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Abstract. In this paper we use Galerkin method to investigate the existence of positive
solution for a class of singular and quasilinear elliptic problems given by

—div(ag(|VulPo)|Vu|Po=2Vu) = % + fo(u), u>0 inQ,
u=~0 on 0,

and its version for systems given by

A
—div(a; (|VulPr) [VulPr =2 Vu) = = + fi(v) in €,

B1
—div(ag(|Vo[P2) |[Vo|P2=2 Vo) = UTQ + fa(u) inQ,
u,v >0 in Q,
u=v=20 on 02,

where Q@ € RY is bounded smooth domain with N > 3 and for i = 0,1,2 we have 2 < p; < N, 0 <
Bi <1, \; >0 and f; are continuous functions. The hypotheses on the C'-functions a;: Rt — R¥
allow to consider a large class of quasilinear operators.

1. Introduction

In a celebrated paper in 1976 [39], Stuart considered the problem
L(u) = f(z,u) in Q, u=¢(x) on IS,

where  is a bounded domain in R, N > 2, L be a second order linear elliptic op-
erator and f(z,p) — oo as p — 0. Problems of this type are called singular and arise
in the theory of heat conduction in electrically conducting materials. Moreover, they
have wide application to physical models such as non-Newtonian fluids, boundary
layer phenomena for viscous fluids, chemical heterogenous, see [7] and [8]. Using the
maximum principle Stuart establishes the existence of non-negative solutions of this
problem and constructs iteration schemes that converge to a solution.

In 1997, Crandall, Rabinowitz, Tartar [14] go back to study this class of problems,
where L is assumed to be a linear second order elliptic operator that satisfies a
maximum principle. In the first part the existence of a classical solution continuous
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up to the boundary is proved by means of sub-supersolutions method. The second
part of the paper is devoted to a detailed study of the continuity properties of a
solution for special nonlinearities independent of x.

More recently, the version with L = —A and f(z,u) = 5 +A|Vu[P+0, where a >
0,0 >0,0<p<2 ¢=0wasstudied in [19] and [43]. The gradient in this equation
is called convection term. The version without the convection term was studied in
[37]. Another important results can be found in [4, 5, 9, 10, 13, 15, 17, 22, 28, 32|.
The system versions were studied in [1, 12, 24, 30, 42].

In [20] Giacomoni, Prashanth and Sreenadh studied a problem with N-Laplacian
such that the nonlinearity grows like exp([¢|/*/"¥~') at infinity and like & at the
origin. A similar problem with the Laplacian operator in R? was studied by Saoudi
and Kratou in [35]. In [16] Dhanya, Prashanth, Sreenadh and Tiwari considered the
singular case with critical exponential growth and discontinous nonlinearity. The
inhomogeneous singular Neumann case was studied in [36]. The multiplicity results
was considered in [33]. The version in R" with N-Laplacian and critical exponential
growth was studied in [2].

We are going back to our problem in order to enunciate the hypotheses on the
functions a; and f;. More precisely, the hypotheses on functions a;: Rt — R* of
C! class are the following:

(a1) There exist constants ki, k3, ky > 0 and ky > 0, such that
EytPt + kot™ < a; (7)1 < kgtP + kyt™ |, for all ¢ > 0.
(ag) The function
t — a;(tP)tPi? is increasing.
The functions f;: R — R are continuous satisfying the following properties:

(f1) There exists ag > 0 such that the exponential growth conditions at infinity
are given by:

t—o00 ~
exp <a|t|N*1)

(f2) The growth condition at the origin:
fi(t)

lim —= = 0.
t—0+ tPi—1
(f3) There exists 7; > N such that

fi(t) >t forall t>0.

=0 fora>ay and lim filt)

—— =00 for 0 <a <ay.
7% exp <a|t|ﬁ>

Since we are looking for positive solution, in this paper we consider f;(t) = 0 for
all t < 0.

The purpose in the first part of this article is to prove the existence of solution
for the following class of singular problems

—div(ao(|VulP?) |Vulro=2 Vu) = % + fo(u) in Q,
(1.1) u >0 in §2,
u=20 on 0f),

where Q C R is a bounded smooth domain, N > 3,2 <py, < N and 0 < 3, < 1,
Ao are real parameters.
The main result in the first part is:
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Theorem 1.1. Assume that conditions (a;)—(as) and (f1)—(fs) hold. Then,
there exists A\* > 0 such that the problem (1.1) has a positive weak solution for every
Ao € (0, A%).

In the second part of this article we study the following system

( A
—div(a:(|Vul™) [VulP=? Vu) = == + fi(v) inQ,
(1.2) —div(ay(|Vo[P?) Vo[22 V) = 072 + fo(u) inQ,
u,v >0 in §2,

(u=v=0 on 012,

where Q C RY is bounded smooth domain with N > 3 and for ¢ = 1,2 we have
2 <p <N,0< B <1, N >0, a;: RY = R" are functions of C* class and
fi: R — R are continuous functions with exponential growth.

The main result of this second part is the following:

Theorem 1.2. Assume that, fori = 1,2, a; satisty (a1)—(az2) and f; satisfy (f1)—
(f3). Then, there exists \* > 0 such that the problem (1.2) has a positive weak
solution for every 0 < A\ + Ay < A*.

We will give some examples of functions a; in order to illustrate the degree of
generality of the kind of problems studied here.

N—p;
Example 1.1. Considering a;(t) =t # , we have that the function a; satisfies
the hypotheses (a;)—(az) with k; = k3 = 0 and ko = k4 = 1. Hence, Theorems 1.1
and 1.2 are valid for the operator —Ayu.

N-p;
Example 1.2. Considering a;(t) = 1+t » , we have that the function q;
satisfies the hypotheses (a;)—(az) with ky = ky = k3 = k4 = 1. Hence, Theorems 1.1
and 1.2 are valid for the operator —A,,u — Ayu.

Problems with this operator come from a general reaction-diffusion system:
(1.3) uy = div[D(u)Vu] + c(z, u),

where D(u) = (|VulP~2 + |Vu|¥=2). This system has a wide range of applications
in physics and related sciences, such as biophysics, plasma physics and chemical
reaction design. In such applications, the function u describes a concentration, the
first term on the right-hand side of (1.3) corresponds to the diffusion with a diffusion
coefficient D(u); whereas the second one is the reaction and relates to source and
loss processes. Typically, in chemical and biological applications, the reaction term
¢(x,u) is a polynomial of u with variable coefficients (see [11, 23, 29, 41]).

Beneath we present some other examples that are also interesting from mathe-
matical point of view.

Example 1.3. Considering a(t) = 1 + —2—, we have that the function a
(1+1) 7
satisfies the hypotheses (a;) — (ag) with ky = 1, k3 = 2, k4 = 0 and ko > 0. Hence,

Theorems 1.1 and 1.2 are valid for the operator

—div <|Vu

|VulPi—2Vu )
(1+ |Vulr) 5

Pim2\/y +
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Example 1.4. Considering a;(t) =1+ £+ —L—, it follows that the func-
(1+t) i
tion a satisfies the hypotheses (a1) — (ag) with k; = ky = k4 = 1 and k3 = 2. Hence,
Theorems 1.1 and 1.2 are valid for the operator

pi—2
—Apu — Ayu —div < [Vu V:2) .
(1 4+ |Vulpi) »i

Other combinations can be made with the functions presented in the examples
above, generating very interesting elliptic problems from the mathematical point of
view.

Below we list what we believe that are the main contributions of our paper:

1) In [13] and [12] were studied a singular problem and a singular system, re-
spectively, with this general operator. But the nonlinearities have polynomial
growth.

2) In [16], [20], [35] and [36] were studied the singular case with a nonlinearities
with exponential growth. However, here we study problems with a general
operator which brings some technical difficulties.

3) Here we use Galerkin method that was not used in the papers above cited.

The plan of the paper is the following: In Section 2 we recall some preliminary
results for the scalar case. In Section 3 we study an auxiliary problem for the scalar
case. We show existence of solution of the auxiliary problem in Section 4. In Section 5
we prove Theorem 1.1. In Section 6 we study an auxiliary problem for the system
case. We show existence of solution of the auxiliary problem in Section 7. In Section 8
we prove Theorem 1.2

2. Preliminary results for the scalar case

Let us consider the Sobolev space VVO1 N(Q) endowed with the norm

lull1,n = (/ |Vu|Ndz) )
Q

We say that u € W™ (Q) is a weak solution of the problem (1.1) if u > 0 in Q
and it verifies

/an(|vu|m) IVulPo~2? Vu ngdx—)\o/Q%dx—/Qfo(u)gbdx:O,

for all ¢ € Wy (€2). In this paper, we work with operator T;: W™ (Q) — (W™ (Q))/
such that

<Tiuia¢i> = / ai(|vui|pi) |VUi|pi_2VUiV¢i dx.
Q

A straightforward calculation shows that T} is continuous. Furthermore, T; is
monotone and coercive, see [12, Lemma 1].

Firstly, we recall some important results due to Trudinger—-Moser [31, 40| and
Hardy—Sobolev [25]. A version of Trudinger-Moser inequality for systems can be
found in [3].

Theorem 2.1. (Trudinger-Moser inequality) For every u € W, (Q) and o > 0,
then

exp (au%> e L'(Q)
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and there exists a constant M > 0 such that
N
sup exp (ozuNﬂ) dx < M,
ul, <10

1
for every a < ay = Nwy_;, where wy_y is the (N — 1)-dimensional measure of

(N — 1) sphere.
Theorem 2.2. (Hardy Sobolev inequality) If u € C'(Q) N Wy*(Q) with 1 <

pSN,theﬂ%ELT(Q),fOT%:%—l_TT,O<T§13Hd

o

where d(z) = dist(x,0Q2) and C' is a positive constant which does not depend on .

< |Vulrr(a),
L™ ()

Our approach in the study of problem (1.1) and system (1.2) rests heavily on the
following Weak Comparison Principle proved in [12, Lemma 2|.

Lemma 2.1. IfQ is a bounded domain and if u;,v; € Wy'™ (Q) satisfy

—div(a;(|Vu;[P) | Vu P2 Vu,) < —div(a; (| Vo P | Vo [Pi2V;) in Q,
u; < v; on OS2,

then u; < v; a.e. in €.

We observe that, from (f;)—(f2), for all § > 0 and for all & > «yp, there exists
Cs > 0 such that

(2.1) |[fi(t)t] < ot

P Oyl

“oxp (aft/¥'T)),
for all ¢; > 0. In this paper, we will use ¢; > N.

3. Auxiliary problem for the scalar case

For each € > 0, we consider the following auxiliary problem

A
—div(ao(|Vu[P)|Vu[Po2Vu) = —2— + fo(u) in Q,
(u4 )P
u=>0 on 0f),

where the functions ay and fy satisfy the hypotheses of the Theorem 1.1.

To prove Theorem 1.1, we first show the existence of a solution for the problem
(3.1). For this, we will use the Galerkin method together with the following fixed
point theorem, see [38] and [27, Theorem 5.2.5].

Lemma 3.1. Let G: RY — R be a continuous function such that (G(€),€) > 0
for every £ € RY with |¢] = r for some r > 0. Then, there exists 2y € B,(0) such
that G(zp) = 0.

The main result in this section is the following:

Lemma 3.2. For each 0 < ¢ < 1, there exists \* > 0 such that the problem
(3.1) has a positive weak solution for every Ay € (0, \*).

Proof. Let B = {e1,es,...,€m, ...} be a Schauder basis of W,V (Q). For each
m € N, define
Wm = [61,62, ey em]
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to be the finite-dimensional space generated by {e1, es, ..., e, }. Note that the spaces
(Wis |l - |lm) and (R™, ] - |s) are isometrically isomorphic by natural mapping

S: W, — R™
given by

u = ijﬁ’j = S(U) :€: (617627"')5771)7
j=1

where
= lel and ful = ([ Vo)
j=1 @
Moreover,
(3.2) [l = 1€]s = [S(w)]s.

For each m € N, define the function G: R™ — R™ such that

G(f) = G(€1>€2, s >€m) = (G1(€)>G2(€)> . >Gm(§))a
where § = (£1,&a,...,&n) € R™,

— 0 0—2 ) _ € _ .
Gj(ﬁ)—/ﬂao(\VuF” )| Vur=*VuVe; dx AO/Q(ujLE)BO dx /Qfo(u)e] dz,

j=12....mand u= Zé-jej € W,,. Therefore,

j=1

= u
G().,8) =) G = Vul|P) | VulPde — Ny | ———=dx— dx.
(6.6 = 3606 [ atvupvupdr—so [ —tdo— [ s
Note that

u

3.3 ————dx < [Q)].
(33 | arsm <
Using (2.1) and Sobolev embedding, there exists positive constant C; such that
(3.4) /Qfow)udxg5cly|uy§?po+c5/ﬂ|u|q0exp (aful ¥ do.

Now, from (a;) we have

/a0(|Vu|p°)|Vu|p° dx > k:l/ |Vul|P dx+k2/ \Vu|™ dx
Q Q Q
= ki flullf%, + Eollul Dy

It follows from (3.3), (3.4) and (3.5) that

(3.5)

(3:6) (G(€),) = halully + (= 3C) [l ~ ol ~Cs [ ful® exp (aful ¥) da
Q
Taking § > 0 sufficiently small such that (k; — dC;) > 0, we can rewrite (3.6) as

(B7) (G, = hallul Yy — Mol — cé/ juf# exp (aful ¥ ) do.
Q
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1 1
Using Holder’s inequality with s, s’ > 1 such that — + — =1, we get
s s

Cg/ |u|? exp <a|u|%> dr < Cys (/ |u|q03/dx> ’ </ exp (as|u|%) dx) "
0 0 0

Since gy > N and s’ > 1, by Sobolev embedding there exists C; > 0 such that

1
(3.8) Cg/ |u|? exp <0z|u|%) dr < C’56§HUH‘{?N (/ exp (ozs|u|%> dx) :
Q 0
Then, it follows (3.7) and (3.8) that

(G662 hallls — A = Oty ([ exp (asful ) )
Q

Assume now that ||ul|; y = r for some r > 0 to be chosen later. We have

& S (Jul VT
exp (as|u|N*1> de = [ exp | as||lul{'y dx
Q Q ’ lJwll,n
o
:/exp ozerN1< [ul ) dx
Q [l 1,

and in order to apply the Theorem 2.1, we impose that
N-1

an M=t
r§<—N> N .
s

Therefore, there exists M > 0 such that
2yl
sup exp|asr¥1 | ——— | |de < M
ull, <1/ [[ull1,n

<G(€)>€> > k27’N — )\0|Q| — CgaMl/srq.

Now, it is necessary to choose r such that

and hence,

~ k N
kQTN — CgClM /STq Z 2"

in others words,
1

Gac)
TS — T .
20501M§

an\ k =y
Thus, considering » = min (—N> , <%) we get
as 20501M§

kor™
(G(€),6) = 5= = Ao[0Y].
Furthermore, choosing
)\* . ]{ZQT’N
49

we obtain

(G(£),&) >0, forall 0 <X <A, £€R™and (€|, =T
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By virtue of Lemma 3.1, for every m € N, there exists y € R™ with |y|s <r < 1
such that G(y) = 0. Thus, from (3.2) there exists u,, € W,, satisfying

(3.9) |lumlliny <r <1, for every m € N
such that
_ €;
(3.10) /an(IVumlp“)IVuml”O *Vu,Ve;dr = )\O/defﬂL/Q folum)e; dz,

j = 1,2,...,m. Multiplying the equality (3.10) by any constant o;, for each j =
1,2,...,m, and adding them, we conclude

(3.11) /Qa0(|Vum|p°)|Vum|p°_2VumV¢dx:)\O/dex—l—/gfo(um)cbdz,

for all ¢ € W,,, which shows that u,, is an approximate weak solution of problem
(3.1).

Since 7 does not depend on m and W,, € Wy (Q), for all m € N, then (u,,)
is a bounded sequence in VVO1 N(Q) Thus, for some subsequence, there exists u €
W, (Q) such that

Uy, — U in Wy (Q),
(3.12) U, — U in L'Q(Q), 0>1,
U (z) — u(z) a.e. in €,

[um(2)] < g(z) € L°(Q) ae inQ,0>1.
Fix k € N and consider m > k, then W), C W,,, and

Po Po—2 — Pk
(3.13) /an(|Vum\ )| Ve, [P~ Vu,, Vo, da AO/Q RESET dx + Qfo(um)¢k dz,

for all ¢ € Wy. Since ¢, € Wy, note that

¢k |¢k| 1
< L'(
antap| S em <E O
and by (3.12) we have
Pk Pk :
@+ (@ +ep O
Therefore, we use [6, Theorem 4.2| to obtain that
(3.14) /de — / % gy
o (U + €)P0 o (u+e)k
Now, since fp is a continuous function, by (3.12) again we have
(3.15) Jo(um(z))or = fo(u(z))dr a.e. in Q.

Using (2.1) we get
[Foltm(2))k] < 8l ()P ] + Coslun ()] exp (afu (2)] ¥ ) [
We will need to prove that the function g: R — R defined by
300 (2)) 1= Bl () 04] + sl ()]~ exp ()| 77 ) 0

satisfies
(3.16) | fo(tum(x)) o] < Glum(z)) € LHQ).
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It is sufficient to show that g(u,,(r)) is convergent in L'(Q). Indeed, since 2 <
po < N, we invoke (3.12) to obtain

(3.17) |t (2) [P0 r| = u() [P~ op| a.e. in Q
and
(3.18) [ ()77 k| < g(2)P7 || € LH(Q).
It follows from (3.17), (3.18) and [6, Theorem 4.2| that
(3.19) [t o o= [ um o o

Q 0

Furthermore, from (3.12) again we get
(3.20)  |um(z)|®  exp (a|um(x)|%) = Jul@)| @ exp (a|u(g;)|%) a.e. in €.

1 1
Now, considering s, s" > 1 such that — + — =1, we use (3.12) and the fact that
s s
qo > N to obtain

(3.21) |t |7 = u|®7" in L¥(Q).
Moreover, by (3.9) we have

’ N
Nt
S/exp as rNNl( [m ()] ) dx
0 [t () ||1,5

and applying the Theorem 2.1 we obtain

(3.22) /Qexp (o)) dr < /Qexp <aN (%) Nl) de < M.

Hence, by (3.21), (3.22) and Holder’s inequality we get

[ bl exp (1)
0
1
(3.23) < (/ |um|(q°_1)sld:c) s (/ exp <a5|um|%> d:z:)
Q

<|um|q0 ; MS—M

@ [

We use (3.20), (3.23) and |26, Theorem 4.8] to conclude that
(3.24) [tiym| 0~ exp (a|um\%) s Jufo T exp (a|u|%) .
It follows from (3.24) that
(3.25) / ] exp (]| FT ) 64| dr — / [ul " exp (alul T ) |64 da.
Therefore, l?y (3.19) and (3.25) we prove that ’
[[tuntende 5 [ @i oulde-+ 0 [ ateye exp (alu(a)] ) 4]

which shows the identity (3.16).
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Then, we use (3.15), (3.16) and [6, Theorem 4.2] to conclude that

(3.26) /Q Foltm) s dz — /Q folu)y da.

The next step is to show that
(3.27) / o ([V it |7 [Vt [P~V 11 V by i — / ao (|VulP) [VulP-2VuV éy da.
Q Q

To this end, we will use (a2) and the same reasoning in [18, Lemma 2.4] to obtain
0 < C’||um - qu,N

< / ao (|Vur|™) [Vu, [P de — / ao (| Vi [P°) [Vt [P 2Vu,, Vu dz + 0,(1)
0 0

u

Upp,
= o,(1),
where

on(1) = / ao (|Vul?) [VulP dx — / ao (|Vul|?) |Vul["*~*Vu,, Vu dz.
Q Q

Hence,

[t — ul[1,v = 0n(1),
which implies that
(3.28) U — u in Wy (Q).

Now, we know that the function defined by
E(u) = / ao (|Vul|?) |Vul[P°~2VuV ey, dv
Q
is continuous. Then, we invoke this fact and (3.28) to get the convergence (3.27).
Letting m — oo in (3.13), we use (3.14), (3.26) and (3.27) to conclude that
P

(329) /Qao(\Vu|p0)\Vu|p°_2VuV¢kd:c: Ao/fzmd$+/§zf0(11)¢kd$,

for all ¢, € W)
Since [Wi]ren is dense in Wol’N(Q), we have

o — ¢ as k — oo.
Then,

(3.30) /a0(|Vu|p°)|Vu|p°_2VuV¢kd:v—>/a0(|Vu|p°)|Vu|p°_2VuV¢dx,
Q Q

¢ ¢
and
(3.32) | fwends - [ fiwods

Therefore, since ¢ € W, (Q) is arbitrary, it follows from (3.29) - (3.32) that

(3.33) /Qa0(|Vu\p°)|Vu\p°_2Vqu5dx:Ao/gﬁdx—l—/ﬂfo(uwdx,



Existence of positive solutions for a class of singular and quasilinear elliptic problems 405

for all ¢ € W,V(Q), which shows that u is a weak solution of the problem (3.1).
Furthermore, u > 0 in §2. In fact, since fo(t) = 0,Vt < 0, we use ¢ = u~ in (3.33) to
obtain

/ ao(|VulP)|Vu™|dx < 0.
Q
It follows from (a;) and ko > 0 that
[1wa ¥ =y =
Q

which implies that ©v~ = 0 and then v = u™ > 0. But thanks to the Harnack’s
inequality, see [21], u > 0 in Q. O

4. Proof of the Theorem 1.1

1
For each n € N, let ¢ = — and u1 = u, be, where u,, is a solution of auxiliary
’)’L n
problem (3.1)

A
~div(ao(| V) Va2 V0n) = s - fofun) i 2
Uy > 0 in €2,
Uy, =0 on 02,
obtained by the Lemma 3.2. Note that, from (f3) we get
)\0 >\0 Yo—1
m+fo(un) > m+|un| :
A
Since the function ¢ — m + -1 for all t > 0, attains a positive minimum z.

Then,
—div (ao(|Vu, [?)|[Vu, [ *Vu,) > 2 >0 in Q.

By virtue from Minty—Browder’s Theorem [6, Theorem 5.15|, we use the unique
positive solution of the problem

—div (ag(|Vo[™)| Vo[ Vo) = 2 in Q,

(4.1) v >0 in €2,
v=20 on 0f)
to obtain
{—div (ao(|Vun[P0) | Vu, [PP~2Vu,) > —div (ag(|Vo|P)|Vo[Po~2Vv) in Q,
u=uv on 0.

Hence, we use the Lemma 2.1 to conclude that
(4.2) up(x) >v(z) >0 in Q, ¥neN,

which implies that u,(z) - 0, for each z € Q.
Now, from (3.12) we get

Up — Uy in WY (Q) as m — +o0
and it follows from (3.9) that

llunlli v < Hminf ||u,|v <7 <1, forallne N.
m——+00
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Therefore, r does not depend on n, which shows that (u,) is a bounded sequence.
Thus, since VVO1 M(Q) is a reflective Banach space, for some subsequence, there exists

u € Wy (Q) such that

Uy — U in Wy (Q),
(43) Up —> U in L'Q(Q), 0>1,
un(z) = u(x) a.e. in €,

lu,(z)] < g(z) € L2(Q) ae. inQ,0>1.

Recall from (3.33) that
/ao(\Vun|p°)|Vun\p°_2VunV¢dx
(4.4) . 5 .

:AO/QWd:C—i-/QfO(unMd:C, Vo € Wy (Q).
Since fy is a continuous function, by (4.3) we have

fo(un(x))p — fo(u(x))e a.e. in 2.
By same computation in (3.16), we obtain the function g: R — R such that
| (un(2)) 9| < Glun(z))

such that g(u,(z)) converges in L'(€). Then, we use [6, Theorem 4.2| to conclude
that

(4.5) /Q folun)p dz — /Q fotw)pdz, Yo € Wy ().

Now, by same computation in (3.27), we have
(4.6) /ao(|Vun|p0)\Vun\p°_2VunV¢ dx — / ao(|VulP) | Vu|P~*VuVé dz,
Q Q

for all ¢ € W™V (Q). Note that, from (4.3) again we get
¢ ¢

1\5o - Bo

Moreover, by virtue from (4.1) and (a1), we can argue as in [23| to obtain that

v € C*(Q). Consequently, from (4.2), for each z € ), it follows that u,(z) > v(x) >

Cd(z) > 0, where d(x) = dist(z,00) and C' is a positive constant that does not
depend on x. Thus,

o< [t < [, ag o

n

(4.7) a.e. in .

Hence, we invoke Theorem 2.2 to obtain ‘L € L"(Q2) and Cy > 0 such that

Cd(x)Po

¢
(4.8) /QW dz < Cs||dll1,~-

Therefore, by (4.7), (4.8) and [6, Theorem 4.2] we get

¢ ¢ 1N
(4.9) /de:z%/ﬂﬁdx, Vo e Wy (Q).

n
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Letting n — 400 in (4.4), we use (4.5), (4.6) and (4.9) to conclude that
/ao(\vu|m)|vu\po—2vuv¢dx = )\0/ i;d:H / folwpdr, Yo e WiN(Q),
Q o u™ Q

which proves that u € W, (Q) is a weak solution for the problem (1.1).

5. Auxiliary problem for the case system

For each € > 0, we consider the following auxiliary problem

—div(a,(|Vul|P)|Vu|Pr—2Vu) = (u_)i_\ﬁ + fi(v) inQ,
(5.1) —div(as(|V[P?)|Vo[P2-2V0) = W + folu) i Q
u,v >0 in §2,

(u=v=0 on 0f),

where the functions a; and f;(i = 1, 2) satisfy the hypotheses of the Theorem 1.2.
The main result in this section is the following:

Lemma 5.1. For each 0 < ¢ < 1, there exists \* > 0 such that the problem
(5.1) has a weak positive solution for every 0 < A; + Ao < \*, withi = 1,2.

Proof. Let B = {e1,€ea,...,€m,...} be a Schauder basis of Wol’N(Q). For each
m € N, define

Wm = [61,62,...,6m]

to be the finite-dimensional space generated by {e1, es, ..., e}
For each m € N, we define the function J: R*™ — R*™ such that

J(nvg) = (Fl(n7£)7F2(n7£)7 s '7Fm(n7£)7Gl<n7£)7G2(n7£>v c 7Gm(7]7£>>7
where (7775) = (7717772’ s 777m7€17€27 s agm) S R2m’

_ €;
Fj(nag):/Qa1(\Vu|p1)\VU|‘m 2VuVejdm—)\1/dex—/ﬂfl(v)ej dx,
jg=12...,m,
_ €;j
G;(n,¢&) = Qag(\Vv\p2)|Vv|p2 *VoVe; dm—&/ﬂmdx—/ﬂﬁ(u)ej dx,
i=1,2,....m,
U= anej € W,
j=1
and
v = ijﬁj € Wm.
j=1
Moreover,

(5.2) [(w, 0)|| = [(n, )]s-
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Therefore,
(J(n,8),(0,8)) = (F1(n,6), F2(n,§), - -, Fm(0,§), G1(1,£), G2(n, &) - - -, Gm(1, §)),
(n17772a-"777m>€1>€27"'a ZF 77677]+ZG 775
= Vu|P)|VulP* dz — A d
[ a(val) vl do / /flux
+/Qa2(|w|p2)|vq)|m d:c—)\g/gmd:c—/ﬂﬁ(u)vdx.
Note that

(5.3) / m dz < |9,

and

(5.4) /Q(Ufw dz < ||

Using (2.1), Young’s inequality and Sobolev embedding, there exist positive con-
stants C4, Cs, C3, Cy, Cs, Cg, C7; and Cg such that

/ fiw)udr < 0,C1|v||7, + 010 [[ull}, + 05103/ |v|™ exp <a1|v\%) dx
0

(5.5)
+C’5104/ |u| ™ exp (a1|v|N l)dx
and
/f2 vdg;<5205||u||1p2+5206||v||§?p2+052c7/ ul exp (sfu ¥7) d
(5.6) ¢

+ 6'5208/ |v|® exp (aﬂu\N 1) dx.
Now, from (a;) we have

/a1(|Vu|p1)|Vu|p1 dx > k:l/ |VulPt d:)s+k2/ \VulY dz
Q Q Q

(5.7)
= killully, + kellullty
and
/CL2(|VU|”2)|VU|”2 dx > k:l/ |Vu|p2d:)3—l—k‘2/ (VoY dx
(5.8) Q Q Q

= ki [[vll7%,, + kellv[ Ty
It follows from (5.3)—(5.8) that

(J(0,€),(n,€) = ka(lullYy + 0] n) + (k1 = 6:1Co)||ullF, + (kv — 62C6) [|v]|12,
= O 209 = SiCol2, — 05103/ ol exp (an o1 ) da
Q

N
- 06104/9 |u|? exp <a1|v|N*1> dx — 0205 ||ull}?,

- 05207/ jul® exp (aﬂu‘%) dx — 05208/ 0| exp <a2|UI%> dx
@ Q
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Note that, from 2 < p;,ps < N and Sobolev embedding, there exist Cy, Cg > 0 we
have

5101“’0 Pl

||1,p1

< 61Co|lv|ITy
and
62Cs ||ul7%,, < d2Chollul|P?y

Since ||(u,v)[|Yy = [[ull{'y + ||v[1{'y and taking 1,02 > 0 sufficiently small such
that (k1 — §1Cs), (k‘l 92,Cs) > 0 we obtain

(J(0,€),(n,€)) > Eal| (uw, 0) IV = (A1 + A9 — 61C || (w, v) [y — 32C10l|(u, v) |72y
- 05103/ ol exp (OKIM%) dx — 05104/ |u|?" exp <a1\v|%> dx
“ 0

(59) —05207/ |u|q2 exp <a2|u|%) d$—05208/ |U|q2 exp (042|U|NL> dr.
Q Q

1 1
Using Holder’s inequality with s, s’ > 1 such that — + — =1, we get
s s

1

6’5103/|v\‘“ exp(oq\v|%> dx < C5,C4 </ |v\‘“s/dx> ) </ exp oqs|v NL dx
0 Q 0

1

06104/|u|q1 eXp<O‘1|U|%) dx < C5,Cy (/ |U|q15/dx) S (/ exp a18|v NL da:)

Q Q .

05207/|u|‘12 exp<a2‘u‘%) dx < 6’526’7 (/ ‘u‘qQ,gldx) s (/ exp (a25|u NL dx)
Q Q o

and

6’5208/|v|q2 exp<a2|u|%) dx < Cs,Cy (/ |v|q23,d:)3) ) </ exp (ags|u|N T dl’
0 0 Q

Since ¢q1,q2 > N and s’ > 1, by Sobolev embedding there exist Cyy, Cia, C13, C14 >
0 such that

05103/ vu|% exp (aﬂﬂﬁ) dr < G5, Cullv[|Ty </ exp <als|u\%) d;,;) 7
Q Q
1
C5,Ch / [ul exp (oo ¥ ) do < G, Caaullfy ( / exp ((auslo| 77 dz) ,
0 Q

05207/ |u|% exp <a2|u|7N1i1> dx < C(;QC'lgﬂuH‘fN (/ exp (O{28‘u‘7N]X1) d:z:) s
Q Q
and

1
05208/ |v]% exp (oz2|u|%> dr < Cs,Culv]| Py </ exp (a2s|u|%> dx) _
Q Q

Then, it follows from (5.9) that
(J(0,€), (0,€)) = kol (w, ) [ = (M + A2)[Q = 010l (u, ) [V — 02C10]l (i, v) [Ty

— C5, O (u, 0) 2y (/ exp (alsm%) d:c)
Q

(5.10) = CaCallw oty ([ exw (arshi ) o)
Q

[=

w [

o |
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» =

— C,Cual (, 0) |2y (/ exp (azslul 77 dx)
Q

_ 052014”(11, U)’ LN (/ exp <0625|U|%> dx)
Q

Assume now that ||(u,v)||;x = r for some r > 0 to be chosen later. Then, we have
N
.a s (el T
exp (als|u|N*1> de = [ exp | ais||ul; dx
Q Q ’ [[ul[1,n
ot
< / exp | || (u, 0)|| 1 < [ul ) da
Q [l|1,
N
/ N ( || )Nl
= [ exp | aysrv-— dx.
Q [[eefl1,

N N |’U| NIL
exp <a2s|v\ Nfl) de < | exp | agsrv—1 dr
Q Q [vl[1,5

and in order to apply the Theorem 2.1, we impose that
N—-1

N—1
o -~ o -~
r§<—N) andrﬁ(—N) .
1S QoS

Therefore, there exist My, My > 0 such that

sup /exp (alsr% ( [ )) dr < M,
Q [[l[1,n

lull, <1

sup /exp (OégS’f’NNl ( il )) dr < M.
ol , <1J0 vl n

Hence, there exist Cy5, C1g > 0 such that we can rewrite (5.10) as

(J(n,€), (n,€))
Z k‘ng — ()\1 + )\2)|Q| — 51097,101 — 520107,102

Similarly,

and

— 051015M21/S’l“q1 — ngClﬁMll/srq?

Now, it is necessary to choose r such that

]{527’ 1/ kQTN
= Ca Gyt > 2
and
]{527" 1/ ]{7 TN
— Os Oy My > 22
2 9o 2 4 3
in others words
1

‘II%N qo—N
< (%) wd 1< (%) |
ACs, Cy M AC;5,Cy My
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Considering

1 1

) (OKN)NNl (OKN)NNl < ko )ql—N < ko )CIZ—N
r=mindl, | — o\ —— | ————< | ————< )
s 28 4C5,CL My 4C5,Cy M

we get
(J(1,€), (1, €)) = kar™ — (A1 + A2)|Q] = 610y — 6Cho.

Thus, since r > 0 is fixed and the last inequality is true for all d;,d5 > 0 then, there
exists A* > 0 such that

(J(£),8) >0, forall n,é e R™ and |(n,&)|s =7, forall 0< A+l <A™

By virtue of Lemma 3.1, for every m € N, there exists (z,y) € R*" with
|(z,y)|s < r < 1 such that J(z,y) = 0. Consequently, there exist wu,, v, € W,
satisfying

(5.11) | (g, v)|| <7< 1, for every m € N

such that

(5.12) /a1(|Vum|p1)|Vum|p1_2VumV¢ dx = )\1/ Lﬁdx + / fi(vm)o dz
Q o (Uy +€)% Q

for all ¢ € W,,, and

1 |2 mp2—2 ” de = )\ Ld / m)od
513) [ allTo, Pl V0,V de =y | —Ednt [ flun)pds

for all ¢ € W,,, which implies that (u,,,v,,) is an approximate weak solution of
problem (5.1).

Since r does not depend on m and W,, ¢ Wy (Q), for all N, then (u,,) and
(vn) are bounded sequences in W™ (). Thus, for some subsequence, there exist
u,v € Wy (Q) such that

Uy, — U in W, (Q),
(5.14) Uy, — U in LY(Q), 0 > 1,
' Um () = u(x) a.e. in €,
[ (2)] < g1(z) € LY() a.e.in Q, 0> 1
and
U =0 in Wy (Q),
(5.15) Uy — U in LY(Q), 0 > 1,
' U () = v(x) a.e. in €,

[om(2)] < go(x) € LY(Q) ae inQ, 0> 1.

Fix k € N and consider m > k, then W), C W,,, and

/a1(\Vum\pl)\Vum|p1_2VumV¢kdx

(5.16) @

:AI/(dejL/fl(Um)(?kd% Vo € Wy
Q Q

U, —+ 5)51
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and

/Q 13|V ) [ Vo P2V 0, Vi d
(5.17)

SRV B
= )\2/Q (U + €)P2 +/Qf2(um)80kd58, Yo, € Wy.

Since ¢k, pr € Wiy, note that

¢k |¢k| 1
< L (Q2
it | S em S E O
and ol
Pk Pk 1
(U +€)P2 = b L@).
By (5.14) and (5.15) we have
Pr Pi :
€. in Q
(@) +7 @+ "
and o o
k k :
n@) +% W) +om O
Therefore, we use [6, Theorem 4.2] to obtain that
(5.18) /de — / O gy
o (U, + )5 o (u+e)h
and
Pk Pk
5.19 —d ——dx.
(5.19) /Q(vm+g)ﬁz I*/Q(wg)ﬁz !
Now, since f; are continuous functions, by (5.14) and (5.15) again we have
(5.20) filom () — fi(v(x))or a.e in Q
and
(5.21) fo(um(x))or — fo(u(z))pr a.ein Q.

Using (2.1) we get
| From @)kl < S1lum (@) ] + Co, fom ()| exp (enfum ()| [
and
it ()] < St ()7~ il + Ci ()|~ exp (ol ()] 75 ) el
We will need to prove that the functions g, g2: R — R defined by
i (0 ()) = 1 0@ 0] + o foin2) [ exp ()] 75 [
and
Rt (2) = Bl (@) P 1] + ot (@) exp (afut () 77

satisfy
(5.22) | f1(0m(2)) 1| < Gi(vmn(2)) € L1(9)

and
(5.23) | fa(tm(@))pr| < Ga(um(x)) € LH).
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It is sufficiently to show that g1(v,,(z)) and gs(u,,(x)) are convergent in L'(€).
We will prove only the first inequality, because the second follows of the same rea-
soning. Indeed, since 2 < p; < N we invoke (5.15) to get

(5.24) [Um (2) [P o] — [v(2) P o] ave. in Q
and
(5.25) (v (@) [ dk] < go@)” ~ |¢n| € LH(Q).
It follows from (5.24), (5.25) and [1, Theorem 4.2] that
(5.20) [t el dz [ o de

Q Q

Furthermore, from (5.15) again we get
. U ()| exp | a1 |vm (@ N1 — |v(x)|" T exp | aq|v(@ N1 a.e. in §).
5.27 a-l a-l in

1 1
Now, considering s, s’ > 1 such that — + — =1, we use (5.15) and the fact that
s s
q1 > N to obtain

(5.28) U2 = o2 in L(Q).
Moreover, by (5.11) we have

x A5 (_lvm(2)] )NN
m N-1 | dx = m v (T d
/QeXp (als|v (g;)| ) X /Qexp <a18||v (il?)HlN va x) |1’N *

< / . ( |vm ()]
< [ exp | agsr
Q [0 () |1,

and applying the Theorem 2.1 we obtain

(5.29) /Qexp <als|vm(x)|%) dr < /Qexp <aN (%

Hence, by (5.28), (5.29) and Hélder’s inequality we get

~—— ~—
~ /‘2 ~—

1
/|Um‘f11—1 exp (Ozl|vm|%) dx < </|um|(m—1)3/ daj) (/exp (Ozls|vm|%> dg;)
Q Q Q

(5.30) < [onl 2k, M;T = 5.
We use (5.27), (5.30) and [26, Theorem 4.8] to conclude that
(5.31) [V |7 exp (a1|vm|%) — Ju|" exp (a1|v|%> :
It follows from (5.31) that
(5.32) /Q|vm|q1_lexp (eloml ¥°7) ] da /Q o]~ exp (e |07 ) 0] da.
Therefore, by (5.26) and (5.32) we prove that
[ itont@)de =6 [ ol oulde -+ s [ @) exp (cafola) 7))
which shows the identity (5.22).
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Then, we use (5.20), (5.21), (5.22), (5.23) and [6, Theorem 4.2] to conclude that

(5.33) /Qfl(vm)gbkdx—)/gfl(v)gbkdx
and
(5.34) | sswnonds — [ pawouds

The next step is to show that
(5.35) / ay (| V[P [Vt [P 2V u,, Vb dz — / ay (|[VulP?) [Vul 2 VuV ¢y, dv
Q Q
and

(5.36) / as (|V,[P2) |Von, P> 2V, Vi do — / as (|[VolP2) Vo[22 VuV iy da.
0 0

To this end, we will use (a2) and the same reasoning in [18, Lemma 2.4| to obtain

0 < C|ltm —ullin

< / ai (|Vum[P*) [V, |"t de — / ar (|Vtum ) [Vt [P 2V, Vu dr + 0,(1)
Q Q

Um
= _ tm _ u o
)\1/9 (i + )P d:c+/gf1(vm)umdx )\1/9(Um+5 dx — /fl V)t = 0, (1),

where
on(1) :/a1(|Vu\p1)|Vu\p1 dx—/al(\Vu|p1)|Vu\p1_2VumVuda:
Q Q

and
0 S CHUm — U||17N

< / as (|Vop|[P?) Vo, |P? de — / as (Vo [P2) Vo, P22V, Vo dz + o0, (1)
Q Q

U
=\ —d m ) U dT — X —d m)Udr = o,(1
QA@m+wﬁx+Aﬁw>v v 2/@m+5 - /hu v = on(1),

where
on(1) = / as (|VoulP?) |VoP2dx — / as (|[VolP2) Vo[22V, Vodz.
Q Q

Hence,
[um — ulli,n = 0n(1) and [Jvn, — vj1,§y = 0n(1),
which implies that

(5.37) Up — 1 in Wy (Q)
and
(5.38) U — v in W (Q).

Now, we know that the functions defined by
Ey(u) = / ap (|VulP) [VulP* 2V uV ¢y, dv
)

and
Ey(v) = / as (|[VolP2) Vo2 2VuVy, do
Q
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are continuous. Then, by (5.37) and (5.38) we get the convergences (5.35) and (5.36).
Letting m — oo in (5.16) and (5.17), we use (5.18), (5.19), (5.33), (5.34), (5.35)
and (5.36) to conclude that

. PLY| Wy |12 do=x [ —% g / d

(5.39) /Qa1(|Vu\ IVl 2V uV ey da I/Q(wg)m v+ [ ptwonds

and

(5.40) /a2(|Vv|p2)|Vv|p2_2VvV<pkd:)s:)\2/7k5dx+/f2(u)<pkdx,
Q o (v+¢)P Q

for all ¢y, pr € Wi.
Since [Wi]ren is dense in W(}’N(Q), we have

oL —> ¢ as k— o0

and
Y — @ as k — oo.
Then,
(5.41) /a1 |VulP) | Vu|Pr™ 2VuV¢kda?—>/a1 |VulPr)|Vul[P 2 VuV ¢ dr,
Q
(5.42) /a2 |VoulP2)| Vo2~ 2VvVg0kdx—>/a2 |Vo|P?) | Vo[22 VoV dr,
Q
(5.43) /de — / 7@,
(u+e)h (u+¢e)f
(5.44) / S S / e
(v+4¢e)P (v+¢e)P
(5.45) /fl )R dz — / fi(v)pdx
and
(5.46) / fa(u)py dr — / fo(u)pda.
Q Q
Therefore, since ¢, ¢ € W)™V (Q) are arbitrary, it follows from (5.39) - (5.46) that
(5.47) /a1(|Vu|p1)|Vu|p1_2VuV¢dx:)\1/ Lﬁd:ﬁ—l—/fl(v)gbda:,
Q o (u+e) Q
and
4 D2 p2—2 — b /
(5.48) /Qa2(|Vv| )| Vol *VoVe dx )\2/9 L dx + Qfg(u)apdx,

for all ¢, € Wy (Q), which shows that (u,v) is a weak solution of the problem
(5.1). Furthermore, arguing as in the scalar case we conclude that u,v > 0in Q. O
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6. Proof of the Theorem 1.2

For each n € N, let ¢ = %, U
of auxiliary problem (5.1)

( A

= u, and v1 = v, be, where (u,,v,) is a solution
n

1
n

—div(ay (|Vu,[P) |V, [P 2Vu,) = m + fi(v,) inQ,
A
_div(a2(|vvn|p2)|V'Un|p2_2V'Un) = m + fg(un) n Q,
Up, Up > O in Q,
| Uns Un = 0 on 0f),

obtained by the Lemma 5.1. Note that, from (f3) we obtain

A
: 1 1—2 1
—div(a (|[Vu,[P*) | Vu, | ~*Vu,) > (wn + 0, + 1)

+ 1=t for all t > 0, attains a positive minimum

+ v/t in Q

A1

and as the function t — (R

z1. Then,
—div (a1(|Vu, [P)|[Vu, [ *Vu,) > 2 >0 in Q.

By virtue from Minty—Browder’s Theorem [6, Theorem 5.15|, we use the unique
positive solution of the problem

—div (a1(|Vw1|p1)|Vw1|p1_2Vw1) =z in Q,
(6]_) wy; >0 in §2,
w; =0 on 052

to get that the solution w; bound from below the solution u,. Therefore,

{—div (a1 (|Vun|P) | Vu, [P =2Vu,) > —div (a;(|Vw|P*)|[Vw [Pr2Vw;)  in Q,

Up = W1 on 0.

Hence, we use the Lemma 2.1 to conclude that

(6.2) up(x) > wi(x) >0 in Q, Vn € N.
Similarly, we prove that
(6.3) Un(x) > wo(x) >0 in 2 Vn € N,

where w, satisfies

—div (ag(|Vwe|P?)|Vwy [P272Vwy) = 25 in Q,

(6.4) wy >0 in Q,
Wy = 0 in 0€)
and 29 is positive minimum of the function ¢ — m + 2L

Now, from (5.14) and (5.15) we get
Uy — u, in Wy (Q) as m — +oo

and
U — v, in Wy (Q) as m — +oo0.
It follows from (5.11) that

llunll v < Hminf ||u, || v < Uminf ||(wy,, v,)]] <7 <1, foralln e N
m—r+00 m——4o0
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and
|vnll1ny < liminf ||v,, ||y < Uminf ||(wy,, v,)]| <7 <1, for all n € N.
m——+00 m——+00
Therefore, r does not depend on n, which shows that (u,) and (v,) are a bounded

sequences. Thus, since VVO1 N(Q) is a reflective Banach space, for some subsequence,
there exist u, v € W™ () such that

(U, — u in Wy (Q),
(6.5) Up —> U in L°(Q), 0 > 1,

un(z) = u(x) a.e. in €,

un(2)] < g1(z) € L) ae. inQ,6>1
and

(v, = v in Wy (Q),
(6.6) Up =V in LY(Q), 6 >1,

vn () = v(z) a.e. in €,

v ()] < g2(x) € L)) ae. in Q, 6> 1.

Recall from (5.47) and (5.48) that

(67) /Qa1(|Vun|P1)|Vun|P1—2VunV¢d:E:Aléﬁd:ﬁ—l—/ﬂfl(vn)qﬁ,

for all ¢ € Wy (Q) dz and
(6.8) / as (| Vv, |P?) | Vo, [P* 2V, Vo dr = >\2/ Ll dx + / fa(un)p dz,
Q o (vn + )P Q
for all ¢ € Wy (Q).
Since f; are continuous functions, by (6.5) and (6.6), we have
fi(op(x)p — fi(v(x))d a.e. in Q

and
fo(un(x))p = falu(x))e a.e. in Q.

By same computation in (5.22) and (5.23), we obtain
[ f1(vn(2))9] < g1 (va(2))

and

[ f2(un ()] < G2 (un(x))
such that g; converge in € L'(€). Then, we use [6, Theorem 4.2] to conclude that

(6.9) /Q fi(vy)d dx — /Q fiw)pdz, Yo € W™ (Q)
and
(6.10) /Qf2(un)<pd:c—>/ﬂf2(u)<p, Vo € Wi (Q) d.

Now, by same computation in (5.35) and (5.36), we have

(6.11) /a1(|Vun|p1)|Vun|p1_2VunV¢da:—>/a1(|Vu|p1)|Vu|p1_2VuV¢dx,
0 0
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for all ¢ € W,V (Q) and

(6.12) / as (| Vv, |P?) | Vo, [P* 2V, Vedr — / as(|Vo|P?) | Vo[P* 2 VoV edz,
Q Q

for all ¢ € Wy (Q).
Note that, from (6.5) and (6.6) again we get

¢ ¢

(6.13) — a.e. in )
(un(z) + 1) ul2)™

and

(6.14) Ld &7 aeinQ

(vn() + %)52 v(r)P2

Moreover, by virtue from (6.1), (6.4) and (a1), we can argue as in [23] to obtain
that wy, we € C*(Q). Consequently, we use (6.1), (6.4) again to conclude

8w1 8’(1]2
o’ o

Then, for each x € Q, it follows from (6.2) and (6.3) that
up(x) > wi(x) > Cd(x) >0 and v,(z) > we(z) > Cd(z) >0

where d(z) = dist(z,0Q) and C is positive constant that does not depend on z.

Thus,
o o o
/Q (unle) + Ty 7 = / oy S / Cd(z)P

©
Y iz <
/Q (v () + %)52 de < /Q v (z Cd /32

<0 on 0.

and

Hence, we invoke Theorem 2.2 to obtain ‘Cd(x)ﬁl ’ Cd(fc)/b € L'(Q) and Cyr, Crg >

0 such that

¢
6.15 R R |
o /Q (un(z) + 1) z < Culolliy
and

Y
6.16 Y e |
o0 /Q (vn () + 1) v < Cisllelhn
Therefore, by (6.13), (6. 14) (6.15), (6.16) and [6, Theorem 4.2] we get
(6.17) / - 5 dv — / dr, Yo € WY (Q)

Q
and
1,N

(6.18) / (Un—|—l 62 dr — Qdex V@GWO (Q)

Letting n — 400 in (6.7) and (6.8), we use (6.9), (6.10), (6.11), (6.12), (6.17)
and (6.18) to conclude that

[avupywup2vuvods =z [ Lo [ fwods, voewiN@
Q qQ UP? Q
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and
/a2(|vv|pz)|vv|pz—2vvvwd$:)\2/U_S;dxjt/ﬁ(u)gpda:, ‘v’apGW()lvN(Q),
Q Q Q

which proves that (u,v) € WHN(Q) x WHN(Q) is a weak solution of the problem
(1.2).
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