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Abstract. We study integral estimates of maximal functions for Schrödinger means.

1. Introduction

We shall study Schrödinger means Stf(x) defined by

Stf(x) = (2π)−n

ˆ

Rn

eiξ·xeit|ξ|
a

f̂(ξ) dξ, x ∈ R
n, t ≥ 0.

Here f ∈ L2(Rn), n ≥ 1, a > 0, and f̂ denotes the Fourier transform f , defined by

f̂(ξ) =

ˆ

Rn

e−iξ·xf(x) dx, ξ ∈ R
n.

We shall use Sobolev spaces Hs = Hs(R
n), s ∈ R, with the norm given by

‖f‖Hs
=

(
ˆ

Rn

(1 + |ξ|2)s|f̂(ξ)|2 dξ

)1/2

.

Let E denote a bounded set in R. For r > 0 we let NE(r) denote the minimal number

N of intervals Il, l = 1, 2, . . .N , of length r such that E ⊂
⋃N

1 Il. For f belonging to
the Schwartz class S we introduce the maximal function

S∗
Ef(x) = sup

t∈E
|Stf(x)|, x ∈ R

n.

In Sjölin and Strömberg [4] we proved the following theorem.

Theorem A. Assume that n ≥ 1 and a > 0 and s > 0. If f ∈ S , then one has
ˆ

Rn

|S∗
Ef(x)|

2 dx .

(

∞
∑

m=0

NE(2
−m)2−2ms/a

)

‖f‖2Hs
.

Here we write A . B if there is a constant C such that A ≤ CB. In the case
E = [0, 1] it is easy to see that Theorem A implies the estimate

‖S∗
Ef‖2 . ‖f‖Hs

if s > a/2.
Let (tk)

∞
1 be a sequence satisfying

1 > t1 > t2 > t3 > · · · > 0 and lim
k→∞

tk = 0.(1)

Set Aj = {tk; 2
−j−1 < tk ≤ 2−j} for j = 1, 2, 3, . . . . Let #A denote the number of

elements in a set A. In [4] we used Theorem A to obtain the following results.
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Theorem B. Assume that n ≥ 1 and a ≥ 2s and s > 0, and b < 2s/(a − 2s).
Assume also that

#Aj . 2bj for j = 1, 2, 3, . . . ,

and that f ∈ Hs. Then

lim
k→∞

Stkf(x) = f(x)(2)

almost everywhere.

Theorem C. Assume that n ≥ 1 and a ≥ 2s and s > 0, and that
∑∞

1 tγk < ∞,
where γ < 2s/(a− 2s). If also f ∈ Hs, then (2) holds almost everywhere.

Now let E denote a bounded set in R
n+1 and let E0 denote the projection of E

onto the t-axis, i.e. E0 = {t; there extists x ∈ R
n such that (x, t) ∈ E}. For a > 0

define an a-cube in R
n+1 with side r > 0 as an axis-parallell rectangular box with

sidelength ra in the t-direction and with sidelength r in the remaining directions
x1, . . . , xn. Thus an a-cube in R

n+1 has volume rn+a. For r > 0 let NE,a(r) denote

the minimal number N of a-cubes Ql, l = 1, 2, . . . , N of side r, such that E ⊂
⋃N

1 Ql.
For f ∈ S we introduce the maximal function

S∗
Ef(x) = sup

(y,t)∈E

|Stf(x+ y)| , x ∈ R
n.

We shall prove the following inequality.

Theorem 1. Assume that n ≥ 1 and a > 0 and s > 0. If f ∈ S , then one has
ˆ

Rn

|S∗
Ef(x)|

2 dx .

(

∞
∑

m=0

NE,a(2
−m)2−2ms

)

‖f‖2Hs
.

The following estimate follows directly.

Corollary 1. Assume n ≥ 1, a > 0, s > 0 and f ∈ S . If
∞
∑

m=0

NE,a(2
−m)2−2ms < ∞,

then

‖S∗
Ef‖2 . ‖f‖Hs

.(3)

We shall now describe a counter-example of of Sjögren and Sjölin [3]. Assume
a = 2 and let γ : R+ → R

+ be strictly increasing. Then there exist a function f ∈
Hn/2 and a continuous function u(x, t) in {(x, t); t > 0} such that u(x, t) = Stf(x)
and

lim sup
(y, t) → (x, 0)
|y − x| < γ(t), t > 0

|u(y, t)| = ∞

for all x ∈ R
n. This is generalized to a more general Schrödinger equation which

contains the fractional Schrödinger equation (a > 1) by Johansson [2]. It follows that
if E = {(y, t); 0 < t < 1, |y| < γ(t)}, then (3) does not hold for s < n/2.

Now let Γ: [0, 1] → (Rn) and let E be a subset of the graph of Γ that is

E ⊂ {(Γ(t), t); 0 ≤ t ≤ 1}.

Assume that

|Γ(t1)− Γ(t2)| . |t1 − t2|
β for t1, t2 ∈ E0,(4)
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where 0 < β. Also set a1 = 1/β and a2 = max(a, a1). We shall first study the case
when E is the graph of Γ. Then (4) holds for any β > 1 only if Γ is constant. It
follows from a result of Cho, Lee, and Vargas [1] that if n = 1, a = 2, B is an interval
of R and E is the graph of Γ, then

‖S∗
Ef‖L2(B) ≤ CB‖f‖Hs

if s > max(1/2− β, 1/4), and 0 < β ≤ 1.

We have the following result.

Theorem 2. Assume n ≥ 1, a > 0, f ∈ S and that E is the graph of Γ. Then
(3) holds for 2s > a2.

We shall then study the case when E = {(Γ(tk), tk); k = 1, 2, 3 . . .}, where the
sequence (tk)

∞
1 satisfies (1). We have the following results.

Theorem 3. Assume n ≥ 1, a > 0, and f ∈ S .

(i) In the case 2s > a2, then (3) holds.
(ii) In the case 2s = a2 assume that

∑∞
1 tγk < ∞ for some γ > 0. Then (3) holds.

(iii) In the case 2s < a2 assume that
∑∞

1 tγk < ∞ for some γ satisfying γ <
2s/(a2 − 2s). Then (3) holds.

2. Proof of Theorem 1

If y and y0 belong to to R
n we write y = (y1, . . . , yn) and y0 = (y0,1, . . . , y0,n).

We shall give the proof of Theorem 1.

Proof. Assume y0 ∈ R
n, t0 ∈ R, 0 < r ≤ 1 and let

E = {(y, t) ∈ R
n+1; y0,j ≤ yj ≤ y0,j + r for 1 ≤ j ≤ n, and t0 ≤ t ≤ t0 + ra}.

We have

Stf(x+ y) = c

ˆ

eiξ·xeiξ1y1 . . . eiξnyneit|ξ|
a

f̂(ξ) dξ,

where c = (2π)−n, and for 1 ≤ j ≤ n we write eiξjyj = ∆j + eiξjy0,j , where

∆j = eiξjyj − eiξjy0,j .

We also write eit|ξ|
a

= ∆n+1 + eit0|ξ|
a

, where

∆n+1 = eit|ξ|
a

− eit0|ξ|
a

.

Hence

Stf(x+ y) = c

ˆ

eiξ·x
(

∆1 + eiξ1y0,1
)

. . .
(

∆n + eiξny0,n
) (

∆n+1 + eit0|ξ|
a)

f̂(ξ) dξ,

and it follows that Stf(x+ y) is the sum of integrals of the form

c

ˆ

eiξ·x

(

∏

j∈D

∆j

)(

∏

j∈B

eiξjy0,j

)

∆n+1f̂(ξ) dξ,(5)

or

c

ˆ

eiξ·x

(

∏

j∈D

∆j

)(

∏

j∈B

eiξjy0,j

)

eit0|ξ|
a

f̂(ξ) dξ.(6)

Here D and B ar disjoint subsets of {1, 2, 3, . . . , n} and D ∪B = {1, 2, 3, . . . , n}. We
denote the integrals in (5) by S ′

tf(x, y) and shall describe how they can be estimated.
The same argument works also for integrals in (6).
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For j ∈ D we write

∆j = iξj

ˆ yj

y0,j

eiξjsj dsj,

and we also write

∆n+1 = i|ξ|a
ˆ t

t0

ei|ξ|
asn+1 dsn+1.

Assuming D = {k1, k2, . . . , kp} we then have

S ′
tf(x, y) =

ˆ

Rn

ˆ yk1

y0,k1

ˆ yk2

y0,k2

. . .

ˆ ykp

y0,kp

ˆ t

t0

eiξ·x

(

∏

j∈D

iξje
iξjsj

)(

∏

j∈B

eiξjy0,j

)

· i|ξ|aei|ξ|
asn+1 f̂(ξ) dsk1 dsk2 . . . dskp dsn+1 dξ.

Changing the order of integration one then obtains

|S ′
tf(x, y)| ≤ c

ˆ yk1

y0,k1

ˆ yk2

y0,k2

. . .

ˆ ykp

y0,kp

ˆ t

t0

∣

∣

∣

∣

∣

ˆ

Rn

eiξ·x

(

∏

j∈D

iξje
iξjsj

)(

∏

j∈B

eiξjy0,j

)

· i|ξ|aei|ξ|
asn+1 f̂(ξ) dξ

∣

∣

∣
dsk1 dsk2 . . . dskp dsn+1,

or

S ′
tf(x, y) =

ˆ yk1

y0,k1

. . .

ˆ ykp

y0,kp

ˆ t

t0

FD(x; sk1 , . . . , skp, sn+1) dsk1 dsk2 . . . dskp dsn+1,

where

FD(x; sk1, sk2, . . . , skp, sn+1) = c

ˆ

Rn

eiξ·x

(

∏

j∈D

iξje
iξjsj

)(

∏

j∈B

eiξjy0,j

)

i|ξ|aei|ξ|
asn+1 f̂(ξ) dξ.

Then

sup
(y,t)∈E

|S ′
tf(x, y)|

≤

ˆ y0,k1+r

y0,k1

. . .

ˆ y0,kp+r

y0,kp

ˆ t0+ra

t0

|FD(x; sk1, . . . , skp, sn+1)| dsk1 . . . dskp dsn+1.

Invoking Minkowski’s inequality and Plancherel’s formula we then obtain
(

ˆ

Rn

sup
(y,t)∈E

|S ′
tf(x, y)|

2 dx

)1/2

≤

ˆ y0,k1+r

y0,k1

. . .

ˆ y0,kp+r

y0,kp

ˆ t0+ra

t0

‖FD(·; sk1, . . . , skp, sn+1)‖2 dsk1 . . . dskp dsn+1

= c(2π)n/2
ˆ y0,k1+r

y0,k1

. . .

ˆ y0,kp+r

y0,kp

ˆ t0+ra

t0

(

ˆ

Rn

(
∏

j∈D

|ξj|
2)|ξ|2a|f̂(ξ)|2 dξ

)1/2

dsk1

. . . dskp dsn+1 ≤ rpraApAa‖f‖2

if f ∈ L2(Rn)) and supp f̂ ⊂ B(0, A), where A ≥ 1.
With similar arguments we get the estimate rpAp‖f‖2 for the integrals in (6),

and by summation of the all integrals of forms (5) or (6) we get

‖ sup
(y,t)∈E

|Stf(x+ y)|‖2 ≤ (1 + rA)n(1 + raAa)‖f‖2.(7)
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Now let E be a set in R
n+1 with the property that E ⊂

⋃N
1 Ql where the sets Ql

are a-cubes with side r with rA ≤ 1 of the type we have just considered. One has

sup
(y,t)∈E

|Stf(x+ y)|2 ≤
N
∑

1

sup
(y,t)∈Ql

|Stf(x+ y)|2

and it follows from (7) that
ˆ

Rn

sup
(y,t)∈E

|Stf(x+ y)|2 dx ≤ 22n+2N‖f‖22(8)

if rA ≤ 1 and supp f̂ ⊂ B(0, A).
Now let f ∈ S . We write f =

∑∞
k=0 fk, where the functions fk are defined in

the following way. We set f̂0(ξ) = f̂(ξ) for |ξ| ≤ 1 and f̂0(ξ) = 0 for |ξ| > 1. For

k ≥ 1 we let f̂k(ξ) = f̂(ξ) for 2k−1 < |ξ| ≤ 2k and f̂k(ξ) = 0 otherwise.
Choosing real numbers gk > 0, k = 0, 1, 2, . . . , we have

sup
(y,t)∈E

|Stf(x+ y)| ≤
∞
∑

k=0

sup
(y,t)∈E

|Stfk(x+ y)|

=
∞
∑

k=0

g
−1/2
k sup

(y,t)∈E

|Stfk(x+ y)| g
1/2
k

≤

(

∞
∑

k=0

g−1
k sup

(y,t)∈E

|Stfk(x+ y)|2

)1/2( ∞
∑

k=0

gk

)1/2

and invoking inquality (8) we also have
ˆ

sup
(y,t)∈E

|Stf(x+ y)|2 dx

≤

(

∞
∑

k=0

g−1
k

ˆ

sup
(y,t)∈E

|Stfk(x+ y))|2 dx

)(

∞
∑

k=0

gk

)

≤

(

∞
∑

k=0

gk

)(

∞
∑

k=0

g−1
k 22n+2NE,a(2

−k)‖fk‖
2
2

)

.

Chosing gk = NE,a(2
−k)2−2ks we conclude that

ˆ

sup
(y,t)∈E

|Stf(x+ y)|2 dx ≤ 22n+2

(

∞
∑

k=0

NE,a(2
−k)2−2ks

)(

∞
∑

k=0

22ks‖fk‖
2
2

)

.

(

∞
∑

k=0

NE,a(2
−k)2−2ks

)

‖f‖2Hs
,

and the proof of Theorem 1 is complete. �

3. Proof of Theorems 2 and 3

The following two lemmas follow easily from the definition of NE,a(r).

Lemma 1. Assume that 0 < r ≤ 1 and 0 < b < b1. Then

NE,b(r) ≤ NE,b1(r),
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and
NE,b1(r) . rb−b1NE,b(r).

Lemma 2. Assume that E is a subset of the graph of Γ satisfying (4) with β > 0
and let b ≥ 1/β. Then

NE,b(r) . NE0
(rb) for 0 < r ≤ 1.

(E0, Γ, β are defined and equation (4) is in Section 1).

We shall then give the proofs of Theorems 2 and 3.

Proof of Theorem 2. We have a ≤ a2. Invoking Lemma 1 and Lemma 2 we
obtain

NE,a(2
−m) ≤ NE,a2(2

−m) . NE0
(2−ma2) ≤ 2ma2 + 1

and
∞
∑

m=0

NE,a(2
−m)2−2ms < ∞

if a2 − 2s < 0, i.e. s > a2/2. Using Corollary 1 we conclude that

‖S∗
Ef‖2 . ‖f‖Hs

if s > a2/2. �

We shall then prove Theorem 3.

Proof of Theorem 3. In the case 2s > a2 we can use the same argument as in
the proof of Theorem 2 to prove that (3) holds. Then assume 2s ≤ a2. We have
E0 = {tk; k = 1, 2, 3, . . .} and assuming

∑∞
1 tγk < ∞ one obtains #Aj . 2γj. It then

follows from Lemma 6 in [4] that NE0
(2−m) . 2γm/(γ+1).

We have a ≤ a2. Applying Lemma 1 and Lemma 2 one obtains

NE,a(2
−m) ≤ NE,a2(2

−m) . NE0
(2−ma2) . 2a2γm/(γ+1).

It follows that
∞
∑

m=0

NE,a(2
−m)2−2ms < ∞

if γa2/(γ + 1) < 2s, that is a2γ < 2sγ + 2s . In the case 2s = a2 this holds for every
γ > 0. In the case 2s < a2 one has to assume γ < 2s/(a2 − 2s). This completes the
proof of Theorem 3. �
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