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Abstract. We study integral estimates of maximal functions for Schrodinger means.

1. Introduction

We shall study Schrodinger means S, f(z) defined by

S,f(x) = (27)~" / TG f) de. € RY, £ > 0.

n

Here f € L*(R™), n > 1, a > 0, and f denotes the Fourier transform f, defined by

for = [ et cern
We shall use Sobolev spaces Hy, = Hs(R™), s € R, with the norm given by

1l = ( | a+ |§I2)S|f(€)|2d€)l/2.

R”

Let E denote a bounded set in R. For r > 0 we let Ng(r) denote the minimal number

N of intervals I;, [ = 1,2,... N, of length r such that £ C Uiv I;. For f belonging to
the Schwartz class . we introduce the maximal function

wf(x) = sup IS, f(x)], = €R"

In Sjolin and Stromberg [4] we proved the following theorem.
Theorem A. Assume thatn > 1 and a > 0 and s > 0. If f € ., then one has

IZEREE (Z NE<2—m>2—2ms/“> 171

m=0

2
Hs-

Here we write A < B if there is a constant C such that A < C'B. In the case
E =10,1] it is ecasy to see that Theorem A implies the estimate
1SEfll2 S N1 fllm,
if s >a/2.
Let (tx)3° be a sequence satisfying

(1) 1>t >ty >tg>--->0 and klimtk:O.
— 00

Set A; = {tg; 27971 <t <277} forj=1,2,3,.... Let #A4 denote the number of
elements in a set A. In [4] we used Theorem A to obtain the following results.
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Theorem B. Assume that n > 1 and a > 2s and s > 0, and b < 2s/(a — 2s).
Assume also that
#A;, <2 forj=1,2,3,...,
and that f € H,. Then

2) I S, /(x) = [(x)
almost everywhere.

Theorem C. Assume that n > 1 and a > 2s and s > 0, and that )" t] < oo,
where v < 2s/(a — 2s). If also f € Hy, then (2) holds almost everywhere.

Now let E denote a bounded set in R and let Ey denote the projection of E
onto the t-axis, i.e. Ey = {t; there extists z € R" such that (z,t) € E}. Fora > 0
define an a-cube in R"*! with side » > 0 as an axis-parallell rectangular box with
sidelength r* in the t-direction and with sidelength » in the remaining directions
T1,...,%,. Thus an a-cube in R™™! has volume 7", For r > 0 let Ng,(r) denote

the minimal number N of a-cubes Q;,l = 1,2, ..., N of side r, such that £ C Uf’ Q.
For f € . we introduce the maximal function

Spf(x)= sup |Sif(x+y)|, z€R™

(y,t)eE
We shall prove the following inequality.
Theorem 1. Assume thatn > 1 and a >0 and s > 0. If f € ., then one has

ICZEIREE <Z NE,a<2—m>2—2ms) 171,
m=0

The following estimate follows directly.
Corollary 1. Assumen >1,a>0,s>0and f € .. If

> Npa(27m)27m < o0,

m=0

then
(3) 1S5Sz S 11f]

We shall now describe a counter-example of of Sjogren and Sjolin [3]. Assume
a =2 and let v: RT — R™ be strictly increasing. Then there exist a function [ €
H, /> and a continuous function u(z,t) in {(z,t); t > 0} such that u(z,t) = Sif(x)
and

Hs-

lim sup lu(y,t)| = oo

(y,t) = (2,0)
ly —a| <~(),t>0

for all x € R”. This is generalized to a more general Schrodinger equation which
contains the fractional Schrodinger equation (a > 1) by Johansson [2]. It follows that
if £ ={(y,t); 0 <t<1, |y <~v(t)}, then (3) does not hold for s < n/2.

Now let I': [0,1] — (R") and let E be a subset of the graph of I' that is

EcCc{(T(),t);0<t<1}.
Assume that
(4) IT(t) —T(t)| S [t — ta]® for ty, 5 € Ey,
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where 0 < 3. Also set a; = 1/ and ay = max(a, a;). We shall first study the case
when E is the graph of I. Then (4) holds for any 5 > 1 only if I" is constant. It
follows from a result of Cho, Lee, and Vargas [1] that if n = 1, @ = 2, B is an interval
of R and F is the graph of I', then

1SEf 28y < Collfllg, if s > max(1/2 —3,1/4), and 0 < 3 < 1.
We have the following result.

Theorem 2. Assumen >1,a >0, f € . and that E is the graph of I". Then
(3) holds for 2s > a,.

We shall then study the case when E = {(I'(tx),tx); K = 1,2,3...}, where the
sequence (t;)7° satisfies (1). We have the following results.
Theorem 3. Assumen >1,a >0, and f € ..

(i) In the case 2s > ag, then (3) holds.
(ii) In the case 2s = ay assume that Y °t] < oo for some v > 0. Then (3) holds.

(iii) In the case 2s < ay assume that > | t] < oo for some 7 satisfying v <
2s/(ay — 2s). Then (3) holds.

2. Proof of Theorem 1

If y and yo belong to to R™ we write y = (y1,...,y,) and yo = (Yo.1,-- -, Yon)-
We shall give the proof of Theorem 1.

Proof. Assume yo € R", tg € R, 0 <r <1 and let

E={(y,t) eR"; yo; <y; <wo;+r for 1 <j<mn, andty <t <ty+r"}.
We have

Sif(x+y) = c/eiﬁ-meiﬁlyl N .eisnyneitlﬁl“f(g) de,
where ¢ = (27)™", and for 1 < j < n we write €% = A; + €% where
Aj — oY _ oW&iY0,j
We also write ¢l = A, ;1 4 e™l&l" where
A, = el _ gitoll®

Hence

Sif(x+y) = c/eis'w (A + o) (A, 4+ emon) (A, + eito‘s‘a) f(€)de,

and it follows that S;f(z + y) is the sum of integrals of the form

(5) c / Ch <H Aj> <H 5) A f(£) d,

jeD JjEB

or

(6) c / o't <H Aj> <H 5) eIl £(€) de.
JjeD JjEB

Here D and B ar disjoint subsets of {1,2,3,...,n} and DUB = {1,2,3,...,n}. We
denote the integrals in (5) by S} f(z,y) and shall describe how they can be estimated.
The same argument works also for integrals in (6).
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Y
. it
A = zgj/ s ds;,
Y0,

)

For j € D we write

and we also write

¢
Apyr = Z'|§|a/ o™it ds 1.
to

Assuming D = {ky, ko, ..., k,} we then have

el LLE ) )
0,k1 7 Y0,ko jeD j

jeEB
-i|g| el s £(€) dsy, dsy, .. dsy, s dE.

Changing the order of integration one then obtains

1S, f(z,y)] < c/ / / / / < Zgjeigjsj) <H eigjy0,j>
Y0,k1 7 Y0,kq to " jED JjEB

Afg|re e £(6) ds\ s, dsi, - dsi, dsnin,

or
, Yk, Ykp [T
Sif(x,y) = / / / Fp(; 8k, Skys Sn1) dSp, dSpy - - dsp, dspy1,
Yo k1 Yo kp
where
FD(x§ Skis Skay« -5 Skpys 3n+1) = C/ et (H ijei&s]) <H eiijo,j) Z"g‘aei\i\“snﬂf(g) de.
R" jED jE€B

Then

sup  |S;f(z,y)|

(y.t)eE

Yo,kq T Yo,kptr  plotr®
< / / / |Fp(@; 8y, -+ Skys Sng1)| dsky - .. dSg, dspy1.
Yo,k Y0, kp

Invoking Minkowski’s inequality and Plancherel’s formula we then obtain

1/2
</ sup |s;f<x,y>|2da:)
n (yt)eR

Yo,kq +T Yo,kp T flotr?
§/ / / | FD (i Skys - - s Skyps Sn1)||2 dSky - - - dSp, dSppa

Y0,kq

Yo,ky T Yo,kptT  plotr®
= c(2m)" / / / /
Y0,k Y0,kp to R"

o dsy, dspyy < TPrOAPAY £l

if f e L*(R")) and supp f C B(0, A), where A > 1.
With similar arguments we get the estimate r?AP|| f||y for the integrals in (6),
and by summation of the all integrals of forms (5) or (6) we get

(7) ['sup  |Sef(z +y)lll2 < (147 A)" (1 + A% f]l2-

(y,t)eE

1/2
|£j|2>|£|2“\f<£>|2d»z> dsi,
D

JE
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Now let E be a set in R"*! with the property that £ C Uiv 2, where the sets Q)
are a-cubes with side r with rA <1 of the type we have just considered. One has

N
sup |Sif(z+y)P <D sup |Sif(z+y)f
(yt)eE 1 WteQ
and it follows from (7) that
8 [ sw |+ g)Pdo < 2N £
n (yt)eE

if rA <1 and supp f C B(0, A).

Now let f € .. We write f = Zk _o f, where the functions fj are defined in
the following way. We set fo(&) = f(€) for [€] < 1 and fo(€) = 0 for || > 1. For
k> 1 welet fir(€) = f(€) for 2671 < |¢] < 2% and fk(g) = 0 otherwise.

Choosing real numbers g, > 0,k =0,1,2,..., we have

sup |S;f (x+y|<z sup | fr(x + y)|

(y,t)eE r—o (WtEE
1/2
Z sup |Sifu(x + )l g/
he (y,t)eERE
12 /o 1/2
(zgk p |stfk<x+y>\2) (zgk>
(y,t)eE k=0

and invoking inquality (8) we also have

/ sup  |Suf(x+ )P da

(y,t)eERE
<ng / ?;F€E|Stfk(fl7+y |2d1'> <ng>
< (Z%) (Z g 22”+2NE,a(2_k)||ka§>-
k=0 k=0

Chosing g, = Ng.o(27%)272% we conclude that

/sup 1Sy f (z +y) | do < 2272 (ZNEa M2~ 2’%) <Z22k8||f ||2>
(y,t)eERE
(ZNEa ")2” 2’“) /117

Hg»

and the proof of Theorem 1 is complete. O

3. Proof of Theorems 2 and 3

The following two lemmas follow easily from the definition of Ng ,(r).

Lemma 1. Assume that 0 <r <1 and 0 < b < b;. Then
Ngp(r) < Ngp, (),
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and
Ngp (1) S 707" Nigy(r).

Lemma 2. Assume that E is a subset of the graph of I" satisfying (4) with § > 0
and let b > 1/f. Then

Npy(r) < Ng,(r?) for0<r <1.
(Eo, T, 5 are defined and equation (4) is in Section 1).
We shall then give the proofs of Theorems 2 and 3.

Proof of Theorem 2. We have a < as. Invoking Lemma 1 and Lemma 2 we
obtain
Nga(2™") < Npa,(27™) S NE, (277%) < 27% + 1

and .
D Npa(27M)27™ < o0
m=0
if ay — 2s < 0, i.e. s > ay/2. Using Corollary 1 we conclude that
1S5l S N1 1l
if s > ag/2. O

We shall then prove Theorem 3.

Proof of Theorem 3. In the case 2s > ay we can use the same argument as in
the proof of Theorem 2 to prove that (3) holds. Then assume 2s < ay. We have
Ey={ty; k=1,2,3,...} and assuming Y °¢] < oo one obtains #4; < 2%/, It then
follows from Lemma 6 in [4] that Ng, (27™) < 20m/0+1),

We have a < as. Applying Lemma 1 and Lemma 2 one obtains

NE,a(2_m) < NE7a2 (2—m) 5 NEO (z—maa) 5 2a2'\/m/(«/+1).
It follows that N
Z NE7a(2—m)2—2ms < 00

m=0
if yas /(v 4 1) < 2s, that is asy < 2sy + 2s . In the case 2s = ay this holds for every
v > 0. In the case 2s < a one has to assume v < 2s/(ay — 2s). This completes the
proof of Theorem 3. U
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