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Abstract. A quasislit is the image of a vertical line segment [0, iy], y > 0, under a quasicon-

formal homeomorphism of the upper half-plane fixing ∞. Quasislits correspond precisely to curves

generated by the Loewner equation with a driving function in the Lip- 1
2

class. It is known that a

quasislit is contained in a cone depending only on its Loewner driving function Lip- 1
2

seminorm,

σ. In this note we use the Loewner equation to give quantitative estimates on the opening angle

of this cone in the maximal range σ < 4. The estimate is shown to be sharp for small σ. As

consequences, we derive explicit Hölder exponents for σ < 4 as well as estimates on winding rates.

We also relate quantitatively the Lip- 1
2

seminorm with the quasiconformal dilatation and discuss

the optimal regularity of quasislits achievable through reparametrization.

1. Introduction

A quasicircle is the image of the unit circle under a quasiconformal homeomor-
phism of the complex plane. Recall that f ∈ W 1,2

loc
is a k-quasiconformal map if it is

a homeomorphic solution to the Beltrami equation, ∂f = µ(z)∂f , where µ is mea-
surable, complex valued, and such that k := ‖µ‖∞ < 1 with corresponding maximal
dilatation (1 + k)/(1 − k). Many equivalent characterizations of quasicircles exist,
both analytic and geometric, see e.g. [3]. For a particular characterization it is quite
natural to ask how the geometry of the quasicircle depends quantitatively on the
given data and how the data for different characterizations are related. For example,
a k-quasicircle is the image of a k-quasiconformal map and a well-known theorem of
Smirnov (motivated by a conjecture of Astala) states that the dimension of such a
quasicircle is at most 1 + k2 for k small.1

In this note we will quantify some simple geometric features of quasicircles seen
from the point of view of the Loewner equation. In this case it is more convenient
to consider quasislits, that is, the image of a line segment {iy : 0 ≤ y ≤ y0} (y0 ∈
(0,∞]) under a quasiconformal homeomorphism H → H, fixing ∞. Every quasislit
has a Loewner driving function in the Lip-1

2
class (see below) and conversely, every

continuous function is the Loewner driving function for a quasislit if it is in the Lip-1
2

class with small seminorm. We will primarily be interested in understanding how
properties of the curve depend quantitatively on this seminorm.

1.1. Curves, the Loewner equation, quasiarcs, and Lip-1
2
. A curve is an

equivalence class of continuous functions [0, 1] → C, where two representatives are
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1Recent work of Ivrii shows however that this bound is not sharp, see Section 6.
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in the same equivalence class if and only if each one can be obtained from the other
by an increasing reparametrization. That is, γ1 and γ2 describe the same curve if
and only if there exist increasing homeomorphisms α1, α2 : [0, 1] → [0, 1] such that
γ1 ◦ α1(t) = γ2 ◦ α2(t), t ∈ [0, 1]. We will almost always consider curves with a
particular parametrization chosen and refer to this as a curve as well.

Let λt = λ(t), t ∈ [0, 1], be a continuous real-valued function with λ0 = 0, and
consider for z ∈ H = {z : Im z > 0} the solution (ft(z)) to the Loewner PDE

∂tft(z) = −f ′
t(z)

2

z − λt
, f0(z) = z.(1.1)

The family (ft) is called a Loewner chain and for each t, ft : H → Ht ⊂ H is a
conformal map normalized ‘hydrodynamically’ at ∞ by ft(z) = z−2t/z+O(1/|z|2).
If λt is sufficiently well-behaved, the limit

(1.2) γ(t) = lim
y↓0

ft(λt + iy)

exists for every t ∈ [0, 1], defines a continuous function t 7→ γ(t), and the simply
connected domain Ht is the unbounded connected component of H \ γ[0, t]. In this
case, we say that the Loewner chain is generated by the curve γ. Viewed differently,
the driving term λ generates the (chordal) Loewner curve γ = γλ which comes
equipped with a particular parametrization from the Loewner equation via (1.2)
called the (half-plane) capacity parametrization. This process can be reversed, and
starting from, e.g., a simple curve in H meeting R non-tangentially at its starting
point, otherwise staying in H, one can parametrize by capacity and recover its driving
term from the hydrodynamically normalized uniformizing conformal maps f−1

t : H \
γ[0, t] → H.

Remark. Applying z 7→ z2, and ‘completing’ the resulting curve in union with
R+ by a hyperbolic geodesic from the endpoint to ∞, we can naturally think of a
Loewner curve as part of a loop in Ĉ through 0 and ∞ containing R+ as a sub-arc.

In fact, any simple loop in Ĉ (that does not necessarily contain R+ as a sub-arc) can
be described by a two-sided Loewner equation, driven by a function defined on R,
see Section 6 of [16].

Here we will be interested in curves corresponding to driving terms in the Lip-1
2

class, that is, functions satisfying

‖λ‖ 1

2

:= sup
s 6=t

|λt − λs|
|t− s| 12

< ∞.

For σ > 0, write

Λσ = {λ : [0, 1] → R | ‖λ‖ 1

2

≤ σ, λ0 = 0}.

The fundamental observation is due to Marshall and Rohde [11]: there exists C so
that if λ ∈ Λσ with σ < C then γλ is a quasislit, in particular a simple curve.
Lind showed that one can take C = 4 and that this is sharp in the sense that for
each σ ≥ 4, there exists a function λ ∈ Λσ that does not even generate a curve [8].
Conversely, if γ[0, t0] is a quasislit generated by λ, then λt, t ∈ [0, t0], is in Lip-1

2
. See

[9, 10, 13] for more. For later reference we note that an equivalent description of a
quasislit is as a quasiarc (i.e., the image of a line segment under a quasiconformal
homeomorphism of C) in H that meets R non-tangentially at its starting point and
otherwise stays in H.
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We may now define

Γσ = {γλ | λ ∈ Λσ}, σ < 4

and in what follows, we will consider quasislits γ ∈ Γσ.

1.2. Results. For σ < 4 and t ≥ 0, define

Ct,σ = sup
γ∈Γσ

|Re(γ(t))|
Im(γ(t))

.

This quantity measures the smallest opening angle required so that a cone at 0
contains any curve in Γσ. Our goal is to estimate Ct,σ and then derive regularity
information from this bound. In order to state the result, fix σ < 4 and consider the
following equation

ex =

√
16− σ2

√
16x2 − σ2(x+ 1)2

.(1.3)

The right-hand side of (1.3) is defined for x > σ/(4− σ). It is a continuous function
which is strictly decreasing from ∞ to 0 as x ranges from σ/(4−σ) to ∞. Therefore,
the equation has a unique solution, which we will denote by p(σ). Next, define

Lσ =
σ√

16− σ2
(1 + p(σ))ep(σ).(1.4)

We have the following.

Theorem 1.1. The following bounds hold uniformly in t > 0:

(i) If 0 < σ < 4, then

Ct,σ ≤ Lσ.

(ii) If 0 < σ < 8
π
, then

Ct,σ ≤ πσ√
64− π2σ2

.

We prove (ii) in Section 3 and (i) in Section 4.
The function Lσ has the following expansion as σ → 0:

(1.5) Lσ =
1

4

(
1 +

1

W(1)

)
σ +O(σ3),

where W(·) is the Lambert W function, so that Lσ ∼ 0.69σ as σ → 0. Comparing
with (ii) we see that the estimate in (i) is not sharp, but does provide the first non-
trivial and explicit bound that holds for all σ < 4. On the other hand, by choosing
the driving function λt = σ

√
t ∈ Λσ we see that for all t > 0

Ct,σ ≥ tan

(
π

2

σ√
16 + σ2

)
,

see Example 4.12 in [7]. This shows that the estimate (ii) of Theorem 1.1 is sharp
for small σ, and we have

Ct,σ =
π

8
σ +O(σ3).

Let us discuss some consequences of Theorem 1.1. Suppose γ ∈ Γσ with σ <
4. Then by [13], Remark 4.2, there exists βσ ∈ (0, 1

2
], depending only on σ, such

that γ(t), t ∈ [0, 1], parametrized by half-plane capacity is Hölder continuous with
exponent βσ. Time 0 is special for Loewner curves in H parametrized by capacity:
under weak assumptions, such curves are always Hölder-1

2
at t = 0, see, e.g., [6].

To achieve better regularity one can restrict attention to strictly positive times (or
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consider driving terms that are constant during a small time interval starting with
0). Let us fix ε > 0 and given a Loewner curve γ we consider its optimal Hölder
exponent for the capacity parametrization

α(γ) = sup{α : γ parametrized by capacity is Hölder-α on [ε, 1]}.

(If γ is not Hölder continuous in the capacity parmetrization, by convention α(γ) =
0.) Next, define the corresponding universal exponent for the class Γσ by

α(Γσ) = inf{α(γ) : γ ∈ Γσ}.

It is not hard to show that if σ < 2, then one has α(Γσ) ≥ 1 − σ2/4, see, e.g., [13],
but this bound is not sharp and in the range σ ∈ [2, 4) no estimate except α(Γσ) > 0
was as far as we are aware known prior to this paper. This is in contrast with the
much rougher setting of SLE where the sharp Hölder exponents for the capacity
parametrization are known [6]. In this case, the randomness helps in the analysis,
see below for further discussion.

Our first corollary is a quantitative estimate on α(Γσ) for σ ∈ [0, 4).

Corollary 1.2. If σ < 4, then

α(Γσ) ≥
1

1 + L2
σ

,(1.6)

where Lσ is given by (1.4).

Our second corollary improves on the regularity estimate (1.6) (and the easy one
α(Γσ) ≥ 1− σ2/4), in the smaller range σ ∈ (0, 8/π).

Corollary 1.3. If σ < 8
π
, then

α(Γσ) ≥ 1− π2σ2

64
.

The proofs of these corollaries are the same, and given in Section 5.1.
Even though the cone estimate is sharp for small σ, we do not expect the ex-

ponents of Corollary 1.3 to be sharp, see Section 5.1. Here we simply remark that
choosing λt = σ

√
1− t produces a curve with a spiral at t = 1 and a Hölder ex-

ponent of 1 − σ2/16. Indeed, this can be seen from direct computation using the
representation given in Proposition 3.3 of [9], see, e.g., [12]. So α(Γσ) ≤ 1 − σ2/16
and Rohde and Viklund have conjectured that this is in fact sharp for σ ∈ [0, 4), but
we currently have no proof of a matching lower bound.

Remark. Let D(Γσ) be the maximal Hausdorff dimension of γ ∈ Γσ. Corol-
lary 1.3 immediately implies

D(Γσ) ≤ 1 + π2σ2/64 +O(σ4)

as σ → 0.

Theorem 1.1 also gives non-trivial bounds on winding rates for the curve near
the tip, when σ is small, see Section 5.2.

In Section 6 we make a few simple observations about the related problem of esti-
mating the optimal Hölder regularity for quasislits achievable through reparametriza-
tion and the relation between the quasiconformal dilatiation parameter k and the
semi-norm σ.
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2. Preliminaries

In this section we recall some basic properties of the Loewner differential equation
and related objects which we will need in our analysis. Recall that gt = f−1

t satisfies
a family of ODEs,

∂tgt(z) =
2

gt(z)− λt

, g0(z) = z.(2.1)

The family (gt) is also called a Loewner chain. We will frequently write expressions
of the form dZt = a(t) dF (t) for functions a, F , which are to be interpreted as

ˆ t

t0

dZs =

ˆ t

t0

a(s) dF (s).

Throughout, we let σ < 4 and assume that γ is generated by λ ∈ Λσ and that
(gt)t≥0 is the corresponding Loewner chain. To analyze ft, which satisfies a PDE, it
is convenient to use the reverse flow. For fixed t > 0 and s ∈ [0, t], let βt

s = λt−λt−s.
If t is understood from the context, we instead write βs. Then the following holds.

Lemma 2.1. Fix t > 0 and let ĥs satisfy the equation

dĥs(z) = dβt
s −

2

ĥs(z)
ds, ĥ0(z) = z,(2.2)

for s ∈ [0, t] and z ∈ H. Then

ĥt(z) = ft(λt + z).

Proof. Use (2.1) to see that the family of maps ĥs, defined by ĥs(z) := gt−s(ft(z+

λt))− λt−s for 0 ≤ s ≤ t, satisfies (2.2) and ĥt(z) = ft(λt + z). �

Remark. Note that ĥs(z) depends on t: if we let h̃s solve (2.2) with driving
function λ but for t1 6= t in the same way, then it does not hold in general that
ĥs(z) = h̃s(z) for s < min(t, t1).

If we write ĥs(z) = Xs(z) + iYs(z) for z = x+ iy ∈ H, then (2.2) is equivalent to
the equations

dXs = dβs −
2Xs

X2
s + Y 2

s

ds, X0 = x,(2.3)

dYs =
2Ys

X2
s + Y 2

s

ds, Y0 = y.(2.4)

Next, we recall the following from [13].



360 Lukas Schoug, Atul Shekhar and Fredrik Viklund

Lemma 2.2. [13, Theorem 3.1 and Lemma 2.1] Suppose σ < 4. There exists a

constant cσ > 0, depending only on σ, such that for all 0 < y ≤ 1 and s ≥ 0,
√

y2 + cσs ≤ Ys(iy) ≤
√

y2 + 4s.(2.5)

Moreover,

|Xs(iy)| ≤ sup
0≤r≤s

|βs − βr|.(2.6)

In order to estimate |Re(γ(t))|/Im(γ(t)) we will work with the process

Ws(z) =
Xs(z)

Ys(z)

and note that by (1.2)

Re(γ(t))

Im(γ(t))
= lim

y→0
Wt(iy).(2.7)

Moreover, we can rewrite (2.3) as

dXs = dβs −
2W 2

s

W 2
s + 1

1

Xs

ds, X0 = x.(2.8)

When estimating the Hölder exponents and the winding rates for the curves, we
need to estimate |f ′

t(λt+ iy)| and arg f ′
t(λt+ iy), where differentiation is with respect

to the spatial variable. Since f ′
t(λt + z) = ĥ′

t(z) the following formulas for ĥ′
s(z) will

be useful. For s ∈ [0, t],

|ĥ′
s(z)| = exp

{
ˆ s

0

2(X2
r − Y 2

r )

(X2
r + Y 2

r )
2
dr

}
= exp

{
ˆ s

0

X2
r − Y 2

r

X2
r + Y 2

r

d log Yr

}

= exp

{
ˆ s

0

W 2
r − 1

W 2
r + 1

d log Yr

}
,(2.9)

arg ĥ′
s(z) = −4

ˆ s

0

XrYr

(X2
r + Y 2

r )
2
dr = −2

ˆ s

0

XrYr

X2
r + Y 2

r

d log Yr

= −2

ˆ s

0

Wr

W 2
r + 1

d log Yr.(2.10)

2.1. Time reparametrization. By (2.4) and (2.5), it follows that Ys : [0,∞) →
[y,∞) is a strictly increasing, continuous function and hence that the function (Y 2

s −
y2) : [0,∞) → [0,∞) is a bijection. We denote by θs its inverse function, that is,
Y 2
θs
− y2 = s and denote the reparametrized functions by X̃s = Xθs , Ỹs = Yθs =√

y2 + s and W̃s = X̃s/
√
y2 + s. Then we have

dX̃s = dβθs −
X̃s

2(y2 + s)
ds, X̃0 = x,(2.11)

dθs =
1

4

(
X̃2

s

y2 + s
+ 1

)
ds, θ0 = 0.(2.12)

The advantage of this reparametrization is that it only leaves us with one unknown:
X̃. This makes it easier to compare two solutions with different driving functions
and will play a crucial role in the proof of Theorem 1.1.
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3. A bound in the range 0 ≤ σ <
8

π

This section is devoted to the proof of part (ii) of Theorem 1.1, and we will prove
the following result, which will imply it.

Proposition 3.1. Let λ ∈ Λσ with σ < 8
π
, fix some t > 0 and define ĥs(iy) =

Xs(iy) + iYs(iy) as the solution to (2.2). Then, for all s ∈ [0, t] and y > 0, we have

|Ws(iy)| =
∣∣∣∣
Xs(iy)

Ys(iy)

∣∣∣∣ ≤
πσ√

64− π2σ2
.(3.1)

Proof. Using the product formula together with (2.3) and (2.4), we see that

d(XsYs) = Xs dYs + Ys dXs = Ys dβs.(3.2)

The validity of (3.2), interpreted as Riemann–Stieltjes integrals, follows since the
continuity and monotonicity of Ys implies that it is of bounded variation. By partial
integration, we have

XsYs =

ˆ s

0

Yr dβr = yβs +

ˆ s

0

(βs − βr) dYr,(3.3)

since X0 = 0. Employing the time reparametrization of Section 2.1, using dỸr =
dr/(2

√
y2 + r), (3.3) becomes

X̃s

√
y2 + s = yβθs +

ˆ s

0

(βθs − βθr)
dr

2
√
y2 + r

.(3.4)

In order to prove the result, we shall bound W̃s = X̃s/Ỹs = X̃s/
√
y2 + s. We have

by (3.4)

W̃s =
yβθs

y2 + s
+

1

y2 + s

ˆ s

0

(βθs − βθr)
dr

2
√
y2 + r

.(3.5)

We write Rs = supr≤s |W̃r| and note that by (2.12) and ‖β‖ 1

2

≤ σ,

|βθs| ≤ σ|θs|
1

2 ≤ σ

2

√
ˆ s

0

(W̃ 2
u + 1) du ≤ σ

√
s

2

√
R2

s + 1(3.6)

and

∣∣∣∣∣

ˆ s

0

(βθs − βθr)
dr

2
√

y2 + r

∣∣∣∣∣ ≤
ˆ s

0

σ
√

θs − θr
dr

2
√

y2 + r

≤ σ

2

ˆ s

0

√
ˆ s

r

(W̃ 2
u + 1) du

dr

2
√
y2 + r

≤ σ

2

√
R2

s + 1

ˆ s

0

√
s− r

dr

2
√
y2 + r

.(3.7)
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Next, we observe that
ˆ s

0

√
s− r

dr

2
√
y2 + r

= (y2 + s)

ˆ 1

y√
y2+s

√
1− u2 du

= (y2 + s)

(
π

4
−
ˆ

y√
y2+s

0

√
1− u2 du

)

= (y2 + s)

(
π

4
− I

(
y√

y2 + s

))
,(3.8)

where I(x) = 1
2
arcsin(x) + 1

2
x
√
1− x2. Putting together equations (3.5)-(3.8), we

get

|W̃s| ≤
y|βθs|
y2 + s

+
1

y2 + s

∣∣∣∣∣

ˆ s

0

(βθs − βθr)
dr

2
√
y2 + r

∣∣∣∣∣

≤ σ
√

R2
s + 1

2

(
y
√
s

y2 + s
+

π

4
− I

(
y√

y2 + s

))
.

It can be checked that I(y/
√
y2 + s) ≥ y

√
s/(y2 + s), and hence

|W̃s| ≤
πσ
√
R2

s + 1

8
.

This implies that Rs ≤ πσ
√
R2

s + 1/8 and hence that

Rs ≤
πσ√

64− π2σ2
,

which proves the proposition. �

Now part (ii) of Theorem 1.1 follows by (2.7).

Remark. At first it might seem that the statement |Ws(iy)| ≤ K for y > 0 is
stronger than Ct,σ ≤ K, but in fact, they are equivalent. Indeed, the curve (ft(λt +
iy), y > 0) is the curve generated by the driving function λ∗

s = λs∧t, which is clearly
a Lip-1

2
function. Thus, the condition Ct,σ ≤ K implies that |Ws(iy)| ≤ K.

4. A bound in the range 0 ≤ σ < 4

This section is devoted to the proof of the following proposition, which will give
part (i) of Theorem 1.1, as in the previous section.

Proposition 4.1. Let λ ∈ Λσ with σ < 4, fix some t > 0 and define ĥs(iy) =
Xs(iy) + iYs(iy) as the solution to (2.2). Then, for all s ∈ [0, t] and y > 0, we have

|Ws(iy)| =
∣∣∣∣
Xs(iy)

Ys(iy)

∣∣∣∣ ≤ Lσ.(4.1)

The proof of Proposition 4.1 requires more work than that of Proposition 3.1. In
proving this, we shall employ the time-change of Section 2.1 and bound Xs and θs by
comparing them to some properly chosen functions, using a version of the Grönwall
inequality, which we now state and prove.
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Proposition 4.2. (Grönwall’s inequlity) Let F (t, x) be a bounded, continuous

function, which is increasing and continuously differentiable in the variable x. Let U
be a continuous function on an interval [0, T ] such that

Ut ≤
ˆ t

0

F (r, Ur) dr

for every t ∈ [0, T ]. If V is a continuous function defined on [0, T ], satisfying

Vt =

ˆ t

0

F (r, Vr) dr

for t ∈ [0, T ], then Ut ≤ Vt for all t ∈ [0, T ].

Proof. We have that

Ut − Vt ≤
ˆ t

0

(F (r, Ur)− F (r, Vr)) dr =

ˆ t

0

Θ(r)(Ur − Vr) dr,

where, writing F ′(t, x) = ∂xF (t, x),

Θ(r) =

ˆ 1

0

F ′(r, pUr + (1− p)Vr) dp.

By the continuity of U , V and F ′, together with the dominated convergence theorem,
we have that Θ is continuous. Moreover, F is increasing, that is, F ′ is nonnegative
and it thus follows that Θ is nonnegative. Hence, the claim follows from the standard
Grönwall inequality, since U0 − V0 ≤ 0. �

Remark. We can actually relax the assumptions on F somewhat and allow it
to blow up at a point, say 0. Then Vt still dominates Ut, at least until the first
time U hits 0. More precisely, the following holds by the very same proof. Let
tδU = inf{t ∈ [0, T ] : Ut = δ} and tδV = inf{t ∈ [0, T ] : Vt = δ}. Assume that for each
t, F (t, x) is increasing and continuously differentiable on (0,∞) in the variable x. In
particular, F ′(t, x) is bounded on every compact subset of [0,∞)× (0,∞). If Ut and
Vt are continuous,

Ut ≤ U0 +

ˆ t

0

F (r, Ur) dr

for t < t0U ,

Vt = V0 +

ˆ t

0

F (r, Vr) dr

for t < t0V and U0 ≤ V0, then for each 0 < δ < U0 it holds that for all t < min(tδU , t
δ
V ),

Ut ≤ Vt. Moreover, this implies that tδU ≤ tδV .

We now discuss the bound on Xs. Consider (2.8) and note that W 2
s /(W

2
s +1) ≤ 1

for all s and that β ∈ Λσ. Hence, it makes sense to compare Xs with solutions to the
equation

dZs = σ d
√
s− c

Zs
ds, Z0 = z0,(4.2)

We will carry out this analysis for functions Xs that have strayed from 0, and hence,
by symmetry, it will only be necessary for us to consider solutions to (4.2) started
from z0 > 0. The solution of (4.2) depends heavily on the value of c and we shall
only need the solution for c = σ2/8, as will be seen later.
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Lemma 4.3. The solution, Zs, to (4.2) with c = σ2/8 and z0 > 0 exists for all

s ≥ 0 and is given by

Zs =
σ
√
s

2
+ z0 exp

{
W
(
σ
√
s

2z0

)}
,(4.3)

where W is the Lambert W function, that is, the nonnegative solution to the equation

W(x)eW(x) = x.

Proof. First, we note that W(0) = 0 implies that Z0 = z0. Next, using that

dW
dx

(x) =
1

1 +W(x)
e−W(x),

we have

dZs

ds
=

σ

4
√
s
+

1

1 +W
(

σ
√
s

2z0

) σ

4
√
s
=

σ

2
√
s
− σ

4
√
s

W
(

σ
√
s

2z0

)

1 +W
(

σ
√
s

2z0

)

=
σ

2
√
s
− σ

4
√
s

1

1 + 2z0
σ
√
s
exp

(
W
(

σ
√
s

2z0

))

=
σ

2
√
s
− σ2

8

1

σ
√
s

2
+ z0 exp

(
W
(

σ
√
s

2z0

)) =
σ

2
√
s
− σ2

8

1

Zs
,

and thus we are done. �

We now turn to the bound for θs. For x0 > 0 and σ < 4 we define the following
function

Hx0
(x) =

(
σ
√
x

2
+ x0 exp

{
W
(
σ
√
x

2x0

)})2

=
σ2x

4


1 +

1

W
(

σ
√
x

2x0

)




2

.(4.4)

For κ ∈ (σ
2

4
, 4), let M = M(κ) be such that

σ2

4


1 +

1

W
(

σ
√
M

2x0

)




2

= κ.(4.5)

Since W is an increasing function, it follows that Hx0
(x) ≤ κx for x ≥ M .

Lemma 4.4. Fix x0, y0 > 0 and σ < 4 and let Vs denote the solution to the

differential equation

dV

ds
=

1

4

Hx0
(Vs)

y20 + s
+

1

4
, V0 = 0.(4.6)

Then, for any κ ∈ (σ
2

4
, 4),

Vs ≤ max

(
M

y20
,

1

4− κ

)
(y20 + s),

where M and κ are related as in (4.5).
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Proof. By (4.6), V is continuous and strictly increasing to ∞. Thus τ = inf{s >
0: Vs ≥ M} is finite and for s ≤ τ , Vs ≤ M . For s > τ , we have that

dVs

ds
≤ κ

4

Vs

y20 + s
+

1

4
,

since Hx0
(x) ≤ κx for x ≥ M and thus

Vs − Vτ ≤
ˆ s

τ

(
κ

4

Vr

y20 + r
+

1

4

)
dr.

Let Ns be the solution to the differential equation

dNs

ds
=

κ

4

Ns

y20 + s
+

1

4
, s > τ,

given Nτ . Then for s > τ ,

Ns = Nτ

(
y20 + s

y20 + τ

)κ

4

+
1

4− κ
(y20 + s)− 1

4− κ
(y20 + s)

κ

4 (y20 + τ)1−
κ

4 ,

and by Proposition 4.2,

Vs ≤ Vτ

(
y20 + s

y20 + τ

)κ

4

+
1

4− κ
(y20 + s)− 1

4− κ
(y20 + s)

κ

4 (y20 + τ)1−
κ

4 .

Thus,

Vs

y20 + s
− 1

4− κ
≤
(
y20 + s

y20 + τ

)κ

4
−1(

Vτ

y20 + τ
− 1

4− κ

)
.

Since y20 + τ ≤ y20 + s, this implies that either

Vs

y20 + s
− 1

4− κ
≤ 0 or

Vs

y20 + s
≤ Vτ

y20 + τ
≤ M

y20
.

Thus we have that for s > τ ,

Vs ≤ max

(
M

y20
,

1

4− κ

)
(y20 + s)

which, together with the bound Vs ≤ M for s ≤ τ , concludes the proof. �

We are now ready to prove Proposition 4.1.

Proof of Proposition 4.1. Fix σ < 4 and t > 0 and let Kσ = σ/
√
16− σ2. If

|Ws| ≤ Kσ for all s ≤ t, we are done, since Kσ ≤ Lσ. Assume the contrary and let
s1 > 0 be such that |Ws1| > Kσ. By symmetry, we may assume that Ws1 > 0. Let

s0 = sup{s < s1 : Ws ≤ Kσ} and write (X̂s, Ŷs) := (Xs0+s, Ys0+s) for s ∈ [0, s1 − s0].
Then, by (2.8),

X̂s = X̂0 + βs0+s − βs0 −
ˆ s

0

2W 2
s0+r

W 2
s0+r + 1

1

X̂r

dr ≤ X̂0 + σ
√
s− σ2

8

ˆ s

0

1

X̂r

dr,

since w 7→ w2/(w2 + 1) is an increasing function and Ws0+r ≥ Kσ for r ∈ [0, s1 − s0].
By the remark after Proposition 4.2, together with Lemma 4.3,

X̂s ≤
σ
√
s

2
+ X̂0 exp

{
W
(
σ
√
s

2X̂0

)}
.(4.7)
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Next, we note that

dŶ 2
s =

4Ŷ 2
s

X̂2
s + Ŷ 2

s

ds, Ŷ0 = Ys0.

Reparametrizing as in Section 2.1, that is, defining θs as the inverse function of

Ŷ 2
s − Y 2

s0, we have

θs =
1

4

ˆ s

0

(
X̂2

θr

Y 2
s0
+ r

+ 1

)
dr ≤ 1

4

ˆ s

0

(
HXs0

(θr)

Y 2
s0
+ r

+ 1

)
dr

where HXs0
is defined as in (4.4). Thus, by Proposition 4.2, θs ≤ Vs where Vs is the

solution to (4.6) with (x0, y0) = (Xs0, Ys0). By Lemma 4.4, we have

θs ≤ max

(
M

Y 2
s0

,
1

4− κ

)
(Y 2

s0
+ s),(4.8)

where κ ∈ (σ
2

4
, 4) and M = M(κ) is defined by (4.5). Moreover,

X̂2
θs

Ŷ 2
θs

=
X̂2

θs

Y 2
s0
+ s

≤
HXs0

(θs)

Y 2
s0
+ s

.

If θs ≤ M , then

HXs0
(θs)

Y 2
s0
+ s

≤
HXs0

(M)

Y 2
s0
+ s

=
κM

Y 2
s0
+ s

≤ κM

Y 2
s0

.

Recalling that HXs0
(x) ≤ κx for x ≥ M , we have that if θs > M , then

HXs0
(θs)

Y 2
s0 + s

≤ κθs
Y 2
s0 + s

≤ max

(
κM

Y 2
s0

,
κ

4− κ

)
.

Thus,

|Xs1|
Ys1

≤ max

(√
κ
√
M

Ys0

,

√
κ√

4− κ

)
.(4.9)

Finally, we minimize (4.9), as a function of κ. Note that this is achieved for κ such
that

κM(κ)

Y 2
s0

=
κ

4− κ
.

Since Xs0/Ys0 = Kσ, we obtain Lσ as defined by (1.4), which concludes the proof. �

5. Regularity and winding rates

5.1. Hölder exponents. This section proves Corollaries 1.2 and 1.3, that
is, we estimate the Hölder exponents for the curve γ ∈ Γσ depending on σ. The
arguments given here are standard, but we choose to give short derivations here for
the convenience of the reader. In this section, constants may vary between the lines,
even though they are denoted in the same way.

Proof of Corollary 1.2 and Corollary 1.3. Fix σ < 4, 0 < y ≤ 1, ε > 0 and
ε ≤ t ≤ 1 and let s ∈ [0, y2]. First, we note that

|γ(t+ s)− γ(t)| ≤ |γ(t+ s)− ft+s(λt+s + iy))|+ |γ(t)− ft(λt + iy)|
+ |ft+s(λt+s + iy)− ft+s(λt + iy)|+ |ft+s(λt + iy)− ft(λt + iy)|.(5.1)
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The first two terms we bound as follows. Since γ(t) = ft(λt + i0+), we have

|γ(t)− ft(λt + iy)| ≤
ˆ y

0

|f ′
t(λt + ir)| dr.

Moreover, we let

mσ =

{
min

(
Lσ,

πσ√
64−π2σ2

)
, if σ < 8

π
,

Lσ if σ ≥ 8
π
.

(5.2)

and write ξσ = (m2
σ − 1)/(m2

σ +1) ∈ (−1, 1). By (2.9) and the fact that the function
x 7→ (x2 − 1)/(x2 + 1) is increasing on (0,∞) together with Proposition 3.1 and
Proposition 4.1 we have that

(5.3) |f ′
t(λt + ir)| = exp

{
ˆ t

0

W 2
u − 1

W 2
u + 1

d log Yu

}
≤ Y ξσ

t r−ξσ .

By (2.5), we have that for u ∈ [0, s],

Y ξσ
t+u ≤ C(σ, ε),

since s, t ≤ 1 and therefore
ˆ y

0

|f ′
t(λt + ir)| dr ≤ C(σ, ε)

ˆ y

0

r−ξσ dr =
C(σ, ε)

1− ξσ
y1−ξσ .

The same statement holds with t + s in place of t and thus we have a bound on
the first two terms of (5.1). Let Iys,t denote the line segment connecting λt + iy to
λt+s + iy. Using the distortion theorem, (5.3) and that

√
s ≤ y, we have that

|ft+s(λt+s + iy)− ft+s(λt + iy)| ≤ |λt+s − λt| max
w∈Iys,t

|f ′
t+s(w)| ≤ σ

√
s max
w∈Iys,t

|f ′
t+s(w)|

≤ C(σ)y|f ′
t+s(λt+s + iy)| ≤ Cy1−ξσ .

Finally, since s ∈ [0, y2], Lemma 3.5 of [6] and (5.3) imply that

|ft+s(λt + iy)− ft(λt + iy)| ≤ Cy|f ′
t(λt + iy)| ≤ Cy1−ξσ .

Thus, by (5.1) and the above inequalities, letting s = y2, we have

|γ(t+ s)− γ(t)| ≤ C(σ, ε)s
1

1+m2
σ ,

that is, γ is Hölder continuous with exponent α for each

α ≤ 1

1 +m2
σ

and this concludes the proof. �

Remark. We have seen that the Hölder exponent is determined by the behavior
of the derivative near the tip of the curve, which in turn is estimated using (2.9).
The derivative can be explicitly bounded if the reverse flow stays in a particular
cone so that sup |Wr| ≤ C. However, the sharp behavior depends on the integrated
values of (W 2

r −1)/(W 2
r +1) and we expect that the optimal bound on the integral is

strictly smaller than the integrated optimal L∞-bound. In the case of SLE, there is
of course no almost sure L∞-bound, but the process Wr has an invariant distribution
in an appropriately weighted measure, and (2.9) can be precisely estimated using this
invariant distribution and an intermediate deviations argument, see [6]. In the case
of a general Lip- 1

2
function these techniques are not available.
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5.2. Winding rates. Theorem 1.1 also easily implies estimates on the winding
rate at the tip of the curve γ ∈ Γσ depending on σ, that is, we obtain estimates on
the growth rate of | arg f ′

t(λt+ iy) | as y tends to 0. Geometrically, this measures the
winding of the hyperbolic geodesic from γ(t) to ∞ in H \ γ([0, t]), close to the tip
γ(t) when the geodesic is parametrized by harmonic measure. By (2.10) and (2.5)
we have a trivial bound

| arg f ′
t(λt + iy) | ≤ 2 log

Yt

y
≤ log(y2 + 4t) + 2 log(y−1),

since 2|Ws|/(W 2
s + 1) ≤ 1. By the easy estimate Ct,σ ≤ σ/

√
4− σ2 of [13], we get

a non-trivial bound in the case σ <
√
2. By virtue of Corollary 1.3, we have the

following improvement for σ < 4
√
2/π.

Proposition 5.1. Let γ ∈ Γσ with σ < 4
√
2/π. Then

| arg f ′
t(λt + iy) | ≤ πσ

√
64− π2σ2

64
log(y2 + 4t) +

πσ
√
64− π2σ2

32
log y−1

Proof. By (3.1) and since σ < 4
√
2/π, we have that

|Ws(iy)| ≤
πσ√

64− π2σ2
< 1.

By (2.10), Proposition 3.1, Proposition 4.1, (2.5) and that the function x 7→ x/(x2+1)
is increasing on [0, 1], we have that

| arg f ′
t(λt + iy) | ≤ 2

ˆ t

0

|Wr|
W 2

r + 1
d log Yr ≤ 2

πσ
√
64− π2σ2

64
log

(
Yt

y

)

≤ πσ
√
64− π2σ2

64
log(y2 + 4t) +

πσ
√
64− π2σ2

32
log(y−1)

which is the desired estimate. �

6. Additional remarks

In this section we collect a few simple observations that follow essentially directly
from known results. For a curve γ, let us consider the optimal Hölder exponent
achievable through reparametrization:

α̂(γ) = sup{α : γ can be reparametrized to be Hölder-α}.
By Corollary 1.3, for small σ, we know that

α̂(Γσ) := inf{α̂(γ) : γ ∈ Γσ} ≥ 1− π2σ2/64

which, as remarked, immediately gives an upper bound on the maximal dimension for
γ ∈ Γσ. However, under weak regularity assumptions, satisfied by γ ∈ Γσ, the optimal
estimate is equal to the maximal reciprocal Minkowski dimension. Recall that a k-
quasiarc is the image of a line segment under a k-quasiconformal homeomorphism of
C.

Proposition 6.1. Suppose γ is a quasiarc with Minkowski dimension dM . Then

(6.1) α̂(γ) = d−1
M .

In particular, if γ is a k-quasiarc, then

α̂(γ) ≥ 1

1 + k2
.
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Remark. The second statement uses Smirnov’s result [14], but in fact, for small
k, Ivrii’s recent stronger result [5] stating that the dimension of a k-quasiarc is at
most 1 + Σ2k2 +O(k8/3−ε) for small k, combined with Hedenmalm’s estimate Σ < 1
[4] gives a better bound for small k.

Sketch of proof. The first statement follows from the ideas of Section 2 of
[1]. The second assertion follows from the first, combined with Smirnov’s result
on the maximal Hausdorff dimension of a k-quasiarc, and the fact, due to Astala
(see Theorem 1.5 of [2]), that the maximal Hausdorff dimension over the set of k-
quasiarcs equals the corresponding maximal Minkowski dimension. (This is not true
in general for a fixed quasiarc.) Let us sketch the proof of (6.1) following [1]. For
a curve γ and δ > 0, let M(γ, δ) be the minimal number of curve segments of
diameter at most δ needed to cover γ. We first claim that if M(γ, δ) . δ−r then for
any r′ > r there is a Hölder-1/r′ parametrization of γ. Indeed, choosing first any
parametrization, γ(s), s ∈ [0, 1], not constant on any subinterval, we may define the
following reparametrization

τ(s) =

∑
n n

−2M(γ[0, s], 2−n)2−rn

∑
n n

−2M(γ, 2−n)2−rn
.

Note that the denominator is bounded. Suppose ε > 0 and |γ(s1) − γ(s2)| ≥ ε. If
2−n < ε and sufficiently small, then we have M(γ[0, s2], 2

−n)−M(γ[0, s1], 2
−n) ≥ 1.

Hence for all ε > 0 small enough,

τ(s2)− τ(s1) ≥ C
∑

n>− log ε

n−22−rn ≥ C ′εr
′

.

On the other hand, we can estimate M in terms of dM as follows: By the quasiarc
property there is a constant Cγ < ∞ such that the following holds. Given δ > 0,
partition γ into segments of diameter Cγδ by considering stopping times defined as
follows: t0 = 0 and then for j = 1, 2, . . . , Nδ, tj = inf{t ≥ tj−1 : |γ(t)−γ(tj−1)| ≥ Cγδ}
(terminating if the end point of the curve is within distance Cγδ). Then given any
cover of γ by balls of diameter δ, by the quasicircle property, any ball in this cover
contains at most one of the partitioning points, {γ(tj)}. Hence for any r > dM , we
obtain M(γ, δ) ≤ Nδ . δ−r. �

Given Proposition 6.1, we would like to relate k and σ quantitatively. Marshall
and Rohde [11] show that these parameters are quantitatively related in the sense
that k → 0 as σ → 0. In the other direction, taking λ(t) = σ

√
t shows that one can

not say anything for general quasiarcs, but if the dilatation of the quasiconformal
homeomorphism of H defining a quasislit tends to 1 (so that k → 0), it does follow
that σ → 0. However, beyond these observations, no estimates appear to be available.

As was pointed out to us by Rohde, a recent result of Tran can be used to get
an estimate for small σ. Let us sketch the argument. Fix λ ∈ Λσ with σ < 1/3.

Set λ̃ = λ/(3‖λ‖1/2) so that ‖λ̃‖1/2 = 1/3. On the other hand, since λ̃ ∈ Λ1/3

we can use Theorem 1.3 of [15] to embed γλ in a holomorphic motion compatible
with the Loewner equation in the following sense. For each τ ∈ D, it is possible
to solve the Loewner equation (1.1) with the complex driving term, t 7→ τ λ̃t. The

solution extends to a conformal map gt : Ĉ \ Lt → Ĉ \ Rt, where Lt, Rt are both
simple curves. The curve Lt = Lτ

t moves holomorphically with τ , and so if we write
S = [0, 2i], then there exists a holomorphic motion of S, f : D × S → C, such that
f(3‖λ‖1/2, S) = γλ as a set. By the generalized λ-lemma, f extends to a holomorphic
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motion of C, F : D×C → C, and for each τ ∈ D, F (τ, ·) : C → C is a quasiconformal
homeomorphism of dilatation at most (1 + |τ |)/(1 − |τ |). Setting τ = 3‖λ‖1/2 we
conclude the following.

Proposition 6.2. Suppose γ ∈ Γσ with σ < 1/3. Then γ is a 3σ-quasiarc.

References

[1] Aizenman, M., and A. Burchard: Hölder regularity and dimension bounds for random
curves. - Duke Math. J. 99:3, 1999, 419–453.

[2] Astala, K.: Calderon’s problem for Lipschitz classes and the dimension of quasicircles. - Rev.
Mat. Iberoam. 4:3, 1988, 469–486.

[3] Gehring, F.: Characteristic properties of quasidisks. - Séminaire de mathématiques
supérieures, Presses de l’Université de Montréal, 1982.

[4] Hedenmalm, H.: Bloch functions, asymptotic variance and geometric zero packing. -
arXiv:1602.03358, 2016.

[5] Ivrii, O.: Quasicircles of dimension 1 + k2 do not exist. - arXiv:1511.07240, 2015.

[6] Johansson Viklund, F., and G.F. Lawler: Optimal Hölder exponent for the SLE path. -
Duke Math. J. 159:3, 2011, 351–383.

[7] Lawler, G.F.: Conformally invariant processes in the plane. - Math. Surveys Monogr. 114,
Amer. Math. Soc., Providence, RI, 2005.

[8] Lind, J.: A sharp condition for the Loewner equation to generate slits. - Ann. Acad. Sci. Fenn.
Math. 30, 2005, 143–158.

[9] Lind, J., D.E. Marshall, and S. Rohde: Collisions and spirals of Loewner traces. Duke
Math. J. 154:3, 2010, 527–573.

[10] Lind, J., and S. Rohde: Spacefilling curves and phases of the Loewner equation. - Indiana
Univ. Math. J. 61:6, 2012, 2231–2249.

[11] Marshall, D.E., and S. Rohde: The Loewner differential equation and slit mappings. - J.
Amer. Math. Soc. 18:4, 2005, 763–778.

[12] Ringqvist, C. The Loewner equation: an introduction and the winding of its trace. - KTH
Mathematics Master’s thesis, 2015.

[13] Rohde, S., H. Tran, and M. Zinsmeister: The Loewner equation and Lipschitz graphs. -
Rev. Mat. Iberoam. 34, 2018, 937–948.

[14] Smirnov, S.: Dimension of quasicircles. - Acta Math. 205, 2010, 189–197.

[15] Tran, H.: Loewner equation driven by complex-valued functions. - arXiv:1707.01023, 2017.

[16] Wang, Y. Equivalent descriptions of the loewner energy. - Invent. Math. 218, 2019, 573?-621.

Received 7 January 2020 • Accepted 13 May 2020


