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Abstract. In this note we give simplified proofs of rectifiability of RCD(K,N) spaces as metric

measure spaces and lower semicontinuity of the essential dimension, via δ-splitting maps. The

arguments are inspired by the Cheeger–Colding theory for Ricci limits and rely on the second order

differential calculus developed by Gigli and on the convergence and stability results by Ambrosio–

Honda.

Introduction

In the last years the study of RCD(K,N) metric measure spaces has undergone
a fast development. After the introduction of the curvature-dimension condition
CD(K,N) in the independent works [40, 41] and [36], the notion of RCD(K,N)
space was proposed in [26] as a finite-dimensional counterpart of RCD(K,∞), in-
troduced in [3] (see also [2] for the case of σ-finite reference measure and [10] for
the introduction of the reduced curvature-dimension condition CD∗(K,N)). In the
infinite-dimensional case the equivalence of the original Lagrangian approach with
an Eulerian one, based on the Bochner inequality, was studied in [4]. Then [25] es-
tablished equivalence with the dimensional Bochner inequality for the so-called class
RCD∗(K,N) (see also [9]). Equivalence between RCD∗(K,N) and RCD(K,N) has
been eventually achieved in [13] in the case of finite reference measure, closing the
circle. Apart from smooth weighted Riemannian manifolds (with generalized Ricci
tensor bounded from below), the RCD(K,N) class includes Ricci limit spaces, whose
study was initiated by Cheeger–Colding in the nineties [17, 18, 19] (see also the sur-
vey [15]), and Alexandrov spaces [38]. We refer the reader to [1] for an account about
this quickly developing research area.

Many efforts have been recently aimed at understanding the structure theory of
RCD(K,N) spaces. After [37] by Mondino–Naber, we know that they are rectifiable
as metric spaces and later, in the three independent works by Kell–Mondino, De
Philippis–Marchese–Rindler and Gigli together with the second named author [23,
34, 31], the analysis was sharpened taking into account the behaviour of the reference
measure and getting rectifiability as metric measure spaces. Moreover, in the recent
[12], the first and the third named authors proved that RCD(K,N) spaces have
constant dimension, in the almost everywhere sense.
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The development of this theory was inspired in turn by the results obtained
for Ricci limit spaces in the seminal papers by Cheeger–Colding (see also [22] by
Colding–Naber for constancy of dimension).

In the proofs given in [17, 19] a crucial role was played by (k, δ)-splitting maps:

Definition 0.1. Let (X, d,m) be an RCD(−1, N) space. Let x ∈ X and δ > 0
be given. Then a map u = (u1, . . . , uk) : Br(x) → Rk is said to be a (k, δ)-splitting

map provided:

i) ua : Br(x) → R is harmonic and CN -Lipschitz for every a = 1, . . . , k,

ii) r2
ffl

Br(x)

∣

∣Hess(ua)
∣

∣

2
dm ≤ δ for every a = 1, . . . , k,

iii)
ffl

Br(x)
|∇ua · ∇ub − δab| dm ≤ δ for every a, b = 1, . . . , k.

These maps provide approximations, in the integral L2-sense and up to the second
order, of k independent coordinate functions in the Euclidean space. They were
introduced in [16], in the study of Riemannian manifolds with lower Ricci curvature
bounds.

Item ii) in the definition of δ-splitting maps is about smallness of the L2-norm
of the Hessian, in scale invariant sense. In [17, 19] and in more recent works dealing
with Ricci limits as [20], δ-splitting maps are built only at the level of the smooth
approximating sequence, where there is a clear notion of Hessian available, the metric
information they encode (ε-GH closeness to Euclidean spaces) is then passed to the
limit.

Prior than [27], there was no notion of Hessian available in the RCD framework.
This, together with the absence of smooth approximating sequences, motivated the
necessity to find an alternative approach to rectifiability in [37, 23, 34, 31] with
respect to the Cheeger–Colding theory. A new almost splitting via excess theorem
was the main ingredient playing the role of the theory of δ-splitting maps in [37]
while, studying the behaviour of the reference measure with respect to charts, a
crucial role was played in both [23, 34, 31], by a recent and powerful result obtained
by De Philippis-Rindler [24].

Nowadays we have at our disposal both a second order differential calculus on
RCD spaces [27] and general convergence and stability results for Sobolev functions
on converging sequences of RCD(K,N) spaces [5, 6, 30]. In our previous paper [11]
we exploited all these tools to prove rectifiability for reduced boundaries of sets of
finite perimeter in this context. The study of [11] was devoted to the theory in
codimension one, which required some additional ideas and technical efforts, but it
was evident that similar arguments could provide more direct proofs of rectifiability
for RCD(K,N) spaces in the spirit of those in [17, 19].

Taking as a starting point existence of Euclidean tangents almost everywhere
with respect to the reference measure, obtained by Gigli–Mondino–Rajala in [29],
in this short note we provide the arguments to get uniqueness (almost everywhere)
of tangents and rectifiability of RCD(K,N) spaces as metric measure spaces via
δ-splitting maps. Moreover, we recover via a different strategy the result about
lower semicontinuity of the so called essential dimension proved firstly in [35]. After
Section 1, dedicated to review some preliminaries and establish the basic tools about
propagation of the δ-splitting property, the remaining Subsection 2.1, Subsection 2.3
and Subsection 2.4 are devoted to uniqueness of tangents and lower semicontinuity
of the essential dimension, metric rectifiability and the behaviour of the reference
measure under charts, respectively. In order to achieve the absolute continuity of the
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reference measure with respect to the relevant Hausdorff measure we rely on [24], as
in the previous approaches.
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1. Preliminaries and notation

1.1. Differential calculus on metric measure spaces. For our purposes,
a metric measure space is a triple (X, d,m), where (X, d) is a proper metric space,
while m ≥ 0 is a Radon measure on X such that m(X) 6= 0. Given a Lipschitz
function f : X → R, we will denote by lip(f) : X → [0,+∞) its slope, which is the
function defined as

lip(f)(x) := lim
y→x

∣

∣f(x)− f(y)
∣

∣

d(x, y)
for every accumulation point x ∈ X

and lip(f)(x) := 0 elsewhere. Given any open set Ω ⊆ X, we denote by LIPc(Ω) the
family of all Lipschitz functions f : Ω → R whose support is bounded and satisfies
dist

(

spt(f), X \ Ω
)

> 0.

1.1.1. Sobolev space. Following [14], we define the Sobolev space H1,2(X, d,m)
as

H1,2(X, d,m) :=
{

f ∈ L2(m)
∣

∣ Ch(f) < +∞
}

,

where the Cheeger energy Ch: L2(m) → [0,+∞] is the convex, lower semicontinuous
functional

Ch(f) := inf

{

lim
n→∞

ˆ

lip2(fn) dm

∣

∣

∣

∣

(fn)n ⊆ L2(m) bounded Lipschitz,

lim
n→∞

‖fn − f‖L2(m) = 0

}

.

It holds that H1,2(X, d,m) is a Banach space if endowed with the norm ‖·‖H1,2(X,d,m),
given by

‖f‖H1,2(X,d,m) :=
(

‖f‖2L2(m) + Ch(f)
)1/2

for every f ∈ H1,2(X, d,m).

Given any f ∈ H1,2(X, d,m), one can select a canonical object |Df | ∈ L2(m)—called
the minimal relaxed slope of f—for which Ch(f) admits the integral representation
Ch(f) =

´

|Df |2 dm.
We have chosen to stress the dependence on the measure for the gradient and the
other differential objects, here and in the sequel, to avoid confusion.

Given an open set Ω ⊆ X, we define H1,2
loc (Ω, d,m) as the space of all those

f ∈ L2
loc(Ω) such that ηf ∈ H1,2(X, d,m) holds for every η ∈ LIPc(Ω). Thanks to the

locality property of the minimal relaxed slope, it makes sense to define |Df | ∈ L2
loc(Ω)

as

|Df | :=
∣

∣D(ηf)
∣

∣

m-a.e. on {η = 1}, for any η ∈ LIPc(Ω).
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Finally, we define H1,2(Ω, d,m) as the space of all f ∈ H1,2
loc (Ω, d,m) such that

f, |Df | ∈ L2(Ω).

1.1.2. Tangent module. Whenever H1,2(X, d,m) is a Hilbert space, we will
say that (X, d,m) is infinitesimally Hilbertian. In this case, we recall from [27] that
the tangent module L2(TX) and the corresponding gradient map ∇ : H1,2(X, d,m) →
L2(TX) can be characterised as follows: L2(TX) is an L2(m)-normed L∞(m)-module
(in the sense of [28, Definition 1.3]) that is generated by

{

∇f : f ∈ H1,2(X, d,m)
}

,
while ∇ is a linear map satisfying |∇f | = |Df | m-a.e. on X for all f ∈ H1,2(X, d,m).
The pointwise scalar product L2(TX)× L2(TX) ∋ (v, w) 7→ v · w ∈ L1(m),

v · w :=
|v + w|2 − |v|2 − |w|2

2
for every v, w ∈ L2(TX),

is a symmetric bilinear form, as a consequence of the infinitesimal Hilbertianity as-
sumption.

The dual module of L2(TX) is denoted by L2(T ∗X) and called the cotangent

module of X.
In the framework of weighted Euclidean spaces, we have another notion of tan-

gent module at our disposal. Given a Radon measure ν ≥ 0 on Rk, we denote
by L2(Rk,Rk; ν) the space of all L2(ν)-maps from Rk to itself. It turns out that
L2(Rk,Rk; ν) is an L2(ν)-normed L∞(ν)-module generated by

{

∇f : f ∈ C∞
c (Rk)

}

,

where ∇f : Rk → Rk stands for the ‘classical’ gradient of f .

1.1.3. Divergence and Laplacian. In the setting of infinitesimally Hilbertian
spaces (X, d,m), one can consider the following notions of divergence and Laplacian:

• Divergence. We declare that v ∈ L2(TX) belongs to D(div) provided there
exists a (uniquely determined) function div(v) ∈ L2(m) such that

ˆ

∇f · v dm = −
ˆ

f div(v) dm for every f ∈ H1,2(X, d,m).

• Laplacian. Given any open set Ω ⊆ X, we declare that f ∈ H1,2(Ω, d,m)
belongs to D(Ω,∆) provided there exists a (uniquely determined) function
∆f ∈ L2(Ω) such that

ˆ

Ω

∇f · ∇g dm = −
ˆ

Ω

g∆f dm for every g ∈ H1,2
0 (Ω, d,m),

where H1,2
0 (Ω, d,m) stands for the closure of LIPc(Ω) in H1,2(X, d,m). For

brevity, we shall write D(∆) in place of D(X,∆).

The domains D(div) and D(Ω,∆) are vector subspaces of L2(TX) and H1,2(Ω, d,m),
respectively. Moreover, the operators div : D(div) → L2(m) and ∆: D(Ω,∆) →
L2(Ω) are linear.

It can be readily checked that a given function f ∈ H1,2(X, d,m) belongs to
D(∆) if and only if its gradient ∇f belongs to D(div). In this case, it also holds that
∆f = div(∇f).

1.2. RCD spaces. We assume the reader to be familiar with the language of
RCD(K,N) spaces and the notion of pointed measured Gromov–Hausdorff conver-
gence (often abbreviated to pmGH).

We recall the following scaling property: if (X, d,m) is an RCD(K,N) space, then
(X, d/r, λm) is an RCD(r2K,N) space for any choice of r, λ > 0. Furthermore, there
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exists a distance dpmGH on the set (of isomorphism classes) of RCD(K,N) spaces
that metrises the pmGH-topology [30].

Remark 1.1. Any sequence (Xn, dn,mn, xn), n ∈ N of pointed RCD(K,N)
spaces such that mn(B1(xn)) are uniformly bounded from below and from above by
positive constants converges, up to the extraction of a subsequence, to some pointed
RCD(K,N) space (X, d,m, x) with respect to the pmGH-topology. This follows
from a compactness argument due to Gromov and the stability of the RCD(K,N)
condition. �

1.2.1. Test functions. Let (X, d,m) be an RCD(K,N) space. A fundamental
class of Sobolev functions on X is given by the algebra of test functions [27, 39]:

Test∞(X) :=
{

f ∈ D(∆) ∩ L∞(m)
∣

∣

∣
|Df | ∈ L∞(m), ∆f ∈ H1,2(X, d,m) ∩ L∞(m)

}

.

With respect to the original definitions of the class Test(X) we have added the
assumption ∆f ∈ L∞. Since RCD spaces enjoy the Sobolev-to-Lipschitz property,
we know that any element of Test∞(X) admits a Lipschitz representative. Moreover,
it holds that Test∞(X) is dense in H1,2(X, d,m) and that ∇f · ∇g ∈ H1,2(X, d,m)
for every f, g ∈ Test∞(X).

Lemma 1.2. (Good cut-off functions [8, 37]) Let (X, d,m) be an RCD(K,N)
space. Let 0 < r < R and x ∈ X. Then there exists η ∈ Test∞(X) such that
0 ≤ η ≤ 1 on X, the support of η is compactly contained in BR(x), and η = 1 on
Br(x).

We recall the notion of Hessian of a test function [27]: given f ∈ Test∞(X), we
denote by Hess(f) the unique element of the tensor product L2(T ∗X) ⊗ L2(T ∗X)
(cf. [27, Section 1.5]) such that

2

ˆ

hHessf(∇g1 ⊗∇g2) dm

= −
ˆ

∇f · ∇g1 div(h∇g2) +∇f · ∇g2 div(h∇g1) + h∇f · ∇(∇g1 · ∇g2) dm

holds for every h, g1, g2 ∈ Test∞(X). The pointwise norm
∣

∣Hess(f)
∣

∣ of Hess(f) be-
longs to L2(m).

Given an open set Ω ⊆ X and a function f ∈ D(Ω,∆), we say that f is harmonic

if ∆f = 0. Let us recall that, as it has been proved in [33], harmonic functions are
locally Lipschitz in the interior of Ω. Under the assumption ∆f = 0 we can define
(the modulus of) its Hessian as follows:

∣

∣Hess(f)
∣

∣ :=
∣

∣Hess(ηf)
∣

∣

m-a.e. on {η = 1},
for every η ∈ Test∞(X) with spt(η) ⊆ Ω.

(1.1)

This way we obtain a well-defined function
∣

∣Hess(f)
∣

∣ : Ω → [0,+∞), thanks to the
locality property of the Hessian and the fact that ηf ∈ Test∞(X) for every η as in
(1.1).

1.3. Splitting maps on RCD spaces. In this subsection we collect the main
properties of δ-splitting maps that we will use in the sequel. Let us recall that their
introduction in the study of spaces with lower Ricci curvature bounds dates back
to [16] and that they have been extensively used in [17, 18, 19] and in more recent
works on Ricci limits [21, 20]. Before the development of the second order calculus
in [27], there was need for alternative arguments avoiding the use of the Hessian in
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order to develop the structure theory of RCD(K,N) spaces in [37]. In recent times
(see [7, 11]) δ-splitting maps have come into play also in the RCD-theory thanks to
[27] and the stability results of [5, 6, 30].

The results connecting δ-splitting maps with ε-isometries stated below are bor-
rowed from [11]. Although being less local than those provided by the Cheeger–
Colding theory, they are sufficient for our purposes and allow for more direct proofs
via compactness. We refer to (2.1) below for the introduction of the normalized
measure m

r
x that plays a role in the following statements.

Definition 1.3. (Splitting map [11]) Let (X, d,m) be an RCD(−1, N) space.
Let x ∈ X and δ > 0 be given. Then a map u = (u1, . . . , uk) : Br(x) → Rk is said to
be a δ-splitting map provided:

i) ua : Br(x) → R is harmonic and CN -Lipschitz for every a = 1, . . . , k,

ii) r2
ffl

Br(x)

∣

∣Hess(ua)
∣

∣

2
dm ≤ δ for every a = 1, . . . , k,

iii)
ffl

Br(x)
|∇ua · ∇ub − δab| dm ≤ δ for every a, b = 1, . . . , k.

It is worth clarifying that three conditions in definition 1.3 are not independent,
whenever we work under the stronger assumption that (X, d,m) is RCD(−δ, N).
Indeed in this case (ii) follows from (i) and (iii) by means of the improved Bochner

inequality [32, Theorem 3.3]. Although it is redundant we prefer to keep condition
(ii) in the definition for the sake of clarity and for consistency with the literature on
Ricci limits.

Proposition 1.4. (From GH-isometry to δ-splitting [11]) Let N > 1 be given.
Then for any δ > 0 there exists ε = εN,δ > 0 such that the following property holds.
If (X, d,m) is an RCD(K,N) space, x ∈ X, r > 0 with r2|K| ≤ ε, and there is an
RCD(0, N − k) space (Z, dZ,mZ , z) such that

dpmGH

(

(

X, d/r,mr
x, x

)

,
(

Rk × Z, dEucl × dZ ,Lk ⊗mZ , (0
k, z)

)

)

≤ ε,

then there exists a δ-splitting map u : B5r(x) → Rk.

Proposition 1.5. (From δ-splitting to GH-isometry [11]) Let N > 1 be given.
Then for any ε > 0 there exists δ = δN,ε > 0 such that the following property
holds. If (X, d,m) is an RCD(K,N) space, x ∈ X, and there exist r > 0 and a map
u : Br(x) → Rk such that u : Bs(x) → Rk is a δ-splitting map for all s < r, then for
any (Y, ̺, n, y) ∈ Tanx(X, d,m) it holds that

dpmGH

(

(Y, ̺, n, y),
(

Rk × Z, dEucl × dZ ,Lk ⊗mZ , (0
k, z)

)

)

≤ ε,

for some pointed RCD(0, N − k) space (Z, dZ ,mZ , z).

Below we state and prove a result about propagation of the δ-splitting property
at many locations with respect to the reference measure and at all scales. The proof
is based on a standard maximal function argument.

Proposition 1.6. (Propagation of the δ-splitting property) Let N > 1 be given.
Then there exists a constant CN > 0 such that the following property holds. If
(X, d,m) is an RCD(K,N) space and u : B2r(p) → Rk is a δ-splitting map for some
p ∈ X, r > 0 with r2|K| ≤ 1, and δ ∈ (0, 1), then there exists a Borel set G ⊆ Br(p)

such that m
(

Br(p) \G
)

≤ CN

√
δm

(

Br(p)
)

and

u : Bs(x) → Rk is a
√
δ-splitting map, for every x ∈ G and s ∈ (0, r).
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Proof. Thanks to a scaling argument, it is sufficient to prove the claim for r = 1
and |K| ≤ 1. Let us define G ⊆ B1(p) as G :=

⋂k
a=1Ga ∩

⋂k
a,b=1Ga,b, where we set

Ga :=

{

x ∈ B1(p)

∣

∣

∣

∣

sup
s∈(0,1)

 

Bs(x)

∣

∣Hess(ua)
∣

∣

2
dm ≤

√
δ

}

,

Ga,b :=

{

x ∈ B1(p)

∣

∣

∣

∣

sup
s∈(0,1)

 

Bs(x)

∣

∣∇ua · ∇ub − δab
∣

∣ dm ≤
√
δ

}

.

It holds that u : Bs(x) → Rk is a
√
δ-splitting map for all x ∈ G and s ∈ (0, 1).

To prove the claim, it remains to show that m

(

B1(p) \ Ga

)

,m
(

B1(p) \ Ga,b

)

≤
CN

√
δ m

(

B1(p)
)

for all a, b = 1, . . . , k.
Given any x ∈ B1(p) \Ga, we can choose sx ∈ (0, 1) such that

 

Bsx (x)

∣

∣Hess(ua)
∣

∣

2
dm >

√
δ.

By Vitali covering lemma, we can find a sequence (xi)i ⊆ B1(p) \ Ga such that
{

Bsxi
(xi)

}

i
are pairwise disjoint and B1(p) \ Ga ⊆ ⋃

iB5sxi
(xi). Therefore, it holds

that

m

(

B1(p) \Ga

)

≤
∑

i∈N

m

(

B5sxi
(xi)

)

≤ CN

∑

i∈N

m

(

Bsxi
(xi)

)

≤ CN√
δ

∑

i∈N

ˆ

Bsxi
(xi)

∣

∣Hess(ua)
∣

∣

2
dm

≤ CNm
(

B2(p)
)

√
δ

 

B2(p)

∣

∣Hess(ua)
∣

∣

2
dm ≤ CN

√
δm

(

B1(p)
)

,

where we used the doubling property of m, the defining property of sxi
and the fact

that u is a δ-splitting map on B2(p). An analogous argument shows that m
(

B1(p) \
Ga,b

)

≤ CN

√
δm

(

B1(p)
)

for all a, b = 1, . . . , k, thus the statement is achieved. �

2. Structure theory for RCD spaces

Given a pointed RCD(K,N) space (X, d,m, x) and a radius r ∈ (0, 1), we define
the normalised measure m

x
r on X as

(2.1) m
x
r :=

m

C(x, r)
, where C(x, r) :=

ˆ

Br(x)

(

1− d(·, x)
r

)

dm.

We shall indicate by Tanx(X, d,m) the family of all tangent cones at x, i.e., those
spaces (Y, ̺, n, y) such that

lim
n→∞

dpmGH

(

(X, d/rn,m
x
rn , x), (Y, ̺, n, y)

)

= 0

for some sequence (rn)n ⊆ (0, 1) of radii with rn ց 0. It follows from the scaling
property of the RCD condition and Remark 1.1 that any tangent cone is a pointed
RCD(0, N) space.

Let us briefly recall the properties that we take as a starting point for our analysis
of the structure theory of RCD(K,N) spaces. The first one is a version of the iterated

tangent property suited for this setting. Building upon this, in [29] it was proved that
at almost every point there exists at least one Euclidean space in the tangent cone,
on RCD(K,N) spaces (see Theorem 2.2 below).
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Theorem 2.1. (Iterated tangent property [29]) Let (X, d,m) be an RCD(K,N)
space. Then for m-a.e. point x ∈ X it holds that

Tanz(Y, ̺, n) ⊆ Tanx(X, d,m) for every (Y, ̺, n, y) ∈ Tanx(X, d,m) and z ∈ Y.

Theorem 2.2. (Euclidean tangents to RCD spaces [29]) Let (X, d,m) be an
RCD(K,N) space. Then for m-a.e. point x ∈ X there exists k(x) ∈ N with k(x) ≤ N
such that

(

Rk(x), dEucl, ck(x)Lk(x), 0k(x)
)

∈ Tanx(X, d,m),

where we set ck := Lk
(

B1(0
k)
)

/(k + 1) for every k ∈ N.

2.1. Uniqueness of tangent cones. Let (X, d,m) be an RCD(K,N) space.
Then we define

Rk :=
{

x ∈ X
∣

∣

∣
Tanx(X, d,m) =

{

(Rk, dEucl, ckLk, 0k)
}

}

for every k ∈ N with k ≤ N . With a terminology borrowed from [17] and in-
spired by geometric measure theory, points in Rk are called k-regular points of
X. Moreover, given any point x ∈ X and any k ∈ N, we say that an element
(Y, ̺, n, y) ∈ Tanx(X, d,m) splits off a factor Rk provided

(2.2) (Y, ̺, n, y) ∼=
(

Rk × Z, dEucl × dZ ,Lk ⊗mZ , (0
k, z)

)

.

Observe that, if (2.2) holds, (Z, dZ ,mZ , z) has to be a pointed RCD(0, N −k) metric
measure space.

In [37] uniqueness of tangents (almost everywhere w.r.t. the reference measure m)
was proved together with rectifiability relying on a new δ-splitting via excess theorem
(cf. [37, Theorem 6.7] and [37, Theorem 5.1]). Below we provide a simplified proof of
uniqueness of tangents based on the same principle about propagation of regularity
but more similar to the one given in [17] for Ricci limits. Part of the argument
resembles the proof of the boundedness of the maximal function in L2 on doubling
metric measure spaces.

Theorem 2.3. (Uniqueness of tangents) Let (X, d,m) be an RCD(K,N) space.
Then it holds

m

(

X \
⋃

k≤N

Rk

)

= 0.

Proof. Step 1. Fix any k ∈ N with k ≤ N . We define the auxiliary sets
Ak, A

′
k ⊆ X as follows:

i) Ak is the set of all points x ∈ X such that (Rk, dEucl, ckLk, 0k) ∈ Tanx(X, d,m),
but no other element of Tanx(X, d,m) splits off a factor Rk.

ii) A′
k is the set of all points x ∈ X which satisfy (Rk, dEucl, ckLk, 0k) ∈ Tanx(X,

d,m) and (Rℓ, dEucl, cℓLℓ, 0ℓ) /∈ Tanx(X, d,m) for every ℓ ∈ N with ℓ > k.

Observe that Rk ⊆ Ak ⊆ A′
k. The m-measurability of the sets Rk, Ak, A

′
k can be

proven adapting the proof of [37, Lemma 6.1]. It also follows from the very definition
of the sets A′

k that X \⋃k≤N A
′
k = ∅.

Step 2. We aim to prove that m(A′
k \ Ak) = 0. We argue by contradiction:

suppose m(A′
k \ Ak) > 0. Then we can find x ∈ A′

k \ Ak where the iterated tangent
property of Theorem 2.1 holds. Since x /∈ Ak, there exists a pointed RCD(0, N − k)
space (Y, ̺, n, y) with diam(Y ) > 0 such that

(

Rk × Y, dEucl × ̺,Lk ⊗ n, (0k, y)
)

∈ Tanx(X, d,m).
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Theorem 2.2 yields the existence of a point z ∈ Y such that (Rℓ, dEucl, cℓLℓ, 0ℓ) ∈
Tanz(Y, ̺, n), for some ℓ ∈ N with 0 < ℓ ≤ N − k. This implies that

(Rk+ℓ, dEucl, ck+ℓLk+ℓ, 0k+ℓ) ∈ Tan(0k ,z)(R
k × Y, dEucl × ̺,Lk ⊗ n).

Therefore, Theorem 2.1 guarantees that (Rk+ℓ, dEucl, ck+ℓLk+ℓ, 0k+ℓ) belongs to
Tanx(X, d,m), which contradicts the fact that x ∈ A′

k. Consequently, we have proven
that m(A′

k \ Ak) = 0, as desired.

Step 3. In order to complete the proof of the statement, it suffices to show that

(2.3) m

(

BR(p) ∩ (Ak \ Rk)
)

= 0 for every p ∈ X and R > 0.

Let p ∈ X and R, η > 0 be fixed. Choose any δ ∈ (0, η) associated with η as in
Proposition 1.5. Moreover, choose any ε ∈ (0, 1/7) associated with δ2 as in Propo-
sition 1.4. Given a point x ∈ Ak, we can find rx ∈ (0, 1) such that 4r2x|K| ≤ ε
and

dpmGH

(

(

X, d/(2rx),m
x
2rx , x

)

, (Rk, dEucl, ckLk, 0k)
)

≤ ε.

By applying Vitali covering lemma to the family
{

Brx(x) : x ∈ Ak ∩ BR(p)
}

, we

obtain a sequence (xi)i ⊆ Ak ∩BR(p) such that
{

Brxi
(xi)

}

i
are pairwise disjoint and

Ak ∩BR(p) ⊆
⋃

iB5rxi
(xi). For any i ∈ N, we know from Proposition 1.4 that there

exists a δ2-splitting map ui : B10rxi
(xi) → Rk. Furthermore, by Proposition 1.6 there

exists a Borel set Gi
η ⊆ B5rxi

(xi) such that m

(

B5rxi
(xi) \ Gi

η

)

≤ CNδm
(

B5rxi
(xi)

)

and ui : Bs(x) → Rk is a δ-splitting map for every x ∈ Gi
η and s ∈ (0, 5rxi

). Hence,

by Proposition 1.5, for any x ∈ Gi
η the following property holds:

Given any element (Y, ̺, n, y) ∈ Tanx(X, d,m), there exists

a pointed RCD(0, N − k) space (Z, dZ ,mZ , z) such that

dpmGH

(

(Y, ̺, n, y),
(

Rk × Z, dEucl × dZ ,Lk ⊗mZ , (0
k, z)

)

)

≤ η.

(2.4)

Then let us define Gη :=
⋃

iG
i
η. Clearly, each element of Gη satisfies (2.4). Moreover,

it holds

m

(

BR(p) ∩ (Ak \Gη)
)

≤
∑

i∈N

m

(

B5rxi
(xi) \Gi

η

)

≤ CNδ
∑

i∈N

m

(

B5rxi
(xi)

)

≤ CNη
∑

i∈N

m

(

Brxi
(xi)

)

≤ CNηm
(

BR+1(p)
)

.
(2.5)

Now consider the Borel set G :=
⋂

i

⋃

j G1/2i+j . It follows from (2.5) that m

(

BR(p)

∩ (Ak \ G)
)

= 0. Moreover, let x ∈ Ak ∩ G and (Y, ̺, n, y) ∈ Tanx(X, d,m) be

fixed. Then by using (2.4) we can find a sequence
{

(Zi, dZi
,mZi

, zi)
}

i
of pointed

RCD(0, N − k) spaces such that

(2.6)
(

Rk × Zi, dEucl × dZi
,Lk ⊗mZi

, (0k, zi)
) pmGH−→ (Y, ̺, n, y) as i→ ∞.

Up to a not relabelled subsequence, we can suppose that (Zi, dZi
,mZi

, zi) → (Z, dZ ,
mZ , z) in the pmGH-topology, for some pointed RCD(0, N − k) space (Z, dZ ,mZ , z).
Consequently, (2.6) ensures that (Y, ̺, n, y) is isomorphic to

(

Rk×Z, dEucl×dZ ,Lk⊗
mZ , (0

k, z)
)

. Given that x ∈ Ak, we deduce that Z must be a singleton. In
other words, we have proven that any element of Tanx(X, d,m) is isomorphic to
(Rk, dEucl, ckLk, 0k), so that x ∈ Rk. This shows that Ak ∩ G ⊆ Rk, whence the
claim (2.3) follows. �
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By combining Theorem 2.3 with the properties of δ-splitting maps discussed in
Section 1.3, we can give a direct proof of the following result, that was proved for
the first time in [35]:

Theorem 2.4. Let (X, d,m) be an RCD(K,N) space. Let k ∈ N, k ≤ N be
the maximal number such that m(Rk) > 0. Then for any x ∈ X and ℓ > k we have
that no element of Tanx(X, d,m) splits off a factor Rℓ. In particular, it holds that
Rℓ = ∅ for every ℓ > k.

Proof. First of all, we claim that for any given ℓ > k there exists ε > 0 such that

(2.7) dpmGH

(

(Rj, dEucl, cjLj, 0j),
(

Rℓ × Z, dEucl × dZ ,Lℓ ⊗mZ , (0
ℓ, z)

)

)

> ε

for every j ≤ k and for every pointed RCD(0, N − ℓ) space (Z, dZ ,mZ , z). This can
be easily checked arguing by contradiction.

We prove the main statement by contradiction: suppose there exist x ∈ X and
ℓ > k such that

(2.8)
(

Rℓ × Z, dEucl × dZ ,Lℓ ⊗mZ , (0
ℓ, z)

)

∈ Tanx(X, d,m)

for some pointed RCD(0, N − ℓ) space (Z, dZ ,mZ , z). Consider ε > 0 associated with
ℓ as in (2.7). Choose δ > 0 associated with ε as in Proposition 1.5, then η > 0
associated with δ2 as in Proposition 1.4. It follows from (2.8) that there is r > 0 such
that r2|K| ≤ η and

dpmGH

(

(X, d/r,mx
r , x),

(

Rℓ × Z, dEucl × dZ ,Lℓ ⊗mZ , (0
ℓ, z)

)

)

≤ η.

Then Proposition 1.4 guarantees the existence of a δ2-splitting map u : B5r(x) →
Rℓ. Therefore, by Propositions 1.6 and 1.5 we know that there exists a Borel set
G ⊆ Br(x) with m(G) > 0 satisfying the following property: for any point y ∈ G,
it holds that each element of Tany(X, d,m) is ε-close (with respect to the distance
dpmGH) to some space that splits off a factor Rℓ. Given that X \ (R1 ∪ · · · ∪ Rk)
has null m-measure by Theorem 2.3, there must exist y ∈ G and j ≤ k for which
(Rj, dEucl, cjLj, 0j) is the only element of Tany(X, d,m). Consequently, we have that

dpmGH

(

(Rj, dEucl, cjLj , 0j),
(

Rℓ × Z ′, dEucl × dZ′,Lℓ ⊗mZ′ , (0ℓ, z′)
)

)

≤ ε

for some pointed RCD(0, N − ℓ) space (Z ′, dZ′,mZ′, z′). This is in contradiction with
(2.7). �

Remark 2.5. (Constant dimension) We point out that the first and third named
authors proved in [12] that any RCD(K,N) space (X, d,m) has ‘constant dimension’,
in the following sense: there exist a (unique) k ∈ N, k ≤ N such that m(X \Rk) = 0.
The number k is called essential dimension of (X, d,m) and denoted by dim(X, d,m).
With this notation, Theorem 2.4 can be rephrased by saying that at no point of X
an element of the tangent cone can split off a Euclidean factor of dimension bigger
than dim(X, d,m).

Actually, Theorem 2.4 above is an instance of a more general result that can be
proved arguing in a similar manner: the essential dimension of RCD(K,N) spaces is
lower semicontinuous with respect to pointed measured Gromov–Hausdorff conver-
gence.

This statement has been proved for the first time in [35, Theorem 4.10]. Below
we just sketch how our techniques can provide a slightly more direct proof, still based
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on the same ideas and on the theory of convergence of Sobolev functions on varying
spaces developed in [5, 6, 30].

Let us point out that the result below is independent of [12] once the essen-
tial dimension of an RCD(K,N) m.m.s. is understood as the maximal n for which
m(Rn) > 0.

Theorem 2.6. Let (Xn, dn,mn, xn) and (X, d,m, x) be pointed RCD(K,N) met-
ric measure spaces and assume that (Xn, dn,mn, xn) converge to (X, d,m, x) in the
pointed measured Gromov–Hausdorff sense. Then

dim(X, d,m) ≤ lim inf
n→∞

dim(Xn, dn,mn).

Proof. Let k := dim(X, d,m). We need to prove that, for n sufficiently large, it
holds k ≤ dim(Xn, dn,mn).

Up to scaling of the distance d on X, we can assume that K ≥ −1 and by
Proposition 1.4 we find y ∈ X and a δ-splitting map u : B2(y) → Rk. Arguing
as in the proof of [11, Proposition 3.9], relying on the convergence and stability
results of [6], we can find 1 < r < 2, points Xn ∋ yn → y ∈ X and 2δ-splitting
maps un : Br(yn) → Rk, for any n sufficiently large (it suffices to approximate the
components of u in the strong H1,2-sense with harmonic functions).

Next, Proposition 1.6 provides sets Gn ⊂ Br/2(yn) such that mn(Br(yn) \ Gn) ≤
CN

√
2δmn(Br/2(yn)) and

un : Bs(x) → Rk is a
√
2δ-splitting map, for every x ∈ Gn and s ∈ (0, r/2),

for any n sufficiently large.
Now it suffices to choose δ such that

√
2δ ≤ δǫ given by Proposition 1.5 to

get that, at any point in Gn, any tangent is ε-close to a space splitting a factor Rk.
Choosing ε small enough and arguing as in the proof of Theorem 2.4 above we obtain
that dim(Xn, dn,mn) ≥ k for sufficiently large n. �

2.2. An alternative approach to uniqueness of tangent cones. It has been
pointed out to us by one of the reviewers of the paper that there is an alternative
strategy to prove uniqueness of tangents starting from a variant of Theorem 2.6 and
not relying on Theorem 2.1 nor on Theorem 2.2. We briefly sketch the argument
below.

For any k ∈ N let us denote by Ek the set of all points x ∈ X such that any
tangent cone at x splits off a factor Rk. Moreover, for any Borel set A ⊂ X we shall
indicate by dime(A) the maximum number k such that m(A ∩ Ek) > 0. Then, under
the same assumptions of Theorem 2.6 and with the same argument as in its proof
we can get that

(2.9) lim inf
i→∞

dime(Bi) ≥ dime(B)

whenever Bi ⊂ Xi, B ⊂ X and χBi
→ χB locally in L1

loc strong. In particular for
any Borel set A ⊂ X and any Lebesgue point x ∈ A it holds that

(2.10) dime(A) ≥ dime(Y ) for any (Y, dY ,mY , y) ∈ Tanx(X, d,m),

as an application of (2.9) to the sequence of rescaled spaces converging to the tangent
cone and to the indicator function of A shows.

Next we claim that m(X \ E1) = 0. In order to prove the claim we recall that, as
shown in [29], m-almost every point in X is an intermediate point of a geodesic and
therefore any tangent cone at that point splits a line by the splitting theorem.
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The next step aims at proving that if A ⊂ X is Borel and dime(A) = k, then
A∩Ek ∼ A∩Rk where we indicate B ∼ C whenever m(B∆C) = 0. If this is not the
case we could find x ∈ Ek which is also a Lebesgue point of A and such that

(2.11) (Rk × Z, dRk × dZ ,Lk ×mZ , (0
k, z)) ∈ Tanx(X, d,m)

for some non-trivial pointed RCD(0, N − k) space (Z, dZ ,mZ , z). Then the previous
claim shows that the essential dimension of this tangent cone is at least k+1, which
contradicts the assumption dime(A) = k by (2.10).

Eventually, let us prove that m(X \⋃k≤N Rk) = 0. Let k1 := dime(X). Without
loss of generality we can assume m(X \ Rk1) > 0, otherwise the proof is completed.
Let k2 = dime(X\Rk1). Notice that k2 < k1. Indeed the inequality k2 ≤ k1 is trivially
verified and what we proved above shows that Ek2 ∩ (X \ Rk1) ∼ Rk2 ∩ (X \ Rk1),
which has positive measure. If m(X \ (Rk2 ∪ Rk1)) = 0 we conclude. Otherwise we
can iteratively apply the argument again to get the sought conclusion.

2.3. Metric rectifiability of RCD spaces. Aim of this section is to exploit
δ-splitting maps to show that RCD(K,N) spaces are metrically rectifiable, in the
following sense:

Definition 2.7. Given a metric measure space (X, d,m), k ∈ N and ε > 0, we
say that a Borel set E ⊆ X is (m, k, ε)-rectifiable provided there exists a sequence
{

(Gn, un)
}

n
, where Gn ⊆ X are Borel sets satisfying m

(

E \ ⋃

nGn

)

= 0 and the

maps un : Gn → Rk are (1 + ε)-biLipschitz with their images.

Rectifiability of RCD(K,N) spaces in the above sense was first proved in [37,
Theorem 1.1]. Below we provide a different proof, more in the spirit of the Cheeger–
Colding theory for Ricci limits (cf. [19]) and relying on the connection between δ-
splitting maps and ε-isometries. Albeit the use of this tool, the skeleton of the proof
is similar to the one of [37].

Lemma 2.8. Let N > 1 be given. Then for any η > 0 there exists δ = δN,η > 0
such that the following property holds. If (X, d,m) is an RCD(K,N) space and
u : Br(x) → Rk is a δ-splitting map for some radius r > 0 with r2|K| ≤ 1 and some
point x ∈ X satisfying

dpmGH

(

(X, d/r,mx
r , x), (R

k, dEucl, ckLk, 0k)
)

< δ2,

then it holds that u : Br(x) → Rk verifies
∣

∣

∣

∣

∣u(y)− u(z)
∣

∣− d(y, z)
∣

∣

∣
≤ ηr for every y, z ∈ Br(x).

Proof. Thanks to a scaling argument, it suffices to prove the statement for r = 1
and |K| ≤ 1. We argue by contradiction: suppose there exist η > 0, a sequence
of spaces (Xn, dn,mn, xn) and a sequence of maps un : B1(xn) → Rk, such that the
following properties are satisfied.

i) (Xn, dn,mn) is an RCD(K,N) space.
ii) un is a 1/n-splitting map with un(xn) = 0k.
iii) It holds that dpmGH

(

(Xn, dn,mn, xn), (R
k, dEucl, ckLk, 0k)

)

≤ 1/n.
iv) there exist points yn, zn ∈ B1(xn) such that

(2.12)
∣

∣

∣

∣

∣un(yn)− un(zn)
∣

∣− dn(yn, zn)
∣

∣

∣
> η.

Observe that item iii) guarantees that (Xn, dn,mn, xn) → (Rk, dEucl, ckLk, 0k) in the
pmGH-topology. Possibly taking a not relabelled subsequence, it holds that un → u∞
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strongly in H1,2 on B1(0
k), for some limit map u∞ : B1(0

k) → Rk (cf. [5, 6, 30] for
the theory of convergence on varying spaces and [6, Theorem 4.2, Corollary 4.3, The-
orem 4.4] for this specific conclusion). Moreover, thanks to the uniform Lipschitz
continuity of the maps un, an Ascoli–Arzelà type argument implies that the conver-
gence is also pointwise in the following sense: whenever Xn ∋ wn → w∞ ∈ Rk, it
holds un(wn) → u∞(w∞).

We also deduce from item ii) above that Hess(u∞a ) = 0 and ∇u∞a · ∇u∞b = δab on
B1(0

k) for all a, b = 1, . . . , k (further details are discussed in the proof of [11, Propo-
sition 3.7]), whence u∞ is the restriction to B1(0

k) of an orthogonal transformation
of Rk. Indeed the vanishing of the Hessian, together with the condition u∞(0) = 0,
yields the linearity of the components, while the orthogonality of the transformation
comes from the orthogonality of the gradients, since the ambient space is Euclidean.
This gives a contradiction since, by letting n→ ∞ in (2.12), we obtain that

∣

∣

∣

∣

∣u∞(y∞)− u∞(z∞)
∣

∣− |y∞ − z∞|
∣

∣

∣
≥ η,

where y∞, z∞ ∈ B1(0
k) stand for the limit points of (yn)n and (zn)n, respectively

(notice that z∞ 6= y∞ as a consequence of (2.12) and (i) in Definition 1.3). �

Let (X, d,m) be an RCD(K,N) space. Let k ∈ N be such that k ≤ N . Then we
define

(Rk)r,δ :=
{

x ∈ Rk

∣

∣

∣
dpmGH

(

(X, d/s,mx
s , x), (R

k, dEucl, ckLk, 0k)
)

< δ for every s < r
}

for every r, δ > 0. Observe that for any given δ > 0 it holds that (Rk)r,δ ր Rk as
r ց 0.

Theorem 2.9. (Rectifiability of RCD spaces) Let (X, d,m) be an RCD(K,N)
space. Let k ∈ N be such that k ≤ N . Then the k-regular set Rk of X is (m, k, ε)-
rectifiable for every ε > 0.

Proof. We claim that for any ε > 0 there exists an (m, k, ε)-rectifiable set Gε ⊂
Rk such that m(Rk \ Gε) < ε. Notice that the statement follows from the claim
above observing that

m

(

Rk \
∞
⋃

n=1

Gε/n
)

= 0.

We now prove the claim in two steps relying on the general principle that a map
which is an ε-isometry at any location and any sufficiently small scale is biLipschitz
with its image.

Step 1. We claim that for any η > 0 there exists δ = δN,η ∈ (0, 1) such that the
following property holds: if (X, d,m) is an RCD(K,N) space and u : B5r(p) → Rk

is a δ-splitting map for some radius r > 0 satisfying r2|K| ≤ 1 and some point
p ∈ (Rk)2r,δ, then there exists a Borel set G ⊆ Br(p) such that m

(

Br(p) \ G
)

≤
CNηm

(

Br(p)
)

and

(2.13)
∣

∣

∣

∣

∣u(x)− u(y)
∣

∣− d(x, y)
∣

∣

∣
≤ η d(x, y) for every x, y ∈ (Rk)2r,δ ∩G.

To prove it, choose any δ ∈ (0, η2) so that
√
δ is associated with η as in Lemma 2.8.

Now let us consider an RCD(K,N) space (X, d,m) and a δ-splitting map u : B5r(p) →
Rk, for some r > 0 with r2|K| ≤ 1 and p ∈ (Rk)2r,δ. By Proposition 1.6, we can find
a Borel set G ⊆ Br(p) such that m

(

Br(p) \G
)

≤ CNηm
(

Br(p)
)

and u : Bs(x) → Rk

is a
√
δ-splitting map for all x ∈ G and s ∈ (0, 2r). Then Lemma 2.8 guarantees
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that the map u : Bs(x) → Rk is an ηs-GH isometry for every x ∈ (Rk)2r,δ ∩ G and
s ∈ (0, 2r) (here we used the fact that x ∈ (Rk)2r,δ ⊆ (Rk)s,δ).

Fix any x, y ∈ (Rk)2r,δ∩G. Being d(x, y) < 2r, we know that the map u : Bd(x,y)(x)

→ Rk is an η d(x, y)-GH isometry, thus in particular
∣

∣|u(x) − u(y)| − d(x, y)
∣

∣ ≤
η d(x, y). This yields (2.13).

Step 2. Fix x̄ ∈ X, R > 0, ε > 0. We aim to build an (m, k, ε)-rectifiable set G
satisfying m(BR(x̄) ∩Rk \G) < ε. Note that this easily implies our claim.

Let η < ε to be chosen later, δ = δN,η according to Step 1, ε̄ ∈ (0, δ) associated to
δ as in Proposition 1.4 and r > 0 satisfying r2|K| ≤ 1 and m(BR(x̄)∩(Rk\(R)2r,ε̄)) ≤
ε/2. By Vitali covering lemma, we find points x1, . . . , xℓ ∈ BR(x̄) ∩ (Rk)2r,ε̄ for

which
{

Br/5(xi)
}ℓ

i=1
are pairwise disjoint and BR(x̄) ∩ (Rk)2r,ε̄ ⊆ Br(x1) ∪ · · · ∪

Br(xℓ). Proposition 1.4 guarantees the existence of a δ-splitting map ui : B5r(xi) →
Rk for every i = 1, . . . , ℓ. Therefore Step 1 yields Borel sets Gi ⊆ Br(xi) such that
m

(

Br(xi) \Gi

)

≤ CNηm
(

Br(xi)
)

and
∣

∣|ui(x)− ui(y)| − d(x, y)
∣

∣ ≤ η d(x, y) for every
x, y ∈ (Rk)2r,ε̄ ∩Gi, for every i = 1, . . . , ℓ.

Since η < ε, we deduce that ui is (1+ε)-biLipschitz with its image, up to slightly

increasing ε, when restricted to (Rk)2r,ε̄ ∩ Gi, whence G := (Rk)2r,ε̄ ∩
⋃ℓ

i=1Gi is
(m, k, ε)-rectifiable. Observe that

m

(

(

BR(x̄) ∩ (Rk)2r,ε̄
)

\G
)

≤
ℓ

∑

i=1

m

(

Br(xi) \Gi

)

≤ CNη

ℓ
∑

i=1

m

(

Br(xi)
)

≤ CNη

ℓ
∑

i=1

m

(

Br/5(xi)
)

≤ CNηm
(

BR+1(x̄)
)

.

Choosing η > 0 such that CNηm
(

BR+1(x̄)
)

< ε/2 we get the sought conclusion. �

2.4. Behaviour of the reference measure under charts. Aim of this sub-
section is to prove absolute continuity of the reference measure m of an RCD(K,N)
metric measure space (X, d,m) with respect to the relevant Hausdorff measure. This
result was first proved in the three independent works [23, 34, 31], heavily relying
on [24]. The strategy of our proof is essentially taken from [31], the main technical
simplification being that the charts providing rectifiability in our case are harmonic
(indeed they are δ-splitting maps), while in [31] they were distance functions.

Let us introduce the notation we are going to use in this subsection. In order to
avoid confusion, in this subsection we shall stress the dependence of the various differ-
ential objects appearing on the metric measure structure by indicating the reference
measure as a subscript.

Let X, Y be Polish spaces. Fix a finite Borel measure µ ≥ 0 on X and a Borel
map ϕ : X → Y . We shall denote by ϕ∗ the pushforward operator, which sends finite
Borel measures on X into finite Borel measures on Y . Then we define

(2.14) Prϕ(f) :=
dϕ∗(fµ)

dϕ∗µ
for every f ∈ L1(µ),

where we adopted the usual notation of geometric measure theory for the density of a
measure absolutely continuous with respect to another measure. The resulting map
Prϕ : L

1(µ) → L1(ϕ∗µ) is linear and continuous. Given any p ∈ (1,∞], it holds that
Prϕ maps continuously Lp(µ) to Lp(ϕ∗µ). The essential image of a Borel set E ⊆ X
is defined as Imϕ(E) :=

{

Prϕ(χE) > 0
}

⊆ Y .
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Proposition 2.10. (Differential of an Rk-valued Lipschitz map) Let (X, d, µ)
be an infinitesimally Hilbertian metric measure space such that µ is finite. Let
ϕ : X → Rk be a Lipschitz map. Then there exists a unique linear and continuous
operator Dϕ : L

2
µ(TX) → L2(Rk,Rk;ϕ∗µ) such that

ˆ

F

∇f · Dϕ(v) dϕ∗µ =

ˆ

ϕ−1(F )

∇µ(f ◦ ϕ) · v dµ

∀f ∈ C∞
c (Rk), v ∈ L2

µ(TX), F ⊆ Rk Borel.

(2.15)

In particular, if v ∈ D(divµ), then the distributional divergence of Dϕ(v) is given by
Prϕ

(

divµ(v)
)

. Moreover, if the map ϕ is biLipschitz with its image when restricted
to some Borel set E ⊆ X and v1, . . . , vk ∈ L2

µ(TX) are independent on E, then the

vectors Dϕ(χE v1)(y), . . . ,Dϕ(χE vk)(y) constitute a basis of Rk for ϕ∗µ-a.e. point
y ∈ Imϕ(E).

Proof. Existence of the map Dϕ is proven in [31]: with the terminology used
therein, it suffices to define Dϕ := ι ◦Prϕ ◦dϕ. The fact that this map satisfies (2.15)
follows from [31, Proposition 2.7] and the very definition of ι (we do not need to
require properness of ϕ, as µ is a finite measure). Uniqueness of Dϕ follows from the
fact that

{

∇f : f ∈ C∞
c (Rk)

}

generates L2(Rk,Rk;ϕ∗µ). Now suppose v ∈ D(divµ).

Then for every f ∈ C∞
c (Rk) it holds that f ◦ ϕ ∈ H1,2(X, d, µ), whence

ˆ

∇f · Dϕ(v) dϕ∗µ
(2.15)
=

ˆ

∇µ(f ◦ ϕ) · v dµ = −
ˆ

f ◦ ϕ divµ(v) dµ

= −
ˆ

f dϕ∗

(

divµ(v)µ
) (2.14)

= −
ˆ

f Prϕ
(

divµ(v)
)

dϕ∗µ.

This shows that the distributional divergence of Dϕ(v) is represented by Prϕ

(

divµ(v)
)

.
Finally, the last claim of the statement follows from [31, Proposition 2.2] and [31,
Proposition 2.10]. �

Theorem 2.11. (Behaviour of m under charts) Let (X, d,m) be an RCD(K,N)
space. Consider a δ-splitting map u : Br(p) → Rk which is (1 + ε)-biLipschitz with
its image (for some ε < 1/k) when restricted to some compact set K ⊂ Br(p). Then
it holds that

u∗(m|K) ≪ Lk.

In particular, for any k ∈ N, k ≤ N , m|Rk
is absolutely continuous with respect to

the k-dimensional Hausdorff measure on (X, d).

Proof. First of all, fix a good cut-off function (in the sense of Lemma 1.2)
η : X → R for the pair K ⊂ Br′(p) ⊂ Br(p), where 0 < r′ < r. Define µ := m|Br(p)

and ϕ := ηu : X → Rk. Observe that the components ϕ1, . . . , ϕk of ϕ are test
functions and ϕ|K is (1 + ε)-biLipschitz with its image. Consider the differential
Dϕ : L

2
µ(TX) → L2(Rk,Rk;ϕ∗µ) defined in Proposition 2.10. Fix a sequence (ψi)i of

compactly-supported, Lipschitz functions ψi : X → [0, 1] that pointwise converge to
χK . We then set

via := Dϕ(ψi∇µϕa) ∈ L2(Rk,Rk;ϕ∗µ) for every i ∈ N and a = 1, . . . , k.

Note that ψi∇µϕa ∈ D(divµ) by the Leibniz rule for divergence and the fact that
ϕa ∈ D(∆µ), whence Proposition 2.10 ensures that the distributional divergence of
each vector field via is an L2(ϕ∗µ)-function. Hence, it holds that Iia := via ϕ∗µ is a
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normal 1-current in Rk (see [31, Corollary 2.12]). Note also that

−→Iia = χ{|via|>0}

via
|via|

and ‖Iia‖ = |via|ϕ∗µ for every i ∈ N and a = 1, . . . , k.

Call Ai the set of y ∈ Rk such that vi1(y), . . . , v
i
k(y) form a basis of Rk. Since

(ϕ∗µ)|Ai
≪ ‖Iia‖ holds for all a = 1, . . . , k, by applying [24, Corollary 1.12] we

deduce that

(2.16) (ϕ∗µ)|Ai
≪ Lk for every i ∈ N.

Now define va := Dϕ(χK∇µϕa) ∈ L2(Rk,Rk;ϕ∗µ) for every a = 1, . . . , k. It can be
readily checked that ∇µϕ1, . . . ,∇µϕk are independent on K (here the assumption
ε < 1/k plays a role), whence the vectors v1(y), . . . , vk(y) are linearly independent
for ϕ∗µ-a.e. y ∈ Imϕ(K) by Proposition 2.10.

Furthermore, for any given a = 1, . . . , k, we can see (by using dominated con-
vergence theorem) that ψi∇µϕa → χK∇µϕa in L2

µ(TX) as i → ∞, thus via → va
in L2(Rk,Rk;ϕ∗µ) as i → ∞ by continuity of Dϕ. In particular, possibly passing
to a not relabelled subsequence, we can assume that limi v

i
a(y) = va(y) for ϕ∗µ-

a.e. y ∈ Rk. This implies that (ϕ∗µ)
(

Imϕ(K) \ ⋃

iAi

)

= 0, thus (2.16) yields

(ϕ∗µ)|Imϕ(K) ≪ Lk. Since Imϕ(K) =
{

Prϕ(χK) > 0
}

by definition, we conclude
that

u∗(m|K) = ϕ∗(µ|K) =
dϕ∗(χKµ)

dϕ∗µ
ϕ∗µ = Prϕ(χK)ϕ∗µ≪ Lk.

Therefore, the first part of the statement is finally achieved.
The second part of the statement follows from the first one, the inner regularity

of m and (the proof of) Theorem 2.9. �
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