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Abstract. The Denjoy–Wolff theorem is a foundational result in complex dynamics, which

describes the dynamical behaviour of the sequence of iterates of a holomorphic self-map f of the

unit disc D. Far less well understood are nonautonomous dynamical systems Fn = fn◦fn−1◦· · ·◦f1

and Gn = g1◦g2 ◦· · ·◦gn, for n = 1, 2, . . . , where fi and gj are holomorphic self-maps of D. Here we

obtain a thorough understanding of such systems (Fn) and (Gn) under the assumptions that fn → f

and gn → f . We determine when the dynamics of (Fn) and (Gn) mirror that of (fn), as specified by

the Denjoy–Wolff theorem, thereby providing insight into the stability of the Denjoy–Wolff theorem

under perturbations of the map f .

1. Introduction

Fundamental to this paper is the Denjoy–Wolff theorem (see, for example, [8,
Theorem 5.4]), which can be stated as follows.

Theorem A. Suppose that f is a holomorphic self-map of the open unit disc D.

Then either

(1) f is the identity function or an elliptic Möbius transformation that fixes D,

or

(2) there exists a point ζ ∈ D such that the sequence of iterates f, f 2, f 3, . . .
converges locally uniformly on D to ζ .

To explain the terminology in this theorem, an elliptic Möbius transformation

that fixes D is a conformal automorphism of D that is conjugate by another conformal
automorphism to a rotation about the origin. For each positive integer n, the nth
iterate fn of a holomorphic map f is the function obtained by composing f with itself
n times, fn = f ◦f ◦· · ·◦f . The theorem states that the iterates f, f 2, f 3, . . . converge
locally uniformly on D to ζ , meaning that the sequence of functions f, f 2, f 3, . . .
converges uniformly on compact subsets of D to ζ , using the Euclidean metric on D.
In case (2), the point ζ is called the Denjoy–Wolff point of f ; if ζ ∈ D then it is a
fixed point of f .

Our objective is to examine the stability of Theorem A under perturbations of the
holomorphic map f , in a sense to be made precise shortly. We denote by H(D,C) the
topological space of all holomorphic maps from D to the complex plane C, equipped
with the compact-open topology. In H(D,C), a sequence (fn) converges to a map f
if and only if fn → f locally uniformly on D.

We focus on the subspace H(D) of holomorphic self-maps of D. If (fn) is a
sequence in H(D) that converges locally uniformly on D to a map f , then either
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f ∈ H(D) or else f is a constant function with value on the boundary of D (see [3,
Lemma 2.1]).

Given sequences (fn) and (gn) in H(D), we define the left-composition sequence

generated by (fn) and the right-composition sequence generated by (gn) to be the
sequences

Fn = fn ◦ fn−1 ◦ · · · ◦ f1 and Gn = g1 ◦ g2 ◦ · · · ◦ gn, n = 1, 2, . . . ,

respectively. Sequences of this type arise in a variety of contexts in dynamical sys-
tems, with differing notations and terminology. In future we omit the ◦ symbol from
compositions.

The dynamical behaviour of the sequence of iterates (fn), where f ∈ H(D),
depends on whether f is the identity function, an elliptic Möbius transformation,
or if it has a Denjoy–Wolff point that lies in D or on the boundary of D. We
determine whether the dynamics of (Fn) and (Gn) are similar to that of (fn) under
the assumptions that fn → f and gn → f . We find that, in a sense, right-composition
sequences are more stable than left-composition sequences when f has a Denjoy–Wolff
point inside D, but the reverse holds when the Denjoy–Wolff point of f lies on the
boundary of D. When f is the identity function, there is similar stability for both
left- and right-composition sequences.

We make significant use of the hyperbolic metric on D, which is the Riemann-
ian metric 2|dz|/(1 − |z|2). We denote the corresponding distance function by ρ.
Crucial to our study is the Schwarz–Pick lemma, which says that if f ∈ H(D), then
ρ(f(z), f(w)) ≤ ρ(z, w), for z, w ∈ D, with equality if and only if f is a conformal au-
tomorphism of D. If f is not a conformal automorphism, then for each compact sub-
set K of D we can find a positive constant k < 1 such that ρ(f(z), f(w)) ≤ kρ(z, w),
for z, w ∈ K.

There is an extensive literature on stability results for holomorphic dynamical sys-
tems; we draw attention to the papers of Beardon [2], Gill [5, 6] and Pommerenke [9]
for work closest to our own. Beardon and Gill were motivated in part by the theory
of limit-periodic continued fractions, in which one considers the stability of continued
fractions under perturbations of the coefficients. In [2], Beardon looks at the stability
of Möbius transformations under iteration. We develop the geometric approach of [2],
and apply it to the class of holomorphic maps, which is far larger and more complex
than the class of Möbius transformations. Note that Theorem 3.1 of Section 3 could
be deduced quickly from [2, Theorem 4.7] (the proof we give is short anyway).

Gill [5, 6] studies composition sequences of holomorphic maps for which the
constituent maps approach a limit function. Using Euclidean estimates he obtains
results of a similar type to Theorems 3.1 and 3.3. One of the benefits of our geometric
approach is that we obtain strong results with succinct statements and concise proofs
using the hyperbolic metric.

Pommerenke [9] considers right-composition sequences (Fn) under the assump-
tion that fn → f , for some non-elliptic map f , and attempts to find constants an
and bn such that anFn + bn → F , for some non-constant function F . Whether this is
possible depends on the nature of the Denjoy–Wolff point of f . Our objectives are
somewhat tangential to this, such that we obtain a complete analysis of stability for
both left- and right- composition sequences and any choice of holomorphic map f .



Stability of the Denjoy–Wolff theorem 423

2. Stability at elliptic transformations and the identity function

Here we consider the behaviour of the left- and right-composition sequences Fn =
fnfn−1 · · ·f1 and Gn = g1g2 · · · gn, where fn, gn ∈ H(D), under the assumption that
the sequences (fn) and (gn) converge to an elliptic Möbius transformation fixing D or
the identity function I. We focus particularly on the latter case, because the iterates
of an elliptic transformation do not themselves converge in H(D,C).

The next example demonstrates that when fn → I, and without further assump-
tions, the sequence (Fn) can behave erratically.

Example 2.1. Let fn(z) = ei/nz, for n = 1, 2, . . . , so fn → I. Then

Fn(z) = λnz, where λn = e
i
(

1+
1
2
+···+

1
n

)

.

The sequence (λn) forms a dense subset of the unit circle. Consequently, the sequence
(Fn) accumulates at the identity function and every rotation of the unit circle. �

Essentially the same example can be used with gn in place of fn and Gn in place
of Fn, because the functions commute.

We can get quite different behaviour with other choices for functions fn → I. For
example, choosing fn(z) = (1 − 1/n)z, for n = 2, 3, . . . , we see that (Fn) converges
locally uniformly on D to 0.

Example 2.1 indicates that to obtain more controlled behaviour of (Fn) and (Gn)
under the assumption that fn → I and gn → I we need additional constraints on
convergence. Theorems 2.2 and 2.3, to follow, show that such control can be achieved
if we stipulate that the convergence is sufficiently fast (in a sense to be made precise).
In fact, using the following result from [4, Theorem 1.1], we will see that it is sufficient
to assume that (fn) and (gn) converge to the identity function suitably fast at just
two points in D.

Theorem B. Suppose that f, g ∈ H(D), with g a conformal automorphism

of D, and a, b, z ∈ D, with a 6= b. Then

ρ(f(z), g(z)) ≤ λ
(

ρ(f(a), g(a)) + ρ(f(b), g(b))
)

,

where

λ =
exp (ρ(z, a) + ρ(a, b) + ρ(b, z))

ρ(a, b)
.

We now state our first result about stability of the Denjoy–Wolff theorem at the
identity function or an elliptic transformation, for left-composition sequences.

Theorem 2.2. Suppose that f is either the identity function or an elliptic

Möbius transformation that fixes D, and f1, f2, . . . are non-constant holomorphic

self-maps of D for which

∞
∑

n=1

ρ(fn(a), f(a)) < +∞ and

∞
∑

n=1

ρ(fn(b), f(b)) < +∞,

for two distinct points a, b ∈ D. Then the sequence (f−nFn), where Fn = fnfn−1 · · · f1,
converges locally uniformly on D to a non-constant holomorphic self-map of D.

Proof. Let d = 1
3
ρ(a, b) and let K be a closed hyperbolic disc that is centred at

a fixed point of f and contains a and b. Observe that if z ∈ K, then fn(z) ∈ K, for
n ∈ Z. By applying Theorem B to the functions fn and f , for n = 1, 2, . . . , we see
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that
∞
∑

n=1

sup
z∈K

ρ(fn(z), f(z)) < +∞.

Notice that it suffices to prove the theorem for the truncated left-composition se-
quence with nth term fnfn−1 · · · fN , where N is a fixed positive integer. In light of
this observation, we may assume (after relabelling the functions) that in fact

∞
∑

n=1

sup
z∈K

ρ(fn(z), f(z)) < d.

Choose any point z ∈ K. Let zn = fn(z), for n = 1, 2, . . . . Then zn ∈ K. Observe
that

ρ(Fn(z), f
n(z)) ≤ ρ(fn · · · f1(z), fn · · · f2f(z)) + ρ(fn · · · f2(f(z)), f

n−1(f(z)))

≤ ρ(f1(z), f(z)) + ρ(fn · · ·f2(z1), f
n−1(z1)),

where, to obtain the second inequality, we have applied the Schwarz–Pick lemma
with the function fn · · · f2. Repeating this argument we see that

ρ(Fn(z), f
n(z)) ≤ ρ(f1(z), f(z)) + ρ(f2(z1), f(z1)) + · · ·

+ ρ(fn(zn−1), f(zn−1)) < d,
(2.1)

for n = 1, 2, . . . .
Next, still with z ∈ K, we have

ρ(Fn(z), a) ≤ ρ(Fn(z), Fn(a)) + ρ(Fn(a), f
n(a)) + ρ(fn(a), a)

≤ ρ(z, a) + d+ ρ(fn(a), a) ≤ l,

for n = 1, 2, . . . , where l is three times the hyperbolic diameter of K. Similarly
ρ(Fn(z), b) ≤ l. Applying Theorem B to the functions fn and f , and with Fn−1(z) in
place of z, we obtain

ρ(Fn(z), f(Fn−1(z))) ≤ λ(ρ(fn(a), f(a)) + ρ(fn(b), f(b))),

where

λ =
exp (ρ(Fn−1(z), a) + ρ(a, b) + ρ(b, Fn−1(z)))

ρ(a, b)
≤

exp(3l)

ρ(a, b)
.

Consequently, we see that
∞
∑

n=1

ρ(f−nFn(z), f
−(n−1)Fn−1(z)) =

∞
∑

n=1

ρ(Fn(z), f(Fn−1(z))) <
2d exp(3l)

ρ(a, b)
,

for z ∈ K (where F0 is the identity function). Thus (f−nFn) is a uniformly Cauchy
sequence on K. Now, K is an arbitrarily large compact subset of D, so it follows
that (f−nFn) converges locally uniformly on D to a function F .

The function F belongs to H(D), and it is not a constant function because

ρ(f−nFn(a), f
−nFn(b)) ≥ ρ(a, b)− ρ(f−nFn(a), a)− ρ(f−nFn(b), b) > 3d− d− d = d,

for n = 1, 2, . . . , where we have applied inequality (2.1) to give ρ(f−nFn(a), a) < d
and ρ(f−nFn(b), b) < d. �

When f is the identity function I, Theorem 2.2 says that if
∑

ρ(fn(a), a) < +∞
and

∑

ρ(fn(b), b) < +∞, then the left-composition sequence Fn = fnfn−1 · · ·f1
converges locally uniformly on D to a non-constant holomorphic map F ∈ H(D).
When f is an elliptic transformation of finite order m, the theorem tells us that the
sequence (Fn) can be split into m subsequences that converge to F, fF, . . . , fm−1F ,
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respectively. For the remaining case, when f is an elliptic transformation of infinite
order, we see from Theorem 2.2 that (Fn) accumulates at uncountably many different
non-constant maps in H(D).

Next we state a result similar to Theorem 2.2 for right-composition sequences.

Theorem 2.3. Suppose that g is either the identity function or an elliptic

Möbius transformation that fixes D, and g1, g2, . . . are non-constant holomorphic

self-maps of D for which
∞
∑

n=1

ρ(gn(a), g(a)) < +∞ and

∞
∑

n=1

ρ(gn(b), g(b)) < +∞,

for two distinct points a, b ∈ D. Then the sequence (Gng
−n), where Gn = g1g2 · · · gn,

converges locally uniformly on D to a non-constant holomorphic self-map of D.

Proof. Let d = 1
3
ρ(a, b) and let K be a closed hyperbolic disc that is centred at

a fixed point of g and that contains a and b. By truncating the right-composition
sequence (Gn) by a fixed finite number of terms from the left (and relabelling the
remaining functions), we can assume that

∞
∑

n=1

sup
z∈K

ρ(gn(z), g(z)) < d.

Now choose a point z in K, and let n be a positive integer. By applying the Schwarz–
Pick lemma with the function Gn−1, we see that

ρ(Gng
−n(z), Gn−1g

−(n−1)(z)) ≤ ρ(gn(w), g(w)),

where w = g−n(z) (and G0 is the identity function). Since w ∈ K, it follows that
∞
∑

n=1

ρ(Gng
−n(z), Gn−1g

−(n−1)(z)) < d.

Therefore (Gng
−n) is a uniformly Cauchy sequence on K, and since K can be chosen

to be arbitrarily large, we deduce that (Gng
−n) converges locally uniformly on D to

a function G.
This function G belongs to H(D); we must show that it is not a constant function.

To this end, we write an = g−n(a), for n = 1, 2, . . . , and observe that

ρ(Gng
−n(a), a) ≤ ρ(Gn(an), Gn−1(an−1)) + ρ(Gn−1(an−1), Gn−2(an−2)) + · · ·

+ ρ(G1(a1), a)

≤ ρ(gn(an), g(an)) + ρ(gn−1(an−1), g(an−1)) + · · ·+ ρ(g1(a1), g(a1)),

for n = 1, 2, . . . , where, to obtain the second inequality, we applied the Schwarz–
Pick lemma with the functions Gn−1, Gn−2, . . . G0, in that order. Since an ∈ K, for
each index n, we find that ρ(Gng

−n(a), a) < d, and similarly ρ(Gng
−n(b), b) < d.

Consequently,

ρ(Gng
−n(a), Gng

−n(b)) ≥ ρ(a, b)− ρ(Gng
−n(a), a)− ρ(Gng

−n(b), b) > 3d− d− d = d,

for n = 1, 2, . . . . Hence G is a non-constant holomorphic self-map of D. �

The special cases of Theorem 2.3 when the limit function g is of finite order
resemble the similar special cases of Theorem 2.2. In particular, when g is the identity
function, Theorem 2.3 says that if

∑

ρ(gn(a), a) < +∞ and
∑

ρ(gn(b), b) < +∞,
then the right-composition sequence Gn = g1g2 · · · gn converges locally uniformly on
D to a non-constant holomorphic self-map of D.
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3. Denjoy–Wolff point inside the disc

In this section we consider the stability of the Denjoy–Wolff theorem at holomor-
phic functions that have a Denjoy–Wolff point inside the unit disc. Central to our
approach is the following theorem from [1, Corollary 2.3] and [7, Theorem 1.2].

Theorem C. Suppose that K is a compact subset of a simply connected hyper-

bolic domain D, and that g1, g2, . . . are holomorphic maps of D into K. Then the

right-composition sequence Gn = g1g2 · · · gn converges locally uniformly on D to a

constant in K.

Using Theorem C we obtain the following strong stability result for right-compo-
sition sequences.

Theorem 3.1. Let g be a holomorphic self-map of D with a Denjoy–Wolff point

ζ in D. Then there is a neighbourhood U of g in H(D) such that if g1, g2, . . . belong to

U , then the right-composition sequence Gn = g1g2 · · · gn converges locally uniformly

on D to a constant in D.

We use the notation D(c, r) for the hyperbolic open disc with centre c and hy-
perbolic radius r.

Proof. Let D = D(ζ, 1). Since D is a compact set in D, we see from the
Schwarz–Pick lemma that there is a positive constant k < 1 (that depends on D) with
ρ(g(z), g(w)) ≤ kρ(z, w), for z, w ∈ D. Observe that g fixes ζ , so g(D) ⊂ D(ζ, k).
Now choose a real number s with k < s < 1. Let

U = {h ∈ H(D) : h(D) ⊂ D(ζ, s)},

a neighbourhood of g in H(D), and let K = D(ζ, s). If g1, g2, . . . belong to U ,
then gn(D) ⊂ K, for each index n, so we can apply Theorem C to see that the
right-composition sequence Gn = g1g2 · · · gn converges locally uniformly on D to a
constant ξ in K.

To prove that (Gn) converges locally uniformly on D to ξ, we could now apply
the Vitali–Porter theorem [10, Section 2.4]; however, it is easy enough to prove this
assertion directly, as follows.

Suppose, in order to reach a contradiction, that (Gn) does not converge locally
uniformly on D to ξ. Then we can find a compact subset L of D, a positive number
δ, and a subsequence (Gni

), where n1 < n2 < · · · , for which Gni
(L) is not contained

in D(ξ, δ), for i = 1, 2, . . . . However, (Gn) is a normal family, so there is a further
subsequence of (Gni

) that converges locally uniformly on D to some analytic function
G ∈ H(D,C). We know that G(z) = ξ, for z ∈ D, so in fact G must be the constant
function with value ξ. This contradicts the statement that Gni

(L) is not contained
in D(ξ, δ), for i = 1, 2, . . . , so we see that, contrary to our earlier assumption, (Gn)
does converge locally uniformally on D to ξ, as required. �

The hypotheses of Theorem 3.1 can of course be weakened to assume that all but
finitely many of the maps gn belong to U .

The next example shows that there is no analogue of Theorem 3.1 for left-
composition sequences.

Example 3.2. Consider the map f(z) = z/2 with fixed point 0. Let U be a
neighbourhood of f in H(D). We can choose a positive constant δ to be sufficiently
small that any function g(z) = z/2 + µ, where µ is a complex number with |µ| ≤ δ,
belongs to U .
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Let zn = δeni, for n = 1, 2, . . . . The sequence (zn) is dense on the circle centred
at the origin of radius δ. Let δ1 = z1 and, for n > 1, let δn = zn − 1

2
zn−1, in which

case

|δn| =
∣

∣zn −
1
2
zn−1

∣

∣ = δ
∣

∣ei − 1
2

∣

∣ < δ.

It follows that the maps fn(z) = z/2 + δn belong to U .
Next, we prove by induction that the left-composition sequence Fn = fnfn−1 · · ·f1

satisfies Fn(0) = zn, for n = 1, 2, . . . . To see this, for n = 1 we have F1(0) = δ1 = z1,
and for n > 1, if Fn−1(0) = zn−1, then

Fn(0) =
1
2
Fn−1(0) + δn = 1

2
zn−1 + δn = zn.

Hence (Fn(0)) diverges, and since Fn(z) = Fn(0)+ z/2n, it follows that (Fn) diverges
pointwise on D. �

With slightly stronger hypotheses, however, we do obtain controlled behaviour
of the left-composition sequence (Fn).

Theorem 3.3. Let f be a holomorphic self-map of D with a Denjoy–Wolff point

ζ in D. Suppose that f1, f2, . . . is a sequence of functions in H(D) that converges

locally uniformly on D to f . Then the left-composition sequence Fn = fnfn−1 · · ·f1
converges locally uniformly on D to ζ .

Proof. Let K be a closed hyperbolic disc centred at ζ . Observe that f maps K
inside a smaller closed hyperbolic disc centred at ζ . Since fn → f uniformly on K we
see that fn maps K inside itself for sufficiently large n. By truncating Fn by finitely
many terms on the right (and relabelling) we can assume that in fact fn(K) ⊂ K for
all n = 1, 2, . . . .

Since K is compact, we see from the Schwarz–Pick lemma that there is a positive
constant k < 1 with ρ(f(z), f(w)) ≤ kρ(z, w), for z, w ∈ K.

Choose z ∈ K. Observe that fn(z) ∈ K and Fn(z) ∈ K, for n = 1, 2, . . . . Then

ρ(Fn(z), f
n(z)) ≤ ρ(Fn(z), f(Fn−1(z))) + ρ(f(Fn−1(z)), f

n(z))

≤ sup
w∈K

ρ(fn(w), f(w)) + kρ(Fn−1(z), f
n−1(z)),

for n = 1, 2, . . . . Repeating this argument, we see that

ρ(Fn(z), f
n(z)) ≤ (1 + k + k2 + · · ·+ kn−1) sup

w∈K
ρ(fn(w), f(w))

≤
1

1− k
sup
w∈K

ρ(fn(w), f(w)),

for n = 1, 2, . . . . Since (fn) converges locally uniformly on D to f we see that
ρ(Fn(z), f

n(z)) → 0 uniformly on K, so Fn → ζ uniformly on K. Hence (Fn)
converges locally uniformly on D to the constant ζ . �

Notice that the left-composition sequence (Fn) of Theorem 3.3 converges locally
uniformly on D to ζ , but the right-composition sequence (Gn) of Theorem 3.1 con-
verges to a constant that need not be ζ . After all, adjusting g1 causes the constant
to change.

4. Denjoy–Wolff point on the boundary of the disc

This final section considers the stability of the Denjoy–Wolff theorem at holo-
morphic maps that have a Denjoy–Wolff point on the boundary of the unit disc. In
a sense, this circumstance is the least stable of those considered so far, because one
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can find a holomorphic map f with Denjoy–Wolff point on the boundary of D, and
a sequence of holomorphic maps f1, f2, . . . with fn → f , for which the behaviour of
the left-composition sequence Fn = fnfn−1 · · · f1 is erratic.

An example of this type follows, in which all the maps fn and f are Möbius
transformations. In this example we use the upper half-plane H in place of the
unit disc D, and work with the space of holomorphic self-maps of H. We could
transfer our example back to the unit disc by conjugating the maps fn and f by the
transformation φ(z) = (z − i)/(z + i), which is a conformal map from H to D.

Example 4.1. Let f(z) = z − 1, a holomorphic self-map of H. It is a parabolic
Möbius transformation with fixed point ∞, which is the Denjoy–Wolff point of f
(lying on the boundary of H in the extended complex plane C∞). Let

kn(z) =
nz − 1

z + n
and hn = knfk

−1
n ,

for n = 1, 2, . . . . Then hn is also a parabolic Möbius transformation, with fixed point
n. The maps hn are real Möbius transformations that fix H, so they are conformal
automorphisms of H. Of course, they also act on C∞ in the usual way.

Observe that kn → I, the identity transformation, so hn → f .
For n = 1, 2, . . . , let Un = {z : |z| < 1/n} and Vn = {z : |z − n| < 1/n}. Choose

a positive integer r1 for which hr1
1 (i) ∈ V1. For each n > 1, choose a positive integer

rn such that hrn
n (Un−1) ⊂ Vn. We can make these choices because Vn is an open

neighbourhood of the fixed point n of hn.
We define a sequence of Möbius transformations f1, f2, . . . as follows. The first r1

maps in this sequence equal h1 and the next 1 map equals f . Then the following r2
maps in the sequence equal h2 and the next 2 maps equal f . The following r3 maps
equal h3 and the next 3 maps equal f , and so forth. Clearly fn → f as n → ∞. We
will prove that the left-composition sequence Fn = fnfn−1 · · · f1 diverges at i.

Since hr1
1 (i) ∈ V1, f

n(Vn) = Un and, for n > 1, hrn
n (Un−1) ⊂ Vn, it follows that

hrn
n fn−1h

rn−1

n−1 · · · f 1hr1
1 (i) ∈ Vn, whereas fnhrn

n fn−1h
rn−1

n−1 · · · f 1hr1
1 (i) ∈ Un,

for n = 1, 2, . . . . Consequently, there is a subsequence of (Fn(i)) that converges to
∞ and there is another subsequence of (Fn(i)) that converges to 0. Hence (Fn(i))
diverges.

Using the property that the maps Fn preserve hyperbolic distance on H, it can
be shown that in fact (Fn) diverges pointwise on H; we omit the details. �

Despite Example 4.1, the following theorem shows that, for a holomorphic map
f with Denjoy–Wolff point on the boundary of D, if the convergence of (fn) to f is
sufficiently rapid, then the sequences (Fn) and (fn) have similar dynamics.

Theorem 4.2. Let f be a holomorphic self-map of D with a Denjoy–Wolff point

ζ on the boundary of D. Then there exist neighbourhoods U1,U2, . . . of f in H(D)
such that if fn ∈ Un, for n = 1, 2, . . . , then the left-composition sequence Fn =
fnfn−1 · · ·f1 converges locally uniformly on D to ζ .

Proof. For each positive integer n, we define Dn to be the open hyperbolic disc
centred at 0 of radius 1 + ρ(fn−1(0), 0), and let

Un = {h ∈ H(D) : ρ(h(z), f(z)) < 1/2n for z ∈ Dn},

a neighbourhood of f in H(D). Suppose that fn ∈ Un, for n = 1, 2, . . . .
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We will prove by induction on m that

ρ(Fm(0), f
m(0)) < 1−

1

2m
,

for m = 1, 2, . . . . This is certainly true for m = 1, by definition of U1. Suppose that
it is true for the integer m = n− 1, where n > 1. Then

ρ(Fn(0), f
n(0)) ≤ ρ(Fn(0), f(Fn−1(0))) + ρ(f(Fn−1(0)), f

n(0))

≤ ρ(Fn(0), f(Fn−1(0))) + ρ(Fn−1(0), f
n−1(0))

< ρ(Fn(0), f(Fn−1(0))) + 1−
1

2n−1
,

where we have applied the triangle inequality, the Schwarz–Pick lemma, and the
induction hypothesis. Now, since

ρ(Fn−1(0), 0) ≤ ρ(Fn−1(0), f
n−1(0)) + ρ(fn−1(0), 0) < 1 + ρ(fn−1(0), 0),

we see that Fn−1(0) ∈ Dn. So, by definition of Un, we have

ρ(Fn(0), f(Fn−1(0))) = ρ(fn(Fn−1(0)), f(Fn−1(0))) <
1

2n
.

Combining the inequalities obtained we conclude that

ρ(Fn(0), f
n(0)) < ρ(Fn(0), f(Fn−1(0))) + 1−

1

2n−1
<

1

2n
+ 1−

1

2n−1
= 1−

1

2n
.

This completes the proof by induction.
A consequence of this observation is that ρ(Fn(0), f

n(0)) < 1, for each positive
integer n. Then, since fn(0) → ζ , a point on the boundary of D, we can use a
formula for the hyperbolic metric in D such as

sinh 1
2
ρ(z, w) =

|z − w|
√

(1− |z|2)(1− |w|2)
,

to see that Fn(0) → ζ also.
Furthermore, we have that ρ(Fn(z), Fn(0)) ≤ ρ(z, 0), for any point z ∈ D, and

from this inequality we see that (Fn) converges locally uniformly on D to ζ (with
convergence in the Euclidean metric). �

There is no such result as Theorem 4.2 for right-composition sequences. To see
this, we provide an example that again uses the upper half-plane H in place of the
unit disc D. We can make this switch because Theorem 4.2, like the other theorems,
is conformally invariant, in the sense that one can obtain an equivalent theorem in
H (or any other hyperbolic simply connected domain) by conjugating by a suitable
conformal map.

Returning to the promised example, consider the function g(z) = z+1 acting on
the upper half-plane H with Denjoy–Wolff point ∞. Let h(z) = i+ e2πiz , which is a
holomorphic self-map of H that satisfies hg = h. Now consider the right-composition
sequence Gn = g1g2 · · · gn, where g1 = h and gn = g, for n > 1. Then (gn) converges
to g in the fastest possible way, but Gn = hgn−1 = h.

The following, similar example exhibits even worse behaviour of the sequence
(Gn). We provide only a sketch of the details, which requires the theory of prime
ends (see, for example, [8, Section 17]).

Example 4.3. This example also uses H rather than D. We define g(z) = z/2,
which is a holomorphic self-map of H with Denjoy–Wolff point 0. Let D be the simply
connected domain shown in Figure 4.1. It is obtained by removing two vertical line
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segments and various horizontal line segments from H to leave an infinite snake-
like domain, as suggested by the figure. There are infinitely many horizontal line
segments, and they accumulate at the real interval [−1, 1], which is the impression
of a unique prime end of D.

0−1 1

Figure 4.1. Domain D.

We define h to be a conformal map from H to D. This map induces a one-to-one
correspondence between the extended real line (the boundary of H) and the prime
ends of D. We choose h such that 0 corresponds to the prime end with impression
[−1, 1]. Now consider the right-composition sequence Gn = g1g2 · · · gn, where g1 = h
and gn = g, for n > 1. Then (gn) converges to g as quickly as possible, however, we
will show that (Gn(i)) diverges. To see this, first observe that

Gn(i) = hgn(i) = h(i/2n), for n = 1, 2, . . . .

Since h is a conformal map from H to D, it preserves hyperbolic distance between
these two domains. So the hyperbolic length of the hyperbolic geodesic segment Γn

between Gn−1(i) and Gn(i) in D is equal to the hyperbolic distance between i/2n−1

and i/2n in H, namely log 2. Now, as n increases, i/2n approaches 0 (in the Euclidean
metric), and Gn(i) approaches [−1, 1] (in the Euclidean metric). By applying a simple
estimate with the quasihyperbolic metric, it can then be shown that the Euclidean
length of Γn converges to 0. From the shape of D we can see that (Gn(i)) accumulates
at an interval within [−1, 1], so it diverges. �

Example 4.3 indicates that there is little hope of obtaining a simple analogue
of Theorem 4.2 for right-composition sequences. It also suggests that we ought to
shift our perspective when considering right-composition sequences, in the following
sense. The sequence (Gn(i)) certainly diverges in the closure of the domain H, but it
converges in the Carathéodory compactification of the domain D, to the prime end
with impression [−1, 1]. In general, for a right-composition sequence Gn = g1g2 · · · gn
acting on D, it is likely to be more rewarding to consider convergence of (Gn) not
with respect to D, but with respect to the set

⋂

Gn(D) (or perhaps its interior),
which in many cases will be a simply connected domain. We will examine this idea
more thoroughly in future work.
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