ANALYSIS OF SCHRÖDINGER MEANS

Per Sjölin and Jan-Olov Strömberg

KTH Royal Institute of Technology, Department of Mathematics S-100 44 Stockholm, Sweden; persj@kth.se

KTH Royal Institute of Technology, Department of Mathematics S-100 44 Stockholm, Sweden; jostromb@kth.se

Abstract. We study integral estimates of maximal functions for Schrödinger means.

1. Introduction

We shall study Schrödinger means $S_t f(x)$ defined by

$$S_t f(x) = (2\pi)^{-n} \int_{\mathbf{R}^n} e^{i\xi \cdot x} e^{it|\xi|^a} \hat{f}(\xi) \, d\xi, \quad x \in \mathbf{R}^n, \ t \ge 0.$$

Here $f \in L^2(\mathbf{R}^n)$, $n \ge 1$, a > 0, and \hat{f} denotes the Fourier transform f, defined by

$$\hat{f}(\xi) = \int_{\mathbf{R}^n} e^{-i\xi \cdot x} f(x) \, dx, \quad \xi \in \mathbf{R}^n.$$

We shall use Sobolev spaces $H_s = H_s(\mathbf{R}^n), s \in \mathbf{R}$, with the norm given by

$$||f||_{H_s} = \left(\int_{\mathbf{R}^n} (1+|\xi|^2)^s |\hat{f}(\xi)|^2 \, d\xi\right)^{1/2}$$

Let *E* denote a bounded set in **R**. For r > 0 we let $N_E(r)$ denote the minimal number *N* of intervals $I_l, l = 1, 2, ..., N$, of length *r* such that $E \subset \bigcup_{l=1}^{N} I_l$. For *f* belonging to the Schwartz class \mathscr{S} we introduce the maximal function

$$S_E^* f(x) = \sup_{t \in E} |S_t f(x)|, \quad x \in \mathbf{R}^n.$$

In Sjölin and Strömberg [4] we proved the following theorem.

Theorem A. Assume that $n \ge 1$ and a > 0 and s > 0. If $f \in \mathscr{S}$, then one has

$$\int_{\mathbf{R}^n} |S_E^* f(x)|^2 \, dx \lesssim \left(\sum_{m=0}^\infty N_E(2^{-m}) 2^{-2ms/a}\right) \|f\|_{H_s}^2.$$

Here we write $A \leq B$ if there is a constant C such that $A \leq CB$. In the case E = [0, 1] it is easy to see that Theorem A implies the estimate

$$||S_E^*f||_2 \lesssim ||f||_{H_s}$$

if s > a/2.

Let $(t_k)_1^{\infty}$ be a sequence satisfying

(1)
$$1 > t_1 > t_2 > t_3 > \dots > 0$$
 and $\lim_{k \to \infty} t_k = 0.$

Set $A_j = \{t_k; 2^{-j-1} < t_k \le 2^{-j}\}$ for $j = 1, 2, 3, \ldots$ Let #A denote the number of elements in a set A. In [4] we used Theorem A to obtain the following results.

https://doi.org/10.5186/aasfm.2021.4616

²⁰²⁰ Mathematics Subject Classification: Primary 42B99.

Key words: Schrödinger equation, maximal functions, integral estimates, Sobolev spaces.

Theorem B. Assume that $n \ge 1$ and $a \ge 2s$ and s > 0, and b < 2s/(a-2s). Assume also that

$$#A_j \lesssim 2^{bj}$$
 for $j = 1, 2, 3, \dots,$

and that $f \in H_s$. Then

(2)
$$\lim_{k \to \infty} S_{t_k} f(x) = f(x)$$

almost everywhere.

Theorem C. Assume that $n \ge 1$ and $a \ge 2s$ and s > 0, and that $\sum_{1}^{\infty} t_k^{\gamma} < \infty$, where $\gamma < 2s/(a-2s)$. If also $f \in H_s$, then (2) holds almost everywhere.

Now let E denote a bounded set in \mathbf{R}^{n+1} and let E_0 denote the projection of E onto the *t*-axis, i.e. $E_0 = \{t; \text{ there extists } x \in \mathbf{R}^n \text{ such that } (x,t) \in E\}$. For a > 0 define an *a*-cube in \mathbf{R}^{n+1} with side r > 0 as an axis-parallell rectangular box with sidelength r^a in the *t*-direction and with sidelength r in the remaining directions x_1, \ldots, x_n . Thus an *a*-cube in \mathbf{R}^{n+1} has volume r^{n+a} . For r > 0 let $N_{E,a}(r)$ denote the minimal number N of *a*-cubes $Q_l, l = 1, 2, \ldots, N$ of side r, such that $E \subset \bigcup_1^N Q_l$.

For $f \in \mathscr{S}$ we introduce the maximal function

$$S_E^* f(x) = \sup_{(y,t)\in E} \left| S_t f(x+y) \right|, \quad x \in \mathbf{R}^n.$$

We shall prove the following inequality.

Theorem 1. Assume that $n \ge 1$ and a > 0 and s > 0. If $f \in \mathscr{S}$, then one has

$$\int_{\mathbf{R}^n} |S_E^* f(x)|^2 \, dx \lesssim \left(\sum_{m=0}^\infty N_{E,a}(2^{-m})2^{-2ms}\right) \|f\|_{H_s}^2.$$

The following estimate follows directly.

Corollary 1. Assume
$$n \ge 1$$
, $a > 0$, $s > 0$ and $f \in \mathscr{S}$. If

$$\sum_{m=0}^{\infty} N_{E,a}(2^{-m})2^{-2ms} < \infty,$$

then

(3)
$$||S_E^*f||_2 \lesssim ||f||_{H_s}$$

We shall now describe a counter-example of of Sjögren and Sjölin [3]. Assume a = 2 and let $\gamma \colon \mathbf{R}^+ \to \mathbf{R}^+$ be strictly increasing. Then there exist a function $f \in H_{n/2}$ and a continuous function u(x,t) in $\{(x,t); t > 0\}$ such that $u(x,t) = S_t f(x)$ and

$$\limsup_{\substack{(y,t)\to(x,0)\\|y-x|<\gamma(t),t>0}} |u(y,t)| = \infty$$

for all $x \in \mathbf{R}^n$. This is generalized to a more general Schrödinger equation which contains the fractional Schrödinger equation (a > 1) by Johansson [2]. It follows that if $E = \{(y,t); 0 < t < 1, |y| < \gamma(t)\}$, then (3) does not hold for s < n/2.

Now let $\Gamma: [0,1] \to (\mathbf{R}^n)$ and let E be a subset of the graph of Γ that is

$$E \subset \{ (\Gamma(t), t); 0 \le t \le 1 \}.$$

Assume that

(4)
$$|\Gamma(t_1) - \Gamma(t_2)| \lesssim |t_1 - t_2|^{\beta} \text{ for } t_1, t_2 \in E_0,$$

where $0 < \beta$. Also set $a_1 = 1/\beta$ and $a_2 = \max(a, a_1)$. We shall first study the case when E is the graph of Γ . Then (4) holds for any $\beta > 1$ only if Γ is constant. It follows from a result of Cho, Lee, and Vargas [1] that if n = 1, a = 2, B is an interval of **R** and E is the graph of Γ , then

$$||S_E^*f||_{L^2(B)} \le C_B ||f||_{H_s}$$
 if $s > \max(1/2 - \beta, 1/4)$, and $0 < \beta \le 1$

We have the following result.

Theorem 2. Assume $n \ge 1$, a > 0, $f \in \mathscr{S}$ and that E is the graph of Γ . Then (3) holds for $2s > a_2$.

We shall then study the case when $E = \{(\Gamma(t_k), t_k); k = 1, 2, 3...\}$, where the sequence $(t_k)_1^{\infty}$ satisfies (1). We have the following results.

Theorem 3. Assume $n \ge 1$, a > 0, and $f \in \mathscr{S}$.

- (i) In the case $2s > a_2$, then (3) holds.
- (i) In the case $2s > a_2$, then (b) holds. (ii) In the case $2s = a_2$ assume that $\sum_{1}^{\infty} t_k^{\gamma} < \infty$ for some $\gamma > 0$. Then (3) holds. (iii) In the case $2s < a_2$ assume that $\sum_{1}^{\infty} t_k^{\gamma} < \infty$ for some γ satisfying $\gamma < \infty$ $2s/(a_2-2s)$. Then (3) holds.

2. Proof of Theorem 1

If y and y_0 belong to to \mathbf{R}^n we write $y = (y_1, \ldots, y_n)$ and $y_0 = (y_{0,1}, \ldots, y_{0,n})$. We shall give the proof of Theorem 1.

Proof. Assume $y_0 \in \mathbf{R}^n$, $t_0 \in \mathbf{R}$, $0 < r \le 1$ and let

$$E = \{(y,t) \in \mathbf{R}^{n+1}; y_{0,j} \le y_j \le y_{0,j} + r \text{ for } 1 \le j \le n, \text{ and } t_0 \le t \le t_0 + r^a\}.$$

We have

$$S_t f(x+y) = c \int e^{i\xi \cdot x} e^{i\xi_1 y_1} \dots e^{i\xi_n y_n} e^{it|\xi|^a} \hat{f}(\xi) d\xi$$

where $c = (2\pi)^{-n}$, and for $1 \le j \le n$ we write $e^{i\xi_j y_j} = \Delta_j + e^{i\xi_j y_{0,j}}$, where

$$\Delta_j = \mathrm{e}^{i\xi_j y_j} - \mathrm{e}^{i\xi_j y_{0,j}}.$$

We also write $e^{it|\xi|^a} = \Delta_{n+1} + e^{it_0|\xi|^a}$, where

$$\Delta_{n+1} = \mathrm{e}^{it|\xi|^a} - \mathrm{e}^{it_0|\xi|^a}.$$

Hence

$$S_t f(x+y) = c \int e^{i\xi \cdot x} \left(\Delta_1 + e^{i\xi_1 y_{0,1}} \right) \dots \left(\Delta_n + e^{i\xi_n y_{0,n}} \right) \left(\Delta_{n+1} + e^{it_0 |\xi|^a} \right) \hat{f}(\xi) \, d\xi,$$

and it follows that $S_t f(x+y)$ is the sum of integrals of the form

(5)
$$c \int e^{i\xi \cdot x} \left(\prod_{j \in D} \Delta_j\right) \left(\prod_{j \in B} e^{i\xi_j y_{0,j}}\right) \Delta_{n+1} \hat{f}(\xi) d\xi$$

or

(6)
$$c\int e^{i\xi \cdot x} \left(\prod_{j\in D} \Delta_j\right) \left(\prod_{j\in B} e^{i\xi_j y_{0,j}}\right) e^{it_0|\xi|^a} \hat{f}(\xi) d\xi$$

Here D and B ar disjoint subsets of $\{1, 2, 3, \ldots, n\}$ and $D \cup B = \{1, 2, 3, \ldots, n\}$. We denote the integrals in (5) by $S'_t f(x, y)$ and shall describe how they can be estimated. The same argument works also for integrals in (6).

For $j \in D$ we write

$$\Delta_j = i\xi_j \int_{y_{0,j}}^{y_j} \mathrm{e}^{i\xi_j s_j} \, ds_j,$$

and we also write

$$\Delta_{n+1} = i|\xi|^a \int_{t_0}^t e^{i|\xi|^a s_{n+1}} \, ds_{n+1}.$$

Assuming $D = \{k_1, k_2, \dots, k_p\}$ we then have

$$S'_{t}f(x,y) = \int_{\mathbf{R}^{n}} \int_{y_{0,k_{1}}}^{y_{k_{1}}} \int_{y_{0,k_{2}}}^{y_{k_{2}}} \dots \int_{y_{0,k_{p}}}^{y_{k_{p}}} \int_{t_{0}}^{t} e^{i\xi \cdot x} \left(\prod_{j \in D} i\xi_{j} e^{i\xi_{j}s_{j}}\right) \left(\prod_{j \in B} e^{i\xi_{j}y_{0,j}}\right)$$
$$\cdot i|\xi|^{a} e^{i|\xi|^{a}s_{n+1}} \hat{f}(\xi) \, ds_{k_{1}} \, ds_{k_{2}} \dots ds_{k_{p}} \, ds_{n+1} \, d\xi.$$

Changing the order of integration one then obtains

$$|S'_{t}f(x,y)| \leq c \int_{y_{0,k_{1}}}^{y_{k_{1}}} \int_{y_{0,k_{2}}}^{y_{k_{2}}} \dots \int_{y_{0,k_{p}}}^{y_{k_{p}}} \int_{t_{0}}^{t} \left| \int_{\mathbf{R}^{n}} e^{i\xi \cdot x} \left(\prod_{j \in D} i\xi_{j} e^{i\xi_{j}s_{j}} \right) \left(\prod_{j \in B} e^{i\xi_{j}y_{0,j}} \right) \right.$$
$$\left. \cdot i|\xi|^{a} e^{i|\xi|^{a}s_{n+1}} \hat{f}(\xi) d\xi \left| ds_{k_{1}} ds_{k_{2}} \dots ds_{k_{p}} ds_{n+1}, \right.$$

or

$$S'_t f(x,y) = \int_{y_{0,k_1}}^{y_{k_1}} \dots \int_{y_{0,k_p}}^{y_{k_p}} \int_{t_0}^t F_D(x; s_{k_1}, \dots, s_{k_p}, s_{n+1}) \, ds_{k_1} \, ds_{k_2} \dots ds_{k_p} \, ds_{n+1},$$

where

$$F_D(x; s_{k_1}, s_{k_2}, \dots, s_{k_p}, s_{n+1}) = c \int_{\mathbf{R}^n} e^{i\xi \cdot x} \left(\prod_{j \in D} i\xi_j e^{i\xi_j s_j} \right) \left(\prod_{j \in B} e^{i\xi_j y_{0,j}} \right) i|\xi|^a e^{i|\xi|^a s_{n+1}} \hat{f}(\xi) \, d\xi.$$

Then

$$\sup_{(y,t)\in E} |S'_t f(x,y)| \le \int_{y_{0,k_1}}^{y_{0,k_1}+r} \dots \int_{y_{0,k_p}}^{y_{0,k_p}+r} \int_{t_0}^{t_0+r^a} |F_D(x;s_{k_1},\dots,s_{k_p},s_{n+1})| \, ds_{k_1}\dots ds_{k_p} \, ds_{n+1}.$$

Invoking Minkowski's inequality and Plancherel's formula we then obtain

$$\left(\int_{\mathbf{R}^{n}} \sup_{(y,t)\in E} |S'_{t}f(x,y)|^{2} dx \right)^{1/2}$$

$$\leq \int_{y_{0,k_{1}}}^{y_{0,k_{1}}+r} \dots \int_{y_{0,k_{p}}}^{y_{0,k_{p}}+r} \int_{t_{0}}^{t_{0}+r^{a}} \|F_{D}(\cdot;s_{k_{1}},\dots,s_{k_{p}},s_{n+1})\|_{2} ds_{k_{1}}\dots ds_{k_{p}} ds_{n+1}$$

$$= c(2\pi)^{n/2} \int_{y_{0,k_{1}}}^{y_{0,k_{1}}+r} \dots \int_{y_{0,k_{p}}}^{y_{0,k_{p}}+r} \int_{t_{0}}^{t_{0}+r^{a}} \left(\int_{\mathbf{R}^{n}} (\prod_{j\in D} |\xi_{j}|^{2})|\xi|^{2a} |\hat{f}(\xi)|^{2} d\xi \right)^{1/2} ds_{k_{1}}$$

$$\dots ds_{k_{p}} ds_{n+1} \leq r^{p}r^{a}A^{p}A^{a} \|f\|_{2}$$

if $f \in L^2(\mathbf{R}^n)$ and supp $\hat{f} \subset B(0, A)$, where $A \ge 1$. With similar arguments we get the estimate $r^p A^p ||f||_2$ for the integrals in (6), and by summation of the all integrals of forms (5) or (6) we get

(7)
$$\| \sup_{(y,t)\in E} |S_t f(x+y)| \|_2 \le (1+rA)^n (1+r^a A^a) \|f\|_2.$$

Now let E be a set in \mathbb{R}^{n+1} with the property that $E \subset \bigcup_{l=1}^{N} Q_{l}$ where the sets Q_{l} are *a*-cubes with side r with $rA \leq 1$ of the type we have just considered. One has

$$\sup_{(y,t)\in E} |S_t f(x+y)|^2 \le \sum_{1}^N \sup_{(y,t)\in Q_l} |S_t f(x+y)|^2$$

and it follows from (7) that

(8)
$$\int_{\mathbf{R}^n} \sup_{(y,t)\in E} |S_t f(x+y)|^2 dx \le 2^{2n+2} N \|f\|_2^2$$

if $rA \leq 1$ and $\operatorname{supp} \hat{f} \subset B(0, A)$. Now let $f \in \mathscr{S}$. We write $f = \sum_{k=0}^{\infty} f_k$, where the functions f_k are defined in the following way. We set $\hat{f}_0(\xi) = \hat{f}(\xi)$ for $|\xi| \leq 1$ and $\hat{f}_0(\xi) = 0$ for $|\xi| > 1$. For $k \geq 1$ we let $\hat{f}_k(\xi) = \hat{f}(\xi)$ for $2^{k-1} < |\xi| \leq 2^k$ and $\hat{f}_k(\xi) = 0$ otherwise.

Choosing real numbers $g_k > 0, k = 0, 1, 2, ...,$ we have

$$\sup_{(y,t)\in E} |S_t f(x+y)| \le \sum_{k=0}^{\infty} \sup_{(y,t)\in E} |S_t f_k(x+y)|$$
$$= \sum_{k=0}^{\infty} g_k^{-1/2} \sup_{(y,t)\in E} |S_t f_k(x+y)| g_k^{1/2}$$
$$\le \left(\sum_{k=0}^{\infty} g_k^{-1} \sup_{(y,t)\in E} |S_t f_k(x+y)|^2\right)^{1/2} \left(\sum_{k=0}^{\infty} g_k\right)^{1/2}$$

and invoking inquality (8) we also have

$$\int \sup_{(y,t)\in E} |S_t f(x+y)|^2 dx$$

$$\leq \left(\sum_{k=0}^{\infty} g_k^{-1} \int \sup_{(y,t)\in E} |S_t f_k(x+y))|^2 dx\right) \left(\sum_{k=0}^{\infty} g_k\right)$$

$$\leq \left(\sum_{k=0}^{\infty} g_k\right) \left(\sum_{k=0}^{\infty} g_k^{-1} 2^{2n+2} N_{E,a}(2^{-k}) \|f_k\|_2^2\right).$$

Choosing $g_k = N_{E,a}(2^{-k})2^{-2ks}$ we conclude that

$$\int \sup_{(y,t)\in E} |S_t f(x+y)|^2 dx \le 2^{2n+2} \left(\sum_{k=0}^{\infty} N_{E,a} (2^{-k}) 2^{-2ks} \right) \left(\sum_{k=0}^{\infty} 2^{2ks} \|f_k\|_2^2 \right)$$
$$\lesssim \left(\sum_{k=0}^{\infty} N_{E,a} (2^{-k}) 2^{-2ks} \right) \|f\|_{H_s}^2,$$

and the proof of Theorem 1 is complete.

3. Proof of Theorems 2 and 3

The following two lemmas follow easily from the definition of $N_{E,a}(r)$. **Lemma 1.** Assume that $0 < r \le 1$ and $0 < b < b_1$. Then

$$N_{E,b}(r) \le N_{E,b_1}(r),$$

and

$$N_{E,b_1}(r) \lesssim r^{b-b_1} N_{E,b}(r).$$

Lemma 2. Assume that E is a subset of the graph of Γ satisfying (4) with $\beta > 0$ and let $b \ge 1/\beta$. Then

$$N_{E,b}(r) \lesssim N_{E_0}(r^b)$$
 for $0 < r \le 1$.

 $(E_0, \Gamma, \beta \text{ are defined and equation } (4) \text{ is in Section 1}).$

We shall then give the proofs of Theorems 2 and 3.

Proof of Theorem 2. We have $a \leq a_2$. Invoking Lemma 1 and Lemma 2 we obtain

$$N_{E,a}(2^{-m}) \le N_{E,a_2}(2^{-m}) \le N_{E_0}(2^{-ma_2}) \le 2^{ma_2} + 1$$

and

$$\sum_{m=0}^{\infty} N_{E,a}(2^{-m})2^{-2ms} < \infty$$

if $a_2 - 2s < 0$, i.e. $s > a_2/2$. Using Corollary 1 we conclude that

$$||S_E^*f||_2 \lesssim ||f||_{H_s}$$

if $s > a_2/2$.

We shall then prove Theorem 3.

Proof of Theorem 3. In the case $2s > a_2$ we can use the same argument as in the proof of Theorem 2 to prove that (3) holds. Then assume $2s \le a_2$. We have $E_0 = \{t_k; k = 1, 2, 3, ...\}$ and assuming $\sum_{1}^{\infty} t_k^{\gamma} < \infty$ one obtains $\#A_j \le 2^{\gamma j}$. It then follows from Lemma 6 in [4] that $N_{E_0}(2^{-m}) \le 2^{\gamma m/(\gamma+1)}$.

We have $a \leq a_2$. Applying Lemma 1 and Lemma 2 one obtains

$$N_{E,a}(2^{-m}) \le N_{E,a_2}(2^{-m}) \le N_{E_0}(2^{-ma_2}) \le 2^{a_2\gamma m/(\gamma+1)}$$

It follows that

$$\sum_{m=0}^{\infty} N_{E,a}(2^{-m})2^{-2ms} < \infty$$

if $\gamma a_2/(\gamma + 1) < 2s$, that is $a_2\gamma < 2s\gamma + 2s$. In the case $2s = a_2$ this holds for every $\gamma > 0$. In the case $2s < a_2$ one has to assume $\gamma < 2s/(a_2 - 2s)$. This completes the proof of Theorem 3.

References

- CHO, C., S. LEE, and A. VARGAS: Problems on pointwise convergence of solutions to the Schrödinger equation. - J. Fourier Anal. Appl. 18, 2012, 972–994.
- JOHANSSON, K.: A counterexample on nontangential convergence for oscillatory integrals. -Publ. Inst. Math. (Beograd) (N.S.) 87:101, 2010, 129–137.
- [3] SJÖGREN, P., and P. SJÖLIN: Convergence properties for the time-dependent Schrödinger equuation. - Ann. Acad. Sci. Fenn. Math. 14, 1989, 13–25.
- [4] SJÖLIN, P., and J.-O. STRÖMBERG: Convergence of sequences of Schrödingers means. J. Math. Anal. Appl. 483:1, 2020, 123580.

Received 11 June 2019 • Revised received 15 January 2020 • Accepted 25 May 2020