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Abstract. In this paper we study the regularity properties of certain maximal operators of
convolution type at the endpoint p = 1, when acting on radial data. In particular, for the heat flow
maximal operator and the Poisson maximal operator, when the initial datum u0 ∈ W 1,1(Rd) is a
radial function, we show that the associated maximal function u∗ is weakly differentiable and

‖∇u∗‖L1(Rd) .d ‖∇u0‖L1(Rd).

This establishes the analogue of a recent result of Luiro for the uncentered Hardy–Littlewood

maximal operator, now in a centered setting with smooth kernels. In a second part of the paper,

we establish similar gradient bounds for maximal operators on the sphere S
d, when acting on polar

functions. Our study includes the uncentered Hardy–Littlewood maximal operator, the heat flow

maximal operator and the Poisson maximal operator on S
d.

1. Introduction

1.1. A brief historical perspective. Maximal operators are central objects of
study in harmonic analysis. One of the most basic examples is the centered Hardy–
Littlewood maximal operator, denoted here by M . For f ∈ L1

loc(R
d) it is defined

as

Mf(x) = sup
r>0

1

m(Br(x))

ˆ

Br(x)

|f(y)| dy = sup
r>0

ˆ

Br(x)

|f(y)| dy,

where Br(x) ⊂ R
d is the open ball centered at x with radius r, and m(Br(x)) denotes

its d-dimensional Lebesgue measure. The uncentered Hardy–Littlewood maximal

operator, denoted here by M̃ , is defined analogously, taking the supremum over open
balls that simply contain the point x but that are not necessarily centered at x. The
fundamental theorem of Hardy, Littlewood and Wiener states that M : L1(Rd) →
L1,∞(Rd) and M : Lp(Rd) → Lp(Rd), for 1 < p ≤ ∞, are bounded operators. The

same holds for M̃ .
In the seminal paper [14], Kinnunen studied the action of the Hardy–Littlewood

maximal operator on Sobolev functions, giving an elegant proof thatM : W 1,p(Rd) →
W 1,p(Rd) is bounded for 1 < p ≤ ∞. This work paved the way for several interesting
contributions to the regularity theory of maximal operators over the past two decades,
with interesting connections to potential theory and partial differential equations, see
for instance [1, 3, 4, 6, 7, 8, 11, 13, 15, 16, 18, 19, 22, 23, 21, 24, 25, 26]. One of the
longstanding problems in this field is concerned with the regularity at the endpoint
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p = 1. This is the W 1,1-problem, formally posed by Hajłasz and Onninen in [12]: if
f ∈ W 1,1(Rd), do we have that Mf is weakly differentiable and

‖∇Mf‖L1(Rd) .d ‖∇f‖L1(Rd)?

This problem has been settled affirmatively in dimension d = 1, in the uncentered
case by Tanaka [29] and Aldaz and Pérez Lázaro [2], and in the centered case by
Kurka [17]. The higher dimensional version is generally open, having been settled

affirmatively only for the uncentered Hardy–Littlewood maximal operator M̃ in the
important case of radial datum f , by Luiro in [20]. This beautiful work of Luiro [20]
is fundamental for the present paper, for we aim to extend it to different contexts.

1.2. Maximal operators of convolution type on R
d. We start by investi-

gating the higher dimensional W 1,1-problem for certain centered maximal operators
of convolution type associated to partial differential equations, in the case of radial

data, establishing a result analogous to that of Luiro [20]. To our knowledge, this
is the first instance of an affirmative result for centered maximal operators, in what
concerns the boundedness of the variation, in the higher dimensional setting.

We borrow the basic setup from [5]. Let ϕ : Rd × (0,∞) → R be a nonnegative
function such that

ˆ

Rd

ϕ(x, t) dx = 1

for each t > 0. Assume also that, when t→ 0, the family ϕ(·, t) is an approximation
of the identity, in the sense that limt→0 ϕ(·, t) ∗ u0(x) = u0(x) for a.e. x ∈ R

d, if
u0 ∈ Lp(Rd) for some 1 ≤ p ≤ ∞. For an initial datum u0 : R

d → R we consider the
evolution

(1.1) u(x, t) =
(
|u0| ∗ ϕ(·, t)

)
(x)

and the associated maximal function

(1.2) u∗(x) := sup
t>0

u(x, t).

Notice the use of the shorter notation u∗ for simplicity. One could also refer to (1.2)
as Mϕu0. In this setting, note that the centered Hardy–Littlewood maximal operator
corresponds to the kernel ϕ(x, t) = 1

tdm(B1)
χB1(x/t). We consider here kernels ϕa,b

that are fundamental solutions of

autt − but +∆u = 0 in R
d × (0,∞),

with a, b ≥ 0 and (a, b) 6= (0, 0). That is, the function u(x, t) defined in (1.1)
solves this equation in the upper half-space with initial datum u(x, 0) = |u0(x)|. By
appropriate space-time dilations it suffices to consider the following three nonnegative
and radial decreasing kernels as basic profiles:

ϕ1,0(x, t) =
Γ
(
d+1
2

)

π(d+1)/2

t

(|x|2 + t2)(d+1)/2
(Poisson kernel),(1.3)

ϕ0,1(x, t) =
1

(4πt)d/2
e−|x|2/4t (Heat kernel),(1.4)

ϕ1,1(x, t) =

ˆ

Rd

e−t
(

−1+
√

1+16π2|ξ|2

2

)
e2πix·ξ dξ.(1.5)

The fact that (1.5) is nonnegative and radial decreasing was proved in [5]. The
Poisson maximal operator and the heat flow maximal operator, given by the kernels
(1.3) and (1.4) respectively, are the classical and most important examples we want
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to keep in mind, but our methods could be adapted to treat other maximal operators
associated to differential equations. Our first result is the following.

Theorem 1. Let ϕ be given by (1.3), (1.4) or (1.5). If u0 ∈ W 1,1(Rd) is radial,
then u∗ is weakly differentiable and

‖∇u∗‖L1(Rd) .d ‖∇u0‖L1(Rd).

The intuitive idea behind the proof of this result is as follows. First we reduce
matters to the study of nonnegative functions u0 with some degree of smoothness, say
Lipschitz. We are then able to invoke one of the main results of [5, 9], that in the de-

tachment set {u∗ > |u0|} the function u∗ is subharmonic. The proof of this fact relies
on some of the qualitative properties of the underlying partial differential equations
(e.g. maximum principles and semigroup property). As observed in [5, Theorem 1
(iv)], this subharmonicity implies a control on the L2-norm of ∇u∗ by the L2-norm
of ∇u0. To arrive at the L1-control we use the fact that u∗ is pointwise smaller than

M̃u0. Hence, in the case of radial functions, we have a relatively well-behaved (i.e.
subharmonic in the detachment set) function, namely u∗, that is trapped between u0
and M̃u0, and the latter comes with an L1-control of the gradient by the result of
Luiro [20]. As we shall see, these pieces together will ultimately imply the control of
the L1-norm of ∇u∗ as well.

1.3. The Hardy–Littlewood maximal operator on S
d. We now move our

discussion to consider maximal operators acting on functions defined on the sphere
S
d ⊂ R

d+1, in order to develop an analogous theory. First, let us establish the basic
notation to be used in this context. We let d(ζ, η) denote the geodesic distance
between two points ζ, η ∈ S

d. Let Br(ζ) ⊂ S
d be the open geodesic ball of center

ζ ∈ S
d and radius r > 0, that is

Br(ζ) = {η ∈ S
d : d(ζ, η) < r},

and let Br(ζ) be the corresponding closed ball. Let M̃ denote the uncentered Hardy–
Littlewood maximal operator on the sphere S

d, that is, for f ∈ L1
loc(S

d),

M̃f(ξ) = sup
{Br(ζ) : ξ∈Br(ζ)}

1

σ(Br(ζ))

ˆ

Br(ζ)

|f(η)| dσ(η) = sup
{Br(ζ) : ξ∈Br(ζ)}

ˆ

Br(ζ)

|f(η)| dσ(η),

where σ = σd denotes the usual surface measure on the sphere S
d. The centered

version M would be defined with centered geodesic balls. Fix e = (1, 0, 0, . . . , 0) ∈
R

d+1 to be our north pole. We say that a function f : Sd → C is polar if for every
ξ, η ∈ S

d with ξ · e = η · e we have f(ξ) = f(η). This will be the analogue, in the
spherical setting, of a radial function in the Euclidean setting.

When working on the circle S
1, an adaptation of the proof of Aldaz and Pérez

Lázaro [2] yields Var(M̃f) ≤ Var(f), where Var(f) denotes the total variation of

the function f . This follows from the fact that M̃f has no local maxima in the

detachment set {M̃f > |f |} (say, for f Lipschitz). Our second result is the extension
of this statement to the multidimensional setting, in the case of polar functions. For
the basic theory of Sobolev spaces on the sphere S

d we refer the reader to [10].

Theorem 2. If f ∈ W 1,1(Sd) is a polar function, then M̃f is weakly differen-
tiable and

‖∇M̃f‖L1(Sd) .d ‖∇f‖L1(Sd).
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This is the analogue on the sphere S
d of Luiro’s result [20] for radial functions

in the Euclidean space. The proof we present below follows broadly the strategy
outlined by Luiro [20]. However, due to the different geometry, several nontrivial
technical points arise along the proof and must be considered carefully. A good
example that such difficulties cannot be underestimated is Lemma 12 below, one of
the core results used in our proof of Theorem 2. As in the case of Rd, the analogue
of Theorem 2 for the centered Hardy–Littlewood maximal operator M on S

d is an
open problem.

1.4. Maximal operators of convolution type on S
d. We now treat two

important cases of maximal operators of convolution type on the sphere: the Poisson
maximal operator and the heat flow maximal operator. We briefly recall the basic
definitions and refer the reader to [5, Section 1.4] for additional details.

1.4.1. Poisson maximal function on S
d. Let 0 ≤ ρ < 1 and let ξ, η ∈ S

d.
We define the Poisson kernel P on the sphere by

P(ξ, η, ρ) =
1− ρ2

κd |ρξ − η|d
=

1− ρ2

κd (ρ2 − 2ρ ξ · η + 1)d/2
,

with κd = σ(Sd) being the total surface area of Sd. If u0 ∈ L1(Sd) we let u(ξ, ρ) =
u(ρξ) be the function defined on the unit (d + 1)-dimensional open ball B1 ⊂ R

d+1

by

u(ξ, ρ) =

ˆ

Sd

P(ξ, η, ρ) |u0(η)| dσ(η),

and consider the associated maximal function

(1.6) u∗(ξ) = sup
0≤ρ<1

u(ξ, ρ).

Observe that u ∈ C∞(B1) and solves the Dirichlet problem
{
∆u = 0 in B1;

limρ→1− u(ξ, ρ) = |u0(ξ)| for a.e. ξ ∈ S
d.

1.4.2. Heat flow maximal function on S
d. Let

{
Y ℓ
n

}
, ℓ = 1, 2, . . . , dimHd+1

n ,

be an orthonormal basis of the space Hd+1
n of spherical harmonics of degree n in the

sphere S
d. For t ∈ (0,∞) and ξ, η ∈ S

d we define the heat kernel K on the sphere
(see [10, Lemma 1.2.3, Theorem 1.2.6 and Eq. 7.5.5]) by

K(ξ, η, t) =

∞∑

n=0

e−tn(n+d−1)

dimHd+1
n∑

ℓ=1

Y ℓ
n(ξ)Y

ℓ
n(η) =

∞∑

n=0

e−tn(n+d−1) (n + λ)

λ
Cλ

n(ξ · η),

where λ = d−1
2

and t 7→ Cβ
n(t), for β > 0, are the Gegenbauer polynomials defined in

terms of the generating function

(1− 2rt+ r2)−β =

∞∑

n=0

Cβ
n(t) r

n.

If u0 ∈ L1(Sd) we consider

u(ξ, t) =

ˆ

Sd

K(ξ, η, t) |u0(η)| dσ(η),
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and consider the associated maximal function

(1.7) u∗(ξ) = sup
t>0

u(ξ, t).

Note that u is a smooth function on S
d × (0,∞) and solves the heat equation

{
∂tu−∆u = 0 in S

d × (0,∞);

lim
t→0+

u(ξ, t) = |u0(ξ)| for a.e. ξ ∈ S
d.

1.4.3. Gradient bounds. We note that the smooth kernels P and K depend
only on d(ξ, η) and are decreasing with respect to this distance. If we fix one of these
two parameters, they have integral 1 on S

d and are approximate identities as ρ→ 1−

and t → 0+, respectively. The discussion on the heat kernel can be found in [27,
Chapter III, Section 2]. Also, from [10, Chapter 2, Theorem 2.3.6], note that the
associated maximal functions u∗ are dominated by the Hardy–Littlewood maximal
function, that is

(1.8) u∗(ξ) ≤ Mu0(ξ) ≤ M̃u0(ξ).

Our third result establishes the following.

Theorem 3. Let u∗ be the Poisson maximal function given by (1.6) or the heat
flow maximal function given by (1.7). If u0 ∈ W 1,1(Sd) is a polar function, then u∗

is weakly differentiable and

‖∇u∗‖L1(Sd) .d ‖∇u0‖L1(Sd).

1.5. A word on notation. In what follows we write A .d B if A ≤ CB for a
certain constant C > 0 that may depend on the dimension d. We say that A ≃d B if
A .d B and B .d A. If there are other parameters of dependence, they will also be
indicated. The characteristic function of a generic set H is denoted by χH . In the
few occasions that we write universal constants Cd in Section 4, these may change
from line to line.

2. Proof of Theorem 1

In this section we prove Theorem 1. Without loss of generality we may assume
that u0 is real-valued and nonnegative (or +∞). Assume also that d ≥ 2, since
the result is already known for dimension d = 1 from [5, Theorem 1]. Throughout
the proof below, with a slight abuse of notation, we identify radial functions of the
variable x ∈ R

d with their one-dimensional versions of the variable r ∈ (0,∞), with
the understanding that r = |x|. Naturally, if u0 is radial, the maximal function
u∗ is also radial. In what follows, variables r, s, t, τ, a, b will be one-dimensional,
whereas the variable x is always reserved for Rd. We recall the fact [28, Chapter III,
Theorem 2] that

(2.1) u∗(x) ≤Mu0(x) ≤ M̃u0(x)

for every x ∈ R
d.

2.1. Lipschitz case. Let us first assume that our initial datum u0 is a Lipschitz
function. In this case u∗ is also Lipschitz. Reducing matters to radial variables, we
claim the following:

(2.2)

ˆ ∞

0

∣∣(u∗)′(r)
∣∣ rd−1 dr ≤

ˆ ∞

0

∣∣u′0(r)
∣∣ rd−1 dr +

ˆ ∞

0

∣∣(M̃u0
)′
(r)
∣∣ rd−1 dr.
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Once we have established (2.2), the theorem follows easily by Luiro’s result [20], that
bounds the third integral in terms of the second.

Step 1. Partial control by the uncentered maximal function. Let us define the
radial detachment set (excluding the origin)

(2.3) Ad =
{
x ∈ R

d \ {0} : u∗(x) > u0(x)
}
.

The one-dimensional radial version of this set will be denoted by

A1 = {|x| : x ∈ Ad}.

These are open sets and from [5, Lemma 7] we know that u∗ is subharmonic on Ad.
Let us write

(2.4) A1 =

∞⋃

i=1

(ai, bi)

as a countable union of disjoint open intervals. Let (a, b) denote a generic interval
(ai, bi) of this union. If u∗ had a strict local maximum in (a, b) (that is, a point
t0 ∈ (a, b) for which there exist c and d with a < c < t0 < d < b such that
u∗(r) ≤ u∗(t0) for r ∈ (c, d) and u∗(c), u∗(d) < u∗(t0)), we could then take the average
of u∗ over the ball in R

d centered at x0, with |x0| = t0, and radius min{|t0−c|, |t0−d|}
to reach a contradiction to the subharmonicity of u∗ in Ad. Therefore u∗ has no
strict local maximum in (a, b) and there exists τ with a ≤ τ ≤ b such that u∗ is
non-increasing in [a, τ ] and non-decreasing in [τ, b]. We then have (u∗)′(t) ≤ 0 a.e. in
a < t < τ , and (u∗)′(t) ≥ 0 a.e. in τ < t < b.

Let us first consider the case 0 < a < b < ∞. Using (2.1) and integration by
parts we get
ˆ b

a

∣∣(u∗)′(r)
∣∣ rd−1 dr = −

ˆ τ

a

(u∗)′(r) rd−1 dr +

ˆ b

τ

(u∗)′(r) rd−1 dr

= u∗(a) ad−1 + u∗(b) bd−1 − 2 u∗(τ) τd−1

+ (d− 1)

ˆ τ

a

u∗(r) rd−2 dr − (d− 1)

ˆ b

τ

u∗(r) rd−2 dr

≤ u0(a) a
d−1 + u0(b) b

d−1 − 2 u0(τ) τ
d−1

+ (d− 1)

ˆ τ

a

M̃u0(r) r
d−2 dr − (d− 1)

ˆ b

τ

u0(r) r
d−2 dr

= u0(a) a
d−1 − u0(τ) τ

d−1

+ (d− 1)

ˆ τ

a

M̃u0(r) r
d−2 dr +

ˆ b

τ

u′0(r) r
d−1 dr

≤

ˆ b

a

∣∣u′0(r)
∣∣ rd−1 dr + (d− 1)

ˆ τ

a

M̃u0(r) r
d−2 dr.(2.5)

The last inequality holds since

u0(a) a
d−1 − u0(τ) τ

d−1 ≤ −

ˆ τ

a

u′0(r) r
d−1 dr ≤

ˆ τ

a

∣∣u′0(r)
∣∣ rd−1 dr.

If b = ∞, since u∗ ∈ L1,∞(Rd) we must have τ = ∞ as well (i.e. u∗ non-
increasing in the interval (a,∞)) and a simple limiting argument leads to inequality
(2.5) again. Note that limr→∞ u0(r) r

d−1 = 0 since r 7→ u0(r) r
d−1 is locally Lipschitz

with integrable derivative in (0,∞).
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Finally, if a = 0, the proof of (2.5) follows as above noting that limr→0 u
∗(r) rd−1 =

0 (for d ≥ 2).
If we add up (2.5) over all the intervals (ai, bi) of the disjoint union (2.4) we find

ˆ

A1

∣∣(u∗)′(r)
∣∣ rd−1 dr ≤

ˆ

A1

∣∣u′0(r)
∣∣ rd−1 dr + (d− 1)

ˆ ∞

0

M̃u0(r) r
d−2 dr,

which then leads to (note that in Ac
1 we have u∗ = u0, and hence (u∗)′ = u′0 a.e. in

Ac
1)

(2.6)

ˆ ∞

0

∣∣(u∗)′(r)
∣∣ rd−1 dr ≤

ˆ ∞

0

∣∣u′0(r)
∣∣ rd−1 dr + (d− 1)

ˆ ∞

0

M̃u0(r) r
d−2 dr.

Step 2. Control of weighted norms. As r 7→ M̃u0(r) is Lipschitz and its derivative

is integrable (in fact
(
M̃u0

)′
(r) rd−1 ∈ L1(0,∞) from Luiro’s work [20]) we have that

limr→∞ M̃u0(r) exists and it is equal to 0 since M̃u0 ∈ L1,∞(Rd). Then

M̃u0(r) = −

ˆ ∞

r

(
M̃u0

)′
(t) dt

and

(d− 1)

ˆ ∞

0

M̃u0(r) r
d−2 dr = (d− 1)

ˆ ∞

0

(
ˆ ∞

r

−
(
M̃u0

)′
(t) dt

)
rd−2 dr

≤ (d− 1)

ˆ ∞

0

(
ˆ ∞

r

∣∣(M̃u0
)′
(t)
∣∣ dt
)
rd−2 dr

= (d− 1)

ˆ ∞

0

ˆ t

0

rd−2
∣∣(M̃u0

)′
(t)
∣∣ dr dt

=

ˆ ∞

0

∣∣(M̃u0
)′
(t)
∣∣ td−1 dt.

(2.7)

Finally, we combine (2.6) and (2.7) to arrive at (2.2), concluding the proof in this
case.

2.2. General case. Let us first record a basic lemma about radial functions
and weak derivatives. In what follows, when we say that a function f is weakly
differentiable in a certain domain Ω ⊂ R

d, it is naturally understood that f and its
weak derivatives are locally integrable in such a domain.

Lemma 4. .

(i) A radial function f(x) is weakly differentiable in R
d \ {0} if and only if its

radial restriction f(r) is weakly differentiable in (0,∞). In this case, the
weak gradient ∇f of f(x) and the weak derivative f ′ of f(r) are related by
∇f(x) = f ′(|x|) x

|x| .

(ii) In the situation above, if f(x) and ∇f(x) are locally integrable in a neigh-
borhood of the origin, then f is weakly differentiable in R

d.

Proof. This result is most certainly standard but we could not find an exact
explicit reference. We then provide a brief proof for completeness.

Part (i). Assume that f(x) is weakly differentiable in R
d \ {0} and let ∇f be its

weak gradient. Let ϕ ∈ C∞
c (Rd \ {0}) be a radial test function. Letting r = |x| we
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have, by definition,

ˆ

Rd\{0}
f(x)

(
(d− 1)

|x|
ϕ(x) +

∂ϕ

∂r
(x)

)
dx

=

ˆ

Rd\{0}
f(x)

(
d∑

i=1

∂

∂xi

(
xi
|x|
ϕ(x)

))
dx

= −

ˆ

Rd\{0}

(
d∑

i=1

∂f

∂xi

xi
|x|
ϕ(x)

)
dx = −

ˆ

Rd\{0}
∇f(x) ·

x

|x|
ϕ(x) dx.

(2.8)

Write x = rω, with ω ∈ S
d−1. Letting Φ(r) = ϕ(r) rd−1, rewrite (2.8) in polar

coordinates to get

σd−1

(
S
d−1
) ˆ ∞

0

f(r) Φ′(r) dr = −

ˆ ∞

0

(
ˆ

Sd−1

(∇f(rω)) · ω dσd−1(ω)

)
Φ(r) dr.

This is the required integration by parts in (0,∞) for the generic test function Φ.
Assume now that f(r) is weakly differentiable in (0,∞). If g is its weak derivative,

then f(r)−
´ r

1
g(t) dt has weak derivative zero and hence is constant a.e. in (0,∞).

We can then modify f on a set of measure zero so that f is continuous in (0,∞);
in fact absolutely continuous in each interval [a, b] ⊂ (0,∞). In particular, f is
differentiable a.e. and g = f ′. The radial extension f(x) is then continuous in R

d\{0}
and differentiable almost everywhere. Let us show that integration by parts holds,
say, with respect to the first coordinate x1. Write x = (x1, x1, . . . , xd) = rω =
(r cos θ, r(sin θ)ξ), with r ∈ (0,∞), ω ∈ S

d−1 ⊂ R
d, 0 ≤ θ ≤ π and ξ ∈ S

d−2 ⊂ R
d−1.

Let ψ ∈ C∞
c (Rd \ {0}) be a generic test function and consider

Ψ(r) =

(
ˆ

Sd−1

ψ
x1
|x|

dσd−1(ω)

)
rd−1

=

(
ˆ π

0

(
ˆ

Sd−2

ψ dσd−2(ξ)

)
cos θ (sin θ)d−2 dθ

)
rd−1.

Then

Ψ′(r) =

(
ˆ π

0

ˆ

Sd−2

(
∂ψ

∂r
cos θ −

∂ψ

∂θ

sin θ

r

)
(sin θ)d−2 dσd−2(ξ) dθ

)
rd−1,

where an integration by parts in the variable θ was used. Using polar coordinates
one now sees that

ˆ

Rd\{0}
f(x)

∂ψ

∂x1
dx =

ˆ ∞

0

f(r) Ψ′(r) dr = −

ˆ ∞

0

f ′(r) Ψ(r) dr

= −

ˆ

Rd\{0}

(
f ′(|x|)

x1
|x|

)
ψ(x) dx.

This shows that f(x) is weakly differentiable with weak gradient given by ∇f(x) =
f ′(|x|) x

|x| .

Part (ii). Let ψ : Rd → R be a smooth radial non-increasing function with ψ ≡ 1
on {|x| ≤ 1} and ψ ≡ 0 on {|x| ≥ 2}. Let Ψα(x) = 1− ψ(x/α). Let φ ∈ C∞

c (Rd) be
any test function. Since we know that f is weakly differentiable in R

d \ {0} we have,
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for any direction i = 1, 2, . . . , d (here we denote ∂f/∂xi simply by fxi
),

−

ˆ

Rd

fxi
(x) (φΨα)(x) dx =

ˆ

Rd

f(x) (φΨα)xi
(x) dx

=

ˆ

Rd

f(x)φxi
(x) Ψα(x) dx+

ˆ

Rd

f(x)φ(x) (Ψα)xi
(x) dx.

(2.9)

Note that the last integral takes place inside the ball of radius 2α. In this ball we
have φ(x) = φ(0)+R(x) with |R(x)| ≤ Cα. Since f(x) is even in the variable xi and
(Ψα)xi

(x) is odd in the variable xi we get

(2.10)

ˆ

Rd

f(x)(Ψα)xi
(x) dx = 0,

and since (Ψα)xi
(x) = − 1

α
ψxi

(x/α) we find

(2.11)

ˆ

Rd

f(x)R(x)(Ψα)xi
(x) dx→ 0

as α→ 0, since f is locally integrable. Using (2.10) and (2.11) and the fact that ∇f
is also locally integrable we may pass the limit as α→ 0 in (2.9) to find

−

ˆ

Rd

fxi
(x)φ(x) dx =

ˆ

Rd

f(x)φxi
(x) dx,

as desired. �

We now consider the case of general u0 ∈ W 1,1(Rd) radial. We have seen in
Lemma 4 that its radial version u0(r) is weakly differentiable in (0,∞) and

ˆ ∞

0

|u′0(r)| r
d−1 dr <∞.

In particular, after a possible redefinition on a set of measure zero, one can take u0(r)
continuous in (0,∞) (in fact, absolutely continuous in each interval [a,∞) for a > 0).
This is equivalent to assuming that u0(x) is continuous in R

d \ {0}.

Step 3. u∗ is continuous in R
d \ {0}. With u0(x) continuous in R

d \ {0}, the
detachment set Ad defined in (2.3) is open. Throughout the rest of this section let
us write

uε(x) := u(x, ε) =
(
u0 ∗ ϕ(·, ε)

)
(x), x ∈ R

d, ε > 0.

We claim that u∗ is locally Lipschitz in Ad. In fact, if x0 ∈ Ad, there exists t0 > 0
such that

u∗(x0) = u(x0, t0) > u(x0).

From the continuity of u(x, t), there exist a neighborhood V of x0 and an ε0 > 0 such
that

(2.12) u∗(x) = sup
t>0

u(x, t) = sup
t>ε0

u(x, t) = sup
t>0

(
uε0 ∗ ϕ(·, t)

)
(x) =: u∗ε0(x)

for all x ∈ V . Note that in the third equality above we used the semigroup property
of the family ϕ(·, t) (i.e. the fact that ϕ(·, t1) ∗ ϕ(·, t2) = ϕ(·, t1 + t2)). Since uε0 is
Lipschitz, we have that u∗ = u∗ε0 is Lipschitz on V , which proves our claim.

Writing R
d \ {0} = Ad ∪ A

c
d, we now need so show that u∗ is continuous at the

points of Ac
d. Let x0 ∈ Ac

d. If x0 ∈ int(Ac
d) we are done since u∗ = u0 is continuous

in a neighborhood of x0. Assume now that x0 ∈ Ac
d \ int(Ac

d) and that there exists
a sequence {xn}n∈N ⊂ Ad such that xn → x0 but u∗(xn) 9 u∗(x0) = u0(x0). Then
there exist tn > 0 and δ > 0 such that u(xn, tn) ≥ u0(x0) + δ for all n. From the
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integrability of u0, the tn are bounded, and passing to a subsequence we may assume
that tn → t ≥ 0. Then u(xn, tn) → u(x0, t) ≥ u0(x0) + δ, and we get that t > 0 and
x0 ∈ Ad, a contradiction. This establishes that u∗ is continuous in R

d \ {0}.

Step 4. Weak differentiability and conclusion. In the previous step we showed
that u∗(r) is continuous on (0,∞) and locally Lipschitz in A1. For almost every
r ∈ A1, from (2.12) we have

(u∗)′(r) = lim
ε→0

(u∗ε)
′(r).

From Minkowski’s inequality we recall that

(2.13) ‖∇uε‖L1(Rd) ≤ ‖∇u0‖L1(Rd)

for any ε > 0. Using Fatou’s lemma, the bound in Theorem 1 already proved for
Lipschitz functions, and (2.13), we arrive at

ˆ

A1

∣∣(u∗)′(r)
∣∣ rd−1 dr ≤ lim inf

ε→0

ˆ

A1

∣∣(u∗ε)′(r)
∣∣ rd−1 dr

.d lim inf
ε→0

‖∇uε‖L1(Rd) ≤ ‖∇u0‖L1(Rd).
(2.14)

With this in hand, an adaptation of the argument in [9, Section 5.4] shows that u∗(r)
is weakly differentiable in (0,∞) with weak derivative given by χAc

1
u′0(r)+χA1(u

∗)′(r).

This in turn implies that u∗(x) is weakly differentiable in R
d\{0} by Lemma 4. From

(2.14), its weak gradient ∇u∗ on R
d \ {0} verifies

‖∇u∗‖L1(Rd) = κd−1

ˆ ∞

0

∣∣(u∗)′(r)
∣∣ rd−1 dr

= κd−1

(
ˆ

A1

∣∣(u∗)′(r)
∣∣ rd−1 dr +

ˆ

Ac
1

∣∣u′0(r)
∣∣ rd−1 dr

)
(2.15)

.d ‖∇u0‖L1(Rd),

with κd−1 being the total surface measure of Sd−1. This is our desired bound. As a
final remark note that, from the Sobolev embedding, u0 ∈ Ld/(d−1)(Rd) and hence so
does u∗. In particular, u∗ is locally integrable in R

d. Since we already know from
(2.15) that ∇u∗ ∈ L1(Rd), an application of Lemma 4 (ii) gives us that u∗ is in fact
weakly differentiable in R

d. This completes the proof of Theorem 1.

Remark. A crucial insight in the proof above was to relate the variation of

u∗ with the variation of the uncentered Hardy–Littlewood maximal operator M̃u0,

expressed in inequality (2.2). Since M̃u0(x) .d u
∗(x), uniformly for all x ∈ R

d, we

could just run the exact same proof to obtain the gradient bound for M̃u0 starting
from the gradient bound for u∗, showing that these two bounds are actually equivalent
to each other.

3. Proof of Theorem 2

Recall that σ denotes the usual surface measure on the sphere S
d. We denote by

κd = σ(Sd) = 2π(d+1)/2/Γ((d+1)/2) the total surface area of Sd. With a slight abuse
of notation, we shall also write

(3.1) σ(r) := σ
(
Br(ζ)

)
= κd−1

ˆ r

0

(sin t)d−1 dt.
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Throughout this section we assume, without loss of generality, that f is real-valued

and nonnegative (or +∞).

3.1. Preliminaries. If f ∈ L1(Sd), by Lebesgue differentiation we may modify
it in a set of measure zero so that

(3.2) f(ξ) = lim sup
{r→0+ : ξ∈Br(ζ)}

ˆ

Br(ζ)

f(η) dσ(η)

holds everywhere. Let us assume that is the case. For f ∈ L1(Sd) and ξ ∈ S
d let us

define the set Bξ as the set of closed balls that realize the supremum in the definition
of the maximal function, that is

(3.3) Bξ =

{
Br(ζ); ζ ∈ S

d , r ≥ 0, ξ ∈ Br(ζ) : M̃f(ξ) =

ˆ

Br(ζ)

f(η) dσ(η)

}
.

Here we consider the slight abuse of notation

(3.4) B0(ξ) := {ξ} and

ˆ

{ξ}
f(η) dσ(η) := f(ξ),

in order to include the closed ball of radius zero as a potential candidate in the defi-
nition of Bξ. In light of (3.2) we always have that Bξ is non-empty. Our first lemma
holds for general Sobolev functions in W 1,1(Sd) (not necessarily polar functions).

Lemma 5. Let f ∈ W 1,1(Sd) be a nonnegative function that verifies (3.2) and

let ξ ∈ S
d be a point such that M̃f(ξ) > f(ξ). Assume that M̃f is differentiable at

ξ and that B ∈ Bξ. Then

∇M̃f(ξ)v =

ˆ

B
∇f(η)

(
− (η · v)ξ + (η · ξ)v

)
dσ(η)

for every v ∈ R
d+1 with v ⊥ ξ. In particular,

∣∣∇M̃f(ξ)
∣∣ ≤
ˆ

B
|∇f(η)| dσ(η).

Proof. Observe first that the condition M̃f(ξ) > f(ξ) implies that the ball B has
positive radius. Without loss of generality let us assume that |v| = 1. Let Rt = Rt,ξ,v

be the rotation of angle t over the plane spanned by ξ and v that leaves the orthogonal
complement invariant, i.e.

Rt(η) =
(
(cos t)(η · ξ)− (sin t)(η · v)

)
ξ +

(
(sin t)(η · ξ) + (cos t)(η · v)

)
v + z(η),

where z(η) is the component of the vector η that is orthogonal to the plane generated
by ξ and v. Then

∇M̃f(ξ)v = lim
t→0+

M̃f(Rtξ)− M̃f(ξ)

t
≥ lim

t→0+

1

t

(̂

Rt(B)
f −

ˆ

B
f

)

= lim
t→0+

ˆ

B

f(Rtη)− f(η)

t
dσ(η)

=

ˆ

B
∇f(η)

(
− (η · v)ξ + (η · ξ)v

)
dσ(η).

(3.5)

The reverse inequality is obtained similarly by considering the limit as t→ 0−. �

Remark. The passage to the limit in (3.5) uses the fact that the difference quo-
tients are bounded in L1 by a multiple of L1-norm of the gradient of f , uniformly in
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t. With such a uniform bound one can establish the required limit by approximating
f by smooth g.

3.2. Lipschitz case. Throughout this subsection we assume that our polar
f ∈ W 1,1(Sd) is a Lipschitz function. Recalling that e = (1, 0, 0, . . . , 0) ∈ R

d+1, for
ξ ∈ S

d we write

cos θ = ξ · e

with θ ∈ [0, π]. Note that θ = θ(ξ) = d(e, ξ) is the polar angle. We generally write
f(ξ) for the function on S

d, and f(θ) for its polar version on (0, π). We then have

|∇f(ξ)| = |f ′(θ)|

for a.e. ξ ∈ S
d \ {e,−e}, and

‖∇f‖L1(Sd) = κd−1

ˆ π

0

|f ′(θ)| (sin θ)d−1 dθ.

3.2.1. Estimates for small radii. For ζ ∈ S
d let us define

w(ζ) = min
{
θ(ζ), π − θ(ζ)

}
= min{d(e, ζ), d(−e, ζ)}.

Let us define the auxiliary maximal operator M̃I by (recall convention (3.4))

(3.6) M̃If(ξ) = sup
{ξ∈Br(ζ) : 0≤r≤w(ζ)/4}

ˆ

Br(ζ)

f(η) dσ(η).

In analogy to (3.3), for each ξ ∈ S
d we define the set of good balls

B
I
ξ =

{
Br(ζ); ζ ∈ S

d, 0 ≤ r ≤
w(ζ)

4
; ξ ∈ Br(ζ) : M̃

If(ξ) =

ˆ

Br(ζ)

f(η) dσ(η)

}
.

Notice that M̃If is also a polar function. We consider the detachment set

Ed :=
{
ξ ∈ S

d \ {e,−e} : M̃If(ξ) > f(ξ)
}
,

and its polar version, denoted by

E1 = {θ(ξ) = d(e, ξ) : ξ ∈ Ed}.

One can check that M̃If is a continuous function in S
d. Further qualitative properties

of M̃If are described in the next two results.

Lemma 6. M̃If does not have a strict local maximum in E1.

Proof. The proof is identical to [20, Lemma 3.10]. �

Lemma 7. M̃If is locally Lipschitz in Ed.

Proof. Let ξ ∈ Ed. Let Br(ζ) ∈ B
I
ξ with r minimal. Then r > 0 and it is possible

to find a neighborhood V of ξ of the form V = {η ∈ S
d : θ(ξ)− ε < θ(η) < θ(ξ) + ε}

such that: (i) ε < r/100 and (ii) if η ∈ V and Bs(ω) ∈ B
I
η then s > 99r/100.

Let η1, ω2 ∈ V . Let S be the half great circle connecting e, η1,−e. If η2 ∈ S is

such that d(e, η2) = d(e, ω2) then we have d(η1, η2) ≤ d(η1, ω2). Since M̃If(η2) =

M̃If(ω2), for the purposes of proving Lipschitz continuity it suffices to work with

η1, η2 ∈ S. Assume without loss of generality that M̃If(η1) > M̃If(η2). Let

Br1(ζ1) ∈ B
I
η1 with ζ1 ∈ S. Then η2 /∈ Br1(ζ1), and hence η2 is not between ζ1
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and η1. It is also easy to see that we cannot have ζ1 between η1 and η2 due to condi-
tions (i) and (ii) above. Hence we must have η1 between ζ1 and η2. We now choose

a ball Br2(ζ2), with ζ2 ∈ S lying between ζ1 and η2, such that η2 ∈ ∂Br2(ζ2) and

(3.7) r2 = d(ζ2, η2) = min

{
r1,

w(ζ2)

4

}

(one may think of moving the center ζ1 along S in the direction of η2 until finding
the unique choice of ζ2). Note that ζ2 is in fact between ζ1 and η1 and hence

r2 = d(ζ2, η2) = d(ζ1, η1)− d(ζ1, ζ2) + d(η1, η2) ≤ r1 − d(ζ1, ζ2) + d(η1, η2).(3.8)

If r2 = r1 in (3.7) then we have d(ζ1, ζ2) ≤ d(η1, η2). In the other case we have

r2 =
w(ζ2)

4
≥
w(ζ1)

4
−
d(ζ1, ζ2)

4
≥ r1 −

d(ζ1, ζ2)

4
,

and combining with (3.8) we obtain d(ζ1, ζ2) ≤ 4
3
d(η1, η2), which yields r1 − r2 ≤

1
3
d(η1, η2). We conclude by observing that

M̃If(η1)− M̃If(η2) ≤

ˆ

Br1 (ζ1)

f −

ˆ

Br2(ζ2)

f

≤

(
ˆ

Br1 (ζ1)

f −

ˆ

Br2 (ζ1)

f

)
+

(
ˆ

Br2 (ζ1)

f −

ˆ

Br2 (ζ2)

f

)

.d,r,f d(η1, η2). �

An adaptation of the argument in [9, Section 5.4] then shows that M̃If(θ) is

weakly differentiable in (0, π), with weak derivative given by χEc
1
f ′(θ)+χE1

(
M̃If

)′
(θ).

In fact, if θ ∈ E c
1 is a point of differentiability of f (which are almost all points of

E c
1) one can plainly see that f ′(θ) = 0, otherwise one could do better than f(θ) in

the maximal function (3.6) and θ would belong to E1 instead. The weak derivative of

M̃If(θ) is then simply χE1
(
M̃If

)′
(θ). From Lemma 13 below we have that M̃If(ξ)

is weakly differentiable in S
d. The next proposition establishes the desired control of

the variation.

Proposition 8. The following inequality holds
∥∥∇M̃If

∥∥
L1(Sd)

.d ‖∇f‖L1(Sd).

Proof. The proof follows the outline of [20, Lemma 3.5] with minor changes. We
need to prove that

ˆ

E1

∣∣(M̃If)′(θ)
∣∣ (sin θ)d−1 dθ .d

ˆ π

0

∣∣f ′(θ)
∣∣ (sin θ)d−1 dθ.

We shall prove that

(3.9)

ˆ

E1∩[0,π/2]

∣∣(M̃If)′(θ)
∣∣ (sin θ)d−1 dθ .d

ˆ π

0

∣∣f ′(θ)
∣∣ (sin θ)d−1 dθ

and the proposition follows by symmetry. For k ≥ 1, we define Ek
1 = E1 ∩

[
π

2k+1 ,
π
2k

]
,

and since E1 is open we may write int
(
Ek
1

)
=
⋃∞

i=1(a
k
i , b

k
i ). We observe that (sin 2θ)d−1

(sin θ)d−1
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≃d 1 for θ ≤ π
4
. When aki = π

2k+1 or bki = π
2k

we observe, from the definition of the
auxiliary operator in (3.6), that

M̃If(π/2k+1) , M̃If(π/2k) ≤ sup
θ(ξ)∈ [π/2k+2,π/2k−1]

f(ξ)

for k ≥ 2. These are the ingredients needed to run the argument in [20, Lemma 3.5]
in order to get

ˆ

Ek
1

∣∣(M̃If)′(θ)
∣∣ (sin θ)d−1 dθ .d

ˆ π/2k−1

π/2k+2

∣∣f ′(θ)
∣∣(sin θ)d−1 dθ(3.10)

for k ≥ 2. In the case k = 1 we must be a bit more careful when b1i = π/2 by using
the bound

M̃If(π/2) ≤ sup
θ(ξ)∈ [π/4,3π/4]

f(ξ),

which then yields

ˆ

E1
1

∣∣(M̃If)′(θ)
∣∣ (sin θ)d−1 dθ ≤

ˆ

E1
1

∣∣(M̃If)′(θ)
∣∣dθ .

ˆ 3π/4

π/8

∣∣f ′(θ)
∣∣ dθ

.d

ˆ 3π/4

π/8

∣∣f ′(θ)
∣∣(sin θ)d−1 dθ.

(3.11)

Finally, we add up (3.10) and (3.11) to get (3.9). �

3.2.2. Estimates for large radii – preliminary lemmas. The other crucial
ingredient in the proof of Luiro [20, Lemma 2.2 (v)] is the bound

∣∣∇M̃f(x)
∣∣ ≤ 1

|x|

ˆ

B

|∇f(y)| |y| dy,

where B ∋ x is a ball in which the maximal function is realized. The main difficulty
in the case of Sd is in establishing a bound that will serve a similar purpose. This
is accomplished in Lemma 12 below but before we actually get there we need a
few preliminary lemmas. Recall the definition of σ(r) in (3.1), and observe that
σ′(r) = κd−1(sin r)

d−1 is equal to the (d− 1)-dimensional area of ∂Br(ζ).

Lemma 9. Let ξ ∈ S
d \ {e,−e} and let Br(ζ) ∈ Bξ, with ζ in the half great

circle determined by e, ξ and −e. Assume that 0 ≤ θ(ζ) < θ(ξ), that ξ ∈ ∂Br(ζ),

that M̃f(ξ) > f(ξ) and that M̃f is differentiable at ξ. Then

∇M̃f(ξ)(v(ξ, e)) =
σ′(r)

σ(r)

ˆ

Br(ζ)

∇f(η)(v(η, ζ))
σ(d(ζ, η))

σ′(d(ζ, η))
dσ(η),

where

v(η, ζ) =
ζ − (η · ζ)η

|ζ − (η · ζ)η|

is the unit vector, tangent to η, in the direction of the geodesic that goes from η to
ζ .

Proof. Since M̃f(ξ) > f(ξ) we have r > 0. Let S be the great circle determined
by e and ξ. For small h ∈ R we consider a rotation Rh of angle h in this circle (in
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the direction from ξ to e) leaving the orthogonal complement in R
d+1 invariant, and

write ζ − h := Rh(ζ). The idea is to look at the following quantity

lim
h→0

´

Br+h(ζ−h)
f −
´

Br(ζ)
f

h

= lim
h→0

´

Br+h(ζ−h)
f −
´

Br(ζ−h)
f +
´

Br(ζ−h)
f −
´

Br(ζ)
f

h
.

(3.12)

In principle we do not know that the limit above exists. We shall prove that it in
fact exists using the right-hand side of (3.12). Once this is established, the left-hand
side of (3.12) tells us that this limit must be zero, since the numerator is always
nonpositive regardless of the sign of h.

From Lemma 5 (in particular, see computation (3.5)) we note that

lim
h→0

´

Br(ζ−h)
f −
´

Br(ζ)
f

h
= ∇M̃f(ξ)(v(ξ, e)).(3.13)

Note also that
´

Br+h(ζ−h)
f −
´

Br(ζ−h)
f

h

=

1
σ(r+h)

− 1
σ(r)

h

ˆ

Br+h(ζ−h)

f +
1

σ(r)

´

Br+h(ζ−h)
f −
´

Br(ζ−h)
f

h

→ −
σ′(r)

σ(r)2

ˆ

Br(ζ)

f +
1

σ(r)

ˆ

∂Br(ζ)

f

(3.14)

as h → 0. Hence the limit in (3.12) exists and is zero. Now we consider momen-
tarily ζ as the north pole in the computation below and proceed with the standard
polar coordinates on the sphere. Writing η = (cos θ, ω sin θ), with ω ∈ S

d−1 we use
integration by parts to get

ˆ

Br(ζ)

∇f(η) (−v(η, ζ))
σ(d(ζ, η))

σ′(d(ζ, η))
dσ(η)

=

ˆ

Sd−1

ˆ r

0

∂f

∂θ
(θ, ω)

(
ˆ θ

0

(sin t)d−1dt

)
dθ dσd−1(ω)

=

ˆ

Sd−1

f(r, ω)

(
ˆ r

0

(sin t)d−1dt

)
dσd−1(ω)

−

ˆ

Sd−1

ˆ r

0

f(θ, ω)(sin θ)d−1dθ dσd−1(ω)

=
σ(r)

σ′(r)

ˆ

∂Br(ζ)

f −

ˆ

Br(ζ)

f.

(3.15)

The lemma then plainly follows from (3.12), (3.13), (3.14) and (3.15). �

We now state a basic geometric lemma.

Lemma 10. Denote by △ABC a geodesic triangle with vertices A,B,C, oppo-
site geodesic side lengths a, b, c, and (geodesic) angles Â, B̂, Ĉ.

(i) There exist universal constants γ > 1 and ρ > 0 such that for every △ABC ⊂

Bρ(e) we have

a sin B̂ ≤ γ b.
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(ii) Under the same hypotheses, if B̂ ≤ π
2

we have
∣∣c− a cos B̂

∣∣ ≤ b.

Proof. Part (i). By the triangle inequality we have a ≤ 2ρ. Then, for any γ > 1
we can choose ρ small so that sin θ ≤ θ ≤ γ sin θ for 0 ≤ θ ≤ 2ρ. Using the spherical
law of sines we have

a sin B̂ ≤ γ sin a sin B̂ = γ sin b sin Â ≤ γ sin b ≤ γb.

Part (ii). Assume that ρ is small. We shall prove that cos(c − a cos B̂) ≥ cos b,

which shall imply that |c− a cos B̂| ≤ b. By the spherical law of cosines we have

cos b = cos c cos a+ sin c sin a cos B̂.

Note that

cos(c− a cos B̂) = cos c cos(a cos B̂) + sin c sin(a cos B̂).

Since 0 ≤ a cos B̂ ≤ a we have that cos(a cos B̂) ≥ cos a. Also, by elementary

calculus we have sin(a cos B̂) ≥ sin a cos B̂, and the result plainly follows from these
estimates. �

We conclude this part with another elementary fact.

Lemma 11. We have

u(t) :=

´ t

0
(sin s)d−1 ds

t (sin t)d−1
=

σ(t)

t σ′(t)
≃d 1

for 0 ≤ t ≤ 1/4. Moreover, u is a C∞-function in this range.

Proof. Note that
´ t

0
(sin s)d−1 ds

t(sin t)d−1
=

1

t

ˆ t

0

(
sin s

sin t

)d−1

ds =
sin t

t

ˆ 1

0

ad−1 1

(1− a2(sin t)2)1/2
da,

and both t 7→ sin t
t

and t 7→
´ 1

0
ad−1 1

(1−a2(sin t)2)1/2
da are smooth functions bounded

above and below in the proposed range. �

3.2.3. Estimates for large radii – main lemma. We are now in position to
prove the key result of this subsection.

Lemma 12. Let ξ ∈ S
d \ {e,−e} and let Br(ζ) ∈ Bξ, with ζ in the half great

circle determined by e, ξ and −e. Assume that 0 ≤ θ(ζ) < θ(ξ), that ξ ∈ ∂Br(ζ),

that M̃f(ξ) > f(ξ) and that M̃f is differentiable at ξ. There is a universal constant

ρ > 0 such that if B = Br(ζ) ⊂ Bρ(e) then

∣∣∇M̃f(ξ)
∣∣ .d

1

θ(ξ)

ˆ

B
|∇f(η)| θ(η) dσ(η) +

r θ(ζ)

θ(ξ)

ˆ

B
|∇f(η)| dσ(η).(3.16)

Proof. From Lemma 9 we have

∇M̃f(ξ)(−v(ξ, e)) =
σ′(r)

σ(r)

ˆ

B
∇f(η)(−v(η, ζ))

σ(d(ζ, η))

σ′(d(ζ, η))
dσ(η).(3.17)

In the case ζ = e, estimate (3.16) follows directly from (3.17) and Lemma 11. From
now on we assume that ζ 6= e. From Lemma 5 we also know that

∇M̃f(ξ)(−v(ξ, e)) =

ˆ

B
∇f(η)S(η) dσ(η),(3.18)
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with S(η) = (η·v(ξ, e))ξ−(η·ξ)v(ξ, e).The idea is to compare the identities (3.17) and

(3.18) in order to bound
∣∣∇M̃f(ξ)

∣∣ =
∣∣∇M̃f(ξ)(−v(ξ, e))

∣∣. To do so, we write the

right-hand side of (3.18) as a sum of three terms, one being comparable to
∣∣∇M̃f(ξ)

∣∣,
the second one being small, and the third one being close to the right-hand side of
(3.17) in a suitable sense. We start by writing

1 =
θ(ξ)− θ(ζ)

r
=
d(e, ξ)− d(e, ζ)

r
.

Let us define v1(η) = S(η)/|S(η)|. We then have
ˆ

B
∇f(η)S(η) dσ(η)

=

ˆ

B
∇f(η) |S(η)|

(
θ(ξ)− θ(ζ)

r

)
v1(η) dσ(η)

=

ˆ

B
∇f(η) |S(η)|

θ(ξ)

r
v1(η) dσ(η)

−

ˆ

B
∇f(η)

(
|S(η)| − 1

)θ(ζ)
r

v1(η) dσ(η)−

ˆ

B
∇f(η)

θ(ζ)

r
v1(η) dσ(η).

(3.19)

Step 1. Let us start by bounding the quantity

σ′(r)

σ(r)

ˆ

B
∇f(η)(−v(η, ζ))

σ(d(ζ, η))

σ′(d(ζ, η))
dσ(η) +

ˆ

B
∇f(η)

θ(ζ)

r
v1(η) dσ(η).

This last expression is equal to (recall the definition of u in Lemma 11)

σ′(r)

σ(r)

ˆ

B
∇f(η)

[
d(ζ, η) u(d(ζ, η)) (−v(η, ζ))+ d(e, ζ) u(r) v1(η)

]
dσ(η).(3.20)

Note now that

d(ζ, η) u(d(ζ, η)) (−v(η, ζ))+ d(e, ζ) u(r) v1(η)

= u(d(ζ, η))
[
d(ζ, η)(−v(η, ζ)) + d(e, ζ)v1(η)

]

− d(e, ζ)
[
u(d(ζ, η))− u(r)

]
v1(η).

From Lemma 11 we know that u(t) is Lipschitz for 0 ≤ t ≤ 1/4. We then have
|u(d(ζ, η))− u(r)| .d r and another application of Lemma 11 yields

σ′(r)

σ(r)

∣∣∣∣
ˆ

B
∇f(η) d(e, ζ)

[
u(d(ζ, η))− u(r)

]
v1(η) dσ(η)

∣∣∣∣

.d

ˆ

B
|∇f(η)| d(e, ζ) dσ(η).

(3.21)

Let us now deal with the remaining piece. Observe that

d(ζ, η) (−v(η, ζ)) + d(e, ζ) v1(η)

= d(ζ, η)
(
v1(η) cosα + v1(η)

∗ sinα
)
+ d(e, ζ) v1(η)

=
[
d(ζ, η)v1(η) cosβ + d(e, ζ) v1(η)

]
+
[
d(ζ, η)v1(η)

∗ sinα
]

+
[
d(ζ, η)v1(η)(cosα− cos β)

]

= [I] + [II] + [III],

(3.22)

where cosα = −v(η, ζ) · v1(η) (0 ≤ α ≤ π), v1(η)
∗ is unitary and orthogonal to

v1(η) (in the plane determined by v1(η) and v(η, ζ)), and cos β = v(ζ, η) · (−v(ζ, e))
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(0 ≤ β ≤ π). Naturally, we may assume without loss of generality that η 6= ζ . We
now proceed with the analysis of the three terms in (3.22).

Analysis of [I]. Observe that

|d(ζ, η)v1(η) cosβ + d(e, ζ) v1(η)| = |d(ζ, η) cosβ + d(e, ζ)|.

Consider the geodesic triangle with vertices e, ζ, η (that has angle ∠eζη = π − β).
Assuming ρ small, if β > π/2 we may use Lemma 10 (ii) to find

|d(ζ, η) cosβ + d(e, ζ)| ≤ d(e, η).

In case 0 ≤ β ≤ π/2 we have

0 ≤ sgn(cos β) = sgn
[
(η − (ζ · η)ζ) · (−e + (ζ · e)ζ)

]
= sgn

[
− (η · e) + (ζ · e)(ζ · η)

]
,

which implies that

cos(θ(ζ)) = (ζ · e) ≥ (ζ · e)(ζ · η) ≥ (η · e) = cos(θ(η)).

From this we conclude that d(e, ζ) = θ(ζ) ≤ θ(η) = d(e, η) and hence

|d(ζ, η) cosβ + d(e, ζ)| ≤ d(ζ, η) + d(e, ζ) ≤ (d(e, ζ) + d(e, η)) + d(e, ζ) ≤ 3d(e, η).

Analysis of [II] and [III]. We note that the angles α and β are close, and it
is important for our purposes to actually quantify this discrepancy. In order to do
this, let us parametrize the points as follows. We write ζ = (cos θ, sin θ, 0), with
0 ∈ R

d−1, and η = (cos θ1, sin θ1 cosϕ, sin θ1 sinϕ ω) with ω ∈ S
d−2 ⊂ R

d−1. Here we
set 0 ≤ θ, θ1, ϕ ≤ π. Recall that in this notation we have e = (1, 0, 0). We then have
−v(ζ, e) = (− sin θ, cos θ, 0). Recall also that the vector v1(η) is the unitary vector
tangent to η in the direction of the derivative of the curve that takes the point η
along the rotation in the first two coordinates (in the direction from e to ζ). A direct
computation yields

(3.23) S(η) = (− sin θ1 cosϕ, cos θ1, 0)

and

v1(η) =
1√

1− sin2 θ1 sin
2 ϕ

(− sin θ1 cosϕ, cos θ1, 0).

Using that v(ζ, e) ⊥ ζ and v1(η) ⊥ η we then find

cos β = v(ζ, η) · (−v(ζ, e)) =
η − (η · ζ)ζ

|η − (η · ζ)ζ |
· (−v(ζ, e))

=
− sin θ cos θ1 + cos θ sin θ1 cosϕ

|η − (η · ζ)ζ |

and

cosα = −v(η, ζ) · v1(η) =
−ζ + (η · ζ)η

| − ζ + (η · ζ)η|
· v1(η)

=
− sin θ cos θ1 + cos θ sin θ1 cosϕ√
1− sin2 θ1 sin

2 ϕ |− ζ + (η · ζ)η|
.

Since |η− (η · ζ)ζ | = |− ζ +(η · ζ)η| =
√
1− (η · ζ)2, we plainly obtain that | cos β| ≤

| cosα| and hence sinα ≤ sin β. Using Lemma 10 (i) we then find

|d(ζ, η)v1(η)
∗ sinα| ≤ d(ζ, η) sinβ . d(e, η).
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This takes care of the term [II] in (3.22). Finally, we recall that all the action takes
place inside a small ball Bρ(e), which means that the angles θ and θ1 are small. This
yields an estimate for the term [III] of the form

|d(ζ, η)v1(η)(cosα− cos β)| . |ζ − η|| cosα− cos β|

=

√
2(1− (η · ζ))√
1− (η · ζ)2

|− sin θ cos θ1 + cos θ sin θ1 cosϕ|

(
1√

1− sin2 θ1 sin
2 ϕ

− 1

)

. sin2 θ1 . θ1 = d(e, η).

Combining (3.20), (3.21) and the bounds for the terms [I], [II], [III] in (3.22), and
using Lemma 11, we arrive at

∣∣∣∣
σ′(r)

σ(r)

ˆ

B
∇f(η)(−v(η, ζ))

σ(d(ζ, η))

σ′(d(ζ, η))
dσ(η) +

ˆ

B
∇f(η)

θ(ζ)

r
v1(η) dσ(η)

∣∣∣∣

.d

ˆ

B
|∇f(η)| θ(ζ) dσ(η) +

1

r

ˆ

B
|∇f(η)| θ(η) dσ(η).

(3.24)

Step 2. We continue our analysis with the term
ˆ

B
∇f(η)

(
|S(η)| − 1

)θ(ζ)
r

v1(η) dσ(η).

From (3.23) we know that |S(η)|2 = η · p(η), where p(η) is the projection of η over
the plane generated by ζ and e. Therefore

∣∣∣∣
ˆ

B
∇f(η)

(
|S(η)| − 1

)θ(ζ)
r

v1(η) dσ(η)

∣∣∣∣

≤

ˆ

B
|∇f(η)|

(
1− |S(η)|2

)θ(ζ)
r

dσ(η)

≤

ˆ

B

∣∣∇f(η)
∣∣ ∣∣η · (η − p(η))

∣∣θ(ζ)
r

dσ(η)

≤

ˆ

B

∣∣∇f(η)
∣∣ |η − p(η)|

θ(ζ)

r
dσ(η)

≤

ˆ

B

∣∣∇f(η)
∣∣ θ(ζ) dσ(η).

(3.25)

Step 3. Combining (3.17), (3.18), (3.19), (3.24) and (3.25) we find that
∣∣∣∣
ˆ

B
∇f(η) |S(η)|

θ(ξ)

r
v1(η) dσ(η)

∣∣∣∣

.d

ˆ

B
|∇f(η)| θ(ζ) dσ(η) +

1

r

ˆ

B
|∇f(η)| θ(η) dσ(η),

and therefore
∣∣∣∇M̃f(ξ)

∣∣∣ =
∣∣∣∣
ˆ

B
∇f(η)S(η) dσ(η)

∣∣∣∣

.d
1

θ(ξ)

ˆ

B
|∇f(η)| θ(η) dσ(η) +

r θ(ζ)

θ(ξ)

ˆ

B
|∇f(η)| dσ(η).

This concludes the proof of the lemma. �

3.2.4. Proof of Theorem 2 – Lipschitz case. We are now in position to move
on to the proof of Theorem 2 when our initial datum f is a Lipschitz function. In this
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case we also have M̃f Lipschitz. Consider the set Hd = {ξ ∈ S
d : M̃f(ξ) > M̃If(ξ)}.

In light of Proposition 8 it suffices to show that
ˆ

Hd

∣∣∇M̃f(ξ)
∣∣dσ(ξ) .d

ˆ

Sd

|∇f(ξ)| dσ(ξ).

For each ξ ∈ S
d \ {e,−e} let us choose a ball Brξ(ζξ) ∈ Bξ with rξ minimal and,

subject to this condition, with ζξ in the half great circle connecting e, ξ,−e in a way
that w(ζξ) = min{d(e, ζξ), d(−e, ζξ)} is minimal. If there are two potential choices
for ζξ we choose the one with 0 ≤ θ(ζξ) ≤ θ(ξ).

First let us observe that we can restrict our attention to small balls. For c > 0,
define the set Rc = {ξ ∈ Hd \ {e,−e} : rξ ≥ c}. By Lemma 5 we find

ˆ

Rc

∣∣∇M̃f(ξ)
∣∣dσ(ξ) ≤

ˆ

Rc

1

σ(Brξ(ζξ))

ˆ

Brξ
(ζξ)

|∇f(η)| dσ(η) dσ(ξ)

.c,d

ˆ

Sd

|∇f(η)| dσ(η).

If ξ ∈ Hd \ {e,−e} and rξ is small we must have w(ζξ) < 4rξ (otherwise we would

fall in the regime of the operator M̃I). Assuming that ξ ∈ Hd \ {e,−e}, that M̃f

is differentiable at ξ, and that ∇M̃f(ξ) 6= 0 (which implies that ξ ∈ ∂Brξ(ζξ)), we
may restrict ourselves to the situation where d(e, ξ) ≤ ρ or d(−e, ξ) ≤ ρ (where ρ
is given by Lemma 12). By symmetry let us assume that θ(ξ) = d(e, ξ) ≤ ρ. We
call such set Gd and further decompose it in G−

d = {ξ ∈ Gd : 0 ≤ θ(ζξ) < θ(ξ)} and
G+
d = {ξ ∈ Gd : 0 < θ(ξ) < θ(ζξ)}. We bound the integrals over these two sets

separately.
Step 1. For G+

d we use Lemma 5 and proceed as follows:
ˆ

G+
d

∣∣∇M̃f(ξ)
∣∣dσ(ξ) ≤

ˆ

G+
d

ˆ

Brξ
(ζξ)

|∇f(η)| dσ(η) dσ(ξ)

=

ˆ

Sd

|∇f(η)|

ˆ

G+
d

χBrξ
(ζξ)(η)

σ(Brξ(ζξ))
dσ(ξ) dσ(η).

(3.26)

Note that θ(η) ≥ θ(ξ) in this case. Observe that

(3.27) rξ >
w(ζξ)

4
=
θ(ζξ)

4
≥
θ(ξ)

4
,

and also, by triangle inequality,

(3.28) rξ ≥
d(η, ξ)

2
≥
θ(η)

2
−
θ(ξ)

2
.

Dividing (3.28) by 2 and adding up to (3.27) we get

rξ ≥
θ(η)

6
.

Returning to the computation (3.26) we have, for a fixed η,

ˆ

G+
d

χBrξ
(ζξ)(η)

σ(Brξ(ζξ))
dσ(ξ) ≤

ˆ

Bθ(η)(e)

1

σ
( θ(η)

6

) dσ(ξ) ≃d 1,

from which the required bound follows.
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Step 2. We now bound the integral over G−
d using Lemma 12. If ξ ∈ G−

d then

rξ ≤ θ(ξ) < 5rξ.(3.29)

We then have
ˆ

G−
d

∣∣∇M̃f(ξ)
∣∣dσ(ξ) .d

ˆ

G−
d

(
1

θ(ξ)

ˆ

Brξ
(ζξ)

|∇f(η)| θ(η) dσ(η)

+
rξ θ(ζξ)

θ(ξ)

ˆ

Brξ
(ζξ)

|∇f(η)| dσ(η)

)
dσ(ξ)

.

ˆ

Sd

|∇f(η)|

ˆ

G−
d

χBrξ
(ζξ)(η) θ(η)

rξ σ(rξ)
dσ(ξ) dσ(η)

+

ˆ

Sd

|∇f(η)|

ˆ

G−
d

χBrξ
(ζξ)(η) θ(ζξ)

σ(rξ)
dσ(ξ) dσ(η).

(3.30)

Using (3.29) and the fact that θ(ζξ) ≤ θ(ξ) in this case, we have, for a fixed η,
ˆ

G−
d

χBrξ
(ζξ)(η) θ(ζξ)

σ(rξ)
dσ(ξ) ≤

ˆ

G−
d

χBrξ
(ζξ)(η) θ(ξ)

σ(rξ)
dσ(ξ)

.d

ˆ ρ

0

θ (sin θ)d−1

σ(θ)
dθ .d 1,

(3.31)

where we used Lemma 11 in the last inequality. For the other integral, we use (3.29),
the fact that θ(η) ≤ θ(ξ) in this case, and Lemma 11 again to get

ˆ

G−
d

χBrξ
(ζξ)(η) θ(η)

rξ σ(rξ)
dσ(ξ) ≤ θ(η)

ˆ ρ

θ(η)

(sin θ)d−1

rξ σ(rξ)
dθ .d θ(η)

ˆ ρ

θ(η)

1

θ2
dθ . 1.(3.32)

Our desired inequality plainly follows from inserting the bounds given by (3.31) and
(3.32) into (3.30). This completes the proof of Theorem 2 in the Lipschitz case.

3.3. Passage to the general case. We will be brief here since the outline is
the same as in §2.2. The following lemma is the analogue of Lemma 4 in the case of
the sphere and we omit its proof.

Lemma 13. (i) A polar function f(ξ) is weakly differentiable in S
d\{e,−e}

if and only if its polar restriction f(θ) is weakly differentiable in (0, π). In
this case, the weak gradient ∇f of f(ξ) and the weak derivative f ′ of f(θ)
are related by

∇f(ξ) = f ′(θ(ξ))(−v(ξ, e)) = f ′(θ(ξ))
−e+ (ξ · e)ξ

| − e + (ξ · e)ξ|
.

(ii) In the situation above, if f(ξ) and ∇f(ξ) are locally integrable in neighbor-
hoods of e and −e, then f is weakly differentiable in S

d.

Consider now a (nonnegative) polar function f(ξ) inW 1,1(Sd). Then, by Lemma 13,
its polar version f(θ) is weakly differentiable in (0, π) and verifies

ˆ π

0

|f ′(θ)| (sin θ)d−1 dθ <∞.

In particular, after a possible redefinition on a set of measure zero, one can take f(θ)
continuous in (0, π) (in fact, absolutely continuous in each compact interval of (0, π)).
This is equivalent to assuming that f(ξ) is continuous in S

d \ {e,−e}.
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In this case the detachment set

Dd := {ξ ∈ S
d \ {e,−e} : M̃f(ξ) > f(ξ)}

is an open set. One can also show that M̃f is continuous in S
d \ {e,−e} (see the

ideas in Step 3 of §2.2), being indeed locally Lipschitz in Dd (see the ideas in the

proof of Lemma 7, passage (3.5) and the remark thereafter). In particular, M̃f is
differentiable almost everywhere in Dd.

Let {fn} ⊂ C∞(Sd) be a sequence of nonnegative smooth functions such that
fn → f in W 1,1(Sd). We may simply assume that fn is given by the spherical
convolution of f with a smooth polar kernel ϕn (say, non-increasing in the polar
angle) of integral 1 supported in the geodesic ball of radius 1/n centered at the north
pole; see [10, Chapter 2, Sections 2.1 and 2.3, and Proposition 2.6.4] for details on the
spherical convolution. We may also assume that fn → f and ∇fn → ∇f pointwise
almost everywhere in S

d (say, outside a set X ⊂ S
d of measure zero). Let ξ ∈ Dd \X

be a point at which M̃f is differentiable and all M̃fn are differentiable (this is still

almost everywhere in Dd). Note that for n large we shall have ξ ∈ {M̃fn(ξ) > fn(ξ)}.
We now observe that if Bn = Brn(ζn) is a ball that realizes the maximal function

M̃fn(ξ) with rn → r and ζn → ζ , then we must have r > 0 and the limiting ball

Br(ζ) realizing the maximal function M̃f(ξ). This plainly implies that

M̃fn(ξ) → M̃f(ξ)

as n→ ∞, and also, by Lemma 5,

∇M̃fn(ξ) → ∇M̃f(ξ)

as n→ ∞.
Since we have proved Theorem 2 for Lipschitz functions, using Fatou’s lemma we

have
ˆ

Dd

∣∣∇M̃f(ξ)
∣∣dσ(ξ) ≤ lim inf

n→∞

ˆ

Dd

∣∣∇M̃fn(ξ)
∣∣ dσ(ξ)

.d lim inf
n→∞

‖∇fn‖L1(Sd) = ‖∇f‖L1(Sd).
(3.33)

This places us in position to adapt the one-dimensional argument of [9, Section 5.4]

to show that M̃f(θ) is weakly differentiable in (0, π), with weak derivative given by

χDc
1
f ′(θ) + χD1(M̃f)′(θ),(3.34)

where D1 = {θ(ξ) : ξ ∈ Dd} is the polar version of Dd. In fact, if θ ∈ Dc
1 is a point of

differentiability of f (which are almost all points of Dc
1) one can verify that f ′(θ) = 0,

otherwise θ would belong to D1 instead. The weak derivative of M̃f(θ) is then simply

χD1

(
M̃f

)′
(θ). This in turn implies that M̃f is weakly differentiable in S

d \ {e,−e}
by Lemma 13. From (3.33) and (3.34) we have

∥∥∇M̃f
∥∥
L1(Sd)

.d ‖∇f‖L1(Sd),(3.35)

which is our desired bound. From the Sobolev embedding we know that f ∈

Ld/(d−1)(Sd), and hence so does M̃f . In particular, M̃f is locally integrable in S
d.

From (3.35) we already know that ∇M̃f is locally integrable in S
d, and a further

application of Lemma 13 shows that M̃f is in fact weakly differentiable in S
d, which

completes our proof.
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4. Proof of Theorem 3

We now turn our attention to the proof of Theorem 3. As presented in the
introduction, the notation here is slightly different, as we denote our initial datum
by u0 and our maximal function by u∗. As usual, throughout this section, we assume
that u0 is real-valued and nonnegative (or +∞).

4.1. Lipschitz case. As in the proofs of the previous two theorems in this paper,
we address first the case when our polar u0 ∈ W 1,1(Sd) is a Lipschitz function. In this
case we have that u∗ is a polar function that is also Lipschitz (see [5, Lemma 16 (ii)]).

4.1.1. A preliminary lemma. The following result will be important for our
purposes.

Lemma 14. Let u0 : S
d → R

+ be a polar and Lipschitz function. Then, in polar
coordinates,

M̃u0
(
π
2

)
− u0

(
π
2

)
.d ‖∇u0‖L1(Sd).

Proof. Let us assume that M̃u0
(
π
2

)
> u0

(
π
2

)
. First observe that

M̃u0
(
π
2

)
− u0

(
π
2

)
=

(
M̃u0

(
π
2

)
− sup

θ∈[π
4
, 3π
4
]

u0(θ)

)
+

(
sup

θ∈[π
4
, 3π
4
]

u0(θ)− u0
(
π
2

)
)
,

and

sup
θ∈[π

4
, 3π
4
]

u0(θ)− u0
(
π
2

)
≤

ˆ 3π
4

π
4

|u′0(θ)| dθ .d

ˆ 3π
4

π
4

|u′0(θ)| (sin θ)
d−1 dθ .d ‖∇u0‖L1(Sd).

Therefore it suffices to bound M̃u0
(
π
2

)
− supθ∈[π

4
, 3π
4
] u0(θ). Bringing things back to

the notation of § 3.1, let ξ ∈ S
d be such that θ(ξ) = π

2
and let B = Br(ζ) ∈ Bξ. Let

Z = {η ∈ S
d : π

4
≤ θ(η) ≤ 3π

4
}. If B ⊂ Z, then M̃u0

(
π
2

)
−supθ∈[π

4
, 3π
4
] u0(θ) ≤ 0 and we

are done. Assume henceforth that B 6⊂ Z and that M̃u0
(
π
2

)
− supθ∈[π

4
, 3π
4
] u0(θ) ≥ 0.

Writing η = (cos θ, (sin θ)ω), with ω ∈ S
d−1, we define

ℓ(θ) =

ˆ

Sd−1

χB(η) (sin θ)
d−1 dσd−1(ω)

(that is, the (d − 1)-dimensional measure of the intersection of B with the level set
d(e, η) = θ). We then have

M̃u0
(
π
2

)
=

ˆ

B
u0(η) dσ(η) =

1

σ(B)

ˆ π

0

u0(θ) ℓ(θ) dθ

=
1

σ(B)

(
ˆ π

4

0

u0(θ) ℓ(θ) dθ +

ˆ 3π
4

π
4

u0(θ) ℓ(θ) dθ +

ˆ π

3π
4

u0(θ) ℓ(θ) dθ

)

≤

(
sup

θ∈[π
4
, 3π
4
]

u0(θ)

)
1

σ(B)

ˆ 3π
4

π
4

ℓ(θ) dθ

+
1

σ(B)

(
ˆ π

4

0

u0(θ) ℓ(θ) dθ +

ˆ π

3π
4

u0(θ) ℓ(θ) dθ

)
.

(4.1)
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Now observe that
ˆ π

3π
4

u0(θ) ℓ(θ) dθ =

ˆ π

3π
4

(
ˆ θ

3π
4

u′0(τ) dτ + u0(
3π
4
)

)
ℓ(θ) dθ

= u0(
3π
4
)

ˆ π

3π
4

ℓ(θ) dθ +

ˆ π

3π
4

u′0(τ)

(
ˆ π

τ

ℓ(θ) dθ

)
dτ.

(4.2)

Plugging the bound
ˆ π

τ

ℓ(θ) dθ .d

ˆ π

τ

(sin θ)d−1 dθ . (sin τ)d−1

into (4.2) we get
ˆ π

3π
4

u0(θ) ℓ(θ) dθ ≤

(
sup

θ∈[π
4
, 3π
4
]

u0(θ)

)
ˆ π

3π
4

ℓ(θ) dθ + Cd ‖∇u0‖L1(Sd),(4.3)

where Cd is a universal constant. In an analogous way we obtain
ˆ π

4

0

u0(θ) ℓ(θ) dθ ≤

(
sup

θ∈[π
4
, 3π
4
]

u0(θ)

)
ˆ π

4

0

ℓ(θ) dθ + Cd ‖∇u0‖L1(Sd).(4.4)

Combining (4.1), (4.3) and (4.4) we get

M̃u0
(
π
2

)
≤ sup

θ∈[π
4
, 3π
4
]

u0(θ) + Cd ‖∇u0‖L1(Sd),

from where our result follows. �

4.1.2. Proof of Theorem 3 – Lipschitz case. Assume d ≥ 2 since the
case d = 1 has already been treated in [5, Theorem 3]. Define the detachment set
(excluding the poles)

Ad = {ξ ∈ S
d \ {e,−e} : u∗(ξ) > u0(ξ)}

and its one-dimensional polar version

A1 = {θ(ξ) : ξ ∈ Ad} ⊂ (0, π).

These sets are open and from [5, Lemma 17] we know that u∗ is subharmonic on Ad.
We write

A1 =
∞⋃

i=0

(ai, bi)

as a countable union of disjoint open intervals. If π
2
∈ A1 we let π

2
∈ (a0, b0) and let

A−
1 =

⋃

(ai,bi)⊂
(
0,
π
2

)
(ai, bi) and A+

1 =
⋃

(ai,bi)⊂
(
π
2
,π
)
(ai, bi).

If π
2
/∈ A1 we just regard (a0, b0) as empty, and keep A±

1 as above.
Let (a, b) denote a generic interval (ai, bi) of this union. As in the proof of

Theorem 1, the subharmonicity implies that u∗ has no strict local maximum in (a, b)
and then there exists τ with a ≤ τ ≤ b such that u∗ is non-increasing in [a, τ ] and
non-decreasing in [τ, b]. We then have (u∗)′(θ) ≤ 0 a.e. in a < θ < τ , and (u∗)′(θ) ≥ 0
a.e. in τ < θ < b.

An important idea of this proof is to proceed via the comparison (1.8) to the
uncentered Hardy–Littlewood maximal function when appropriate, and make use
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of the gradient bound established in Theorem 2. We consider first the case when
(a, b) ⊂ A−

1 . Using integration by parts we get

ˆ b

a

∣∣(u∗)′(θ)
∣∣ (sin θ)d−1 dθ

= −

ˆ τ

a

(u∗)′(θ) (sin θ)d−1 dθ +

ˆ b

τ

(u∗)′(θ) (sin θ)d−1 dθ

= u∗(a) (sin a)d−1 + u∗(b) (sin b)d−1 − 2 u∗(τ) (sin τ)d−1

+

ˆ τ

a

u∗(θ)
∂

∂θ
(sin θ)d−1 dθ −

ˆ b

τ

u∗(θ)
∂

∂θ
(sin θ)d−1 dθ

≤ u0(a) (sin a)
d−1 + u0(b) (sin b)

d−1 − 2 u0(τ) (sin τ)
d−1

+

ˆ τ

a

M̃u0(θ)
∂

∂θ
(sin θ)d−1 dθ −

ˆ b

τ

u0(θ)
∂

∂θ
(sin θ)d−1 dθ

≤

ˆ b

a

∣∣u′0(θ)
∣∣ (sin θ)d−1 dθ +

ˆ τ

a

(
M̃u0(θ)− u0(θ)

) ∂
∂θ

(sin θ)d−1 dθ.

(4.5)

In the computation above we have taken advantage of the fact that ∂
∂θ
(sin θ)d−1 ≥ 0.

Note also that we have no problem if a = 0 since lima→0 u
∗(a) (sin a)d−1 = 0 as d ≥ 2.

If we sum (4.5) over all the intervals (a, b) ⊂ A−
1 we find

ˆ

A−
1

∣∣(u∗)′(θ)
∣∣ (sin θ)d−1 dθ

≤

ˆ π
2

0

∣∣u′0(θ)
∣∣ (sin θ)d−1 dθ +

ˆ π
2

0

(
M̃u0(θ)− u0(θ)

) ∂
∂θ

(sin θ)d−1 dθ

=

ˆ π
2

0

∣∣u′0(θ)
∣∣ (sin θ)d−1 dθ −

ˆ π
2

0

((
M̃u0

)′
(θ)− u′0(θ)

)
(sin θ)d−1 dθ

+
(
M̃u0

(
π
2

)
− u0

(
π
2

))
.d

ˆ π

0

∣∣u′0(θ)
∣∣ (sin θ)d−1 dθ,

(4.6)

where we have used Theorem 2 and Lemma 14.
Finally we have to consider the case when π

2
∈ A1 and bound the integral

´ π/2

a0

∣∣(u∗)′(θ)
∣∣ (sin θ)d−1 dθ. Let τ0 be the corresponding local minimum over the

interval (a0, b0). Let c0 = min{τ0,
π
2
}. Proceeding as in (4.5) and (4.6) we obtain

−

ˆ c0

a0

(u∗)′(θ)(sin θ)d−1dθ

= u∗(a0)(sin a0)
d−1− u∗(c0)(sin c0)

d−1 +

ˆ c0

a0

u∗(θ)
∂

∂θ
(sin θ)d−1dθ

≤ u0(a0) (sin a0)
d−1 − u0(c0) (sin c0)

d−1 +

ˆ c0

a0

M̃u0(θ)
∂

∂θ
(sin θ)d−1 dθ

= −

ˆ c0

a0

u′0(θ) (sin θ)
d−1 dθ +

ˆ c0

a0

(
M̃u0(θ)− u0(θ)

) ∂
∂θ

(sin θ)d−1 dθ

.d

ˆ π

0

∣∣u′0(θ)
∣∣ (sin θ)d−1 dθ.

(4.7)
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The last estimate we need is the following
ˆ π

2

c0

(u∗)′(θ) (sin θ)d−1 dθ = u∗
(
π
2
)− u∗(c0)(sin c0)

d−1 −

ˆ π
2

c0

u∗(θ)
∂

∂θ
(sin θ)d−1 dθ

≤ M̃u0
(
π
2

)
− u0(c0)(sin c0)

d−1 −

ˆ π
2

c0

u0(θ)
∂

∂θ
(sin θ)d−1 dθ

=
(
M̃u0

(
π
2

)
− u0

(
π
2

))
+

ˆ π
2

c0

u′0(θ) (sin θ)
d−1 dθ(4.8)

.d

ˆ π

0

∣∣u′0(θ)
∣∣ (sin θ)d−1 dθ.

By combining (4.6), (4.7) and (4.8), and adding the integral over the set {u∗ = u0}
we find

ˆ π
2

0

∣∣(u∗)′(θ)
∣∣ (sin θ)d−1 dθ .d

ˆ π

0

∣∣u′0(θ)
∣∣ (sin θ)d−1 dθ.

By symmetry we then have
ˆ π

π
2

∣∣(u∗)′(θ)
∣∣ (sin θ)d−1 dθ .d

ˆ π

0

∣∣u′0(θ)
∣∣ (sin θ)d−1 dθ,

and the proof is complete by adding these two estimates.

4.2. Passage to the general case. The passage to the general case of a polar
f ∈ W 1,1(Sd) follows closely the outline of §2.2, with Lemma 4 replaced by Lemma 13
when appropriate. We omit the details.
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