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Abstract. In this paper, we prove that the entropy dimension of a frame spectral measure is

superior than or equal to the Beurling dimension of its frame spectrum.

1. Introduction

A set Λ in a Hilbert space H is called a frame if there exist two constants A,B > 0
such that for every f ∈ H, we have

(1.1) A ‖f‖2 ≤
∑

λ∈Λ

|〈f, λ〉|2 ≤ B ‖f‖2 ,

where 〈·, ·〉 is the inner product in H. The constants A and B are called lower and
upper bounds of the frame. Moreover, if only the upper bound hold in (1.1), then we
call Λ a Bessel set or Bessel sequence in H. It is not hard to see that frame is a natural
generalization of orthonormal basis (where A = B = 1). If we restrict H = L2(µ)
for some Borel measure µ on a locally compact abelian group G, then µ is called a
frame spectral measure with frame spectrum Λ if (1.1) holds and Λ is contained in

the dual group Ĝ, and furthermore called a spectral measure if A = B = 1.
The notion of frame was introduced by Duffin and Schaeffer [2] in the context of

nonharmonic Fourier series. Frames provide robust, basis-like (but non-unique) rep-
resentations of vectors in a Hilbert space. The potential redundancy of frames often
allows one to construct them more easily than bases, and to get better properties
than those that are achievable using bases. Nowadays, frames have various applica-
tions in a wide range of areas. However, few properties of frame spectral measures
are known. In this paper, we are interested in the relation between the dimensions
of the frame spectral measure and its spectrum. It is believed that the “dimension”
of the frame spectral measure should control the “dimension” of its spectrum. But
only the case when the measure is self-similar was established ([3, 8]). In such case,
the frame spectral measure is exact dimensional and its Hausdorff dimension controls
the beurling dimension (see the definition in Section 2.2) of its frame spectrum. In
general, it was conjectured in [8] that

Conjecture 1.1. If µ is a frame spectral measure with spectrum Λ and compact

support T then dim Λ ≤ dimH T .

In this paper, we disprove Conjecture 1.1, which means that the Hausdorff di-
mension is not a candidate that controls the Berling dimension in general. Instead,
we prove a similar version of Conjecture 1.1 by replacing Hausdorff dimension by
upper entropy dimension (see its definition in Section 2.3). More precisely, suppos-
ing that µ is a frame spectral measure with frame spectrum Λ, we show that the
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Beurling dimension of the frame spectrum Λ is not superior than the upper entropy
dimension of the frame spectral measure µ, which allows one to see that the Beurling
dimension and the upper entropy dimension are the proper notions of “dimensions”
which are described above. Now we state our main result.

Theorem 1.2. Let µ be a Borel measure on R
d. Suppose that µ is a frame

spectral measure with frame spectrum Λ. Then we have

dim Λ ≤ dime µ,

where dim Λ is the Beurling dimension of Λ and dime µ is the upper entropy dimen-

sion of µ.

The following theorem is formally stronger than but actually equivalent to The-
orem 1.2.

Theorem 1.3. Let µ be a Borel measure on R
d. Suppose that µ is a frame

spectral measure with frame spectrum Λ. Then we have

dim Λ ≤ inf
µ(K)>0,µ(∂K)=0

dime µK .

where µK is the measure µ restricted on the Borel set K.

In fact, Theorem 1.2 is equivalent to Theorem 1.3 as follows: the necessity is
trivial, and the sufficiency follows from Lemma 3.3 which states that if µ is a frame
spectral measure then µK is also a frame spectral measure for every Borel set K
satisfying µ(∂K) = 0.

In general, we can not expect that the equality holds in Theorem 1.2 or Theo-
rem 1.3. We refer to the examples in [1] where a class of singular continuous measures
are constructed, satisfying that the Beurling dimensions of their spectra are zero but
their entropy dimensions are strictly positive.

Even though Theorem 1.3 is stated for frame spectral measures, we remark that
only the upper bound in (1.1) plays a role in the proof of Theorem 1.3. In other
words, if a Borel measure µ has a Bessel sequence Λ, then Theorems 1.2 and 1.3 hold
for µ and Λ.

We organize our paper as follows. In Section 2, we recall several definitions
of different dimensions, including Hausdorff dimension, entropy dimension, etc. In
order to prove Theorem 1.2 in Section 4, we make some reduction of Theorem 1.2
in Section 3. In Section 5, we discuss the relation between Beurling dimension with
other dimensions. Finally, in Section 6, we show some application of our main result.

2. Preliminaries

In this section, we recall several definitions of different dimensions.

2.1. Dyadic partitions. We first define the n-th dyadic partition of R by

D(1)
n :=

{[
k

2n
,
k + 1

2n

)
: k ∈ Z

}
.

The n-th dyadic partition of Rd is then defined by

D(d)
n :=

{
I1 × I2 × · · · × Id : Ij ∈ D(1)

n

}
.

If there is no confusion, we usually omit the superscript and write Dn for the n-th
dyadic partition of Rd.
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2.2. Dimensions of measure. Let (X,B, µ) be a probability space. Let A be
a partition of X. The Shannon entropy of µ with respect to A is defined by

H(µ,A) =
∑

A∈A

−µ(A) logµ(A).

By convention the logarithm is taken in base 2 and 0 log 0 = 0. If the partition A is
infinite, then the entropy H(µ,A) may be infinite.

Recall that Dn is the dyadic partition of R
d with diameter 2−n. The entropy

dimension of µ is defined by the formula

dime µ = lim
n→∞

1

n
H(µ,Dn),

if the limit exists (otherwise we take limsup or liminf as appropriate, denoted by
dime µ and dime µ respectively).

The lower Hausdorff dimension of µ is defined by

dimH µ = inf{dimH A : µ(A) > 0},

and the upper Hausdorff dimension of µ is defined by

dimH µ = inf{dimH A : µ(A) = 1}.

Here dimH A is the Hausdorff dimension of A. In what follows, the open ball of radius
r centered at x is denoted by B(x, r). A measure µ is exact dimensional if the local
dimension

lim
r→0

log µ(B(x, r))

log r

exists and is µ-a.e. constant, which is denoted by dimµ. Here and in what follows,
we denote by P(Rd) the space of probability measures on R

d. The following lemma
is well-known and its proof can be found, for example, in [5, Theorem 1.1].

Lemma 2.1. If µ ∈ P(Rd) is exact dimensional, then dime µ exists and is equal

to dimµ.

2.3. Beurling dimension of countable sets. Let Λ be a countable set in R
d.

For r > 0, the upper Beurling density corresponding to r (or r-Beurling density) of
Λ is defined by the formula

D
+
r := lim sup

h→∞

sup
x∈Rd

♯(λ ∩B(x, h))

hr
.

The (upper) Beurling dimension of Λ is defined by

dimΛ = sup{r > 0: D+
r (Λ) > 0},

or alternatively,
dimΛ = inf{r > 0: D+

r (Λ) < +∞}.

A basic property of Beurling dimension is that dim sΛ = dimΛ for all s ∈ R \ {0}.

3. Reduction of the main result

In this section, our goal is to make some reduction of Theorem 1.2.
The following lemma is a direct consequence of the definition of frame spectral

measures. We omit the proof and leave the readers to work out the details.

Lemma 3.1. Let µ be a frame spectral measure in R
d with spectrum Λ and

frame bounds 0 < A ≤ B < ∞. Then we have the following properties.
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(1) For any v, t ∈ R
d, µ(·+ v) is a frame spectral measure with spectrum Λ + t

and frame bounds A,B.

(2) For any non-zero c ∈ R, c · µ is a frame spectral measure with spectrum Λ
and frame bounds cA, cB.

(3) For any non-zero s ∈ R, µ(· × s) is a frame spectral measure with spectrum

sΛ and frame bounds A,B.

We observe that if putting H = L2(µ) and f = λ
−1

for some λ ∈ Λ in (1.1), then
we have µ(Rd) < ∞. Since c · µ is also a frame spectral measure for any c ∈ R, we
might assume that µ ∈ P(Rd).

It is well known that [13, 9] that if µ is a frame spectral measure with frame Λ,
then it has to be of “pure type”.

Theorem 3.2. [9, Theorem 1.1, Proposition 2.1] Let µ be a frame spectral mea-

sure with frame Λ. Then µ is either discrete with ♯Λ < +∞, absolutely continuous

with D
−
d (Λ) > 0 or singular continuous with D

−
d (Λ) = 0.

If µ is discrete, then it has finitely many atoms [9], implying that dimΛ =
dime µ = 0. If µ is absolutely continuous, then it is supported on a set of finite
Lebesgue measure in R

d, and its density function is bounded from above and from
below almost everywhere on the support [14]. It follows that if µ is absolutely con-
tinuous, then dimΛ = dime µ = d. By the above argument, it is sufficient to prove
Theorem 1.2 for singular continuous measures.

Let µ ∈ P(Rd). For a Borel set K ⊂ R
d, we denote by

µK(·) := µ(· ∩K),

the measure µ restricted on K. Moreover, if K is a dyadic cube in [0, 1]d with
µ(K) > 0, we denote by

µ�

K(·) :=
1

µ(K)
(SK)∗µK(·),

where SK is the affine bijective map from K to [0, 1]d and (SK)∗µK(·) is the pushfor-
ward of µK , i.e. the measure µK(S

−1
K (·)). Obviously, we have µ�

K ∈ P([0, 1]d).
The following lemma provides that the restriction of a frame spectral measure

is also a frame spectral measure. A general version of the following lemma can be
found in [7]. We include the proof here for completeness.

Lemma 3.3. Let µ be a frame spectral measure on R
d. Let K ⊂ R

d be a Borel

subset satisfying that µ(∂K) = 0. Then µK is also a frame spectral measure having

the same spectrum and frame bounds with the measure µ.

Proof. For any f ∈ L2(µK), we extend f into the space L2(µ) by taking f(x) = 0
for any x outside K. Since µKc(K) = 0, we have 〈f, g〉µKc = 0 for all g ∈ L2(µ).
It follows that 〈f, g〉µ = 〈f, g〉µK

for all g ∈ L2(µ), and in particular ‖f‖µ = ‖f‖µK
.

Thus we conclude that µK is also a frame spectral measure and has the same spectrum
and frame bounds with the measure µ. �

Remark. After this paper was completed, thanks to Zhiqiang Wang, we realized
that the condition µ(∂K) = 0 in Lemma 3.3 is not really needed in the proof. Indeed,
since the set K is Borel, we can extend any function from L2(µK) to L2(µ) by taking 0
outside K. Then the extended function is also Borel measurable and the conclusion
in Lemma 3.3 remains the same. As a consequence, we could drop the condition
µ(∂K) = 0 in Theorem 1.3 and simplify the proof of Theorem 1.3.
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The following lemma shows that we can find a unit cube satisfying the condition
(of K) in Lemma 3.3.

Lemma 3.4. Let µ ∈ P(Rd). Then there exists a unit cube v + [0, 1]d for some

v ∈ R
d such that µ(v + [0, 1]d) > 0 and µ(∂(v + [0, 1]d)) = 0.

Proof. Since µ ∈ P(Rd), there exists u ∈ R
d such that µ(u+ [0, 1/2]d) > 0. Let

ut = u − (t, t, . . . , t). Since ut + [0, 1]d contains u + [0, 1/2]d for any t ∈ [0, d1/2/2],
we see that µ(ut + [0, 1]d) > 0. Observe that ∂[0, 1]d = A ∪ B where A = {x =
(xi)1≤i≤d : xi ∈ [0, 1], ∃xj = 0} and B = {x = (xi)1≤i≤d : xi ∈ [0, 1], ∃xj = 1}.
Moreover, it is easy to check that (ut+A)∩ (us+A) = ∅ and (ut+B)∩ (us+B) = ∅
for distinct s, t ∈ [0, d1/2/2]. By the fact that the sum of an uncountable number of
positive numbers is infinite1, we get that µ(ut + A) > 0 (resp. µ(ut + B) > 0) for
at most countably many t ∈ [0, d1/2/2]. Thus there exists t ∈ [0, d1/2/2] such that
µ(ut + A) = µ(ut +B) = 0 and consequently µ(∂(ut + [0, 1]d)) = 0. �

Let v be as in Lemma 3.4. Then by Lemma 3.1 and Lemma 3.3, the measure

1

µ(v + [0, 1]d)
µv+[0,1]d(·+ v) ∈ P([0, 1]d)

has the same spectrum with µ. Since

dime
1

µ(v + [0, 1]d)
µv+[0,1]d(·+ v) ≤ dime µ,

it is sufficient to prove Theorem 1.2 for measures in P([0, 1]d).
The following lemma shows that the dyadic partition is “nice” up to a scaling of

µ.

Lemma 3.5. Let µ ∈ P([0, 1]d). Then there exists 1 ≤ s < ∞ such that

µ(· × s) ∈ P([0, 1]d) satisfies that µ((· × s) ∩ ∂D) = 0 for all D ∈ Dn where {Dn}
∞
n=1

is the set of the dyadic partitions.

Proof. Fix n ∈ N and D ∈ Dn. Suppose D = u+ [0, 2−n]d where u = (ui)1≤i≤d ∈
[0, 1]d. We decompose ∂D = A ∪ B where A = {x = (xi)1≤i≤d : xi ∈ [ui, ui +
2−n], ∃xj = uj} and B = {x = (xi)1≤i≤d : xi ∈ [ui, ui + 2−n], ∃xj = uj + 2−n}. it
is easy to check that tA ∩ sA = ∅ and tB ∩ sB = ∅ for distinct s, t ∈ [1,∞). By
the fact that the sum of an uncountable number of positive numbers is infinite (See
Footnote 1), we get that µ(tA) > 0 (resp. µ(tB) > 0) for at most countably many
t ∈ [1,∞). It follows that µ(t∂D) > 0 for at most countably many t ∈ [1,∞). Since
{Dn}

∞
n=1 consists of countably many elements, there exists 1 ≤ s < ∞ such that

µ(· × s) satisfies that µ((· × s) ∩ ∂D) = 0 for all D ∈ Dn. �

By Lemma 3.5, Lemma 3.1 (3) and the facts that dim sΛ = dimΛ and dimeµ(·×
s) = dimeµ, we might assume s = 1 for the sake of simplicity.

Finally, we summarize the reductions made so far in the following list.

Reduction 3.6. In order to prove Theorem 1.2, we might assume that a frame
spectral measure µ in R

d has the following structure:

(1) The measure µ is singular continuous.
(2) The measure µ belongs to P([0, 1]d).
(3) The dyadic partitions {Dn}

∞
n=1 satisfy that µ(∂D) = 0 for all D ∈ Dn.

1Suppose that I is an uncountable set and ai > 0 for i ∈ I. Let Cn = {ai : ai > 1/n, i ∈ I}.
Then there exists n ∈ N such that Cn contains infinite elements. Thus

∑
i∈I

ai ≥
∑

ai∈Cn
ai ≥∑

ai∈Cn
1/n = +∞.
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4. Proof of main result

Let µ ∈ P([0, 1]d). It is well-known that the dual group R̂d consists of exponential
functions which is isomorphic to R

d. We could thus identify R
d with the subspace

in L2(µ) and write 〈f, λ〉µ for f ∈ L2(µ) and λ ∈ R
d. More precisely, we write the

inner products

〈f, λ〉µ =

ˆ

[0,1]d
f(x)e−2πiλ·x dµ(x)

and

〈t, λ〉µ =

ˆ

[0,1]d
e2πi(t−λ)·x dµ(x),

for f ∈ L2(µ) and t, λ ∈ R
d.

The following two lemmas not only has its own interest but also are useful to
prove our main result.

Lemma 4.1. Suppose that the measure µ ∈ P([0, 1]d) is a frame spectral mea-

sure with spectrum Λ and frame bounds 0 < A ≤ B < ∞. Let n > 0. Then for any

D ∈ Dn with µ(D) > 0, and for any t ∈ R
d, we have

A

µ(D)
≤

∑

λ∈Λ

∣∣∣∣∣

〈
1

2n
t,

1

2n
λ

〉

µ�
D

∣∣∣∣∣

2

≤
B

µ(D)
.

Proof. Let D ∈ Dn with µ(D) > 0. Let t ∈ R
d. By Lemma 3.3 and Reduc-

tion 3.6 (3), we have

(4.1) Aµ(D) ≤
∑

λ∈Λ

∣∣∣〈t, λ〉µD

∣∣∣
2

≤ Bµ(D).

For any λ ∈ Λ, we observe that

〈t, λ〉µD
= µ(D)e2πi(t−λ)·v(D)

〈
1

2n
t,

1

2n
λ

〉

µ�
D

,

where v(D) ∈ R
d is the vector satisfying D = v(D) + [0, 1

2n
]d. It follows that

(4.2)
∣∣∣〈t, λ〉µD

∣∣∣ = µ(D)

∣∣∣∣∣

〈
1

2n
t,

1

2n
λ

〉

µ�
D

∣∣∣∣∣ ,

for any λ ∈ Λ. Combing (4.1) and (4.2), we complete the proof. �

Lemma 4.2. Let µ ∈ P(Rd). Then for any 0 < ǫ < 1, there exists δ = δ(ǫ) > 0
such that for any |ξ| < δ and for any D ∈ Dn with µ(D) > 0, we have∣∣∣µ̂�

D(ξ)
∣∣∣ > ǫ.

Proof. Let 0 < ǫ < 1. Pick arbitrary D ∈ Dn. A simple computation shows that

(4.3)
∣∣∣µ̂�

D(ξ)
∣∣∣ =

∣∣∣∣
ˆ

[0,1]d
e2πiξ·xdµ�

D(x)

∣∣∣∣ ≥
∣∣∣∣
ˆ

[0,1]d
cos(2πξ · x)dµ�

D(x)

∣∣∣∣ .

We choose 0 < δ < 1
4d

small enough such that cos(2dπδ) > ǫ. Since cos(θ) is positive
and decreasing for θ ∈ (0, π

2
), we have cos(2dπθ) > ǫ for all 0 < θ < δ. Then for any

|ξ| < δ and x ∈ [0, 1]d, we have that |ξ ·x| < dδ and consequently that cos(2πξ ·x) > ǫ.
It follows from (4.3) that ∣∣∣µ̂�

D(ξ)
∣∣∣ > ǫ.
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This completes the proof. �

Now we prove our main result.
Proof of Theorem 1.2. Pick arbitrary s > 0. Then there exists N > 0 such that

for any n > N , we have

dimeµ+ s ≥
1

n

∑

D∈Dn

−µ(D) logµ(D).

It follows that

(4.4) (2n)dimeµ+s ≥ 2
∑

D∈Dn
−µ(D) log µ(D) =

∏

D∈Dn,µ(D)>0

µ(D)−µ(D).

Let h > 2N . Then there exists a positive integer nh such that 2nh−1 < h ≤ 2nh. Let
ǫ > 0. Let δ = δ(ǫ) which is defined in Lemma 4.2. Let ρ be the minimal integer
such that 2−ρ < δ. For any t ∈ R

d and any D ∈ Dnh+ρ, we have

ǫ2 · ♯(Λ ∩B(t, h)) ≤
∑

λ∈Λ∩B(t,h)

∣∣∣∣∣

〈
1

2nh+ρ
t,

1

2nh+ρ
λ

〉

µ�
D

∣∣∣∣∣

2

≤
∑

λ∈Λ

∣∣∣∣∣

〈
1

2nh+ρ
t,

1

2nh+ρ
λ

〉

µ�
D

∣∣∣∣∣

2

≤
B

µ(D)
.

(4.5)

Since
∑

D∈Dnh+ρ
µ(D) = 1 and (4.5) holds for all D ∈ Dnh+ρ with µ(D) > 0, we have

♯(Λ ∩B(t, h)) =
∏

D∈Dnh+ρ,µ(D)>0

(♯(Λ ∩B(t, h)))µ(D)

≤ Bǫ−2
∏

D∈Dnh+ρ,µ(D)>0

µ(D)−µ(D)
(4.6)

It follows from (4.4) and (4.6) that

♯(Λ ∩B(t, h))

hdimeµ+s
≤

♯(Λ ∩ B(t, h))

2(nh−1)(dimeµ+s)
≤ Bǫ−2 · 2(1+ρ)(dimeµ+s).

Then we deduce that dimΛ ≤ dimeµ + s. Since s can be chosen arbitrarily close to
0, we conclude that dimΛ ≤ dimeµ. �

5. Further discussion

In this section, we will discuss several different notions of dimensions (or condi-
tions) and its relations with Beurling dimension and entropy dimension.

5.1. Lev’s condition. Let µ ∈ P(Rd). Given a real number α with 0 ≤ α ≤ d.
Lev considered the following condition in [15]:

(5.1) lim inf
r→∞

1

rd−α

ˆ r

−r

|µ̂(t)|2 dt > 0.

He proved that if a frame spectral measure µ with frame spectrum Λ satisfies (5.1),
then

(5.2) sup
x∈Rd

♯(Λ ∩ B(x, r)) ≤ Crα,

for some constant C which does not depend on r. We define

L(µ) = inf{α : (5.1) holds for µ and α}.
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Therefore we restate (5.2) as follows.

Lemma 5.1. Let µ be a frame spectral measure with frame spectrum Λ. Then

we have

dim Λ ≤ L(µ).

The value L(µ) is sometimes related to the “dimension” of µ. For example, if µ is
a certain self-similar measure with Hausdorff dimension α, then L(µ) = α. However,
such relation is very difficult to establish and compute in some cases. For instant,
as far as I know, the condition (5.1) is unknown for self-affine measures. On the
other hand, we will see that the entropy dimension is well established for self-affine
measures in the next section.

5.2. Hausdorff dimension. For a Borel measure µ, we know the facts that
dimHµ ≤ dimeµ and that dimHµ is not comparable with dimeµ (see for example [5]).
A natural question arises as to whether the entropy dimension can be replaced by
the Hausdorff dimension in Theorems 1.2 and 1.3. We will give a negative answer to
this question in the following.

Let I ⊂ N and p be a prime number. For n ∈ N, let

In = {i ∈ I : i ≤ n}

be the finite subset of I and let

C(In) =

{∑

i∈In

bip
−i : bi ∈ {0, 1, · · · , p− 1}

}

be the finite subset of the unit interval [0, 1]. It is not hard to see that the weak limit
of 1

♯C(In)
δC(In) exists, which is denoted by νI , as n tends to infinity. Let

ΛIn =

{∑

i∈In

bip
i : bi ∈ {0, 1, · · · , p− 1}

}

be the finite subset of Z. Obviously, we have the inclusion ΛI1 ⊂ ΛI2 ⊂ · · · . Let

ΛI =
⋃

i∈N

ΛIn.

In [16], the author showed that the measure νI is a spectral measure with spectrum
ΛI . Moreover, it is computed that

dim ΛI = dime νI = lim sup
n→∞

♯In
n

,

and

dimH supp(µ) = dimH νI = dimH νI = lim inf
n→∞

♯In
n

.

At the same time, it is shown that

dime νI = inf
µ(K)>0,µ(∂K)=0

{dime (νI)K},

and

dimH supp(µ) = inf
µ(K)>0,µ(∂K)=0

{dimH (νI)K}

= inf
µ(K)>0,µ(∂K)=0

{dimH (νI)K}.
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It is not hard to pick suitable I ⊂ N such that

(5.3) lim inf
n→∞

♯In
n

< lim sup
n→∞

♯In
n

.

Under the condition (5.3), we have

dim ΛI = dime νI > dimH supp(µ) = dimH νI = dimH νI .

This disproves Conjecture 1.1.

5.3. Fourier dimension. A lower bound of Beurling dimension was obtained
in Theorem 1.3 [12] that if µ is a frame spectral measure with spectrum Λ, then

(5.4) dim Λ ≥ dimF µ,

where dimF is the Fourier dimension which is defined by the formula

dimF µ := sup
{
0 ≤ s ≤ d : ∃C, ∀ξ, |µ̂(ξ)| ≤ C|ξ|−s/2

}
.

Combining this with Lemma 3.3, we obtain the following theorem.

Theorem 5.2. Let µ be a Borel measure on R
d. Suppose that µ is a frame

spectral measure with frame spectrum Λ. Then we have

dim Λ ≥ sup
µ(K)>0,µ(∂K)=0

dimF µK .

A direct consequence of Theorems 1.3 and 5.2 is the following necessary condition
for frame spectral measures.

Corollary 5.3. Let µ be a Borel measure on R
d. Suppose that µ is a frame

spectral measure with frame spectrum Λ. Then we have

(5.5) sup
µ(K)>0,µ(∂K)=0

dimF µK ≤ inf
µ(K)>0,µ(∂K)=0

dime µK .

Using Corollary 5.3, some non frame spectral measures could be shown as follows.

Corollary 5.4. Let µ, ν and ρ be Borel measures on R
d. Suppose that dimF µ >

dimeν and µ(supp(ν + ρ)) = ν(supp(µ+ ρ)) = 0. Then the measure µ+ ν + ρ is not

a frame spectral measure.

We end up this section by proposing some open questions. We remark that if µ
is absolutely continuous or discrete, then the equality holds in (5.5) in Corollary 5.3.
Hence we might ask the same question for singular continuous measures:

Question 5.5. Does there exist a frame spectral measure which is singular con-
tinuous and the equality holds in (5.5)?

As far as I know, we don’t yet have an example of frame spectral measures that
have non-zero Fourier dimension. Thus we might ask the following question.

Question 5.6. Does there exist a frame spectral measure that is singular con-
tinuous and has non-zero Fourier dimension?

6. Potential examples

In this section, we apply Theorems 1.2 and 1.3 for various measures. Since few
concrete examples of frame spectral measures are known, the results in this section
might be helpful to find new examples of measures of different type.

6.1. Self-affine measures. A function ϕ is called a contraction on a complete
metric space X with metric d if d(ϕ(x), ϕ(y)) < d(x, y) holds for every x 6= y ∈
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X. If {ϕi}1≤i≤N are contractions of X it is well-known that there exists a unique
non-empty compact set K ⊂ X such that K =

⋃
1≤i≤N ϕi(K) (see [11]). In this

circumstance the tuple {ϕi}1≤i≤N is called an iterated function system (IFS) and
F its attractor. A central problem in the study of iterated function systems is to
calculate or estimate the dimension of the attractor F for various notions of fractal
dimension, most especially the Hausdorff dimension. Particular interest has been
given to the case of affine iterated function system, where the ambient space X is
given by R

d and the contractions ϕi take the form ϕi : x 7→ Aix+bi for certain (usually
invertible) linear maps Ai ∈ L(Rd,Rd) and vectors bi. The associated attractors are
called self-affine.

Very recently, Hochman and Rapaport [10] proved that if µ is a self-affine measure
in the plane whose defining IFS acts totally irreducibly and satisfies an exponential
separation condition, then its dimension is equal to its Lyapunov dimension. Apply-
ing Theorem 1.2, we get the following corollary.

Corollary 6.1. Let Φ = {ϕi}i∈J be a finite system of invertible affine contrac-

tions of R2. Suppose that Φ has no common fixed point, satisfies the non-conformality

and total irreducibility assumptions, and is exponentially separated. Let p be a pos-

itive probability vector. Let µ =
∑

pi · ϕiµ be the associated self-affine measure.

Assume that µ is a frame spectral measure with frame spectrum Λ. Then

dimΛ ≤ min{2, dimL µ},

where dimL stands for Lyapunov dimension.

In general, Feng [6] proved that every ergodic invariant measure for an affine IFS
is exact dimensional, and its Hausdorff dimension satisfies a Ledrappier–Young type
formula. Applying Theorem 1.2, we have the following corollary.

Corollary 6.2. Let µ be an ergodic invariant measure for an affine IFS. Suppose

that µ is a frame spectral measure with frame spectrum Λ. Then we have

dimΛ ≤ dimµ.

6.2. ×β-invariant measures. Let Tβ be the multiplication by β modulo
one on the unite interval. It is well known that if β is Pisot number and µ is Tβ-
invariant, then µ is exact dimensional. Thus we have the following corollary as a
direct consequence of Theorem 1.2.

Corollary 6.3. Let β be a Pisot number. If µ is a Tβ-invariant frame spectral

measure with spectrum Λ, then we have

dimΛ ≤ dimµ.

6.3. Measures of “mixed type”. It is used to be conjectured that a pure type
phenomenon should also exist within the class of singular continuous measures, that
is to say, all frame spectral measures are exact dimensional. The first counterexample
was constructed by Lev [15] as follows.

Let µ ∈ P(Rn) and ν ∈ P(Rm). We define a new measure ρ on R
n+m by

ρ = µ× δ0 + δ0 × ν,

where δ0 denotes the Dirac measure at the origin. It is not hard to see that ρ is the
singular measure whose support is contained in (Rn×{0})∪ ({0}×R

m). The frame
spectral measure of “mixed type” is constructed in the following theorem.
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Theorem 6.4. [15, Theorem 2.1] Assume that two measures µ and ν are con-

tinuous frame spectral measures. Then the measure ρ defined above is also a frame

spectral measure.

Applying Theorem 1.2 to the measure ρ of “mixed type” in Theorem 6.4, we have
the following corollary.

Corollary 6.5. Let µ, ν, ρ be defined in Theorem 6.4. Suppose that Λ is a frame

spectrum of ρ. Then we have

dim Λ ≤ min{dimeµ, dimeν}.
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