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Abstract. A comb domain is defined to be the entire complex plain with a collection of vertical
slits, symmetric over the real axis, removed. In this paper, we consider the question of determining
whether the exit time of planar Brownian motion from such a domain has finite p-th moment. This
question has been addressed before in relation to starlike domains, but these previous results do not
apply to comb domains. Our main result is a sufficient condition on the location of the slits which
ensures that the p-th moment of the exit time is finite. Several auxiliary results are also presented,
including a construction of a comb domain whose exit time has infinite p-th moment for all p ≥ 1/2.

1. Introduction and statement of main result

Let (xn)n∈Z be an increasing sequence of distinct real numbers without accumu-
lation point in R, let (bn)n∈Z be an associated sequence of positive numbers, and let
Mx be the domain

Mx := C \
⋃
n∈Z

In

where In := {xn} × ([bn,+∞) ∪ (−∞,−bn]). We shall informally refer to Mx as a
comb domain.

Figure 1. Illustration of a comb domain.

We consider a planar Brownian motion Zt and denote by τΩ its exit time from a
given domain Ω. The question we will investigate in this paper is to find conditions
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on the sequences (xn)n∈Z and (bn)n∈Z which imply that E(τ pMx
) < ∞ for a given

p ∈ (0,∞). We will derive a sufficient condition for the moment to be finite, but
before stating our results, we discuss a bit of motivation for this question.

The moments of τΩ have special importance in two dimensions, as they carry
a great deal of analytic and geometric information about the domain Ω. The first
major work in this direction seems to have been by Burkholder in [8], where it was
proved among other things that finiteness of the p-th Hardy norm of Ω is equivalent
to finiteness of the p

2
-th moment of τΩ. To be precise, for any simply connected

domain Ω let
H(Ω) = sup{p > 0: E((τΩ)p) <∞};

note that H(Ω) is proved in [8, p. 183] to be exactly equal to half of the Hardy number
of Ω, as defined in [12], which is

H̃(Ω) = sup{q > 0: lim
r↗1

ˆ 2π

0

|f(reiθ)|q dθ <∞},

where f is a conformal map from the unit disk onto Ω. This equivalence was used
in [8, p. 183] to show for instance that H(Wα) = π

2α
, where Wα = {0 < Arg(z) < α}

is an infinite angular wedge with angle α. In fact, coupled with the purely analytic
result [12, Thm 4.1] this can be used to determine H(Ω) for any starlike domain Ω
in terms of the aperture of Ω at ∞, which is defined to be the limit as r → ∞ of
the quantity αr,Ω = max{m(E) : E is a subarc of Ω∩{|z| = r}}; it is not hard to see
that this limit always exists for starlike domains. [25] contains a detailed discussion
of this, as well as a version of the Phragmén–Lindelöf principle that makes use of
the quantity H(Ω). Furthermore, the quantity E((τΩ)p) provides us with an estimate
for the tail probability P (τΩ > δ): by Markov’s inequality, P (τΩ > δ) ≤ E((τΩ)p)

δp
.

We should also mention that the case p = 1 is naturally of special interest, and has
produced a literature too large to describe here; the case of general p has attracted
somewhat less interest, nevertheless the reader interested in other results relating
the p-th moments of Brownian exit time with the geometry of domains is referred to
[1, 4, 7, 9, 10, 13, 14, 15, 16, 20, 21, 22, 23, 27, 28].

On the other hand, comb domains and their analogues have appeared in a number
of recent papers on various topics. One of the most striking instances is in the recent
work [11] by Gross, in which the following question was posed and answered: given
a measure µ on R with finite second moment, find a simply connected domain U in
C such that the real part of the random variable ZτU has the distribution µ. If µ is a
discrete distribution, then Gross’ construction yields a comb domain. Other examples
include [26], in which a similar domain was used in order to construct a stopping time
related to the winding of Brownian motion, and [17, 19, 18], in which similar domains
were used as counterexamples to several conjectures concerning harmonic measure
posed in [2, 3]. Note that in Gross’ paper in particular (see also [5, 6, 24]) the
moments of the exit time are of importance, and yet it is not simple to show that
they are finite for a given comb-like domain.

Comb domains are never starlike, and therefore the previously established results
on H(Ω) do not apply to them. It is also not hard to see that the aperture at ∞ of
comb domains need not exist. We have therefore needed to devise new methods in
order to address this question.

Before discussing our results, let us make a few observations to clarify the prob-
lem. To begin with, it may seem that the starting point of the Brownian motion
affects whether E(τ p) is finite, however this is not so, as shown in [8]:
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Proposition 1. [8, p.13 (3.13)] If U is a domain and Ea(τU) < ∞ for some
a ∈ U , then Ew(τU) <∞ for any w ∈ U .

We may therefore make statements like “E(τ pΩ) < ∞” or “E(τ pΩ) = ∞” without
specifying a starting point. We next note that exit times are monotonic with respect
to domains, as the following proposition shows.

Proposition 2. • If Ω1 ⊂ Ω2, then

E(τ pΩ2
) <∞ =⇒ E(τ pΩ1

) <∞.
• If Ωn is an increasing sequence of domains (i.e. Ωn ⊆ Ωn+1) and Ω =

⋃∞
n=1 Ωn,

then E(τ pΩn)↗ E(τ pΩ).

The proof of the first statement is trivial, and the second is a simple consequence
of the monotone convergence theorem. This proposition allows us to clarify the
problem a bit. Any comb domain is contained in a translation and dilation of the
domain U = C \ {0} × ([1,+∞) ∪ (−∞,−1]), and, as the conformal map from the
unit disk onto this domain is readily computed, a straightforward application of the
aforementioned results by Burkholder in [8] shows that E(τ pU) < ∞ if, and only if,
p < 1/2. It follows that E(τ pMx

) < ∞ for any comb domain Mx, if p < 1/2. The
question is thus only interesting for p ≥ 1/2, and we will concentrate on these values
of p in what follows. The following proposition, which in essence shows that the
question we are addressing is reasonable, is proved in Section 2.

Proposition 3. For any p ≥ 1/2, there is a comb domain Mx for which E(τ pMx
) =

∞.

In order to state our main result, let us employ the notation an = xn − xn−1.
Then we have the following.

Theorem 4. Suppose (xn)n∈Z is an increasing sequence (with x0 = 0), and
(bn)n∈Z is an associated sequence of positive numbers, such that

` = sup
n

(
max(bn−1, bn+1)

min(an, an+1)

)
<∞.

Then there is a number θ0 < 1, depending on `, such that, for any p > 0, if

(1.1)
∞∑
j=1

(
max
|n|≤j

a2
n

)
θ
j/p
0 <∞,

then E(τ pMx
) <∞.

We note that this theorem can also be applied in many cases where ` =∞, since
removing slits in the complement of the domain can only increase the moments of
the exit time. Therefore, if a collection of slits can be removed from the complement
of Mx such that ` becomes finite (if for instance ` was infinite due to the an’s being
small rather than the bn’s being large) but (1.1) persists then the conclusion of the
theorem still holds. As an immediate corollary of the theorem, if an is uniformly
bounded, or even bounded by any polynomial in n, and bn is uniformly bounded as
well, then

∑∞
j=1(max|n|≤j a

2
n)θj <∞ for any θ < 1, and therefore all moments of τMx

are finite. We will see later that this theorem can even be extended a bit in order
to handle certain sequences where the an grow faster than this, for instance certain
sequences with exponential growth.

We will prove Proposition 3 and Theorem 4 in the next section, and add some
concluding remarks in the final section.
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2. Proofs

Proof of Proposition 3. By the monotonicity of moments, it is enough to consider
p = 1

2
. Our domain will have bn = 1 for all n. Let us first consider a comb domain

derived from a finite sequence, that is

Mx := C \
⋃

n∈{1,...N}

In

where again In := {xn} × ([1,+∞) ∪ (−∞,−1]). In this case Mx contains the half
plane {<(z) > xN}. The exit time of a half plane has infinite 1

2
moment, as discussed

in the previous section. By Proposition 2, E((τMx)
1/2] = ∞. We are now ready

to construct an infinite unbounded sequence (xn)n∈Z whose corresponding Mx has
infinite 1

2
moment; in fact, it will even be subdomain of {<(z) > 0} with a one-sided

sequence of vertical slits removed, and naturally it can be extended arbitrarily to
a two sided sequence if desired. For c < d let Sc,d denote the infinite vertical strip
{b < <(z) < c}. We will start our Brownian motion at the point 1. Let x1 > 1 be
a real number such that E1(τ

1/2
S0,x1

) > 1, which does exist because E1(τ
1/2
S0,x

) ↗ +∞
as x ↗ +∞ by Proposition 2. Next, consider the domain U2 = S0,x2 \ I1 with
I1 := {x1} × ([1,+∞) ∪ (−∞,−1]), where x2 is chosen so that E1(τ

1/2
U2

) > 2, and
again this is possible since limx↗∞E1((τS0,x\I1)1/2) = ∞. Continuing inductively in
this way we construct Un+1 from Un by

Un+1 = (Un ∩ Sxn+1) \ In

where In := {xn} × ([1,+∞) ∪ (−∞,−1]), xn < xn+1 and E1(τ
1/2
Un+1

) > n + 1. The
domain

U :=
∞⋃
n=1

Un = U∞

(with U1 := S0,x1) is a comb domain that fits the requirement since

n ≤ E1(τ
1/2
Un

) ≤ E1(τ
1/2
U )

for all n. Consequently E(τ
1/2
U ) = +∞, and thus all moments E(τ pU) are infinite for

any p ∈ [1/2,+∞). �

Proof of Theorem 4. Before tackling the proof we give some notations and def-
initions that we will use. As before, for c < d let Sc,d = {c < <(z) < d}. It will
be convenient to think of the sequence (xn)n∈Z as a map from Z into R defined by
x(n) = xn, and with inverse x−1. Denote the image of this map by X = ∪∞n=−∞{xn}.
We will assume that our Brownian motion starts at x0 = 0. Consider the following
sequence of associated stopping times

τ̂j :=

{
0, j = 0,

inf{t > τ̂j−1 | Rt ∈ X \ {Rτ̂j−1
}}, j > 0,

with Rt = <(Zt). More precisely, τ̂j encodes the time of the jth passage of Rt at the
lines carrying the slits under the constraint that it is different from the (j− 1)st one.
Equivalently, τ̂j is the first exit time of Zt from Sx(x−1(Rτ̂j−1

)−1),x(x−1(Rτ̂j−1
)+1) after

τ̂j−1. Finally, let τ be the exit time from the comb domain and set τj = τ ∧ τ̂j. τ can
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be expressed as

τ =
∞∑
j=0

(τj+1 − τj),

whence

E(τ p)1/p ≤
∞∑
j=0

E((τj+1 − τj)p)1/p

thanks to the Hölder–Minkowsky inequality. We need therefore only show that this
sum is finite. Note that τj = τj+1 on the event {τ ≤ τj}, while τj and τj+1 are simply
equal to τ̂j and τ̂j+1 on {τj < τ}. It therefore follows that

E((τj+1 − τj)p) = E((τ̂j+1 − τ̂j)p1{τj<τ})

= E((τ̂j+1 − τ̂j)p1{τj<τ}
j∑

n=−j

1{Rτ̂j=xn})

=

j∑
n=−j

E((τ̂j+1 − τ̂j)p1{τj<τ}1{Rτ̂j=xn})

=

j∑
n=−j

P (τj < τ,Rτ̂j = xn)E((τ̂j+1 − τ̂j)p|τj < τ,Rτ̂j = xn)(2.1)

=

j∑
n=−j

P (τj < τ,Rτ̂j = xn)Exn((τSx(x−1(Rτ̂j−1
)−1),x(x−1(Rτ̂j−1

)+1)
)p)

=

j∑
n=−j

P (τj < τ,Rτ̂j = xn)E0((τS−an,an+1
)p)

≤ P (τj < τ) max
|n|≤j

E0((τS−an,an+1
)p).

Note that we have used the strong Markov property in the second-to-last equality,
and also that our sum needed only to be over the set {|n| ≤ j} rather than all of Z
because Rτ̂j cannot be equal to xn with |n| > j since Rτ̂0 = x0. In order to estimate
this quantity, we need the following lemmas.

Lemma 5. E0((τS−an,an+1
)p) ≤ max(an, an+1)2pE0((τS−1,1)p).

Proof. For the sake of brevity we denote by dn = max(an, an+1). A monotonicity
argument yields E0((τS−an,an+1

)p) ≤ E0((τS−dn,dn
)p). The exit time from the strip

S−dn,dn is simply the exit time of a one dimensional Brownian motion from the in-
terval (−dn, dn) . Hence by scaling, we get E0((τS−dn,dn

)p) = d2p
n E0((τS−1,1)p) which

completes the proof. �

For the next lemma, let Kb
c,d denote the rectangle Sc,d ∩ {−b < =(z) < b}, and

let It = =(Zt). Recall also that ` = supn

(
max(bn−1,bn+1)
min(an,an+1)

)
<∞.

Lemma 6. We have P (τj < τ) ≤ θj0, where θ0 := 1− 1
2
P0(|Iτ

K`−1,1

| = `).

Proof. The proof is by induction. Assume that the statement holds for j − 1, so
that P (τj < τ) = P (τj−1 < τ)P (τj < τ |τj−1 < τ) ≤ θj−1

0 P (τj < τ |τj−1 < τ).
Now, if τj−1 < τ then Zτj−1

∈Mx (rather than in its complement). We need to
show that, under this assumption, the probability that Zτj ∈Mx is bounded above
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by θ0. This will follow from the strong Markov property if we can show that

1− sup
xn∈X ,y∈(−bn,bn)

Pxn+yi(|IτSxn−1,xn+1
| < βn)

= inf
xn∈X ,y∈(−bn,bn)

Pxn+yi(|IτSxn−1,xn+1
| ≥ βn) ≥ 1

2
P0(|Iτ

K`−1,1

| = `),
(2.2)

where βn = max(bn−1, bn+1); note that we are using the fact that on the event
{Rτj−1

= xn} the event {|Iτj | ≥ βn} is contained in the event {τj = τ}. The proof of
this depends on two claims.

Claim 1. For fixed xn ∈ X ,

inf
y∈(−bn,bn)

Pxn+yi(|IτSxn−1,xn+1
| ≥ βn) = Pxn(|IτSxn−1,xn+1

| ≥ βn).

That is, the probability is minimized when y = 0. To prove this, we employ a
coupling argument. Fiz y > 0, and let Z0 = xn a.s. Let σ(z) = z̄+ yi; note that σ(z)
is the reflection over the horizontal line ∆ = {=(z) = y

2
}. Let H∆ be first time that

Zt hits ∆, and form the process Z̃t by the rule

Z̃t =

{
σ(Zt) if t < H∆,

Zt if t ≥ H∆.

Figure 2. Z and Z̃ coalesce upon hitting {=(z) = y
2}.

It follows from the strong Markov property and the reflection invariance of
Brownian motion that Z̃t is a Brownian motion. Let τ̃Sxn−1,xn+1

denote the first
time that Z̃t exits Sxn−1,xn+1 . By the translation invariance of Sxn−1,xn+1 we have
τSxn−1,xn+1

= τ̃Sxn−1,xn+1
. Furthermore, Zt = Z̃t on the set {t ≥ H∆}, while on the

set {t < H∆} we see that |=(Zt)| < |=(Z̃t)|. This implies that {|=(ZτSxn−1,xn+1
)| ≥

βn} ⊆ {|=(Z̃τ̃Sxn−1,xn+1
)| ≥ βn}, and the claim follows. Naturally, the case y < 0 can

be handled by a symmetric argument.

Claim 2. For fixed xn ∈ X ,

Pxn(|IτSxn−1,xn+1
| ≥ βn) ≥ 1

2
Pxn(|Iτ

K
βn
xn−1,xn+1

| = βn).
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To prove this, note that

Pxn(|IτSxn−1,xn+1
| ≥ 1|Iτ

K
βn
xn−1,xn+1

= βn) ≥ Pxn(IτSxn−1,xn+1
≥ βn|Iτ

K
βn
xn−1,xn+1

= βn).

This latter probability is precisely 1
2
by the strong Markov property and symmetry.

The symmetric argument shows that Pxn(|IτSxn−1,xn+1
| ≥ βn|Iτ

K
βn
xn−1,xn+1

= −βn) ≥ 1
2

as well, and combining these yields the claim.

Figure 3. After hitting the top of Kβn
xn−1,xn+1

, the Brownian motion is equally likely to exit
Sxn−1,xn+1

above {=(z) = 1} as below.

Having established these claims, we can prove (2.2).

inf
xn∈X ,y∈(−bn,bn)

Pxn+yi(|IτSxn−1,xn+1
| ≥ βn)

≥ inf
xn∈X

1

2
Pxn(|Iτ

K
βn
xn−1,xn+1

| = βn)

= inf
n∈Z

1

2
P0(|Iτ

K
βn
−an,an+1

| = βn)

≥ inf
n∈Z

1

2
P0(|Iτ

K
βn
−min(an,an+1),min(an,an+1)

| = βn)

≥ 1

2
P0(|Iτ

K`−1,1

| = `),

(2.3)

since for a Brownian motion starting at 0 the event {|Iτ
K
βn
−an,an+1

| = βn} is contained

in the event {|Iτ
K
βn
−min(an,an+1),min(an,an+1)

| = βn}, and also βn
min(an,an+1)

≤ `. �

Remark. The coupling argument used to prove Claim 1 is based on a method
used in [4, Thm. 1] in order to find the points which maximize the moments of the
exit time from domains.

We may now complete the proof of Theorem 4. By (2.1) and the lines preceding
it we have

E(τ p)1/p ≤
∞∑
j=0

P (τj < τ)1/p max
|n|≤j

E0(τ pS−an,an+1
)1/p,
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Bounding these quantities by Lemmas 5 and 6 yields

E(τ p)1/p ≤
∞∑
j=0

(θ
1/p
0 )j max

|n|≤j+1
a2
n.

3. Concluding remarks

We have not attempted to optimize the conditions required in Theorem 4, since it
already covered quite general cases, including all domains with bn uniformly bounded
and an growing with at most a polynomial rate. Nevertheless, improvements using
the same method are possible to suit particular situations if required. The following
is an example; we will let bn = 1 for all n in order to simplify the argument.

Proposition 7. Suppose (xn)n∈Z is an increasing sequence (with x0 = 0) such
that ` = minn(xn − xn−1) ≥ 1, bn = 1 for all n, and

(3.1)
∞∑
j=1

(max
|n|≤j

a2
n)(3/4)j/p <∞.

Then E(τ pMx
) <∞.

Proof. This follows from the same method as was used to prove Theorem 4,
except that in this case since ` ≤ 1 we can put a simple upper bound on θ0 :=
1 − 1

2
P0(|Iτ

K`−1,1

| = `). Here K`
−1,1 is contained in the square K1

−1,1, and therefore

P0(|Iτ
K`−1,1

| = `) ≥ P0(|Iτ
K1

−1,1

| = 1) = 1
2
, by symmetry. Thus, θ0 ≤ 3

4
. The result

follows from this. �

Thus, for instance, this proposition allows us to conclude that E(τ pMx
) < ∞ if

an = r|n| with r > 1, provided that r < (4
3
)1/(2p). No doubt this argument can be

refined, if required.
There are a number of variants on the problem we have addressed, many of

which can be handled by suitable adaptions of the method we have employed. We
will describe one, again simplifying by setting bn = 1 for all n. Suppose we form a
comb domain out of an increasing one-sided sequence (xn)∞n=0 of real numbers without
accumulation point in R and with x0 = 0. That is, we let M +

x be the domain

M +
x := {<(z) > 0} \

∞⋃
n=1

In

where In := {xn} × ({1,+∞} ∪ {−∞,−1}). It may seem that we could weaken our
conditions in order to conclude that p-th moments are finite, since this domain is es-
sentially smaller than one would be corresponding to a two-sided sequence. However,
the following proposition shows that this is not the case.

Proposition 8. a) Suppose Mx is a comb domain corresponding to a two-
sided sequence (xn)n∈Z. Then E(τ pMx

) <∞ if, and only if, E(τ p
M +
x

) <∞ and
E(τ p

M−
x

) <∞, where M +
x = Mx∩{<(z) > x0} and M−

x = Mx∩{<(z) < x1}.
b) Suppose M +

x is a comb domain corresponding to a one-sided sequence (xn)∞n=0,
with x0 = 0. Extend the sequence to a two-sided one by the rule x−n = −xn,
and let Mx be the comb domain corresponding to this two-sided sequence
(note that M +

x = Mx ∩ {<(z) > x0}). Then E(τ p
M +
x

) < ∞ if, and only if,
E(τ pMx

) <∞.
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Proof. (Sketch) It is clear that (a) implies (b), and the forward implication of
(a) is trivial since M +

x ,M
−
x ⊆Mx. To prove the reverse implication, we apply the

following result, which is Theorem 3 in [25].

Theorem 9. Suppose that V and W are domains with nonempty intersection,
neither of which is contained in the other. Suppose further that E(T pV ) < ∞ and
E(T pW ) < ∞. Let δ̃V + = δV ∩W and δ̃W+ = δW ∩ V , where δV and δW denote
the boundaries of V and W , and assume that the following conditions are satisfied:

(i) supa∈δ̃V + Ea(T
p
W ) <∞;

(ii) supa∈δ̃W+ Ea(T
p
V ) <∞;

(iii) supa∈δ̃V + Pa(BTW ∈ δ̃W+) < 1.
Then E(T pV ∪W ) <∞.

Here we take V = M +
x andW = M−

x , and thus δ̃V and δ̃W are the line segments
between x0± i and between x1± i, respectively. It can then be shown using methods
similar to those employed in the proof of Theorem 4 above that (i)–(iii) hold; in
particular, the construction used to prove Claim 1 above can be adapted to show
that the suprema in (i)–(iii) are all attained at points with imaginary part 0. Details
are omitted.

An anonymous referee has asked the following question:

Question. Given p < q, can we construct a comb domain Mx with finite p-th
moment but infinite q-th moment?

Unfortunately, our methods do not seem to be able to give lower bounds on the
moments, so we do not know how to construct such a domain. We think it is a nice
open problem, though, and have included it for this reason.

Acknowledgements. The authors would like to thank an anonymous referee for
valuable comments, including a suggestion which led to a significant generalization
in our results.
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