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Abstract. We study the maximal operator on continuous functions in the setting of metric

measure spaces. The boundedness is proven for metric measure spaces satisfying an annular decay

property.

1. Introduction

It is well known that when 1 < p ≤ ∞, the Hardy–Littlewood maximal operator
M is bounded on Lp(X, d, µ), where (X, d, µ) is a doubling metric measure space
(see e.g. [4]). Maximal operator has been also studied in different function spaces,
e.g., Banach function spaces [6], Sobolev spaces [5], Lebesgue spaces with variable
exponent [2], generalized Orlicz spaces [3].

More recently, Buckley proved [1] the following result:

Suppose that 0 < t, δ ≤ 1. If (X, d, µ) satisfies the δ-annular decay property and

µ is doubling, then M : C0,t(X) → C0,s(X), where s = min(t, δ).

On the other hand, if no annular decay property is assumed, then Mf can fail to
be continuous, even if f ∈ C0,1(X) (see [1, Example 1.4]). Nevertheless, we prove the
following theorem about continuity of maximal operator on the space of continuous
functions C(X).

Theorem A. Suppose that 0 < δ ≤ 1, and that (X, d, µ) satisfies the δ-annular

property. Then M : C(X) → C(X) and the following estimate holds

‖Mf‖C(X) ≤ ‖f‖C(X).

The remainder of the paper is structured as follows. In Section 2, we introduce
the notations and recall the definitions. The proof of Theorem A is contained in the
last section.

2. Preliminaries

Let (X, d, µ) be a metric measure space equipped with a metric d and the Borel
measure µ. We assume that the measure of every open nonempty set is positive
and that the measure of every bounded set is finite. We say that µ is doubling if
there exists a constant Cµ > 0 such that µ(B(x, 2r)) ≤ Cµµ(B(x, r)) for every ball
B(x, r).1 We shall denote the average of integrable function f over the measurable
set A in the following manner

ˆ

A

f dµ =
1

µ(A)

ˆ

A

f dµ.
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The maximal function Mf of a locally integrable function f : X → R is defined by

Mf(x) = sup
r>0

ˆ

B(x,r)

|f | dµ.

Let us recall the notion of annular decay property [1]. Given δ ∈ (0, 1], we
say that the space (X, d, µ) satisfies the δ-annular decay property if there exists a
constant K ≥ 1 such that for all x ∈ X, r > 0, 0 < ǫ < 1, we have

µ (B(x, r) \B(x, r(1− ǫ))) ≤ Kǫδµ(B(x, r)).

One can easily convince oneself that R
n with the Lebesgue measure satisifies

1-annular decay property. Furthermore, if (X, d, µ) is a lenght metric measure space
with a doubling measure µ, then X has the δ-annular decay property for some δ ∈
(0, 1] dependent on a doubling constant of µ (see [1, Corollary 2.2]).

Finally, let (X, d) be a metric space, by C(X) we denote the space of continuous
functions on X such that the norm

‖f‖C(X) = sup
x∈X

|f(x)|

is finite. Furthermore, for s ∈ (0, 1] we denote by C0,s(X) the Hölder space, i.e. the
space of functions f ∈ C(X) such

‖f‖C0,s(X) := ‖f‖C(X) + sup
x 6=y

|f(x)− f(y)|
d(x, y)s

< ∞.

3. Proof of the main result

We shall start with the following result.

Lemma 3.1. If f ∈ L1
loc
(X), then Mf is lower semicontinuous.

Proof. Let t ∈ R and

Lt = {x ∈ X : Mf(x) > t}.
We shall prove that Lt is open. For this purpose we fix x ∈ Lt, then from the very
definition of the maximal function, there exists r such that

t <
1

µ(B(x, r))

ˆ

B(x,r)

|f | dµ.

Next, since B(x, r) =
⋃∞

n=1B(x, r − 1/n), we have2

ˆ

B(x,r)

|f | dµ = lim
n→∞

ˆ

B(x,r−1/n)

|f | dµ.

Therefore, for sufficiently large n we have

t <
1

µ(B(x, r))

ˆ

B(x,r−1/n)

|f | dµ.

Moreover, let us observe that for z ∈ B(x, 1/2n) we have

B(x, r − 1/n) ⊂ B(z, r − 1/2n) ⊂ B(x, r).

Thus, finally, for z ∈ B(x, 1/2n)

t <
1

µ(B(z, r − 1/2n))

ˆ

B(z,r−1/2n)

|f | dµ ≤ Mf(z),

2The notation B(y,R) := {z ∈ X : d(y, z) ≤ R} is used for closed balls.
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and in this way we have proved that the set Lt is indeed open. �

Proof of Theorem A. Of course, the estimate is obvious. So, we only need
to prove that for f ∈ C(X), the maximal function Mf is continuous. We can
assume that ‖f‖C(X) > 0. By Lemma 3.1 we have that Mf is lower semicontinuous.
Therefore, we have to show that Mf is upper semicontinuous. For this purpose we
shall prove that for t ∈ R the set

Ut = {x ∈ X : Mf(x) < t}
is open. Let us fix x0 ∈ Ut and let A := Mf(x0), then for all r > 0

ˆ

B(x0,r)

|f | dµ ≤ A < t.

By continuity of f there exists σ ∈ (0, 1) such that

(1) ||f(x0)| − |f(y)|| ≤ t− A

4
, for y ∈ B(x0, σ).

Next, let us define

R :=
1

2
min

(

σ2

4
,

(

t−A

2K2δ‖f‖C(X)

)2/δ
)

,

and we shall prove that B(x0, R) ⊂ Ut. For this purpose we fix x ∈ B(x0, R). It is
enought to prove that for r > 0

(2)

ˆ

B(x,r)

|f | dµ <
t + A

2
.

We shall consider two cases: r ≥
√

d(x, x0) and r <
√

d(x, x0).

Case: r ≥
√

d(x, x0). Since

B(x, r) ⊂ B(x0, r + d(x, x0)) ⊂ B(x, r + 2d(x, x0)),

we have
ˆ

B(x,r)

|f | dµ =

ˆ

B(x,r)

|f |dµ−
ˆ

B(x0,r+d(x,x0))

|f | dµ+

ˆ

B(x0,r+d(x,x0))

|f | dµ

≤
(

1

µ(B(x, r))
− 1

µ(B(x0, r + d(x, x0)))

)
ˆ

B(x,r)

|f | dµ+

ˆ

B(x0,r+d(x,x0))

|f | dµ

≤
(

1

µ(B(x, r))
− 1

µ(B(x, r + 2d(x, x0)))

)
ˆ

B(x,r)

|f | dµ+ A

≤
(

µ(B(x, r + 2d(x, x0)))− µ(B(x, r))

µ(B(x, r + 2d(x, x0)))

)

‖f‖C(X) + A.

Next, by the δ-annular decay property and assumption r ≥
√

d(x, x0) we get
ˆ

B(x,r)

|f | dµ ≤ K

(

2d(x, x0)

r + 2d(x, x0)

)δ

‖f‖C(X) + A

≤ K

(

2d(x, x0)
√

d(x, x0) + 2d(x, x0)

)δ

‖f‖C(X) + A

≤ K2δd(x, x0)
δ/2‖f‖C(X) + A ≤ K2δRδ/2‖f‖C(X) + A

< (t− A)/2 + A = (t+ A)/2.
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Case: r <
√

d(x, x0). Let us observe that

B(x, r) ∪B(x0, r + d(x, x0)) ⊂ B(x0, σ).

Indeed, for y ∈ B(x, r) we have

d(y, x0) ≤ d(y, x) + d(x, x0) < r + d(x, x0)

<
√

d(x, x0) + d(x, x0) <
√
R +R ≤ 2

√
R < σ.

Moreover, since

r + d(x, x0) ≤
√

d(x, x0) + d(x, x0)

<
√
R +R ≤ 2

√
R < σ,

we obtain B(x0, r + d(x, x0)) ⊂ B(x0, σ).
Next, by (1) we get
ˆ

B(x,r)

|f | dµ =

ˆ

B(x,r)

(|f | − |f(x0)|) dµ−
ˆ

B(x0,r+d(x,x0))

(|f | − |f(x0)|) dµ

+

ˆ

B(x0,r+d(x,x0))

|f | dµ

≤
ˆ

B(x,r)

||f | − |f(x0)|| dµ+

ˆ

B(x0,r+d(x,x0))

||f | − |f(x0)|| dµ+ A

≤ (t− A)/4 + (t−A)/4 + A = (t + A)/2.

This finishes the proof of (2) and hence the whole proof of Theorem A is complete. �
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