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Abstract. Let γ
−1 be the absolutely continuous measure on R

n whose density is the reciprocal

of a Gaussian function. Let further A be the natural self-adjoint Laplacian on L2(γ
−1). In this

paper, we prove that the Riesz transforms associated with A of order one or two are of weak type

(1, 1), but that those of higher order are not.

1. Introduction

The Euclidean space endowed with the measure γ−1 whose density is the recip-
rocal of a Gaussian, which we call the inverse Gauss measure, is a toy model of a
variety of settings where a theory of singular integral operators has not yet been es-
tablished. Therefore, the analysis of this model may provide profitable insights into
more general frameworks. In this paper, we focus on the boundedness of the Riesz
transforms.

As a weighted manifold, (Rn, γ−1) has constant, negative definite Bakry–Émery
curvature tensor. By a celebrated result of Bakry on weighted Riemannian man-
ifolds [2], the negative lower bound of this tensor governs the Lp boundedness,
1 < p < ∞, of the shifted Riesz transforms associated with the natural weighted
Laplacian on the manifold. No general endpoint analogue is known. In addition to
this, the natural weighted Laplacian A on (Rn, γ−1) can be seen as a restriction of
the Laplace–Beltrami operator on a warped-product manifold whose Ricci tensor is
unbounded from below. Not much is known about Riesz transforms on manifolds
of unbounded geometry; see for instance [1, 5] and references therein. We also em-
phasize that the inverse Gauss measure setting is intimately related to the Gaussian
setting, for A is unitarily equivalent with a translate of the Ornstein–Uhlenbeck
operator.

The connection with the Gaussian setting was the principal motivation for which
γ−1 and A were initially introduced and studied by Salogni [9]. Then, several end-
point results for imaginary powers and Riesz transforms of A , involving also new
spaces of Hardy type, were obtained in [4] by the first author of the present paper.
There, it was proved that if λ ≥ 1, then the shifted first-order Riesz transforms
∇(A + λI)−1/2 are of weak type (1, 1), that is, bounded from L1(γ−1) to L1,∞(γ−1).
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This result, and those concerning Hardy spaces, strongly resemble endpoint ana-
logues of the theorem of Bakry mentioned above. However, the problem whether
such a shift is indeed necessary was left open.

The aim of this paper is to study the weak type (1, 1) of the Riesz transforms of
any order of A . In particular, we improve the first-order results by eliminating the
shift. This was unexpected, because the shift is necessary for the boundedness from
Hardy spaces adapted to γ−1 to L1(γ−1), as proved in [4]. Another surprising fact
is that the weak type (1, 1) behaviour of the Riesz transforms of A is completely
analogous to that of the Riesz transforms of the Ornstein–Uhlenbeck operator, al-
though the behaviour on corresponding Hardy spaces is different. See [6, 8] and [4, 3],
respectively.

To be more explicit, let α = (α1, . . . , αn) ∈ N
n be a nonzero multi-index and let

Rα = ∂αA −|α|/2, which is a Riesz transform of order |α| = α1 + · · · + αn. In this
paper, we prove the following.

Theorem 1.1. Let α ∈ N
n be nonzero. Then Rα is bounded from L1(γ−1) to

L1,∞(γ−1) if and only if |α| ≤ 2.

By [4, Remark 2.5], Rα is bounded on Lp(γ−1) for every p ∈ (1,∞) when |α| = 1.
We do not know whether the same holds in general when |α| > 1, though we strongly
expect so; we leave the investigation of this problem to future work.

The paper is devoted to the proof of Theorem 1.1. We determine the integral
kernel of the Riesz transform Rα and split it into a local and a global part. The
local part behaves like a classical Calderón–Zygmund kernel, and its weak type (1, 1)
follows by an adaptation of the classical Calderón–Zygmund theory, developed in [9].
This boundedness holds for the Riesz transforms of any order. The heart of the proof
concerns the global part of the kernel, which requires ad hoc techniques where the
order of the transforms matters.

The paper is organized as follows. In Section 2, the operator A , its Mehler-type
kernel and its Riesz transforms are defined. We then prove the weak type (1, 1) of
the local parts of the Riesz transforms in Section 3. In Section 4, we prove weak
type (1, 1) estimates for operators with several kinds of kernels. These estimates will
allow us, in Section 5, to complete the proof of the “if” part of Theorem 1.1. In the
final Section 6, it is shown that the weak type (1, 1) of the Riesz transforms of order
higher than two cannot hold.

We now explain some notation. Let 0 denote the null vector (0, . . . , 0) ∈ N
n.

For α ∈ N
n \ {0}, we write ∂α for the differential operator ∂α1

x1
· · ·∂αn

xn
. The Lebesgue

measure on R
n will be denoted by dx or by Leb. If E is a measurable set, 1E will

stand for its characteristic function. Given a linear operator T mapping test functions
into measurable functions on R

n, we say that a measurable function K defined and
locally bounded off the diagonal in R

n×R
n is the integral kernel of T if, for any test

function f ,

Tf(x) =

ˆ

Rn

K(x, y)f(y) dy, x /∈ supp(f).

In other words, the integral kernels of our operators will be taken with respect to
Lebesgue measure.

We denote by C < ∞, or c > 0, a constant that may vary from place to place
but is independent of significant quantities. Given two positive quantities A and B,
we shall write A . B or B & A if A ≤ CB. If A . B and B . A, we write A ≈ B.
The symbols A∨B and A∧B will stand for max(A,B) and min(A,B) respectively.
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2. The operator A and its Riesz transforms

For x ∈ R
n, let γ(x) = π−n/2e−|x|2 and γ−1(x) = πn/2e|x|

2
. With a slight abuse of

notation, we identify γ and γ−1 with the measures γ(x) dx and γ−1(x) dx, respectively.
Consider the second order differential operator

A0f(x) = −1

2
∆f(x)− x · ∇f(x), f ∈ C∞

c (Rn), x ∈ R
n,

which is essentially self-adjoint on L2(γ−1). Denote with A its closure. It is known,
see [9] and [4], that the L2(γ−1)-spectrum of A is the discrete set {n, n+1, . . . }, and
that its eigenfunctions are the functions (γHα)α∈Nn , where Hα is an n-dimensional
Hermite polynomial, i.e.,

(2.1) Hα =

n⊗

j=1

Hαj
, Hk(s) = (−1)kes

2 dk

dsk
e−s2 , k ∈ N, s ∈ R.

Recall that for t > 0, the integral kernel of the operator e−tA is

Ht(x, y) =
e−nt

πn/2(1− e−2t)n/2
e
− |x−e−ty|2

1−e−2t , x, y ∈ R
n;

see [9] and [4] for this and further details about A .
For b > 0, the kernel of A −b is given by the subordination formula

KA −b(x, y) = Γ(b)−1

ˆ ∞

0

tb−1Ht(x, y) dt.

The kernel of the Riesz transform Rα = ∂αA −|α|/2 with α ∈ N
n \ {0} is

KRα
(x, y) = π−n/2 Γ(|α|/2)−1

ˆ ∞

0

t
|α|
2
−1 e−nt

(1− e−2t)n/2
∂α
x e

− |x−e−ty|2

1−e−2t dt,

in the principal value sense. By the change of variables t = − log r, and recalling (2.1),
we obtain that the kernel of Rα is the principal value of

KRα
(x, y) =

1

πn/2 Γ(|α|/2)

ˆ 1

0

rn−1(− log r)
|α|
2
−1

(1− r2)n/2
∂α
x e

− |x−ry|2

1−r2 dr

=
(−1)|α|

πn/2 Γ(|α|/2)

ˆ 1

0

rn−1(− log r)
|α|
2
−1

(1− r2)(n+|α|)/2 Hα

(
x− ry√
1− r2

)
e
− |x−ry|2

1−r2 dr(2.2)

=
(−1)|α|

πn/2 Γ(|α|/2) e
−|x|2+|y|2

ˆ 1

0

rn−1(− log r)
|α|
2
−1

(1− r2)(n+|α|)/2 Hα

(
x− ry√
1− r2

)
e
− |rx−y|2

1−r2 dr,(2.3)

the last equality since

−|x− ry|2
1− r2

+
|rx− y|2
1− r2

= −|x|2 + |y|2.

We split R
n ×R

n into a local and a global region. For δ = 1, 2, define

(2.4) Nδ =

{
(x, y) ∈ R

n ×R
n : |x− y| ≤ δ

1 + |x|+ |y|

}

and G = N c
1 . The regions N1 and N2 will be called local regions, while G will be the

global region. As in [4], we fix a smooth function χ : Rn ×R
n → R such that

1N1 ≤ χ ≤ 1N2 , |∇xχ(x, y)|+ |∇yχ(x, y)| ≤
C

|x− y| for every x 6= y.
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We also define

KRα,loc = χKRα
, KRα,glob = KRα

−KRα,loc.

We shall denote the operators with kernels (the principal value of) KRα,loc and
KRα,glob by Rα,loc and Rα,glob, respectively. Theorem 1.1 will be proved by putting
together Proposition 3.1 (boundedness of Rα,loc for every α), Proposition 5.1 (bound-
edness of Rα,glob when |α| ≤ 2), and Proposition 6.1 (unboundedness of Rα when
|α| ≥ 3).

3. The local part of the Riesz transforms

In this section, we prove the boundedness of Rα,loc. As we shall see, no restriction
on α is necessary: indeed, in the local region all the Riesz transforms of A behave
essentially like classical Calderón–Zygmund operators.

Proposition 3.1. Rα,loc is bounded from L1(γ−1) to L1,∞(γ−1) for every α ∈
N

n \ {0}.
The proof of Proposition 3.1 will be reduced to proving the boundedness of Rα

on L2(γ−1) and some Calderón–Zygmund type estimates of KRα,loc. Following [9],
we say that a linear operator T , mapping test functions into measurable functions
on R

n, is a local Calderón–Zygmund operator if

(a) T is a bounded operator on Lq(γ−1) for some q ∈ (1,∞);
(b) T has an integral kernel K, defined and locally integrable off the diagonal in

R
n ×R

n, satisfying

(3.1) |K(x, y)| . 1

|x− y|n , |∇xK(x, y)|+ |∇yK(x, y)| . 1

|x− y|n+1

for all (x, y) ∈ N2, x 6= y.

If Rα is a local Calderón–Zygmund operator, then Rα,loc is bounded on Lp(γ−1) for
any p ∈ (1,∞), and from L1(γ−1) to L1,∞(γ−1); see e.g. [9, Theorem 3.2.8].

When |α| = 1, the boundedness of Rα,loc was proved in [4, Proposition 6.6]. We
now extend that argument to any nonzero α. The key tool will be the following
lemma, see [4, Lemma 6.3].

Lemma 3.2. Let µ, ν ≥ 0 be such that µ > ν + 1. Then, for every (x, y) ∈ N2,

x 6= y,
ˆ 1

0

|x− ry|ν

(1− r2)
n+µ
2

e
− |x−ry|2

1−r2 dr .
1

|x− y|n+µ−ν−2
.

We are now in a position to prove Proposition 3.1.

Proof of Proposition 3.1. It is enough to prove that Rα is a local Calderón–
Zygmund operator.

Step 1. We prove that KRα
satisfies the estimates (3.1). First, observe that

by (2.2)

KRα
(x, y) .

ˆ 1/2

0

rn−1(− log r)
|α|
2
−1

∣∣∣∣Hα

(
x− ry√
1− r2

)∣∣∣∣ e
− |x−ry|2

1−r2 dr

+

ˆ 1

1/2

1

(1− r)
n
2
+1

∣∣∣∣Hα

(
x− ry√
1− r2

)∣∣∣∣ e
− |x−ry|2

1−r2 dr.
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Since ∣∣∣∣Hα

(
x− ry√
1− r2

)∣∣∣∣ .
|α|∑

a=0

( |x− ry|√
1− r2

)a

,

and sae−s2 . 1 for every a ≥ 0 with a constant depending only on a,
ˆ 1/2

0

rn−1(− log r)
|α|
2
−1

∣∣∣∣Hα

(
x− ry√
1− r2

)∣∣∣∣ e
− |x−ry|2

1−r2 dr .

ˆ 1/2

0

rn−1(− log r)
|α|
2
−1 dr . 1.

Moreover, by Lemma 3.2 we obtain
ˆ 1

1/2

1

(1− r)
n
2
+1

∣∣∣∣Hα

(
x− ry√
1− r2

)∣∣∣∣ e
− |x−ry|2

1−r2 dr .

|α|∑

a=0

ˆ 1

0

|x− ry|a

(1− r2)
n+2+a

2

e
− |x−ry|2

1−r2 dr

.
1

|x− y|n .

The estimates of the gradients of KRα
can be obtained analogously. Indeed,

∣∣∣∣∂xj

[
Hα

(
x− ry√
1− r2

)
e
− |x−ry|2

1−r2

]∣∣∣∣ . e
− |x−ry|2

1−r2




|α|∑

a=1

|x− ry|a−1

(1− r2)
a
2

+

|α|∑

a=0

|x− ry|a+1

(1− r2)
a
2
+1



 ,

and the same estimates hold for the derivative along yj. The integral over (0, 1/2)
goes as before, and by Lemma 3.2

|∇xKRα
(x, y)|+ |∇yKRα

(x, y)|

. 1 +




|α|∑

a=1

ˆ 1

1/2

|x− ry|a−1

(1− r2)
n+2+a

2

e
− |x−ry|2

1−r2 dr +

|α|∑

a=0

ˆ 1

1/2

|x− ry|a+1

(1− r2)
n+4+a

2

e
− |x−ry|2

1−r2 dr




.
1

|x− y|n+1
.

Thus, the estimates (3.1) hold for KRα
.

Step 2. We prove that Rα is bounded on L2(γ−1). For β ∈ N
n, we denote by hβ

the normalized Hermite polynomial

hβ = 2−
|β|
2 (β!)−1/2Hβ.

The functions γ hβ form an orthonormal basis in L2(γ−1), see e.g. [11, §5.5]. Since
for b > 0

A
−bf =

∑

β∈Nn

1

(|β|+ n)b
(f, γ hβ)L2(γ−1) γ hβ ,

and, by the definition of hβ and Hβ,

∂α(γ hβ) = 2
|α|
2 (−1)|α|+|β|

√
(β + α)!

β!
γ hβ+α,

we obtain

Rαf = ∂α
A

−|α|/2f =
∑

β

1

(|β|+ n)|α|/2
(f, γ hβ)L2(γ−1) ∂

α(γhβ)

= 2|α|/2
∑

β

(−1)|α|+|β| 1

(|β|+ n)|α|/2
(f, γ hβ)L2(γ−1)

√
(β + α)!

β!
γ hβ+α.
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Since the (γ hν) are orthonormal in L2(γ−1), and

1

(|β|+ n)|α|
(β + α)!

β!
. 1,

where the implicit constant may depend on α and n, we conclude

‖Rαf‖2L2(γ−1)
= 2|α|

∑

β

1

(|β|+ n)|α|
(β + α)!

β!
(f, γ hβ)

2
L2(γ−1)

. 2|α|
∑

β

(f, γ hβ)
2
L2(γ−1)

. ‖f‖2L2(γ−1)
.

This concludes Step 2 and proves that Rα is a local Calderón–Zygmund operator.
The proposition follows. �

4. Some technical lemmata

In this section, we prove some lemmata concerning the weak type (1, 1) of various
integral operators with given kernels. The kernels are those appearing in the analysis
of the Riesz transforms of order 1 and 2 in the next section.

We first introduce some notation, which will be used in the rest of the paper.
Given a couple (x, y) ∈ R

n ×R
n, x 6= 0, we shall write

y = yx + y⊥,

where yx is parallel to x and y⊥ is orthogonal to x. We denote with r0 the unique
real number such that yx = r0x, and let θ = θ(x, y) ∈ [0, π] be the angle between x
and y. Then,

r0 = (|y|/|x|) cos θ, |r0| = |yx|/|x|, |y⊥| = |y| sin θ.
Observe moreover that

(4.1) |rx− y|2 = |r − r0|2|x|2 + |y⊥|2,
that

(4.2) |1− r0| = |x− yx|/|x|,
and that

|x− ry| ≤ |x− yx|+ |yx − ry| ≤ |x− yx|+ (1− r)|yx|+ r|y⊥|.(4.3)

Notice also that |x± y| ≥ |x| sin θ and that, if (x, y) ∈ G, then |x− y| ≥ 1
2
(1+ |x|)−1,

see e.g. [4, Lemma 6.2].
It will be useful to recall that if T is a linear operator such that

T =

∞∑

m=0

Tm

for some linear operators (Tm)m∈N, each bounded from L1(γ−1) to L1,∞(γ−1), then

‖T‖L1(γ−1)→L1,∞(γ−1)

≤
∞∑

m=0

‖Tm‖L1(γ−1)→L1,∞(γ−1)

(
1 + log

(
1 + ‖Tm‖L1(γ−1)→L1,∞(γ−1)

))
,

(4.4)

see [10, Lemma 2.3].
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We now begin with the lemmata giving the weak type (1, 1) of some integral
operators. The first is nothing but [9, Lemma 3.3.4] (see also [6, Theorem 1]), which
we restate for the reader’s convenience.

Lemma 4.1. The operator with kernel

K(x, y) = e−|x|2+|y|2 [(1 + |x|)n ∧ (|x| sin θ)−n
]

is bounded from L1(γ−1) to L1,∞(γ−1).

Lemma 4.2. Let µ, ν ∈ R be such that µ + ν ≥ n − 2 and µ ≤ n. Then the

operator T with kernel

K(x, y) = πn/2e−|x|2+|y|2|x|−µ(1 + |x|)−ν

is bounded from L1(γ−1) to L1,∞(γ−1).

Proof. Let f ∈ L1(γ−1), f ≥ 0, and observe that

Tf(x) = e−|x|2|x|−µ(1 + |x|)−ν‖f‖L1(γ−1).

Now, consider for s > 0 the set

As = {x : Tf(x) > s} =
{
x : e−|x|2|x|−µ(1 + |x|)−ν‖f‖L1(γ−1) > s

}
.

Let r = rs be the largest positive solution of the equation

e−r2r−µ(1 + r)−ν‖f‖L1(γ−1) = s;

clearly such a solution exists unless As is empty. Now As ⊂ B(0, rs) and if rs ≤ 1,
then

γ−1(As) ≤
ˆ

B(0,rs)

e|x|
2

dx . rns .
1

s
‖f‖L1(γ−1) r

n−µ
s .

1

s
‖f‖L1(γ−1),

since n− µ ≥ 0. If instead rs ≥ 1,

γ−1(As) ≤
ˆ

B(0,rs)

e|x|
2

dx . er
2
s rn−2

s .
1

s
‖f‖L1(γ−1) r

n−µ−ν−2
s .

1

s
‖f‖L1(γ−1),

since n− µ− ν − 2 ≤ 0. This completes the proof. �

Lemma 4.3. Let δ > 0. Then, the operator T with kernel

K(x, y) = e−|x|2+|y|2e−δ|y⊥|2 |x|
( |y|
|x|

)n−1

1G∩{|y|≤2|x|}(x, y)

is bounded from L1(γ−1) to L1,∞(γ−1).

Proof. Let 0 ≤ f ∈ L1(γ−1). For 0 6= x ∈ R
n, let x′ = x/|x| be its projection on

the unit sphere S
n−1, which we endow with the standard normalized surface measure

dy′. Let

K0(x, y) = K(x, y) 1{|y⊥|≤1}(x, y),

Km(x, y) = K(x, y) 1{2m−1<|y⊥|≤2m}(x, y), m = 1, 2, . . . ,

so that

(4.5) K =
∞∑

m=0

Km,

and let Tm be the operator whose kernel is Km. Observe that if |y⊥| ≤ 2m, then

|y′ − x′| = 2 sin(θ/2) ≤ 2 sin θ ≤ 2m+1

|y|
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when θ ∈ [0, π/2], while if θ ∈ [π/2, π], then

|y′ + x′| = 2 sin((π − θ)/2) ≤ 2 sin θ ≤ 2m+1

|y| .

Thus, with a constant c = c(δ) > 0

Tmf(x) . |x|2−ne−|x|2e−c22m
ˆ

{|y|≤2|x|, |y′−x′|∧|y′+x′|≤2m+1/|y|}
|y|n−1f(y) e|y|

2

dy

= |x|2−ne−|x|2e−c22m
ˆ 2|x|

0

ρ2n−2

(
ˆ

{|y′−x′|∧|y′+x′|≤2m+1/ρ}
f(ρy′) dy′

)
eρ

2

dρ

= |x|2−ne−|x|2e−c22mIm(|x|, x′),

where the last equality defines Im(|x|, x′). For s > 0 let now Bs,m ⊂ S
n−1 be the set

of all x′ such that the equation

(4.6) e−c22mr2−ne−r2Im(r, x
′) = s

admits a positive solution r; for x′ ∈ Bs,m, denote by rs,m(x
′) the largest solution,

which exists since Im(r, x
′) . rn−1‖f‖L1(γ−1). Then

As,m := {x : Tmf(x) > s} ⊆ {x : x′ ∈ Bs,m, |x| ≤ rs,m(x
′)},

and using (4.6) with r = rs,m(x
′), we get

γ−1(As,m) .

ˆ

Bs,m

ˆ rs,m(x′)

0

rn−1er
2

dr dx′

.

ˆ

Bs,m

rs,m(x
′)n−2ers,m(x′)2 dx′

=
1

s
e−c22m

ˆ

Bs,m

Im(rs,m(x
′), x′) dx′

≤ 1

s
e−c22m

ˆ ∞

0

ρ2n−2

ˆ

Sn−1

f(ρy′)

(
ˆ

{|y′−x′|∧|y′+x′|<2m+1/ρ}
dx′
)

dy′eρ
2

dρ

.
1

s
e−c22m

ˆ ∞

0

ρ2n−2

(
2m

ρ

)n−1 ˆ

Sn−1

f(ρy′) dy′eρ
2

dρ

≈ 1

s
2m(n−1)e−c22m‖f‖L1(γ−1).

In other words, ‖Tm‖L1(γ−1)→L1,∞(γ−1) . 2m(n−1)e−c22m . Because of (4.5) and (4.4),
the proof is complete. �

We conclude this section with another lemma, which will be involved in the study
of the Riesz transforms of order 2.

Lemma 4.4. Let δ > 0. The operator with kernel

K(x, y) = e−|x|2+|y|2 |x|n+1
2

|x− yx|
n−1
2

e−δ
|y⊥|2|x|

|x−yx| 1{|x||x−yx|≥1, 1
3
|x|≤|yx|<|x|}(x, y)

is bounded from L1(γ−1) to L1,∞(γ−1).

Proof. We begin with a series of observations that allow us to make some restric-
tions.

• If n = 1, then K(x, y) ≤ e−|x|2+|y|2|x|, and the statement follows from Lemma 4.2.
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• If |y⊥| > |x|/2, then

K(x, y) . e−|x|2+|y|2 |x|n+1
2

|x− yx|
n−1
2

( |x− yx|
|y⊥|2|x|

)n−1
2

. e−|x|2+|y|2|x|2−n,

and the statement follows again from Lemma 4.2.
• If |y⊥| ≤ |x|/2 and θ > π/6, so that |x− yx| ≈ |x|, then

K(x, y) ≤ e−|x|2+|y|2|x| e−c|y⊥|2
1G∩{ 1

3
|x|≤|y|≤2|x|}(x, y),

and we can apply Lemma 4.3.
• If |y⊥|2|x|

|x−yx| > 1
4
|x|2, then

K(x, y) . e−|x|2+|y|2 |x|n

(|x||x− yx|)
n−1
2

e−c|x|2
1{|x||x−yx|≥1}(x, y) . e−|x|2+|y|2|x|−n,

and the conclusion follows from Lemma 4.2.
• By means of a rotation, we can assume that x is in the sector defined by
x1/|x| >

√
3/2, that is, the angle between x and the positive first coordinate

axis is less than π/6. Observe that if θ ≤ π/6, then y1/|y| > 1/2.

Summing up all this, if n ≥ 2 and we let

Ω =

{
(x, y) ∈ R

n ×R
n :

x1

|x| >
√
3

2
,
y1
|y| >

1

2
, |x||x− yx| ≥ 1,

1

3
|x| ≤ |yx| < |x|,

|y⊥| ≤ |x|, θ ∈ [0, π/6],
|y⊥|2|x|
|x− yx|

≤ 1

4
|x|2
}
,

then it is enough to prove the boundedness of the operator T̃ whose kernel is

K̃(x, y) = e−|x|2 |x|n+1
2

|x− yx|
n−1
2

e−
|y⊥|2|x|

|x−yx| 1Ω(x, y),

from L1(Leb) to L1,∞(γ−1). We observe that Ω ⊂ G and that (x, y) ∈ Ω implies
|y| ≈ |x|, so that x and y stay away from the origin.

For (x, y) ∈ Ω, we have |x| − |yx| = |x− yx|, and it follows that

|x| − |y| = |x|2 − |y|2
|x|+ |y| =

(|x| − |yx|)(|x|+ |yx|)− |y⊥|2
|x|+ |y|

≥ |x− yx|
|x|+ |yx| − |x|/4

|x|+ |y| & |x− yx|;

to estimate |y⊥|2 here, we used the last inequality in the definition of Ω. In particular,
|y| < |x|. Since also

|x| − |y| ≤ |x| − |yx| = |x− yx|,
we obtain

(4.7) |x| − |y| ≈ |x− yx|.
Therefore, there exists c > 0 such that

Ω ⊆
{
(x, y) : |x| − |y| ≥ c

|x| ,
1

3
|x| ≤ |yx|, |y| < |x|, θ ∈ [0, π/6],

|y⊥|2|x|
|x− yx|

≤ 1

4
|x|2
}
.
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Let

E0 =

{
(x, y) :

|y⊥|2|x|
|x− yx|

≤ 1

}
and Em =

{
(x, y) : 2m−1 <

|y⊥|2|x|
|x− yx|

≤ 2m
}
,

m = 1, 2, . . . . Set also

A0 = {x : |x| ≤ 1} and Ak = {x : 2k−1 ≤ |x| ≤ 2k}, k = 1, 2, . . .

We define
K̃m,k(x, y) = K̃(x, y)1Em

(x, y)1Ak
(x),

so that

K̃ =
∞∑

m=0

∞∑

k=0

K̃m,k.

Observe that if (x, y) ∈ Ω and x ∈ Ak, then y ∈ Ak−2∪Ak−1∪Ak. For (x, y) ∈ Ω∩Em

and x ∈ Ak, we make the transformation

ξ1 =
1

2
|x|2, ξj = 2−m/2+2k xj

|x| , j = 2, . . . , n,(4.8)

and analogously

η1 =
1

2
|y|2, ηj = 2−m/2+2k yj

|y| , j = 2, . . . , n.(4.9)

Going via the coordinates (ξ1, x2, . . . , xn), one finds that the Jacobian of the transfor-
mation (4.8) is comparable to x1 2

−m
2
(n−1) 22k(n−1) |x|1−n > 0, and similarly for (4.9).

This leads to
dx ≈ 2

m
2
(n−1)2−nk dξ, dy ≈ 2

m
2
(n−1)2−nk dη.

Observe that |x| − |y| ≥ c/|x| implies

ξ1 − η1 =
1

2
(|x|+ |y|)(|x| − |y|) & c,

and that

|x| − |y| =
√
2 (
√

ξ1 −
√
η1) ≈

ξ1 − η1√
ξ1

≈ ξ1 − η1
|x| .

Since (x, y) ∈ Ω ∩ Em and x ∈ Ak, we get for j = 2, . . . , n, using also (4.7),

|ξj − ηj | . 2−
m
2
+2k sin θ = 2−

m
2
+2k |y⊥|

|y| . 2k

√
|x| − |y|

|x| ≈
√

|x|(|x| − |y|) ≈
√

ξ1 − η1.

In other words, if we write ξ′ for (ξ2, . . . , ξn), and similarly for η′, we obtain |ξ′−η′| .√
ξ1 − η1.

These transformations lead us to the operator

Tm,kϕ(ξ) =

ˆ

Rn

Km,k(ξ, η)ϕ(η) dη,

where

Km,k(ξ, η)

= 1[22k−3,22k−1](ξ1) e
−2m−1

2
m
2
(n−1) e−2ξ1(ξ1 − η1)

1−n
2 1{|ξ′−η′|.

√
ξ1−η1,

ξ1
9
<η1<ξ1−c}(ξ, η).

Indeed, the reader may verify that the operator with kernel K̃m,k is bounded from
L1(Leb) to L1,∞(γ−1) if Tm,k is bounded from L1(dη) to L1,∞(e2ξ1 dξ), with uniform
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control in m and k of the quotients between the operator quasi-norms. We thus verify
that Tm,k has this boundedness property, uniformly in m and k.

By [7, Proposition 8], Tm,k is bounded from L1(dη) to L1,∞(e2ξ1 dξ), with norm
. e−2m−1

2
n−1
2

m uniformly in k. A similar estimate thus holds for the norm from
L1(Leb) to L1,∞(γ−1) of the operator whose kernel is K̃m,k.

Since y ∈ Ak−2∪Ak−1∪Ak if x ∈ Ak and (x, y) ∈ Ω, we can sum over k and con-
clude that the operator with kernel K̃1Em

is bounded from L1(Leb) to L1,∞(γ−1) with
norm controlled by e−2m−1

2
n−1
2

m. Finally, the proof is completed with a summation
in m and use of (4.4). �

5. The global part of the Riesz trasforms

Proposition 5.1. If |α| ∈ {1, 2}, then Rα,glob is bounded from L1(γ−1) to

L1,∞(γ−1).

Proof. Let (x, y) ∈ G. By (2.3),

|KRα
(x, y)| ≤ c(|α|)e−|x|2+|y|2

ˆ 1

0

rn−1(− log r)
|α|
2
−1

(1− r2)
n+|α|

2

∣∣∣∣Hα

(
x− ry√
1− r2

)∣∣∣∣ e
− |rx−y|2

1−r2 dr

. e−|x|2+|y|2
|α|∑

a=0

(
ˆ 1/2

0

rn−1|x− ry|ae−|rx−y|2 dr +

ˆ 1

1/2

|x− ry|a

(1− r)
n+2+a

2

e
− |rx−y|2

1−r2 dr

)

= e−|x|2+|y|2
|α|∑

a=0

(Ka
1 (x, y) +Ka

2 (x, y)) ,

say. We separate the analyses of Ka
1 and Ka

2 .

Step 1. We prove that e−|x|2+|y|2Ka
1 (x, y) is the kernel of an operator of weak type

(1, 1). Since

Ka
1 (x, y) .

ˆ 1/2

0

rn−1(|x|a + |y|a)e−|rx−y|2 dr,

we consider two cases, depending on the values of the quotient |y|/|x|.
First, suppose |y|/|x| ≥ 2. Then |rx− y| > 3|y|/4 for 0 < r < 1/2, so that

Ka
1 (x, y) .

ˆ 1/2

0

rn−1|y|ae−c|y|2 dr . |y|ae−c|y|2 . |y|1−n . |x|1−n,

and Lemma 4.2 applies.
We now consider the case |y|/|x| < 2. Then

Ka
1 (x, y) . e−|y⊥|2

ˆ 1/2

0

[
|r0|n−1 + |r − r0|n−1

]
|x|ae−|r−r0|2|x|2 dr

. e−|y⊥|2
[( |y|

|x|

)n−1

|x|a
ˆ 1/2

0

e−|r−r0|2|x|2 dr + |x|a
ˆ 1/2

0

|r − r0|n−1e−|r−r0|2|x|2 dr

]

. e−|y⊥|2 |x|a−1

( |y|
|x|

)n−1

+ |x|a−n.

Since |x| ≥ c for |x| > |y|/2 and (x, y) ∈ G, and also a ≤ 2, we can apply Lemmata 4.3
and 4.2 and complete Step 1.
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Step 2. We prove that e−|x|2+|y|2Ka
2 (x, y) is the kernel of an operator of weak type

(1, 1).
By (4.1),

Ka
2 (x, y) =

ˆ 1

1/2

|x− ry|a

(1− r)
n+a+2

2

e−c
(r−r0)

2|x|2+|y⊥|2

1−r dr

=

ˆ 1

1/2

(
1{r0≤1/3} + 1{r0≥2} + 1{1/3<r0<2}

)
(x, y)

|x− ry|a

(1− r)
n+a+2

2

e−c
(r−r0)

2|x|2+|y⊥|2

1−r dr

=: Ka
2,1(x, y) +Ka

2,2(x, y) +Ka
2,3(x, y).

We prove separately the weak type (1, 1) of the operators associated to the kernels
e−|x|2+|y|2Ka

2,i(x, y), i = 1, 2, 3.

2.1. If r0 ≤ 1/3 and 1/2 ≤ r ≤ 1, then

(5.1) |r − r0| ≈ 1 + |r0|.
Moreover,

(5.2) |x− ry| . (1 + |r0|)|x|+ |y⊥|.

Therefore, with the change of variables (1+|r0|)2|x|2+|y⊥|2
1−r

= s,

Ka
2,1(x, y) . [(1 + |r0|)|x|+ |y⊥|]a

ˆ 1

1/2

1

(1− r)
n+a+2

2

e−c
(1+|r0|)

2|x|2+|y⊥|2

1−r dr

.
[
(1 + |r0|)2|x|2 + |y⊥|2

]−n
2

. |x|−n.

Thus, the operator with kernel e−|x|2+|y|2Ka
2,1(x, y) is of weak type (1, 1) by Lemma 4.2.

2.2. If r0 ≥ 2, then (5.1) and (5.2) remain valid if 1/2 ≤ r ≤ 1 and we can argue
as in the preceding case.

2.3. We split the integral defining Ka
2,3 in a way that depends on the value of r0.

Let

I1 = [1
2
, 1) ∩

{
r : 1− r > 3

2
|1− r0|

}
,

I2 = [1
2
, 1) ∩

{
r : 1− r ≤ 1

2
(1− r0) ∨ 3

2
(r0 − 1)

}
,

I3 = [1
2
, 1) ∩

{
r : |r − r0| < 1

2
(1− r0)

}
,

and for j = 1, 2, 3 define

Ka
2,3,j(x, y) = 1{1/3<r0<2}(x, y)

ˆ

Ij

|x− ry|a

(1− r)
n+a+2

2

e−c
(r−r0)

2|x|2+|y⊥|2

1−r dr.

Thus, Ka
2,3 = Ka

2,3,1 +Ka
2,3,2 +Ka

2,3,3. It will be useful to observe that, since r0 ≈ 1,
or equivalently |yx| ≈ |x|, and θ < π/6, one has

|y⊥|−n . (|x| sin θ)−n.

We first consider Ka
2,3,1. Since

1− r − |r0 − 1| ≤ r0 − r ≤ 1− r + |r0 − 1|,
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the condition 1− r > 3
2
|1− r0| implies |r − r0| ≈ 1− r. Thus,

|x|2 (r − r0)
2

1− r
≈ |x|2(1− r),

and (4.3) implies

|x− ry| ≤ |1− r0||x|+ (1− r)|yx|+ |y⊥| . (1− r)|x|+ |y⊥|.
We then get

Ka
2,3,1(x, y) .

ˆ

1−r>3|1−r0|/2
(1− r)−

n+2
2 |x|a(1− r)

a
2 e−c|x|2(1−r)e−c

|y⊥|2

1−r dr

+

ˆ

1−r>3|1−r0|/2
(1− r)−

n+2
2

|y⊥|a
(1− r)

a
2

e−c|x|2(1−r)e−c
|y⊥|2

1−r dr

.

ˆ

1−r>3|1−r0|/2
(1− r)−

n+2
2 e−c|x|2(1−r)e−c

|y⊥|2

1−r dr.

By the change of variables |y⊥|2/(1− r) = s, one obtains

Ka
2,3,1(x, y) .

1

|y⊥|n
.

We also have

Ka
2,3,1(x, y) .

ˆ

1−r>3|1−r0|/2
(1− r)−

n+2
2 dr . |1− r0|−

n
2 ≈ |x|n2 |x− yx|−

n
2 ,

in view of (4.2). Since (1 + |x|)|x− yx| & 1 if |x− yx| > |y⊥|, while (1 + |x|)|y⊥| & 1
if |x− yx| ≤ |y⊥| (recall (x, y) ∈ G), we obtain

Ka
2,3,1(x, y) . (1 + |x|)n.

In other words,
Ka

2,3,1(x, y) . (1 + |x|)n ∧ (|x| sin θ)−n,

and so the operator with kernel e−|x|2+|y|2Ka
2,3,1(x, y) is of weak type (1, 1) by Lemma 4.1.

We now consider Ka
2,3,2. Here |1− r0| ≈ |r − r0|, since

|r − r0| = |1− r0 − (1− r)| ≤ |1− r0|+ (1− r) . |1− r0|.
If r0 < 1, then 1− r < 1

2
(1− r0) and hence

|r − r0| = |1− r0 − (1− r)| ≥ |1− r0| − |1− r| ≥ 1

2
|1− r0|.

If r0 > 1, then
|r − r0| = r0 − r > r0 − 1 = |1− r0|.

In both cases, by (4.3),

|x− ry| . |x− yx|+ |y⊥|
since 1− r . |1− r0|, |yx| ≈ |x| and by (4.2). Thus

Ka
2,3,2(x, y) . (|x− yx|+ |y⊥|)a

ˆ 1

0

(1− r)−
n+a+2

2 e−c
|x−yx|2+|y⊥|2

1−r dr.

After the change of variables |x−yx|2+|y⊥|2
1−r

= s, we obtain

Ka
2,3,2(x, y) . (|x− yx|+ |y⊥|)−n ≤ 1

|x− y|n ∧ 1

|y⊥|n
. (1 + |x|)n ∧ 1

(|x| sin θ)n .

Lemma 4.1 now ends the case of Ka
2,3,2.



446 Tommaso Bruno and Peter Sjögren

It remains to consider Ka
2,3,3. Observe first that Ka

2,3,3 = Ka
2,3,31{1/3<r0<1}. Then,

the conditions 1/3 < r0 < 1 and |r− r0| < 1
2
(1− r0) imply 1− r ≈ 1− r0. Moreover,

by (4.3), the fact that |yx| ≈ |x| and (4.2) we get

|x− ry| . (1− r0)|x|+ |y⊥|.
Therefore

Ka
2,3,3(x, y) . (1− r0)

−n+a+2
2 [(1− r0)|x|+ |y⊥|]a

ˆ

|r−r0|< 1−r0
2

e
−c|x|2 (r−r0)

2

1−r0
−c|y⊥|2 1

1−r0 dr

.
[
(1− r0)

−n−a+2
2 |x|a + (1− r0)

−n+a+2
2 |y⊥|a

]
e
−c

|y⊥|2

1−r0

ˆ

|r−r0|< 1−r0
2

e
−c|x|2 (r−r0)

2

1−r0 dr.

Observe now that

(5.3)
ˆ

|r−r0|< 1−r0
2

e
−c|x|2 (r−r0)

2

1−r0 dr .

√
1− r0
|x| ∧ (1− r0).

Therefore,
Ka

2,3,3(x, y) . Aa(x, y) +Ba(x, y),

where

Aa(x, y) = (1− r0)
−n−a+1

2 |x|a−1e
−c

|y⊥|2

1−r0

(
1 ∧ |x|

√
1− r0

)
1{ 1

3
<r0<1}(x, y)

and

Ba(x, y) = (1− r0)
−n+a+2

2 |y⊥|ae−c
|y⊥|2

1−r0

(√
1− r0
|x| ∧ (1− r0)

)
.

Observe that

Ba(x, y) . (1− r0)
−n+a+2

2 |y⊥|a
√
1− r0
|x|

(√
1− r0
|y⊥|

)a

e
− c

2

|y⊥|2

1−r0

. (1− r0)
−n+1

2
1

|x| e
− c

2

|y⊥|2

1−r0 .

Now, if |yx − x| ≥ |y⊥|, then |yx− x| & (1+ |x|)−1 since (x, y) ∈ G, and (4.2) implies

Ba(x, y) . (1− r0)
−n+1

2
1

|x| . (1 + |x|)n.

But if |yx − x| < |y⊥|, then |y⊥| & (1 + |x|)−1 since (x, y) ∈ G, and again by (4.2)

Ba(x, y) . (1− r0)
−n+1

2

(
1− r0
|y⊥|2

)n+1
2 1

|x| . (1 + |x|)n.

On the other hand, by the definition of Ba(x, y)

Ba(x, y) . (1− r0)
−n+a+2

2 |y⊥|a
(
1− r0
|y⊥|2

)n+a
2

(1− r0) . (|x| sin θ)−n.

Lemma 4.1 applies, and the operator with kernel e−|x|2+|y|2Ba(x, y) is of weak type
(1, 1).

We now estimate Aa. Arguing as in the two cases for Ba, one can show that

Aa(x, y) . (1 + |x|)n.(5.4)
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Now, by means of (4.2) we rewrite Aa as

Aa(x, y) =
|x|n+a−1

2

|x− yx|
n−a+1

2

e−c
|y⊥|2|x|

|x−yx|

(
1 ∧

√
|x||x− yx|

)
1{ 1

3
<r0<1}(x, y).

If a = 0, then

A0(x, y) .
|x|n−1

2

|x− yx|
n+1
2

( |x− yx|
|x||y⊥|2

)n/2√
|x||x− yx| . (|x| sin θ)−n.(5.5)

If a = 1, then

A1(x, y) .
|x|n2

|x− yx|
n
2

( |x− yx|
|x||y⊥|2

)n/2

. (|x| sin θ)−n.(5.6)

Because of (5.4), (5.5) and (5.6), the operators with kernels e−|x|2+|y|2A0(x, y) and
e−|x|2+|y|2A1(x, y) are of weak type (1, 1) by Lemma 4.1.

If a = 2, then

A2(x, y) =
|x|n+1

2

|x− yx|
n−1
2

e
−c

|y⊥|2|x|

|x−yx|

(
1 ∧

√
|x||x− yx|

)
1{ 1

3
<r0<1}(x, y).

If |x||x− yx| ≤ 1, then

A2(x, y) .
|x|n+1

2

|x− yx|
n−1
2

( |x− yx|
|y⊥|2|x|

)n/2√
|x||x− yx| . (|x| sin θ)−n.

By this and (5.4), the operator whose kernel is e−|x|2+|y|2A2(x, y)1{|x||x−yx|≤1} is of
weak type (1, 1) because of Lemma 4.1. The operator whose kernel is e−|x|2+|y|2

·A2(x, y)1{|x||x−yx|≥1} is also of weak type (1, 1), by Lemma 4.4. This concludes the
proof of Step 2 and that of the theorem. �

6. Unboundedness of the Riesz transforms of order at least three

In this section, we complete the proof of Theorem 1.1. The proof of the following
proposition is inspired by that of [6, Section 5], which we adapt to the current setting.

Proposition 6.1. If |α| ≥ 3, then Rα is unbounded from L1(γ−1) to L1,∞(γ−1).

Proof. Let η > 0 be large, and write z for the point (η, . . . , η) ∈ R
n. For every

x ∈ R
n, denote by xz the component of x which is parallel to z, and by x⊥ = x− xz

the component orthogonal to z.
Define the tube

J(z) = {x ∈ R
n : |x⊥| < 1, 4

3
|z| < |xz| < 3

2
|z|}.

We claim that if η is sufficiently large, then for every r ∈ (0, 1), y ∈ B(z, 1) and
x ∈ J(z) one has

xi − ryi√
1− r2

& |z|, i = 1, . . . , n.

Indeed, for these r, y, x,

|(x− ry)i − (xz − rz)i| ≤ |x− ry − xz + rz| ≤ 2 and xz − rz = c(r)z,

where c(r) > 1/3 for r ∈ (0, 1). The claim follows, and with η large we also conclude
that

Hα

(
x− ry√
1− r2

)
& |z||α|.
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Moreover, if x ∈ J(z), y ∈ B(z, 1) and 1/4 < r < 3/4,

e
− |rx−y|2

1−r2 ≥ e
−2

|rx−z|2

1−r2
−2

|z−y|2

1−r2 & e−c|rx−z|2 = e−cr2|x⊥|2−c|rxz−z|2 & e−c|r|xz|−|z||2 .

Thus, if η is sufficiently large, x ∈ J(z) and y ∈ B(z, 1), then (recall (2.3))

(−1)|α|KRα
(x, y) & |z||α|e−|x|2+|y|2

ˆ 3/4

1/4

e−c|r|xz|−|z||2 dr & |z||α|−1e−|x|2+|y|2.(6.1)

Take now a function f ≥ 0 supported in the ball B(z, 1) and such that ‖f‖L1(γ−1) = 1.
By (6.1), for x ∈ J(z) and η sufficiently large, we have

|Rαf(x)| & e−|x|2|z||α|−1 & e−(
3
2
|z|)

2

|z||α|−1.

Since
γ−1(J(z)) & e(

3
2
|z|)

2

|z|−1,

we conclude that

sup
s>0

s γ−1{x : |Rαf(x)| > s} & e−(
3
2
|z|)

2

|z||α|−1γ−1(J(z)) & η|α|−2,

from which the proposition follows. �
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