(s), z(s)) on the surface with x(0) = y(0) = z(0) = 0. If t̂(s), n̂(s), b̂(s)

denote the unite tangent, normal and binormal to the curve, and N̂(s) the normal

to the surface along the curve, then we have N̂ · t̂ = 0, hence N̂ ′ · t̂+ kN̂ · n̂ = 0. One
more derivative gives

k′N̂ · n̂+ kN̂ ′ · n̂+ kN̂ · (−kt̂ + τ b̂) = −kN̂ · n̂− N̂ ′′ · t̂,

or

N̂ · (k′n̂+ kτ b̂) = −2kN̂ ′ · n̂− N̂ ′′ · t̂ .

Observe that k′n̂+kτ b̂ corresponds to S2f rotated in ninety degrees in the n̂, b̂ plane,
hence at s = 0 we have N̂ · (k′n̂ + kτ b̂) = 0. Therefore at s = 0

(2.2) N̂ ′′ · t̂ = −2kN̂ ′ · n̂.

Since N̂ ′(0) = −2(ax′(0), by′(0), 0), kn̂(0) = (x′′(0), y′′(0), z′′(0)) and N̂ ′′(0) = c ˆN(0)
−2(ax′′(0), y′′(0), 0), we obtain from (2.2) that

ax′(0)x′′(0) + by′(0)y′′(0) = 0 .

By considering a curve with x′′(0), y′′(0) 6= 0 it follows from x′(0)x′′(0)+y′(0)y′′(0) = 0
that a = b. This finishes the proof of the theorem. �

Theorem 2.4. If T is a Möbius transformation and f a regular curve, then

S2(T ◦ f) = ±
1

|DT |
DT (S2f),

with ± depending on whether T preserves the balls bounded by the respective oscu-
lating spheres, or not.

Proof. Let Σ be the osculating sphere to f at a given point P on the curve f .
Then S2f at P is normal to Σ and points outward. Since T (Σ) is the osculating
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sphere to T ◦ f at Q = T (P ), we see that S2(T ◦ f) is normal to T (Σ) at Q, again
pointing outward. But

1

|DT |
DT (S2f)

evaluated at P is also normal to T (Σ) at Q and has norm |S2f | = |S2(T ◦ f)|. This
shows that S2(T ◦ f) will agree with 1

|DT |
DT (S2f) when T preserves the regions

bounded by osculating spheres, and will be its opposite when not. �

3. Existence and uniqueness

The purpose of this section is to investigate the question of existence and unique-
ness up to Möbius transformations of parametrized curves with given real and imag-
inary Schwarzian derivatives. Contrary to the intuition stemming from two dimen-
sions, generic curves with just equal imaginary Schwarzian will be the same provided
they agree to second order at one point. Only when they are planar is it necessary to
consider in addition the real Schwarzian. For example, two spherical curves, say on
the same sphere, which have the same imaginary Schwarzian will be equal because
the direction of the normal vector to a sphere uniquely determines the point on the
sphere. The same conclusion will hold if two curves f, g on the same sphere satisfy
S2f = µS2g for some positive scalar function µ. For negative µ the curves must be
antipodal.

For planar curves the classical theory provides existence and uniquness up to
Möbius transformations. Say we work on the complex plane and identify S1f, S2f
with the complex number Sf = S1f+ i|S2f |. Any other complex valued curve g with
Sg = Sf will be given as the integral of (u′)−2 of some solution of the complex linear
equation u′′ + (1/2)(Sf)u = 0. Different Möbius shifts of f correspond to different
initial conditions for u and the initial point of the curve.

For curves in space the quantity Sf = S1f + i|S2f | is far from determining the
curve up to Möbius transformations, unless it is assumed that both curves are arc-
length parametrized. For the latter, if S1f = S1g for arc-length parametrized curves,
then we see from (1.3) that kf = kg. If also |S2f | = |S2g| it follows from (1.4) that
τf = ±τg. We conclude that the curves will differ at most by an isometry and a
reflection (that changes the sign of the torsion). For curves not both parametrized
by arc-length, we may consider, for example, an arc-length paramertized regular helix
f with curvature and torsion k0, τ0 > 0. On the same interval of parametrization we
consider a planar curve g with speed v and curvature k. The equations S1g = S1f
and |S2g| = |S2f | are expressed as

(v′/v)′ −
1

2
(v′/v)2 =

1

2

(

k2

0
− v2k2

)

,

vk′ = k0v0,

which corresponds to a system of differential equation for v, k that allows for a
solution on some subinterval containing a given initial point x0 and initial data
v(x0) > 0, v′(x0), k(x0). The resulting curve g cannot be a Möbius transformations
of f since g is planar and f non-spherical.

In our study of existence and uniqueness of curves with given Schwarzian deriva-
tives, we have been led to consider curves that are not necessarily parametrized by
arc-length. On the one hand, for the question of existence, prescribing a parametriza-
tion by arc-length imposes the restriction that the real Schwarzian be positive (see
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(1.3)), while a positive real Schwarzian does not necessarily force a parametriza-
tion by arc-length. On the other hand, for the question of uniqueness, a common
reparametrization of two curves with equal Schwarzian derivatives can be assumed to
yield an arc-length parametrization for only one of the curves, and would therefore
be of limited use.

Let S = S(x) be a given parametrized vector in space, and suppose that S2f = S
for some regular curve f . Let v = |f ′| be speed, and consider the frame given by

t̂, n̂, b̂, together with the curvature k and torsion τ . Since S is always orthogonal to t̂,
it follows that f is determined by v and the direction of t̂ in the plane orthogonal to
S. Let us write S = λT̂ , λ = |S|, as the tangent vector to a curve with normal and

binormal vectors N̂, B̂. When S is parallel to a given fixed direction, we will think
of N̂ and B̂ as constant on the plane normal to S. We seek to determine θ = θ(x)
and v = v(x) so that the curve f with

t̂ = cos θ N̂ + sin θ B̂

and velocity v satisfies S2f = S. Since f is not necessarily parametrized by arc-
length, we will have t̂′ = kvn̂ and n̂′ = −vkt̂ + vτ b̂. Similarly, for the curve with
tangent vector S we write

T̂ ′ = λκN̂, N̂ ′ = −λκT̂ + ληB̂,

where κ, η stand for the curvature and torsion of the curve with tangent S. With
this we find that

(3.1) t̂′ = vkn̂ = −λκ cos θ T̂ + (θ′ + λη)d̂,

where d̂ = T̂ × t̂ = − sin θ N̂ +cos θ B̂ is the unit vector in the plane orthogonal to S
that is also orthogonal to t̂. The orientation is so that t̂× d̂ = T̂ . By differentiating
(3.1) we find that

(vk)′n̂ + vk
[

−vkt̂ + vτ b̂
]

= −(λκ cos θ)′T̂ − (λκ)2 cos θN̂ + (θ′ + λη)′d̂

+ (θ′ + λη)
[

λκ sin θ T̂ − (θ′ + λη) cos θ b̂
]

.

After elimination of the components in t̂ we find the somewhat simpler equation

(vk)′n̂ + v2kτ b̂ = [λκ(θ′ + λη) sin θ − (λκ cos θ)′] T̂

+
[

(θ′ + λη)′ + (λκ)2 sin θ cos θ
]

d̂.
(3.2)

We rewrite the left hand side as

(vk)′n̂+ v2kτ b̂ = vk′n̂+ v2kτ b̂ + v′kn̂ = λd̂+ (v′/v)
[

−λκ cos θ T̂ + (θ′ + λη)d̂
]

,

where we have used that vk′n̂ + v2kτ b̂ is equal to S rotated ninety degrees in the
plane orthogonal to t̂, together with equation (3.1) for vkn̂. With this we equate

components in T̂ and d̂ in (3.2) to obtain a pair of differential equations in v and θ
of the form

(v′/v)λκ cos θ = A(θ, θ′),(3.3)

θ′′ = (v′/v)(θ′ + λη) +B(θ),(3.4)
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where in the terms

A(θ, θ′) = (λκ cos θ)′ − λκ(θ′ + λη) sin θ,(3.5)

B(θ) = λ− (λη)′ − (λκ)2 sin θ cos θ(3.6)

we have suppressed the dependence in the quantities λ, κ, η.
Our analysis of existence and uniqueness will be based on the above system of

equations for v, θ, and we will assume that both λ, κ 6= 0. On segments where λ = 0
we will have that S = S2 = 0, so that k = τ = 0 and the possible curve f lies on a
line. Similarly, on segments where κ = 0 we will have that the curve with tangent
vector S is rectilinear, and therefore f is reduced to the known planar case. We shall
say that S2f is of generic type if λ, κ never vanish.

Uniqueness. Let f be a given parametrized curve for which S = S2f satisfies
λ, κ 6= 0 on an interval I. We will show that knowing S2f determines v, θ provided
one is given an initial 2-jet f(x0) = P, f ′(x0) = v0t̂0, f

′′(x0) = v′
0
t̂0 + v0k0n̂0 =

(v′
0
/v0)f

′(x0) + v0k0n̂0. Indeed, from the jet we can find the values of v0, v
′
0
/v0, k0

and the directions t̂0, n̂0. We therefore know θ0 and also θ′
0
, this last from equation

(3.1). Observe that there are no solutions to the system of equations (3.3), (3.4) with
cos θ = 0 on a subinterval J ⊂ I. If so, then A(θ, θ′) = 0 from (3.3), which from (3.5)
gives λ2κη = 0 on J , hence η = 0 there. Then B(θ) = λ from (3.6), which leads to a
contradiction from equation (3.4). This shows that E = {x ∈ I : cos θ(x) = 0} is a
closed set with empty interior. From equation (3.5) we see that

(3.7) v′/v =
A(θ, θ′)

λκ cos θ
,

so that the right-hand side becomes a regular function on all of I. In other words,
for x ∈ E the numerator A(θ, θ′) must also vanish in order for the right-hand side in
(3.7) to remain regular. With this, then (3.4) becomes a second order equation for θ
that has a unique solution for the given initial data θ0, θ

′
0
. The function θ then gives

v′/v uniquely, and hence v. We therefore know f ′, and thus f from the initial point
P0.

It is interesting that in this case the operator S1f will be determined by S2f .
Indeed, we recall equation (1.3)

S1f = (v′/v)
′
−

1

2
(v′/v)

2
+

1

2
v2k2,

where v′/v is determined from (3.7) and v2k2 can be found from (3.1).
We summarize this as follows.

Theorem 3.1. Let f, g be two regular parametrized curves with S2f = S2g on
an interval I on which λ, κ 6= 0. If f and g agree up to order two at some point, then
f = g on I. The S1 derivative of such curves will be determined by the S2 derivative.

Existence. Let S = λT̂ be a given nonwhere vanishing vector, parametrized on
an interval I. We seek a curve f for which S2f = S. As before, and in order to
leave the case of a planar curve f , we will assume that the curvature κ of the curve
with tangent vector S is also nowhere vanishing on I. We seek to determine v, θ so
that equations (3.3) and (3.4) hold. For a given initial value x0 of the parameter, we
set v0, θ0, θ

′
0

with cos θ0 6= 0. Note that prescribing these initial conditions amounts

to prescribing a 2-jet of f at x0 for which f ′(x0) is not parallel to B̂. Near x0, we
express v′/v as in equation (3.7) and solve the function θ from the second order
equation obtained from (3.4). If the resulting function cos θ does not vanish on I,
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then v′/v will be regular on I, and so will be f . If, on the contrary, there exists
x1 ∈ I, say x1 > x0, for which cos θ = 0 for the first time, then f will be regular
up to but not necessarily including x1. It may remain regular through x1 if A(θ, θ′)
also vanishes at x1 to the appropriate order, as mentioned earlier when discussing
uniqueness. In general, equation (3.4) may become singular, and our analysis for
the moment falls short of being able to describe all possible (singular) configurations
that may arise at the endpoint.

Theorem 3.2. Let S = S2 = λT̂ be of generic type on an interval I. Then for
each x0 ∈ I and each 2-jet of f at x0 with f ′(x0) not parallel to B̂, there exists a
maximal subinterval J ⊂ I containing x0 and a curve f defined on J with S2f = S.

Because the S1 operator can de determined from the S2 operator of generic type
and initial conditions, we have the next theorem.

Theorem 3.3. Prescribing the real Schwarzian S1 and an imaginary Schwarzian
S2 of generic type for a curve is an overdetermined problem.

Proof. We have seen that prescribing an imaginary Schwarzian of generic type
determines the real Schwarzian provided we know an initial set of values for v, θ, θ′.
In other words, there exists a mapping Φ: R3 → C0(I) taking initial data into the
real Schwarzian within the space of all continuous functions on the interval I. The
mapping Φ will be largely not onto, making the problem overdetermined. �

In the same vein we state.

Theorem 3.4. Prescribing an imaginary Schwarzian S2 of generic type for an
arc-length parametrized curve is an overdetermined problem.

Proof. If f is parametrized by arc-length, then v = 1 and v′ = 0. This forces
A(θ, θ′) = 0, which is a first order equation for θ, which in addition must satisfy
θ′′ = B(θ) from (3.4). This is clearly overdetermined. �

It would be interesting to understand under what conditions or to what extent
the above mapping Φ is injective. If so, curves with equal real Schwarzian and equal
imaginary Schwarzian of generic type would be identical.

Acknowledgement. We thank the referee for a careful reading of the manuscript
and for suggestions to improve the exposition.
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