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Abstract. In this paper we use Galerkin method to investigate the existence of positive
solution for a class of singular and quasilinear elliptic problems given by




−div(a0(|∇u|p0)|∇u|p0−2∇u) =

λ0

uβ0

+ f0(u), u > 0 in Ω,

u = 0 on ∂Ω,

and its version for systems given by




−div(a1(|∇u|p1) |∇u|p1−2 ∇u) =
λ1

uβ1

+ f1(v) in Ω,

−div(a2(|∇v|p2 ) |∇v|p2−2 ∇v) =
λ2

vβ2

+ f2(u) in Ω,

u, v > 0 in Ω,

u = v = 0 on ∂Ω,

where Ω ⊂ R
N is bounded smooth domain with N ≥ 3 and for i = 0, 1, 2 we have 2 ≤ pi < N , 0 <

βi ≤ 1, λi > 0 and fi are continuous functions. The hypotheses on the C1-functions ai : R
+ → R

+

allow to consider a large class of quasilinear operators.

1. Introduction

In a celebrated paper in 1976 [39], Stuart considered the problem

L(u) = f(x, u) in Ω, u = φ(x) on ∂Ω,

where Ω is a bounded domain in R
N , N ≥ 2, L be a second order linear elliptic op-

erator and f(x, p) → ∞ as p → 0. Problems of this type are called singular and arise
in the theory of heat conduction in electrically conducting materials. Moreover, they
have wide application to physical models such as non-Newtonian fluids, boundary
layer phenomena for viscous fluids, chemical heterogenous, see [7] and [8]. Using the
maximum principle Stuart establishes the existence of non-negative solutions of this
problem and constructs iteration schemes that converge to a solution.

In 1997, Crandall, Rabinowitz, Tartar [14] go back to study this class of problems,
where L is assumed to be a linear second order elliptic operator that satisfies a
maximum principle. In the first part the existence of a classical solution continuous
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up to the boundary is proved by means of sub-supersolutions method. The second
part of the paper is devoted to a detailed study of the continuity properties of a
solution for special nonlinearities independent of x.

More recently, the version with L = −∆ and f(x, u) = 1
uα+λ|∇u|p+σ, where α >

0, σ ≥ 0, 0 < p ≤ 2, φ = 0 was studied in [19] and [43]. The gradient in this equation
is called convection term. The version without the convection term was studied in
[37]. Another important results can be found in [4, 5, 9, 10, 13, 15, 17, 22, 28, 32].
The system versions were studied in [1, 12, 24, 30, 42].

In [20] Giacomoni, Prashanth and Sreenadh studied a problem with N -Laplacian
such that the nonlinearity grows like exp(|t|N/N−1) at infinity and like 1

tα
at the

origin. A similar problem with the Laplacian operator in R
2 was studied by Saoudi

and Kratou in [35]. In [16] Dhanya, Prashanth, Sreenadh and Tiwari considered the
singular case with critical exponential growth and discontinous nonlinearity. The
inhomogeneous singular Neumann case was studied in [36]. The multiplicity results
was considered in [33]. The version in R

N with N -Laplacian and critical exponential
growth was studied in [2].

We are going back to our problem in order to enunciate the hypotheses on the
functions ai and fi. More precisely, the hypotheses on functions ai : R

+ −→ R
+ of

C1 class are the following:

(a1) There exist constants k1, k3, k4 ≥ 0 and k2 > 0, such that

k1t
pi + k2t

N ≤ ai(t
pi)tpi ≤ k3t

pi + k4t
N , for all t ≥ 0.

(a2) The function
t 7−→ ai(t

p
i )tpi−2 is increasing.

The functions fi : R −→ R are continuous satisfying the following properties:

(f1) There exists α0 > 0 such that the exponential growth conditions at infinity
are given by:

lim
t→∞

fi(t)

exp
(
α|t|

N
N−1

) = 0 for α > α0 and lim
t→∞

fi(t)

exp
(
α|t|

N
N−1

) = ∞ for 0 < α < α0.

(f2) The growth condition at the origin:

lim
t→0+

fi(t)

tpi−1
= 0.

(f3) There exists γi > N such that

fi(t) ≥ tγi−1, for all t ≥ 0.

Since we are looking for positive solution, in this paper we consider fi(t) = 0 for
all t < 0.

The purpose in the first part of this article is to prove the existence of solution
for the following class of singular problems

(1.1)





−div(a0(|∇u|p0) |∇u|p0−2 ∇u) =
λ0

uβ0
+ f0(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω ⊂ R
N is a bounded smooth domain, N ≥ 3, 2 ≤ p0 < N and 0 < β0 ≤ 1,

λ0 are real parameters.
The main result in the first part is:
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Theorem 1.1. Assume that conditions (a1)–(a2) and (f1)–(f3) hold. Then,
there exists λ∗ > 0 such that the problem (1.1) has a positive weak solution for every
λ0 ∈ (0, λ∗).

In the second part of this article we study the following system

(1.2)





−div(a1(|∇u|p1) |∇u|p1−2 ∇u) =
λ1

uβ1
+ f1(v) in Ω,

−div(a2(|∇v|p2) |∇v|p2−2 ∇v) =
λ2

vβ2
+ f2(u) in Ω,

u, v > 0 in Ω,

u = v = 0 on ∂Ω,

where Ω ⊂ R
N is bounded smooth domain with N ≥ 3 and for i = 1, 2 we have

2 ≤ pi < N , 0 < βi ≤ 1, λi > 0, ai : R
+ → R

+ are functions of C1 class and
fi : R → R are continuous functions with exponential growth.

The main result of this second part is the following:

Theorem 1.2. Assume that, for i = 1, 2, ai satisfy (a1)–(a2) and fi satisfy (f1)–
(f3). Then, there exists λ∗ > 0 such that the problem (1.2) has a positive weak
solution for every 0 < λ1 + λ2 < λ∗.

We will give some examples of functions ai in order to illustrate the degree of
generality of the kind of problems studied here.

Example 1.1. Considering ai(t) = t
N−pi

pi , we have that the function ai satisfies
the hypotheses (a1)–(a2) with k1 = k3 = 0 and k2 = k4 = 1. Hence, Theorems 1.1
and 1.2 are valid for the operator −∆Nu.

Example 1.2. Considering ai(t) = 1 + t
N−pi

pi , we have that the function ai
satisfies the hypotheses (a1)–(a2) with k1 = k2 = k3 = k4 = 1. Hence, Theorems 1.1
and 1.2 are valid for the operator −∆piu−∆Nu.

Problems with this operator come from a general reaction-diffusion system:

(1.3) ut = div[D(u)∇u] + c(x, u),

where D(u) = (|∇u|p−2 + |∇u|N−2). This system has a wide range of applications
in physics and related sciences, such as biophysics, plasma physics and chemical
reaction design. In such applications, the function u describes a concentration, the
first term on the right-hand side of (1.3) corresponds to the diffusion with a diffusion
coefficient D(u); whereas the second one is the reaction and relates to source and
loss processes. Typically, in chemical and biological applications, the reaction term
c(x, u) is a polynomial of u with variable coefficients (see [11, 23, 29, 41]).

Beneath we present some other examples that are also interesting from mathe-
matical point of view.

Example 1.3. Considering a(t) = 1 + 1

(1+t)
pi−2

pi

, we have that the function a

satisfies the hypotheses (a1) − (a2) with k1 = 1, k3 = 2, k4 = 0 and k2 > 0. Hence,
Theorems 1.1 and 1.2 are valid for the operator

− div

(
|∇u|pi−2∇u+

|∇u|pi−2∇u

(1 + |∇u|pi)
pi−2

pi

)
.
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Example 1.4. Considering ai(t) = 1+ t
N−p

p + 1

(1+t)
pi−2

pi

, it follows that the func-

tion a satisfies the hypotheses (a1)− (a2) with k1 = k2 = k4 = 1 and k3 = 2. Hence,
Theorems 1.1 and 1.2 are valid for the operator

−∆piu−∆Nu− div

(
|∇u|pi−2∇u

(1 + |∇u|pi)
pi−2

pi

)
.

Other combinations can be made with the functions presented in the examples
above, generating very interesting elliptic problems from the mathematical point of
view.

Below we list what we believe that are the main contributions of our paper:

1) In [13] and [12] were studied a singular problem and a singular system, re-
spectively, with this general operator. But the nonlinearities have polynomial
growth.

2) In [16], [20], [35] and [36] were studied the singular case with a nonlinearities
with exponential growth. However, here we study problems with a general
operator which brings some technical difficulties.

3) Here we use Galerkin method that was not used in the papers above cited.

The plan of the paper is the following: In Section 2 we recall some preliminary
results for the scalar case. In Section 3 we study an auxiliary problem for the scalar
case. We show existence of solution of the auxiliary problem in Section 4. In Section 5
we prove Theorem 1.1. In Section 6 we study an auxiliary problem for the system
case. We show existence of solution of the auxiliary problem in Section 7. In Section 8
we prove Theorem 1.2

2. Preliminary results for the scalar case

Let us consider the Sobolev space W
1,N
0 (Ω) endowed with the norm

‖u‖1,N =

(
ˆ

Ω

|∇u|N dx

) 1

N

.

We say that u ∈ W
1,N
0 (Ω) is a weak solution of the problem (1.1) if u > 0 in Ω

and it verifies
ˆ

Ω

a0(|∇u|p0) |∇u|p0−2 ∇u ∇φ dx− λ0

ˆ

Ω

φ

uβ0
dx−

ˆ

Ω

f0(u)φ dx = 0,

for all φ ∈ W
1,N
0 (Ω). In this paper, we work with operator Ti : W

1,N
0 (Ω) → (W 1,N

0 (Ω))′

such that

〈Tiui, φi〉 =

ˆ

Ω

ai(|∇ui|
pi) |∇ui|

pi−2∇ui∇φi dx.

A straightforward calculation shows that Ti is continuous. Furthermore, Ti is
monotone and coercive, see [12, Lemma 1].

Firstly, we recall some important results due to Trudinger–Moser [31, 40] and
Hardy–Sobolev [25]. A version of Trudinger–Moser inequality for systems can be
found in [3].

Theorem 2.1. (Trudinger–Moser inequality) For every u ∈ W
1,N
0 (Ω) and α > 0,

then

exp
(
αu

N
N−1

)
∈ L1(Ω)
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and there exists a constant M > 0 such that

sup
‖u‖

1,N
≤1

ˆ

Ω

exp
(
αu

N
N−1

)
dx ≤ M ,

for every α ≤ αN := Nw
1

N−1

N−1, where wN−1 is the (N − 1)-dimensional measure of
(N − 1) sphere.

Theorem 2.2. (Hardy–Sobolev inequality) If u ∈ C1(Ω) ∩ W
1,p
0 (Ω) with 1 <

p ≤ N , then
u

Cdτ
∈ Lr(Ω), for 1

r
= 1

p
− 1−τ

N
, 0 < τ ≤ 1 and

∣∣∣ u

Cdτ

∣∣∣
Lr(Ω)

≤ |∇u|Lp(Ω),

where d(x) = dist(x, ∂Ω) and C is a positive constant which does not depend on x.

Our approach in the study of problem (1.1) and system (1.2) rests heavily on the
following Weak Comparison Principle proved in [12, Lemma 2].

Lemma 2.1. If Ω is a bounded domain and if ui, vi ∈ W
1,N
0 (Ω) satisfy

{
−div(ai(|∇ui|

pi)|∇ui|
pi−2∇ui) ≤ −div(ai(|∇vi|

pi)|∇vi|
pi−2∇vi) in Ω,

ui ≤ vi on ∂Ω,

then ui ≤ vi a.e. in Ω.

We observe that, from (f1)–(f2), for all δ > 0 and for all α > α0, there exists
Cδ > 0 such that

(2.1) |fi(t)t| ≤ δ|t|pi + Cδ|t|
qi exp

(
α|t|

N
N−1

)
,

for all qi ≥ 0. In this paper, we will use qi > N .

3. Auxiliary problem for the scalar case

For each ε > 0, we consider the following auxiliary problem

(3.1)





−div(a0(|∇u|p0)|∇u|p0−2∇u) =
λ0

(u+ ε)β0
+ f0(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where the functions a0 and f0 satisfy the hypotheses of the Theorem 1.1.
To prove Theorem 1.1, we first show the existence of a solution for the problem

(3.1). For this, we will use the Galerkin method together with the following fixed
point theorem, see [38] and [27, Theorem 5.2.5].

Lemma 3.1. Let G : Rd −→ R
d be a continuous function such that 〈G(ξ), ξ〉 ≥ 0

for every ξ ∈ R
d with |ξ| = r for some r > 0. Then, there exists z0 ∈ Br(0) such

that G(z0) = 0.

The main result in this section is the following:

Lemma 3.2. For each 0 < ε < 1, there exists λ∗ > 0 such that the problem
(3.1) has a positive weak solution for every λ0 ∈ (0, λ∗).

Proof. Let B = {e1, e2, . . . , em, . . .} be a Schauder basis of W 1,N
0 (Ω). For each

m ∈ N, define
Wm = [e1, e2, . . . , em]
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to be the finite-dimensional space generated by {e1, e2, . . . , em}. Note that the spaces
(Wm, ‖ · ‖m) and (Rm, | · |s) are isometrically isomorphic by natural mapping

S : Wm → R
m

given by

u =

m∑

j=1

ξjej 7→ S(u) = ξ = (ξ1, ξ2, . . . , ξm),

where

|ξ|s =
m∑

j=1

|ξj| and ‖u‖m =

(
ˆ

Ω

|∇u|m dx

) 1

m

.

Moreover,

(3.2) ‖u‖m = |ξ|s = |S(u)|s.

For each m ∈ N, define the function G : Rm → R
m such that

G(ξ) = G(ξ1, ξ2, . . . , ξm) = (G1(ξ), G2(ξ), . . . , Gm(ξ)),

where ξ = (ξ1, ξ2, . . . , ξm) ∈ R
m,

Gj(ξ) =

ˆ

Ω

a0(|∇u|p0)|∇up0−2∇u∇ej dx− λ0

ˆ

Ω

ej

(u+ ε)β0
dx−

ˆ

Ω

f0(u)ej dx,

j = 1, 2, . . . , m and u =

m∑

j=1

ξjej ∈ Wm. Therefore,

〈G(ξ), ξ〉 =
m∑

j=1

Gj(ξ)ξj =

ˆ

Ω

a0(|∇u|p0)|∇u|p0 dx−λ0

ˆ

Ω

u

(u+ ε)β0
dx−

ˆ

Ω

f0(u)u dx.

Note that

(3.3)

ˆ

Ω

u

(u+ ε)β0
dx ≤ |Ω|.

Using (2.1) and Sobolev embedding, there exists positive constant C1 such that

(3.4)

ˆ

Ω

f0(u)u dx ≤ δC1‖u‖
p0
1,p0 + Cδ

ˆ

Ω

|u|q0 exp
(
α|u|

N
N−1

)
dx.

Now, from (a1) we have
ˆ

Ω

a0(|∇u|p0)|∇u|p0 dx ≥ k1

ˆ

Ω

|∇u|p0 dx+ k2

ˆ

Ω

|∇u|N dx

= k1‖u‖
p0
1,p0

+ k2‖u‖
N
1,N .

(3.5)

It follows from (3.3), (3.4) and (3.5) that

(3.6) 〈G(ξ), ξ〉 ≥ k2‖u‖
N
1,N+(k1−δC1)‖u‖

p0
1,p0−λ0|Ω|−Cδ

ˆ

Ω

|u|q0 exp
(
α|u|

N
N−1

)
dx.

Taking δ > 0 sufficiently small such that (k1 − δC1) > 0, we can rewrite (3.6) as

(3.7) 〈G(ξ), ξ〉 ≥ k2‖u‖
N
1,N − λ0|Ω| − Cδ

ˆ

Ω

|u|q0 exp
(
α|u|

N
N−1

)
dx.
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Using Hölder’s inequality with s, s′ > 1 such that
1

s
+

1

s′
= 1, we get

Cδ

ˆ

Ω

|u|q0 exp
(
α|u|

N
N−1

)
dx ≤ Cδ

(
ˆ

Ω

|u|q0s
′

dx

) 1

s′
(
ˆ

Ω

exp
(
αs|u|

N
N−1

)
dx

) 1

s

.

Since q0 > N and s′ > 1, by Sobolev embedding there exists C̃1 > 0 such that

(3.8) Cδ

ˆ

Ω

|u|q0 exp
(
α|u|

N
N−1

)
dx ≤ CδC̃1‖u‖

q0
1,N

(
ˆ

Ω

exp
(
αs|u|

N
N−1

)
dx

) 1

s

.

Then, it follows (3.7) and (3.8) that

〈G(ξ), ξ〉 ≥ k2‖u‖
N
1,N − λ0|Ω| − CδC̃1‖u‖

q0
1,N

(
ˆ

Ω

exp
(
αs|u|

N
N−1

)
dx

) 1

s

.

Assume now that ‖u‖1,N = r for some r > 0 to be chosen later. We have

ˆ

Ω

exp
(
αs|u|

N
N−1

)
dx =

ˆ

Ω

exp

(
αs‖u‖

N
N−1

1,N

(
|u|

‖u‖1,N

) N
N−1

)
dx

=

ˆ

Ω

exp

(
αsr

N
N−1

(
|u|

‖u‖1,N

) N
N−1

)
dx

and in order to apply the Theorem 2.1, we impose that

r ≤
(αN

αs

)N−1

N

.

Therefore, there exists M > 0 such that

sup
‖u‖

1,N
≤1

ˆ

Ω

exp

(
αsr

N
N−1

(
|u|

‖u‖1,N

))
dx ≤ M

and hence,

〈G(ξ), ξ〉 ≥ k2r
N − λ0|Ω| − CδC̃1M

1/srq.

Now, it is necessary to choose r such that

k2r
N − CδC̃1M

1/srq ≥
k2r

N

2
,

in others words,

r ≤

(
k2

2CδC̃1M
1

s

) 1

q−N

.

Thus, considering r = min

{(αN

αs

)N−1

N

,

(
k2

2CδC̃1M
1

s

) 1

q−N

}
we get

〈G(ξ), ξ〉 ≥
k2r

N

2
− λ0|Ω|.

Furthermore, choosing

λ∗ =
k2r

N

4|Ω|

we obtain

〈G(ξ), ξ〉 > 0, for all 0 < λ0 < λ∗, ξ ∈ R
m and |ξ|s = r.
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By virtue of Lemma 3.1, for every m ∈ N, there exists y ∈ R
m with |y|s ≤ r < 1

such that G(y) = 0. Thus, from (3.2) there exists um ∈ Wm satisfying

(3.9) ‖um‖1,N ≤ r < 1, for every m ∈ N

such that

(3.10)

ˆ

Ω

a0(|∇um|
p0)|∇um|

p0−2∇um∇ej dx = λ0

ˆ

Ω

ej

(um + ε)β0
dx+

ˆ

Ω

f0(um)ej dx,

j = 1, 2, . . . , m. Multiplying the equality (3.10) by any constant σj , for each j =
1, 2, . . . , m, and adding them, we conclude

(3.11)

ˆ

Ω

a0(|∇um|
p0)|∇um|

p0−2∇um∇φ dx = λ0

ˆ

Ω

φ

(um + ε)β0
dx+

ˆ

Ω

f0(um)φ dx,

for all φ ∈ Wm, which shows that um is an approximate weak solution of problem
(3.1).

Since r does not depend on m and Wm ⊂ W
1,N
0 (Ω), for all m ∈ N, then (um)

is a bounded sequence in W
1,N
0 (Ω). Thus, for some subsequence, there exists u ∈

W
1,N
0 (Ω) such that

(3.12)





um ⇀ u in W
1,N
0 (Ω),

um → u in Lθ(Ω), θ ≥ 1,

um(x) → u(x) a.e. in Ω,

|um(x)| ≤ g(x) ∈ Lθ(Ω) a.e. in Ω, θ ≥ 1.

Fix k ∈ N and consider m ≥ k, then Wk ⊂ Wm and

(3.13)

ˆ

Ω

a0(|∇um|
p0)|∇um|

p0−2∇um∇φk dx = λ0

ˆ

Ω

φk

(um + ε)β0
dx+

ˆ

Ω

f0(um)φk dx,

for all φk ∈ Wk. Since φk ∈ Wk, note that∣∣∣∣
φk

(um + ε)β0

∣∣∣∣ ≤
|φk|

εβ0
∈ L1(Ω)

and by (3.12) we have

φk

(um(x) + ε)β0
→

φk

(u(x) + ε)β0
a.e. in Ω.

Therefore, we use [6, Theorem 4.2] to obtain that

(3.14)

ˆ

Ω

φk

(um + ε)β0
dx →

ˆ

Ω

φk

(u+ ε)β0
dx.

Now, since f0 is a continuous function, by (3.12) again we have

(3.15) f0(um(x))φk → f0(u(x))φk a.e. in Ω.

Using (2.1) we get

|f0(um(x))φk| ≤ δ|um(x)|
p0−1|φk|+ Cδ|um(x)|

q0−1 exp
(
α|um(x)|

N
N−1

)
|φk|.

We will need to prove that the function ĝ : R → R defined by

ĝ(um(x)) := δ|um(x)|
p0−1|φk|+ Cδ|um(x)|

q0−1 exp
(
α|um(x)|

N
N−1

)
|φk|

satisfies

(3.16) |f0(um(x))φk| ≤ ĝ(um(x)) ∈ L1(Ω).
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It is sufficient to show that ĝ(um(x)) is convergent in L1(Ω). Indeed, since 2 ≤
p0 < N , we invoke (3.12) to obtain

(3.17) |um(x)|
p0−1|φk| → |u(x)|p0−1|φk| a.e. in Ω

and

(3.18) |um(x)|
p0−1|φk| ≤ g(x)p0−1|φk| ∈ L1(Ω).

It follows from (3.17), (3.18) and [6, Theorem 4.2] that

(3.19)

ˆ

Ω

|um|
p0−1|φk| dx →

ˆ

Ω

|u|p0−1|φk| dx.

Furthermore, from (3.12) again we get

(3.20) |um(x)|
q0−1 exp

(
α|um(x)|

N
N−1

)
→ |u(x)|q0−1 exp

(
α|u(x)|

N
N−1

)
a.e. in Ω.

Now, considering s, s′ > 1 such that
1

s
+

1

s′
= 1, we use (3.12) and the fact that

q0 > N to obtain

(3.21) |um|
q0−1 → |u|q0−1 in Ls′(Ω).

Moreover, by (3.9) we have
ˆ

Ω

exp
(
αs|um(x)|

N
N−1

)
dx =

ˆ

Ω

exp

(
αs‖um(x)‖

N
N−1

1,N

(
|um(x)|

‖um(x)‖1,N

) N
N−1

)
dx

≤

ˆ

Ω

exp

(
αsr

N
N−1

(
|um(x)|

‖um(x)‖1,N

) N
N−1

)
dx

and applying the Theorem 2.1 we obtain

(3.22)

ˆ

Ω

exp
(
αs|um(x)|

N
N−1

)
dx ≤

ˆ

Ω

exp

(
αN

(
|um(x)|

‖um(x)‖1,N

) N
N−1

)
dx ≤ M.

Hence, by (3.21), (3.22) and Hölder’s inequality we get
ˆ

Ω

|um|
q0−1 exp

(
α|um|

N
N−1

)
dx

≤

(
ˆ

Ω

|um|
(q0−1)s′dx

) 1

s′
(
ˆ

Ω

exp
(
αs|um|

N
N−1

)
dx

) 1

s

(3.23)

≤ |um|
q0−1

Ls′(Ω)
M

1

s = M.

We use (3.20), (3.23) and [26, Theorem 4.8] to conclude that

(3.24) |um|
q0−1 exp

(
α|um|

N
N−1

)
⇀ |u|q0−1 exp

(
α|u|

N
N−1

)
.

It follows from (3.24) that

(3.25)

ˆ

Ω

|um|
q0−1 exp

(
α|um|

N
N−1

)
|φk| dx →

ˆ

Ω

|u|q0−1 exp
(
α|u|

N
N−1

)
|φk| dx.

Therefore, by (3.19) and (3.25) we prove that
ˆ

Ω

ĝ(um(x)) dx → δ

ˆ

Ω

|u(x)|p0−1|φk| dx+ Cδ

ˆ

Ω

|u(x)|q0−1 exp
(
α|u(x)|

N
N−1

)
|φk| dx,

which shows the identity (3.16).
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Then, we use (3.15), (3.16) and [6, Theorem 4.2] to conclude that

(3.26)

ˆ

Ω

f0(um)φk dx →

ˆ

Ω

f0(u)φk dx.

The next step is to show that

(3.27)

ˆ

Ω

a0 (|∇um|
p0) |∇um|

p0−2∇um∇φk dx →

ˆ

Ω

a0 (|∇u|p0) |∇u|p0−2∇u∇φk dx.

To this end, we will use (a2) and the same reasoning in [18, Lemma 2.4] to obtain

0 ≤ C‖um − u‖1,N

≤

ˆ

Ω

a0 (|∇um|
p0) |∇um|

p0 dx−

ˆ

Ω

a0 (|∇um|
p0) |∇um|

p0−2∇um∇u dx+ on(1)

= λ0

ˆ

Ω

um

(um + ε)β0
dx+

ˆ

Ω

f0(um)um dx− λ0

ˆ

Ω

u

(um + ε)β0
dx−

ˆ

Ω

f0(um)u dx

= on(1),

where

on(1) =

ˆ

Ω

a0 (|∇u|p0) |∇u|p0 dx−

ˆ

Ω

a0 (|∇u|p0) |∇u|p0−2∇um∇u dx.

Hence,
‖um − u‖1,N = on(1),

which implies that

(3.28) um → u in W
1,N
0 (Ω).

Now, we know that the function defined by

E(u) =

ˆ

Ω

a0 (|∇u|p0) |∇u|p0−2∇u∇φk dx

is continuous. Then, we invoke this fact and (3.28) to get the convergence (3.27).
Letting m → ∞ in (3.13), we use (3.14), (3.26) and (3.27) to conclude that

(3.29)

ˆ

Ω

a0(|∇u|p0)|∇u|p0−2∇u∇φk dx = λ0

ˆ

Ω

φk

(u+ ε)β0
dx+

ˆ

Ω

f0(u)φk dx,

for all φk ∈ Wk.
Since [Wk]k∈N is dense in W

1,N
0 (Ω), we have

φk → φ as k → ∞.

Then,
ˆ

Ω

a0(|∇u|p0)|∇u|p0−2∇u∇φk dx →

ˆ

Ω

a0(|∇u|p0)|∇u|p0−2∇u∇φ dx,(3.30)

ˆ

Ω

φk

(u+ ε)β0
dx →

ˆ

Ω

φ

(u+ ε)β0
dx,(3.31)

and

(3.32)

ˆ

Ω

f0(u)φk dx →

ˆ

Ω

f0(u)φ dx.

Therefore, since φ ∈ W
1,N
0 (Ω) is arbitrary, it follows from (3.29) - (3.32) that

(3.33)

ˆ

Ω

a0(|∇u|p0)|∇u|p0−2∇u∇φ dx = λ0

ˆ

Ω

φ

(u+ ε)β0
dx+

ˆ

Ω

f0(u)φ dx,
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for all φ ∈ W
1,N
0 (Ω), which shows that u is a weak solution of the problem (3.1).

Furthermore, u > 0 in Ω. In fact, since f0(t) = 0, ∀t < 0, we use φ = u− in (3.33) to
obtain

ˆ

Ω

a0(|∇u|p0)|∇u−| dx ≤ 0.

It follows from (a1) and k2 > 0 that
ˆ

Ω

|∇u−|N = ‖u−‖N1,N = 0,

which implies that u− = 0 and then u = u+ ≥ 0. But thanks to the Harnack’s
inequality, see [21], u > 0 in Ω. �

4. Proof of the Theorem 1.1

For each n ∈ N, let ε =
1

n
and u 1

n
= un be, where un is a solution of auxiliary

problem (3.1)




−div(a0(|∇un|
p0)|∇un|

p0−2∇un) =
λ0

(un +
1
n
)β0

+ f0(un) in Ω,

un > 0 in Ω,

un = 0 on ∂Ω,

obtained by the Lemma 3.2. Note that, from (f3) we get

λ0

(un +
1
n
)β0

+ f0(un) ≥
λ0

(un + 1)β0
+ |un|

γ0−1.

Since the function t 7→
λ0

(t + 1)β0
+ tγ0−1, for all t ≥ 0, attains a positive minimum z.

Then,
−div

(
a0(|∇un|

p0)|∇un|
p0−2∇un

)
≥ z > 0 in Ω.

By virtue from Minty–Browder’s Theorem [6, Theorem 5.15], we use the unique
positive solution of the problem

(4.1)





−div (a0(|∇v|p0)|∇v|p0−2∇v) = z in Ω,

v > 0 in Ω,

v = 0 on ∂Ω

to obtain{
−div (a0(|∇un|

p0)|∇un|
p0−2∇un) ≥ −div (a0(|∇v|p0)|∇v|p0−2∇v) in Ω,

u = v on ∂Ω.

Hence, we use the Lemma 2.1 to conclude that

(4.2) un(x) ≥ v(x) > 0 in Ω, ∀n ∈ N,

which implies that un(x) 9 0, for each x ∈ Ω.
Now, from (3.12) we get

um ⇀ un in W
1,N
0 (Ω) as m → +∞

and it follows from (3.9) that

‖un‖1,N ≤ lim inf
m→+∞

‖um‖1,N ≤ r < 1, for all n ∈ N.
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Therefore, r does not depend on n, which shows that (un) is a bounded sequence.

Thus, since W
1,N
0 (Ω) is a reflective Banach space, for some subsequence, there exists

u ∈ W
1,N
0 (Ω) such that

(4.3)





un ⇀ u in W
1,N
0 (Ω),

un → u in Lθ(Ω), θ ≥ 1,

un(x) → u(x) a.e. in Ω,

|un(x)| ≤ g(x) ∈ Lθ(Ω) a.e. in Ω, θ ≥ 1.

Recall from (3.33) that
ˆ

Ω

a0(|∇un|
p0)|∇un|

p0−2∇un∇φ dx

= λ0

ˆ

Ω

φ

(un +
1
n
)β0

dx+

ˆ

Ω

f0(un)φ dx, ∀φ ∈ W
1,N
0 (Ω).

(4.4)

Since f0 is a continuous function, by (4.3) we have

f0(un(x))φ → f0(u(x))φ a.e. in Ω.

By same computation in (3.16), we obtain the function ĝ : R → R such that

|f(un(x))φ| ≤ ĝ(un(x))

such that ĝ(un(x)) converges in L1(Ω). Then, we use [6, Theorem 4.2] to conclude
that

(4.5)

ˆ

Ω

f0(un)φ dx →

ˆ

Ω

f0(u)φ dx, ∀φ ∈ W
1,N
0 (Ω).

Now, by same computation in (3.27), we have

(4.6)

ˆ

Ω

a0(|∇un|
p0)|∇un|

p0−2∇un∇φ dx →

ˆ

Ω

a0(|∇u|p0)|∇u|p0−2∇u∇φ dx,

for all φ ∈ W
1,N
0 (Ω). Note that, from (4.3) again we get

(4.7)
φ

(
un(x) +

1
n

)β0
→

φ

u(x)β0
a.e. in Ω.

Moreover, by virtue from (4.1) and (a1), we can argue as in [23] to obtain that
v ∈ C1(Ω). Consequently, from (4.2), for each x ∈ Ω, it follows that un(x) ≥ v(x) >
Cd(x) > 0, where d(x) = dist(x, ∂Ω) and C is a positive constant that does not
depend on x. Thus,

ˆ

Ω

φ

(un(x) +
1
n
)β0

dx ≤

ˆ

Ω

φ

un(x)β0
dx ≤

ˆ

Ω

φ

Cd(x)β0
dx.

Hence, we invoke Theorem 2.2 to obtain
∣∣∣ φ
Cd(x)β0

∣∣∣ ∈ Lr(Ω) and C2 > 0 such that

(4.8)

ˆ

Ω

φ

(un(x) +
1
n
)β0

dx ≤ C2‖φ‖1,N .

Therefore, by (4.7), (4.8) and [6, Theorem 4.2] we get

(4.9)

ˆ

Ω

φ
(
un +

1
n

)β0
dx →

ˆ

Ω

φ

uβ0
dx, ∀φ ∈ W

1,N
0 (Ω).
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Letting n → +∞ in (4.4), we use (4.5), (4.6) and (4.9) to conclude that
ˆ

Ω

a0(|∇u|p0)|∇u|p0−2∇u∇φ dx = λ0

ˆ

Ω

φ

uβ0
dx+

ˆ

Ω

f0(u)φ dx, ∀φ ∈ W
1,N
0 (Ω),

which proves that u ∈ W
1,N
0 (Ω) is a weak solution for the problem (1.1).

5. Auxiliary problem for the case system

For each ε > 0, we consider the following auxiliary problem

(5.1)





−div(a1(|∇u|p1)|∇u|p1−2∇u) =
λ1

(u+ ε)β1
+ f1(v) in Ω,

−div(a2(|∇v|p2)|∇v|p2−2∇v) =
λ2

(v + ε)β2
+ f2(u) in Ω,

u, v > 0 in Ω,

u = v = 0 on ∂Ω,

where the functions ai and fi(i = 1, 2) satisfy the hypotheses of the Theorem 1.2.
The main result in this section is the following:

Lemma 5.1. For each 0 < ε < 1, there exists λ∗ > 0 such that the problem
(5.1) has a weak positive solution for every 0 < λ1 + λ2 < λ∗, with i = 1, 2.

Proof. Let B = {e1, e2, . . . , em, . . .} be a Schauder basis of W 1,N
0 (Ω). For each

m ∈ N, define

Wm = [e1, e2, . . . , em]

to be the finite-dimensional space generated by {e1, e2, . . . , em}.
For each m ∈ N, we define the function J : R2m → R

2m such that

J(η, ξ) = (F1(η, ξ), F2(η, ξ), . . . , Fm(η, ξ), G1(η, ξ), G2(η, ξ), . . . , Gm(η, ξ)),

where (η, ξ) = (η1, η2, . . . , ηm, ξ1, ξ2, . . . , ξm) ∈ R
2m,

Fj(η, ξ) =

ˆ

Ω

a1(|∇u|p1)|∇u|p1−2∇u∇ej dx− λ1

ˆ

Ω

ej

(u+ ε)β1
dx−

ˆ

Ω

f1(v)ej dx,

j = 1, 2, . . . , m,

Gj(η, ξ) =

ˆ

Ω

a2(|∇v|p2)|∇v|p2−2∇v∇ej dx− λ2

ˆ

Ω

ej

(v + ε)β2
dx−

ˆ

Ω

f2(u)ej dx,

j = 1, 2, . . . , m,

u =
m∑

j=1

ηjej ∈ Wm,

and

v =
m∑

j=1

ξjej ∈ Wm.

Moreover,

(5.2) ‖(u, v)‖ = |(η, ξ)|s.
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Therefore,

〈J(η, ξ), (η, ξ)〉 = 〈(F1(η, ξ), F2(η, ξ), . . . , Fm(η, ξ), G1(η, ξ), G2(η, ξ), . . . , Gm(η, ξ)),

(η1, η2, . . . , ηm, ξ1, ξ2, . . . , ξm)〉 =

m∑

j=1

Fj(η, ξ)ηj +

m∑

j=1

Gj(η, ξ)ξj

=

ˆ

Ω

a1(|∇u|p1)|∇u|p1 dx− λ1

ˆ

Ω

u

(u+ ε)β1
dx−

ˆ

Ω

f1(v)u dx

+

ˆ

Ω

a2(|∇v|p2)|∇v|p2 dx− λ2

ˆ

Ω

v

(v + ε)β2
dx−

ˆ

Ω

f2(u)v dx.

Note that

(5.3)

ˆ

Ω

u

(u+ ε)β1
dx ≤ |Ω|,

and

(5.4)

ˆ

Ω

v

(v + ε)β2
dx ≤ |Ω|

Using (2.1), Young’s inequality and Sobolev embedding, there exist positive con-
stants C1, C2, C3, C4, C5, C6, C7 and C8 such that

ˆ

Ω

f1(v)u dx ≤ δ1C1‖v‖
p1
1,p1 + δ1C2‖u‖

p1
1,p1 + Cδ1C3

ˆ

Ω

|v|q1 exp
(
α1|v|

N
N−1

)
dx

+ Cδ1C4

ˆ

Ω

|u|q1 exp
(
α1|v|

N
N−1

)
dx

(5.5)

and
ˆ

Ω

f2(u)v dx ≤ δ2C5‖u‖
p2
1,p2 + δ2C6‖v‖

p2
1,p2 + Cδ2C7

ˆ

Ω

|u|q2 exp
(
α2|u|

N
N−1

)
dx

+ Cδ2C8

ˆ

Ω

|v|q2 exp
(
α2|u|

N
N−1

)
dx.

(5.6)

Now, from (a1) we have
ˆ

Ω

a1(|∇u|p1)|∇u|p1 dx ≥ k1

ˆ

Ω

|∇u|p1 dx+ k2

ˆ

Ω

|∇u|N dx

= k1‖u‖
p1
1,p1

+ k2‖u‖
N
1,N

(5.7)

and
ˆ

Ω

a2(|∇v|p2)|∇v|p2 dx ≥ k1

ˆ

Ω

|∇u|p2dx+ k2

ˆ

Ω

|∇v|N dx

= k1‖v‖
p2
1,p2

+ k2‖v‖
N
1,N .

(5.8)

It follows from (5.3)–(5.8) that

〈J(η, ξ),(η, ξ)〉 ≥ k2(‖u‖
N
1,N + ‖v‖N1,N) + (k1 − δ1C2)‖u‖

p1
1,p1

+ (k1 − δ2C6)‖v‖
p2
1,p2

− (λ1 + λ2)|Ω| − δ1C1‖v‖
p1
1,p1

− Cδ1C3

ˆ

Ω

|v|q1 exp
(
α1|v|

N
N−1

)
dx

− Cδ1C4

ˆ

Ω

|u|q1 exp
(
α1|v|

N
N−1

)
dx− δ2C5‖u‖

p2
1,p2

− Cδ2C7

ˆ

Ω

|u|q2 exp
(
α2|u|

N
N−1

)
dx− Cδ2C8

ˆ

Ω

|v|q2 exp
(
α2|u|

N
N−1

)
dx.
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Note that, from 2 ≤ p1, p2 < N and Sobolev embedding, there exist C9, C10 > 0 we
have

δ1C1‖v‖
p1
1,p1 ≤ δ1C9‖v‖

p1
1,N

and
δ2C5‖u‖

p2
1,p2

≤ δ2C10‖u‖
p2
1,N .

Since ‖(u, v)‖N1,N = ‖u‖N1,N + ‖v‖N1,N and taking δ1, δ2 > 0 sufficiently small such
that (k1 − δ1C2), (k1 − δ2C6) > 0 we obtain

〈J(η, ξ),(η, ξ)〉 ≥ k2‖(u, v)‖
N− (λ1 + λ2)|Ω| − δ1C9‖(u, v)‖

p1
1,N − δ2C10‖(u, v)‖

p2
1,N

− Cδ1C3

ˆ

Ω

|v|q1 exp
(
α1|v|

N
N−1

)
dx− Cδ1C4

ˆ

Ω

|u|q1 exp
(
α1|v|

N
N−1

)
dx

− Cδ2C7

ˆ

Ω

|u|q2 exp
(
α2|u|

N
N−1

)
dx− Cδ2C8

ˆ

Ω

|v|q2 exp
(
α2|u|

N
N−1

)
dx.(5.9)

Using Hölder’s inequality with s, s′ > 1 such that
1

s
+

1

s′
= 1, we get

Cδ1C3

ˆ

Ω

|v|q1 exp
(
α1|v|

N
N−1

)
dx ≤ Cδ1C3

(
ˆ

Ω

|v|q1s
′

dx

) 1

s′
(
ˆ

Ω

exp
(
α1s|v|

N
N−1

)
dx

) 1

s

,

Cδ1C4

ˆ

Ω

|u|q1 exp
(
α1|v|

N
N−1

)
dx ≤ Cδ1C4

(
ˆ

Ω

|u|q1s
′

dx

) 1

s′
(
ˆ

Ω

exp
(
α1s|v|

N
N−1

)
dx

) 1

s

,

Cδ2C7

ˆ

Ω

|u|q2 exp
(
α2|u|

N
N−1

)
dx ≤ Cδ2C7

(
ˆ

Ω

|u|q2s
′

dx

) 1

s′
(
ˆ

Ω

exp
(
α2s|u|

N
N−1

)
dx

) 1

s

and

Cδ2C8

ˆ

Ω

|v|q2 exp
(
α2|u|

N
N−1

)
dx ≤ Cδ2C8

(
ˆ

Ω

|v|q2s
′

dx

) 1

s′
(
ˆ

Ω

exp
(
α2s|u|

N
N−1

)
dx

) 1

s

.

Since q1, q2 > N and s′ > 1, by Sobolev embedding there exist C11, C12, C13, C14 >

0 such that

Cδ1C3

ˆ

Ω

|v|q1 exp
(
α1|v|

N
N−1

)
dx ≤ Cδ1C11‖v‖

q1
1,N

(
ˆ

Ω

exp
(
α1s|v|

N
N−1

)
dx

) 1

s

,

Cδ1C4

ˆ

Ω

|u|q1 exp
(
α1|v|

N
N−1

)
dx ≤ Cδ1C12‖u‖

q1
1,N

(
ˆ

Ω

exp
(
α1s|v|

N
N−1

)
dx

) 1

s

,

Cδ2C7

ˆ

Ω

|u|q2 exp
(
α2|u|

N
N−1

)
dx ≤ Cδ2C13‖u‖

q2
1,N

(
ˆ

Ω

exp
(
α2s|u|

N
N−1

)
dx

) 1

s

and

Cδ2C8

ˆ

Ω

|v|q2 exp
(
α2|u|

N
N−1

)
dx ≤ Cδ2C14‖v‖

q2
1,N

(
ˆ

Ω

exp
(
α2s|u|

N
N−1

)
dx

) 1

s

.

Then, it follows from (5.9) that

〈J(η, ξ), (η, ξ)〉 ≥ k2‖(u, v)‖
N− (λ1 + λ2)|Ω| − δ1C9‖(u, v)‖

p1
1,N − δ2C10‖(u, v)‖

p2
1,N

− Cδ1C11‖(u, v)‖
q1
1,N

(
ˆ

Ω

exp
(
α1s|v|

N
N−1

)
dx

) 1

s

− Cδ1C12‖(u, v)‖
q1
1,N

(
ˆ

Ω

exp
(
α1s|v|

N
N−1

)
dx

) 1

s

(5.10)
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− Cδ2C13‖(u, v)‖
q2
1,N

(
ˆ

Ω

exp
(
α2s|u|

N
N−1

)
dx

) 1

s

− Cδ2C14‖(u, v)‖
q2
1,N

(
ˆ

Ω

exp
(
α2s|u|

N
N−1

)
dx

) 1

s

.

Assume now that ‖(u, v)‖1,N = r for some r > 0 to be chosen later. Then, we have

ˆ

Ω

exp
(
α1s|u|

N
N−1

)
dx =

ˆ

Ω

exp

(
α1s‖u‖

N
N−1

1,N

(
|u|

‖u‖1,N

) N
N−1

)
dx

≤

ˆ

Ω

exp

(
α1s‖(u, v)‖

N
N−1

(
|u|

‖u‖1,N

) N
N−1

)
dx

=

ˆ

Ω

exp

(
α1sr

N
N−1

(
|u|

‖u‖1,N

) N
N−1

)
dx.

Similarly,

ˆ

Ω

exp
(
α2s|v|

N
N−1

)
dx ≤

ˆ

Ω

exp

(
α2sr

N
N−1

(
|v|

‖v‖1,N

) N
N−1

)
dx

and in order to apply the Theorem 2.1, we impose that

r ≤

(
αN

α1s

)N−1

N

and r ≤

(
αN

α2s

)N−1

N

.

Therefore, there exist M1,M2 > 0 such that

sup
‖u‖

1,N
≤1

ˆ

Ω

exp

(
α1sr

N
N−1

(
|u|

‖u‖1,N

))
dx ≤ M1

and

sup
‖v‖

1,N
≤1

ˆ

Ω

exp

(
α2sr

N
N−1

(
|v|

‖v‖1,N

))
dx ≤ M2.

Hence, there exist C15, C16 > 0 such that we can rewrite (5.10) as

〈J(η, ξ), (η, ξ)〉

≥ k2r
N − (λ1 + λ2)|Ω| − δ1C9r

p1 − δ2C10r
p2 − Cδ1C15M

1/s
2 rq1 − Cδ2C16M

1/s
1 rq2.

Now, it is necessary to choose r such that

k2r
N

2
− Cδ1C̃1M

1/s
1 rq1 ≥

k2r
N

4

and
k2r

N

2
− Cδ2C̃2M

1/s
2 rq2 ≥

k2r
N

4
,

in others words

r ≤

(
k2

4Cδ1C̃1M
1

s

1

) 1

q1−N

and r ≤

(
k2

4Cδ2C̃2M
1

s

2

) 1

q2−N

.
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Considering

r = min



1,

(
αN

α1s

)N−1

N

,

(
αN

α2s

)N−1

N

,

(
k2

4Cδ1C̃1M
1

s

1

) 1

q1−N

,

(
k2

4Cδ2C̃2M
1

s

2

) 1

q2−N



 ,

we get

〈J(η, ξ), (η, ξ)〉 ≥ k2r
N − (λ1 + λ2)|Ω| − δ1C9 − δ2C10.

Thus, since r > 0 is fixed and the last inequality is true for all δ1, δ2 > 0 then, there
exists λ∗ > 0 such that

〈J(ξ), ξ〉 > 0 , for all η, ξ ∈ R
m and |(η, ξ)|s = r, for all 0 < λ1 + λ2 < λ∗.

By virtue of Lemma 3.1, for every m ∈ N, there exists (x, y) ∈ R
2m with

|(x, y)|s ≤ r < 1 such that J(x, y) = 0. Consequently, there exist um, vm ∈ Wm

satisfying

(5.11) ‖(um, vm)‖ ≤ r < 1, for every m ∈ N

such that

(5.12)

ˆ

Ω

a1(|∇um|
p1)|∇um|

p1−2∇um∇φ dx = λ1

ˆ

Ω

φ

(um + ε)β1
dx+

ˆ

Ω

f1(vm)φ dx

for all φ ∈ Wm and

(5.13)

ˆ

Ω

a2(|∇vm|
p2)|∇vm|

p2−2∇vm∇ϕdx = λ2

ˆ

Ω

ϕ

(vm + ε)β2
dx+

ˆ

Ω

f2(um)ϕdx

for all ϕ ∈ Wm, which implies that (um, vm) is an approximate weak solution of
problem (5.1).

Since r does not depend on m and Wm ⊂ W
1,N
0 (Ω), for all N , then (um) and

(vm) are bounded sequences in W
1,N
0 (Ω). Thus, for some subsequence, there exist

u, v ∈ W
1,N
0 (Ω) such that

(5.14)





um ⇀ u in W
1,N
0 (Ω),

um → u in Lθ(Ω), θ ≥ 1,

um(x) → u(x) a.e. in Ω,

|um(x)| ≤ g1(x) ∈ Lθ(Ω) a.e. in Ω, θ ≥ 1

and

(5.15)





vm ⇀ v in W
1,N
0 (Ω),

vm → v in Lθ(Ω), θ ≥ 1,

vm(x) → v(x) a.e. in Ω,

|vm(x)| ≤ g2(x) ∈ Lθ(Ω) a.e. in Ω, θ ≥ 1.

Fix k ∈ N and consider m ≥ k, then Wk ⊂ Wm and
ˆ

Ω

a1(|∇um|
p1)|∇um|

p1−2∇um∇φk dx

= λ1

ˆ

Ω

φk

(um + ε)β1
dx+

ˆ

Ω

f1(vm)φk dx, ∀φk ∈ Wk

(5.16)
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and
ˆ

Ω

a2(|∇vm|
p2)|∇vm|

p2−2∇vm∇ϕk dx

= λ2

ˆ

Ω

ϕk

(vm + ε)β2
+

ˆ

Ω

f2(um)ϕk dx, ∀ϕk ∈ Wk.

(5.17)

Since φk, ϕk ∈ Wm, note that∣∣∣∣
φk

(um + ε)β1

∣∣∣∣ ≤
|φk|

εβ1
∈ L1(Ω)

and ∣∣∣∣
ϕk

(vm + ε)β2

∣∣∣∣ ≤
|ϕk|

εβ2
∈ L1(Ω).

By (5.14) and (5.15) we have

φk

(um(x) + ε)β1
→

φk

(u(x) + ε)β1
a.e. in Ω

and
ϕk

(vm(x) + ε)β2
→

ϕk

(v(x) + ε)β2
a.e. in Ω.

Therefore, we use [6, Theorem 4.2] to obtain that

(5.18)

ˆ

Ω

φk

(um + ε)β1
dx →

ˆ

Ω

φk

(u+ ε)β1
dx

and

(5.19)

ˆ

Ω

ϕk

(vm + ε)β2
dx →

ˆ

Ω

ϕk

(v + ε)β2
dx.

Now, since fi are continuous functions, by (5.14) and (5.15) again we have

(5.20) f1(vm(x))φk → f1(v(x))φk a.e in Ω

and

(5.21) f2(um(x))ϕk → f2(u(x))ϕk a.e in Ω.

Using (2.1) we get

|f1(vm(x))φk| ≤ δ1|vm(x)|
p1−1|φk|+ Cδ1 |vm(x)|

q1−1 exp
(
α1|vm(x)|

N
N−1

)
|φk|

and

|f2(um(x))ϕk| ≤ δ2|um(x)|
p2−1|ϕk|+ Cδ2 |um(x)|

q2−1 exp
(
α2|um(x)|

N
N−1

)
|ϕk|.

We will need to prove that the functions ĝ1, ĝ2 : R → R defined by

ĝ1(vm(x)) := δ1|vm(x)|
p1−1|φk|+ Cδ1|vm(x)|

q1−1 exp
(
α1|vm(x)|

N
N−1

)
|φk|

and

ĝ2(um(x)) := δ2|um(x)|
p2−1|ϕk|+ Cδ2|um(x)|

q2−1 exp
(
α2|um(x)|

N
N−1

)
|ϕk|

satisfy

(5.22) |f1(vm(x))φk| ≤ ĝ1(vm(x)) ∈ L1(Ω)

and

(5.23) |f2(um(x))ϕk| ≤ ĝ2(um(x)) ∈ L1(Ω).
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It is sufficiently to show that ĝ1(vm(x)) and ĝ2(um(x)) are convergent in L1(Ω).
We will prove only the first inequality, because the second follows of the same rea-
soning. Indeed, since 2 ≤ p1 < N we invoke (5.15) to get

(5.24) |vm(x)|
p1−1|φk| → |v(x)|p1−1|φk| a.e. in Ω

and

(5.25) |vm(x)|
p1−1|φk| ≤ g2(x)

p1−1|φk| ∈ L1(Ω).

It follows from (5.24), (5.25) and [1, Theorem 4.2] that

(5.26)

ˆ

Ω

|vm|
p1−1|φk| dx →

ˆ

Ω

|v|p1−1|φk| dx.

Furthermore, from (5.15) again we get

(5.27) |vm(x)|
q1−1 exp

(
α1|vm(x)|

N
N−1

)
→ |v(x)|q1−1 exp

(
α1|v(x)|

N
N−1

)
a.e. in Ω.

Now, considering s, s′ > 1 such that
1

s
+

1

s′
= 1, we use (5.15) and the fact that

q1 > N to obtain

(5.28) |vm|
q1−1 → |v|q1−1 in Ls′(Ω).

Moreover, by (5.11) we have

ˆ

Ω

exp
(
α1s|vm(x)|

N
N−1

)
dx =

ˆ

Ω

exp

(
α1s‖vm(x)‖

N
N−1

1,N

(
|vm(x)|

‖vm(x)‖1,N

) N
N−1

)
dx

≤

ˆ

Ω

exp

(
α1sr

N
N−1

(
|vm(x)|

‖vm(x)‖1,N

) N
N−1

)
dx

and applying the Theorem 2.1 we obtain

(5.29)

ˆ

Ω

exp
(
α1s|vm(x)|

N
N−1

)
dx ≤

ˆ

Ω

exp

(
αN

(
|vm(x)|

‖vm(x)‖1,N

) N
N−1

)
dx ≤ M1.

Hence, by (5.28), (5.29) and Hölder’s inequality we get

ˆ

Ω

|vm|
q1−1 exp

(
α1|vm|

N
N−1

)
dx ≤

(
ˆ

Ω

|um|
(q1−1)s′ dx

) 1

s′
(
ˆ

Ω

exp
(
α1s|vm|

N
N−1

)
dx

) 1

s

≤ |vm|
q1−1

Ls′(Ω)
M

1

s

1 = M1.(5.30)

We use (5.27), (5.30) and [26, Theorem 4.8] to conclude that

(5.31) |vm|
q1−1 exp

(
α1|vm|

N
N−1

)
⇀ |v|q1−1 exp

(
α1|v|

N
N−1

)
.

It follows from (5.31) that

(5.32)

ˆ

Ω

|vm|
q1−1 exp

(
α1|vm|

N
N−1

)
|φk| dx →

ˆ

Ω

|v|q1−1 exp
(
α1|v|

N
N−1

)
|φk| dx.

Therefore, by (5.26) and (5.32) we prove that
ˆ

Ω

ĝ1(vm(x)) dx → δ1

ˆ

Ω

|v(x)|p1−1|φk| dx+ Cδ1

ˆ

Ω

|v(x)|q1−1 exp
(
α1|v(x)|

N
N−1

)
|φk| dx,

which shows the identity (5.22).
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Then, we use (5.20), (5.21), (5.22), (5.23) and [6, Theorem 4.2] to conclude that

(5.33)

ˆ

Ω

f1(vm)φk dx →

ˆ

Ω

f1(v)φk dx

and

(5.34)

ˆ

Ω

f2(um)ϕk dx →

ˆ

Ω

f2(u)ϕk dx.

The next step is to show that

(5.35)

ˆ

Ω

a1 (|∇um|
p1) |∇um|

p1−2∇um∇φk dx →

ˆ

Ω

a1 (|∇u|p1) |∇u|p1−2∇u∇φk dx

and

(5.36)

ˆ

Ω

a2 (|∇vm|
p2) |∇vm|

p2−2∇vm∇ϕk dx →

ˆ

Ω

a2 (|∇v|p2) |∇v|p2−2∇u∇ϕk dx.

To this end, we will use (a2) and the same reasoning in [18, Lemma 2.4] to obtain

0 ≤ C‖um − u‖1,N

≤

ˆ

Ω

a1 (|∇um|
p1) |∇um|

p1 dx−

ˆ

Ω

a1 (|∇um|
p1) |∇um|

p1−2∇um∇u dx+ on(1)

= λ1

ˆ

Ω

um

(um + ε)β1
dx+

ˆ

Ω

f1(vm)um dx− λ1

ˆ

Ω

u

(um + ε)β1
dx−

ˆ

Ω

f1(vm)u = on(1),

where

on(1) =

ˆ

Ω

a1 (|∇u|p1) |∇u|p1 dx−

ˆ

Ω

a1 (|∇u|p1) |∇u|p1−2∇um∇u dx

and

0 ≤ C‖vm − v‖1,N

≤

ˆ

Ω

a2 (|∇vm|
p2) |∇vm|

p2 dx−

ˆ

Ω

a2 (|∇vm|
p2) |∇vm|

p2−2∇vm∇v dx+ on(1)

= λ2

ˆ

Ω

vm

(vm + ε)β2
dx+

ˆ

Ω

f2(um)vm dx− λ2

ˆ

Ω

v

(vm + ε)β2
dx−

ˆ

Ω

f2(um)v dx = on(1),

where

on(1) =

ˆ

Ω

a2 (|∇v|p2) |∇v|p2dx−

ˆ

Ω

a2 (|∇v|p2) |∇v|p2−2∇vm∇vdx.

Hence,
‖um − u‖1,N = on(1) and ‖vm − v‖1,N = on(1),

which implies that

(5.37) um → u in W
1,N
0 (Ω)

and

(5.38) vm → v in W
1,N
0 (Ω).

Now, we know that the functions defined by

E1(u) =

ˆ

Ω

a1 (|∇u|p1) |∇u|p1−2∇u∇φk dx

and

E2(v) =

ˆ

Ω

a2 (|∇v|p2) |∇v|p2−2∇v∇ϕk dx
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are continuous. Then, by (5.37) and (5.38) we get the convergences (5.35) and (5.36).
Letting m → ∞ in (5.16) and (5.17), we use (5.18), (5.19), (5.33), (5.34), (5.35)

and (5.36) to conclude that

(5.39)

ˆ

Ω

a1(|∇u|p1)|∇u|p1−2∇u∇φk dx = λ1

ˆ

Ω

φk

(u+ ε)β1
dx+

ˆ

Ω

f1(v)φk dx,

and

(5.40)

ˆ

Ω

a2(|∇v|p2)|∇v|p2−2∇v∇ϕk dx = λ2

ˆ

Ω

ϕk

(v + ε)β2
dx+

ˆ

Ω

f2(u)ϕk dx,

for all φk, ϕk ∈ Wk.
Since [Wk]k∈N is dense in W

1,N
0 (Ω), we have

φk → φ as k → ∞

and

ϕk → ϕ as k → ∞.

Then,

ˆ

Ω

a1(|∇u|p1)|∇u|p1−2∇u∇φk dx →

ˆ

Ω

a1(|∇u|p1)|∇u|p1−2∇u∇φ dx,(5.41)

ˆ

Ω

a2(|∇v|p2)|∇v|p2−2∇v∇ϕk dx →

ˆ

Ω

a2(|∇v|p2)|∇v|p2−2∇v∇ϕdx,(5.42)

ˆ

Ω

φk

(u+ ε)β1
dx →

ˆ

Ω

φ

(u+ ε)β1
dx,(5.43)

ˆ

Ω

ϕk

(v + ε)β2
dx →

ˆ

Ω

ϕ

(v + ε)β2
dx,(5.44)

ˆ

Ω

f1(v)φk dx →

ˆ

Ω

f1(v)φ dx(5.45)

and

(5.46)

ˆ

Ω

f2(u)ϕk dx →

ˆ

Ω

f2(u)ϕdx.

Therefore, since φ, ϕ ∈ W
1,N
0 (Ω) are arbitrary, it follows from (5.39) - (5.46) that

(5.47)

ˆ

Ω

a1(|∇u|p1)|∇u|p1−2∇u∇φ dx = λ1

ˆ

Ω

φ

(u+ ε)β1
dx+

ˆ

Ω

f1(v)φ dx,

and

(5.48)

ˆ

Ω

a2(|∇v|p2)|∇v|p2−2∇v∇ϕdx = λ2

ˆ

Ω

ϕ

(v + ε)β2
dx+

ˆ

Ω

f2(u)ϕdx,

for all φ, ϕ ∈ W
1,N
0 (Ω), which shows that (u, v) is a weak solution of the problem

(5.1). Furthermore, arguing as in the scalar case we conclude that u, v > 0 in Ω. �
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6. Proof of the Theorem 1.2

For each n ∈ N, let ε = 1
n
, u 1

n
= un and v 1

n
= vn be, where (un, vn) is a solution

of auxiliary problem (5.1)




−div(a1(|∇un|
p1)|∇un|

p1−2∇un) =
λ1

(un +
1
n
)β1

+ f1(vn) in Ω,

−div(a2(|∇vn|
p2)|∇vn|

p2−2∇vn) =
λ2

(vn +
1
n
)β2

+ f2(un) in Ω,

un, vn > 0 in Ω,

un, vn = 0 on ∂Ω,

obtained by the Lemma 5.1. Note that, from (f3) we obtain

−div(a1(|∇un|
p1)|∇un|

p1−2∇un) ≥
λ1

(un + vn + 1)β1
+ |vn|

γ1−1 in Ω

and as the function t 7→ λ1

(un+t+1)β1
+ tγ1−1, for all t ≥ 0, attains a positive minimum

z1. Then,
−div

(
a1(|∇un|

p1)|∇un|
p1−2∇un

)
≥ z1 > 0 in Ω.

By virtue from Minty–Browder’s Theorem [6, Theorem 5.15], we use the unique
positive solution of the problem

(6.1)





−div (a1(|∇w1|
p1)|∇w1|

p1−2∇w1) = z1 in Ω,

w1 > 0 in Ω,

w1 = 0 on ∂Ω

to get that the solution w1 bound from below the solution un. Therefore,
{
−div (a1(|∇un|

p1)|∇un|
p1−2∇un) ≥ −div (a1(|∇w1|

p1)|∇w1|
p1−2∇w1) in Ω,

un = w1 on ∂Ω.

Hence, we use the Lemma 2.1 to conclude that

(6.2) un(x) ≥ w1(x) > 0 in Ω, ∀n ∈ N.

Similarly, we prove that

(6.3) vn(x) ≥ w2(x) > 0 in Ω ∀n ∈ N,

where w2 satisfies

(6.4)





−div (a2(|∇w2|
p2)|∇w2|

p2−2∇w2) = z2 in Ω,

w2 > 0 in Ω,

w2 = 0 in ∂Ω

and z2 is positive minimum of the function t 7→ λ2

(vn+t+1)β2
+ tγ2−1.

Now, from (5.14) and (5.15) we get

um ⇀ un in W
1,N
0 (Ω) as m → +∞

and
vm ⇀ vn in W

1,N
0 (Ω) as m → +∞.

It follows from (5.11) that

‖un‖1,N ≤ lim inf
m→+∞

‖um‖1,N ≤ lim inf
m→+∞

‖(um, vm)‖ ≤ r < 1, for all n ∈ N
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and

‖vn‖1,N ≤ lim inf
m→+∞

‖vm‖1,N ≤ lim inf
m→+∞

‖(um, vm)‖ ≤ r < 1, for all n ∈ N.

Therefore, r does not depend on n, which shows that (un) and (vn) are a bounded

sequences. Thus, since W
1,N
0 (Ω) is a reflective Banach space, for some subsequence,

there exist u, v ∈ W
1,N
0 (Ω) such that

(6.5)





un ⇀ u in W
1,N
0 (Ω),

un → u in Lθ(Ω), θ ≥ 1,

un(x) → u(x) a.e. in Ω,

|un(x)| ≤ g1(x) ∈ Lθ(Ω) a.e. in Ω, θ ≥ 1

and

(6.6)





vn ⇀ v in W
1,N
0 (Ω),

vn → v in Lθ(Ω), θ ≥ 1,

vn(x) → v(x) a.e. in Ω,

|vn(x)| ≤ g2(x) ∈ Lθ(Ω) a.e. in Ω, θ ≥ 1.

Recall from (5.47) and (5.48) that

(6.7)

ˆ

Ω

a1(|∇un|
p1)|∇un|

p1−2∇un∇φ dx = λ1

ˆ

Ω

φ

(un +
1
n
)β1

dx+

ˆ

Ω

f1(vn)φ,

for all φ ∈ W
1,N
0 (Ω) dx and

(6.8)

ˆ

Ω

a2(|∇vn|
p2)|∇vn|

p2−2∇vn∇ϕdx = λ2

ˆ

Ω

ϕ

(vn +
1
n
)β2

dx+

ˆ

Ω

f2(un)ϕdx,

for all ϕ ∈ W
1,N
0 (Ω).

Since fi are continuous functions, by (6.5) and (6.6), we have

f1(vn(x))φ → f1(v(x))φ a.e. in Ω

and

f2(un(x))ϕ → f2(u(x))ϕ a.e. in Ω.

By same computation in (5.22) and (5.23), we obtain

|f1(vn(x))φ| ≤ ĝ1(vn(x))

and

|f2(un(x))ϕ| ≤ ĝ2(un(x))

such that ĝi converge in ∈ L1(Ω). Then, we use [6, Theorem 4.2] to conclude that

(6.9)

ˆ

Ω

f1(vn)φ dx →

ˆ

Ω

f1(v)φ dx, ∀φ ∈ W
1,N
0 (Ω)

and

(6.10)

ˆ

Ω

f2(un)ϕdx →

ˆ

Ω

f2(u)ϕ, ∀ϕ ∈ W
1,N
0 (Ω) dx.

Now, by same computation in (5.35) and (5.36), we have

(6.11)

ˆ

Ω

a1(|∇un|
p1)|∇un|

p1−2∇un∇φ dx →

ˆ

Ω

a1(|∇u|p1)|∇u|p1−2∇u∇φ dx,
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for all φ ∈ W
1,N
0 (Ω) and

(6.12)

ˆ

Ω

a2(|∇vn|
p2)|∇vn|

p2−2∇vn∇ϕdx →

ˆ

Ω

a2(|∇v|p2)|∇v|p2−2∇v∇ϕdx,

for all ϕ ∈ W
1,N
0 (Ω).

Note that, from (6.5) and (6.6) again we get

(6.13)
φ

(
un(x) +

1
n

)β1
→

φ

u(x)β1
a.e. in Ω

and

(6.14)
ϕ

(
vn(x) +

1
n

)β2
→

ϕ

v(x)β2
a.e. in Ω.

Moreover, by virtue from (6.1), (6.4) and (a1), we can argue as in [23] to obtain
that w1, w2 ∈ C1(Ω). Consequently, we use (6.1), (6.4) again to conclude

∂w1

∂η
,
∂w2

∂η
< 0 on ∂Ω.

Then, for each x ∈ Ω, it follows from (6.2) and (6.3) that

un(x) ≥ w1(x) > Cd(x) > 0 and vn(x) ≥ w2(x) > Cd(x) > 0,

where d(x) = dist(x, ∂Ω) and C is positive constant that does not depend on x.
Thus,

ˆ

Ω

φ

(un(x) +
1
n
)β1

dx ≤

ˆ

Ω

φ

un(x)β1
dx ≤

ˆ

Ω

φ

Cd(x)β1
dx

and
ˆ

Ω

ϕ

(vn(x) +
1
n
)β2

dx ≤

ˆ

Ω

ϕ

vn(x)β2
dx ≤

ˆ

Ω

ϕ

Cd(x)β2
dx.

Hence, we invoke Theorem 2.2 to obtain
∣∣∣ φ
Cd(x)β1

∣∣∣ ,
∣∣∣ ϕ
Cd(x)β2

∣∣∣ ∈ Lr(Ω) and C17, C18 >

0 such that

(6.15)

ˆ

Ω

φ

(un(x) +
1
n
)β1

dx ≤ C17‖φ‖1,N .

and

(6.16)

ˆ

Ω

ϕ

(vn(x) +
1
n
)β2

dx ≤ C18‖ϕ‖1,N .

Therefore, by (6.13), (6.14), (6.15), (6.16) and [6, Theorem 4.2] we get

(6.17)

ˆ

Ω

φ
(
un +

1
n

)β1
dx →

ˆ

Ω

φ

uβ1
dx, ∀φ ∈ W

1,N
0 (Ω)

and

(6.18)

ˆ

Ω

ϕ
(
vn +

1
n

)β2
dx →

ˆ

Ω

ϕ

vβ2
dx, ∀ϕ ∈ W

1,N
0 (Ω).

Letting n → +∞ in (6.7) and (6.8), we use (6.9), (6.10), (6.11), (6.12), (6.17)
and (6.18) to conclude that
ˆ

Ω

a1(|∇u|p1)|∇u|p1−2∇u∇φ dx = λ1

ˆ

Ω

φ

uβ1
dx+

ˆ

Ω

f1(v)φ dx, ∀φ ∈ W
1,N
0 (Ω)
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and
ˆ

Ω

a2(|∇v|p2)|∇v|p2−2∇v∇ϕdx = λ2

ˆ

Ω

ϕ

vβ2
dx+

ˆ

Ω

f2(u)ϕdx, ∀ϕ ∈ W
1,N
0 (Ω),

which proves that (u, v) ∈ W 1,N(Ω) × W 1,N(Ω) is a weak solution of the problem
(1.2).
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