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Abstract. We provide an estimate from below for the lower Hausdorff dimension of measures

on the unit circle based on the arithmetic properties of their spectra. We obtain those bounds

via adaptation of our previous results for martingales on q-regular trees to a specific backwards

martingale. To show the sharpness of our method, we improve the best numerical lower bound

known for the Hausdorff dimension of certain Riesz products.

1. Introduction

The most common way to estimate the lower Hausdorff dimension of a measure
using Harmonic Analysis tools is the so-called energy method. It involves exam-
ination of the summability properties of the Fourier coefficients of a measure. In
general, however, the energy and Hausdorff dimensions may be different (see e.g.
Proposition 3.4 in [9] or Chapter 13 in [12]). In this paper, we investigate not only
the size of the spectrum, but also its arithmetic properties.

By T = R/Z we denote the circle group.

Definition 1.1. Let µ be a finite (non-negative) Borel measure on T. The
quantity

dimH(µ) = inf{α : there exists a Borel set F such that µ(F ) 6= 0, dimH F ≤ α}

is called the lower Hausdorff dimension of µ.

Definition 1.2. Let A ⊂ Z. We denote by MA(T) the set of finite Borel mea-
sures satisfying µ̂(n) = 0 for any n ∈ Z \ A.

Throughout the article q is a fixed integer greater than 2. The symbol ‖ means
the relation of exact division of integers. That is an ‖ b if and only if an|b but an+1 ∤ b.
For any B ⊂ {1, 2, . . . , q − 1}, let us define

CB = {kqn : k ∈ Z, k mod q ∈ B, n ≥ 0} ∪ {0}.

We denote the group of residues modulo q by Zq and identify the set {0, 1, . . . , q−1}
with it in the natural way. Our first result may be thought of as an uncertainty
principle (see [10]).
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Theorem 1.3. Let B ⊂ Zq \ {0} and let µ ∈ MCB
(T) be a finite non-negative

measure. If B ⊂ H \ {0} for some subgroup H ⊂ Zq, then

dimH(µ) ≥ 1−
log |H|

log q
.

Moreover, if the inclusion B ⊂ H \ {0} is proper, then the above inequality is strict

in the following sense: there exists δ > 0 independent of µ such that

dimH(µ) ≥ 1−
log |H|

log q
+ δ.

In particular, if B 6= Zq \ {0}, then dimH(µ) > δ for any non-negative µ ∈ MCB
(T).

This theorem is a corollary of more general Theorem 2.10 below. The latter
theorem provides better bounds based on the arithmetic structure of the set B.
In particular, it delivers simple numeric bounds for δ in Theorem 1.3. However,
Theorem 2.10 requires more notation, so we leave its formulation for a while.

We confront our methods with the question about determining the dimension of
Riesz products. For convenience, let us focus on the class given by

(1.1) µa,q =

∞
∏

k=0

(

1 + a cos(2πqkx)
)

,

where a ∈ [−1, 1]. One of the most important advances in the mentioned problem is
contained in the seminal work [13] of Peyrière. In this paper, among other things,
he proved the identity

(1.2) dimH(µa,q) = 1−

´ 1

0
log(1 + a cos(2πx)) dµa,q

log q
.

We note that Peyrière considered Riesz products of more general type. Results of
his work go beyond Hausdorff dimension estimates and shed light on random nature
of those measures. Connections between random and deterministic measures were
studied in a systematic way by Fan (cf. [4, 5, 6, 7]). In particular, in [6] he gave an
approximation result using probabilistic methods

∣

∣

∣

∣

dimH(µa,q)−

(

1−
1

log q

ˆ 1

0

log
(

1 + a cos(2πx)
)(

1 + a cos(2πx)
)

dx

)∣

∣

∣

∣

≤
8π2a

(q + 3)2 log q
,

(1.3)

when |a| ≤ cos
(

π

⌊ q+1
2

⌋+1

)

.

In contrast to the above, we are mainly interested in the case of (heuristically)
the most singular Riesz products, i.e when |a| is close or equal to 1. For |a| suffi-
ciently close to 1 and sufficiently big q’s, we improve the best numerical lower bounds
for dimH(µa,q) derived directly from formula (1.2) and those obtained by potential-
theoretic methods (see [9, Corollary 3.2] and [12, Corollary 13.4]). The following
theorem is a corollary of the already mentioned Theorem 2.10 below.

Theorem 1.4. For any integer q ≥ 3 and a ∈ [−1, 1], we have

dimH(µa,q) ≥ 1−
1

q log q

q−2
∑

j=1

(

1−
cos (2j+1)π

q

cos π
q

)

log

(

1−
cos (2j+1)π

q

cos π
q

)

Theorem 1.4 delivers bounds which may be thought of as extensions of (1.3).
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Lemma 1.5. For any even q, the following identity holds:
q−2
∑

j=1

(

1−
cos (2j+1)π

q

cos π
q

)

log

(

1−
cos (2j+1)π

q

cos π
q

)

= (1− log 2)q + 2 log 2 +
2

q cos π
q

ˆ

qπ

4

π
2

log(cos2 z) sin
2z

q
dz − q log cos

π

q
.

(1.4)

Proposition 1.6. For any even integer q ≥ 4 and a ∈ [−1, 1], we have

dimH(µa,q) ≥ 1−
1− log 2

log q

−
1

q log q

(

2 log 2 +
2

q cos π
q

ˆ

qπ

4

π
2

log(cos2 z) sin
2z

q
dz

)

+
log cos π

q

log q
.

Proposition 1.7. For any integer q ≥ 4 and a ∈ [−1, 1], we have

dimH(µa,q) ≥ 1−
1− log 2

log q
−

4π + π2

2e

q log q
−

1

log q

(

1

cos π
q

− 1

)

.

By virtue of the identity
´ 1

0
(1 + cos 2πx) log(1 + cos 2πx) dx = 1 − log 2, when

a = ±1, the above expressions agree with the bound that one would expect from (1.3)
up to asymptotically the most significant terms. In Proposition 1.6, the expression in
the parentheses is of order O(1

q
), so in the case of even q we have the same asymptotics

as in (1.3) also up to lower order terms (see Remark 5.1).
We remark that the papers [2, 5, 6, 9, 11, 12, 13] treat the case of more general

Riesz products
∞
∏

k=0

(1 + ak cos(2πqkx)), {qk}k ⊂ N, ak ∈ [−1, 1],

assuming various size or divisibility constraints on {qk}k. In the most general case,
the result obtained by Hare and Roginskaya in [9] assumes that {qk}k is a dissociate
and increasing sequence of integers. It seems impossible to get any result without
the assumption qk|qk+1 by adapting methods from our paper in a straightforward
way. In [9] and [12] the authors already relaxed this constraint. Moreover, in the
case qk = qk and ak ≡ a our bounds are worse than most of those already known in
the literature when the number a is close to zero.

Our methods are quite different from that of [5, 6, 11, 13]; the proofs presented
here are self-contained. In particular, we do not use any sort of an ergodic theo-
rem. We adjust the methods for estimating the lower Hausdorff dimension of the
so-called Sobolev martingales from [1]. Those martingales are vector valued. The
reasoning simplifies significantly in the present case of non-negative scalar measures.
More specifically, we will relate a backwards martingale of periodic functions to a
measure µ ∈ MCB

and extract the estimate for dimH(µ) from the growth bounds for
the corresponding martingale.
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2. Transference of results from martingale spaces

We will be representing the points of T in the q-ary system. We denote by x(j)
the j-th digit of x ∈ T, that is,

x =
∞
∑

j=1

x(j)

qj
, x(j) ∈ {0, 1, 2, . . . , q − 1},

with the convention that if there are two such representations, then we choose the
finite one.

2.1. Approximating trees and the backwards martingale. Before we
give precise formulas for the martingale of periodizations, let us briefly discuss our
strategy.

Our purpose is to define, for any natural N , a tree TN that will be used to sample
measures up to the scale ∼ q−N . Namely, the root of the tree will encode T, the
set of leaves will represent the arcs of length ∼ q−N , and the intermediate vertices
will correspond to some periodic sets. This discretization procedure will allow us
to obtain a bound for martingale approximations of a given measure (Lemma 2.12
below), depending on certain space of admissible martingale differences (which is
computable in terms of Fourier coefficients, c.f. Lemma 2.3 below). The obtained
inequality will allow us to use a Frostman-type Lemma 2.4 from [14]. Unfortunately,
we cannot simply refer to that lemma, so we adjust its proof to our case; in fact, the
proof of Theorem 2.10 presented at the end of this section follows the lines of the
proof of the said lemma.

Definition 2.1. Let us introduce the set

αN ;∅ = {x ∈ T : x(j) = 0 for j > N}.

For any sequence (i1, . . . , ik) with k ≤ N and ij ∈ {0, 1, . . . , q−1} for j = 1, 2, . . . , k,
we also introduce the set

αN ;i1,i2,...,ik = {x ∈ αN ;∅ : x(N − j + 1) = ij for all j = 1, 2, . . . , k}.

The above sets will be the vertices of the tree TN described in the forthcoming
definition. This tree will be regular (each parent has q children) and moreover, the
sons of a parent will be enumerated by numbers from 0 to q − 1.

Definition 2.2. We define the tree TN according to the following rules:

(1) the root of TN is the set {αN ;∅},
(2) the j-th child of the root is αN ;j, here j = 0, . . . , q − 1,
(3) the j-th child of the vertex corresponding to αN ;i1,...,ik−1

is αN ;i1,...,ik−1,j, here
j = 0, . . . , q − 1.

For a vertex α, we denote its j-th child by α[j]. Let us call the set of vertices whose
distance from the root is exactly k by Tk,N , where 0 ≤ k ≤ N .

Note that TN is a q-regular tree of heigth N such that the elements of Tk,N

are qk−N -periodic subsets of T.
We recollect some basic facts about backwards martingales of periodic functions

(see [3] and [8]). Consider the discrete probability space (αN ;∅, 2
αN;∅ , νN), where νN

is the uniform probability measure on αN,∅:

(2.1) νN =
1

qN

qN−1
∑

j=0

δ j

qN
.
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Pick a function f ∈ C(T) and define

(2.2) fk(x) =
1

qN−k

qN−k−1
∑

j=0

f
(

x+
j

qN−k

)

, k = 0, 1 . . . , N, x ∈ αN,∅.

We restrict our attention to x ∈ αN,∅ only, even though the previous formula makes
sense for arbitrary x ∈ T. The function fk is qk−N periodic, so, it is constant on each
of the sets corresponding to the vertices in Tk,N . That means we can identify fk with
a function on Tk,N . One may verify that the sequence f0, f1, . . . , fN is a martingale
with respect to the filtration {σ(Tk,N)}

N
k=0, where σ(Tk,N) is the algebra of all qk−N

periodic subsets of αN,∅. Note that the elements of Tk,N are the atoms of σ(Tk,N).
We may express the fk in Fourier terms:

fk(x) =
1

qN−k

qN−k−1
∑

j=0

∑

l∈Z

f̂(l)e
2πil(x+ j

qN−k
)

=
∑

l∈Z



f̂(l)e2πilx ·
1

qN−k

qN−k−1
∑

j=0

e
2πi lj

qN−k



 =
∑

qN−k |l

f̂(l)e2πilx,

(2.3)

for any x ∈ αN ;∅ (this relation also holds true for any x ∈ T). Hence, the k-th
martingale difference may be expressed as

(2.4) dfk(x) = fk(x)− fk−1(x) =
∑

qN−k‖l

f̂(l)e2πilx, x ∈ αN ;∅.

We use the notation

R
q
0 =

{

(x0, . . . , xq−1) ∈ R
q :

q−1
∑

j=0

xj = 0

}

and identify vectors x ∈ R
q with functions on Zq in the natural way.

Lemma 2.3. For any α ∈ Tk−1,N we have

(dfk(α[0]), dfk(α[1]), . . . , dfk(α[q − 1]))

=

q−1
∑

m=1

(

∑

n∈Z

f̂
(

(m+ nq)qN−k
)

e2πi(m+nq)qN−kx0

)

ωm,

where x0 ∈ α and

ωm := (ωmj)q−1
j=0 :=

(

e
2πimj

q

)q−1

j=0
, j = 0, 1, . . . , q − 1.

Definition 2.4. By the Zq-Fourier transform we understand the linear operator

on R
q given by the matrix (e−

2πi
q

mn)q−1
m,n=0.

Remark 2.5. Vectors 1
q
ωm are the rows of the inverse q × q Fourier matrix.

Remark 2.6. In other words, the vector (dfk(α[0]), dfk(α[1]), . . . , dfk(α[q − 1]))
is proportional to the inverse Zq-Fourier transform of the vector (e0, e1, . . . , eq−1)
with e0 = 0 and

em =
∑

n∈Z

f̂((m+ nq)qN−k)e2πi(m+nq)qN−kx0, m = 1, 2, . . . , q − 1.
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The above lemma is standard, see, e.g. [3]. We provide its proof for completeness.

Proof of Lemma 2.3. Let us prove our formula for each coordinate individually.
For any j, j = 0, 1, . . . , q − 1, we would like to show

dfk(α[j]) =

q−1
∑

m=1

∑

n∈Z

f̂
(

(m+ nq)qN−k
)

e2πi(m+nq)qN−kx0e
2πimj

q .

Note that this expression does not depend on x0 ∈ α since qN−k(x0 − x′
0) ∈ Z for

any other x′
0 ∈ α. On the other hand, we may use (2.4) by representing x ∈ α[j]

as x = x0 +
j

qN−k+1 , where x0 ∈ α:

dfk(x) =
∑

qN−k‖l

f̂(l)e2πilx =

q−1
∑

m=1

∑

n∈Z

f̂
(

(m+ nq)qN−k
)

e2πi(m+nq)qN−kx

=

q−1
∑

m=1

∑

n∈Z

f̂
(

(m+ nq)qN−k
)

e
2πi(m+nq)(x0+

j

qN−k+1 )q
N−k

=

q−1
∑

m=1

∑

n∈Z

f̂
(

(m+ nq)qN−k
)

e2πi(m+nq)qN−kx0e
2πimj

q . �

Definition 2.7. Let WB be the linear subspace of R
q
0 consisting of vectors d

whose Zq Fourier transform vanishes outside B:

WB =

{

d ∈ R
q
0 : ∀m ∈ Zq \B

q−1
∑

j=0

e−
2πimj

q dj = 0

}

.

Lemma 2.8. Let f ∈ C(T) be such that f dx ∈ MCB
. For any α ∈ TN , we have

the inclusion
(

dfk(α[0]), dfk(α[1]), . . . , dfk(α[q − 1])
)

∈ WB.

Proof. In view of Remark 2.6, em = 0 for any m ∈ B in the terminology of that
remark, provided f dx ∈ MCB

. �

2.2. A general dimension estimate. Consider an auxillary function κ : R+ →
R defined by the rule

(2.5) κ(θ) = sup

{

θ log

(

1

q

q
∑

j=1

|1 + vj|
1
θ

)

: v ∈ WB and ∀j vj ≥ −1

}

.

Note that κ is continuous and convex, and therefore, has the left derivative at 1.
Indeed, by the Hölder’s inequality, for a fixed v ∈ WB, the function

θ 7→ θ log

(

1

q

q
∑

j=1

|1 + vj|
1
θ

)

is convex, and so is κ as a pointwise supremum of convex functions. Using this, we
may compute the value

(2.6) κ′(1) = inf

{

−
1

q

q
∑

j=1

(1 + vj) log(1 + vj) : v ∈ WB and ∀j vj ≥ −1

}

,

where the derivative here means the left derivative. The next lemma is simply a
reformulation of the definition of κ.
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Lemma 2.9. For any a ≥ 0 and any vector b = (bi)i ∈ WB such that bj ≥ −a
for any j = 0, 1, . . . , q − 1, we have

(

1

q

q
∑

j=1

|a+ bj |
p

)
1
p

≤ aeκ(p
−1).

Our main tool is the following principle established in [1] and adjusted to our
case.

Theorem 2.10. For any finite non-negative measure µ ∈ MCB
, we have

dimH(µ) ≥ 1 +
κ′(1)

log q
.

Let {ΦN}N≥1 be a non-negative and smooth approximate identity with the fol-
lowing properties:

ΦN (x) =











qN on [− 1
2qN

, 1
2qN

];

≤ qN on [− 1
2qN−1 ,

1
2qN−1 ] \ [−

1
2qN

, 1
2qN

];

0 otherwise.

Observe that

(2.7) µ

([

x−
1

2qN
, x+

1

2qN

])

≤
1

qN
ΦN ∗ µ(x) ≤ µ

([

x−
1

2qN−1
, x+

1

2qN−1

])

for any x ∈ T, in particular, for x ∈ αN ;∅. The inequalities (2.7) establish a relation-
ship between metric measure structures on TN and T. Henceforth, we will be using
results concerning the backwards martingale generated by the continuous function
f = ΦN ∗ µ. Note that f dx ∈ MCB

provided µ ∈ MCB
.

Lemma 2.11. Consider the martingale {fk}
N
k=0 generated by f = ΦN ∗ µ via

formula (2.2). If µ ∈ MCB
(T), then

(2.8) ‖f‖Lp(νN ) ≤ eκ(p
−1)N‖f0‖Lp(νN ) ≤ (q + 1)eκ(p

−1)N‖µ‖.

We recall that νN is the counting measure defined in (2.1).

Proof. Let us prove the first inequality in (2.8). This inequality will follow
provided we justify the single step bound

‖fk‖Lp(νN ) ≤ eκ(p
−1)‖fk−1‖Lp(νN )

for any k = 1, 2 . . . , N . This inequality, in its turn, follows from even more localized
ones: for any α ∈ Tk−1,N , we have

(

∑

x∈α

|fk(x)|
p

) 1
p

≤ eκ(p
−1)

(

∑

x∈α

|fk−1(x)|
p

) 1
p

.

To prove this inequality, we note that since µ ≥ 0, the sequence {fk}k consists of
non-negative functions. What is more, fk = fk−1 + dfk and the vector

dfk|α =
(

dfk(α[0]), dfk(α[1]), . . . , dfk(α[q − 1])
)

lies in WB by Lemma 2.8. So, the desired inequality is proved by application of
Lemma 2.9 with a = fk−1(α) and b = dfk|α.
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To prove the second inequality in (2.8), we use that f0 ≡
1
qN

∑

x∈TN,N
ΦN ∗ µ(x)

on αN ;∅:

‖f0‖Lp(νN ) =
1

qN

∑

x∈TN,N

ΦN ∗ µ(x)

(2.7)

≤
∑

x∈TN,N

µ
([

x−
1

2qN−1
, x+

1

2qN−1

])

≤ (q + 1)‖µ‖. �

Lemma 2.12. For any any β < 1 + κ′(1)
log q

, there exists γ such that

(2.9)
1

qN

∑

x∈C

f(x) .
(

#C q−βN
)γ
‖µ‖

for any C ⊂ αN ;∅, with the constant independent of N .

Proof. Let p ∈ (1,∞) be a real to be chosen later. By Hölder’s inequality and
Lemma 2.11, we obtain

1

qN

∑

x∈C

f(x) ≤ ‖f‖Lp(νN )‖χC‖Lp′(νN ) = ‖f‖Lp(νN )(q
−N#C)

p−1
p

. eκ(p
−1)Nq−

p−1
p

N(#C)
p−1
p ‖µ‖

= eκ(p
−1)Nq

p−1
p

(β−1)N (q−βN#C)
p−1
p ‖µ‖.

(2.10)

Hence (2.9) is true with γ = p−1
p

when eκ(p
−1)q

p−1
p

(β−1) < 1, that is if

κ(p−1) + (β − 1)
p− 1

p
log q < 0.

This holds true when (β − 1) log q < κ′(1) and p is sufficiently close to 1. �

As we have already said, the reasoning presented below is very much similar to
the proof of Lemma 2.4 in [14].

Proof of Theorem 2.10. Assume the contrary: there exists a Borel set F such
that

dimH(F ) < β1 < 1 +
κ′(1)

log q
and µ(F ) = c1 > 0.

For each sufficiently small δ > 0, there exists a covering C of F by the arcs B(xi, ri)

with centers xi and radii ri such that ri < δ and
∑

i r
β1

i = c2 < ∞. For j = 1, 2 . . .
let

Cj =
{

B(xi, ri) ∈ C : q−j ≤ ri < q−j−1
}

.

We have
∑

rβ1

i ≃
∑

j

q−jβ1#Cj,

so, in particular, #Cj . c2q
jβ1 for all j. By the pigeonhole principle, there exists N &

log 1
δ

such that

µ



F ∩





⋃

B(xi,ri)∈CN

B(xi, ri)







 ≥
6

π2

c1
N2

.
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Since any B(xi, ri) ∈ CN can be covered by at most q+1 arcs from the collection {x+
[− 1

2qN
, 1
2qN

] : x ∈ TN,N}, there exists a covering

C̃N ⊂

{

x+

[

−
1

2qN
,

1

2qN

]

: x ∈ TN

}

such that #C̃N ≤ #CN and

µ





⋃

L∈C̃N

L



 ≥
1

q + 1
µ



F ∩





⋃

B(xi,ri)∈CN

B(xi, ri)







 .

Let us call Mid(C̃N) the set of midpoints of arcs from C̃N . For the previously obtained
N , we apply (2.7) and Lemma 2.12 with β > β1 and obtain

6

π2

c1
N2(q + 1)

≤ µ(∪L∈C̃N
L) ≤

1

qN

∑

x∈Mid(C̃N )

f(x) .
(

#CN q−βN
)γ
‖µ‖ . cγ2q

γ(β1−β)N .

Hence we have N2q−c3N ≥ c4 > 0 for some positive constants c3, c4, independent
of δ and N . On the other hand, we have N → ∞ when δ → 0, which leads to a
contradiction. �

3. Proof of Theorem 1.3

Proof of Theorem 1.3. In view of Theorem 2.10, it suffices to show the inequality

κ′(1) ≥ − log |H|

provided B ⊂ H \ {0} and κ′(1) > − log |H| in the case where the latter inclusion is
proper. We will show that

(3.1) κ

(

1

p

)

≤
p− 1

p
log |H|

for any p ∈ (1,∞) and this inequality is strict if B 6= H . Until the end of the proof
the Fourier transform means the Fourier transform on Zq. The normalization is the
same as in the Definition 2.4.

Let v ∈ WB. Then, v is the Zq-Fourier transform of a vector supported on H , so

v = v ∗ χ̌H = |H|
q
v ∗ χH⊥. Here, χA stands for the characteristic function of a set A

and by H⊥ we understand the annihilator of H , i.e.

H⊥ = {m ∈ Zq : e
2πi
q

mx = 1 ∀x ∈ H}.

It is easy to check that H⊥ is a subgroup of Zq, that Zq/H
⊥ ≃ H and that |H|·|H⊥| =

q. Hence, in the coordinates (h, h′) ∈ Zq/H
⊥ ×H⊥ ≃ Zq (here the isomorphism sign

means the natural bijection corresponding to the partition of Zq by cosets of H⊥)
we have v(h, h′) = v(h, 0) for all (h, h′) in Zq, i.e. v depends on the first coordinate
only. We see that each extremal point x0 of the set

(3.2) {x ∈ R
q
0 : ∀(h, h

′) ∈ Zq x(h, h′) = x(h, 0); x(h, h′) ≥ −1}

is characterized by the property that the function Zq/H
⊥ ∋ h 7→ x0(h, 0) attains the

value |H| − 1 at some h and −1 at the remaining |H| − 1 elements. From this, the
convexity of the p-norm, and formula (2.5), we get

κ

(

1

p

)

≤
1

p
log

(

|H⊥|

q
|H|p

)

=
p− 1

p
log |H|.
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This and the strict convexity of the Lp-norm proves that (3.1) is strict provided
the inclusion B ⊂ H\{0} is proper. In this case, κ′(1) > − log |H| since the function κ
is convex. �

Remark 3.1. Theorem 1.3 is not true if we consider all complex measures; the
counterexample is B = {l} and µ = 1

q

∑q−1
k=0 ω

klδ{ωk}.

4. Proof of Theorem 1.4

We will rely upon the simple observation that µa,q ∈ MC{1,q−1}
. So, our aim is to

compute the value κ′(1) for the case B = {1, q − 1}. In this case, any v ∈ WB is of
the form

v = aω1 + āωq−1, for some a ∈ C.

The above gives

WB =

{

c

(

cos

(

2πj

q
+ ϕ

))q−1

j=0

: c ∈ R, ϕ ∈ [−π, π]

}

.

According to (2.6), we want to maximize a convex function

R
q
0 ∋ x 7→

q−1
∑

j=0

(1 + xi) log(1 + xi)

over a convex region

C = WB ∩ {x ∈ R
q
0 : xj ≥ −1, j = 0, . . . , q − 1}.

The function above is convex because t → t log t is convex for positive reals. Thus,
our purpose is to maximize the quantity

(4.1)

q−1
∑

j=0

(

1− γ cos

(

2πj

q
+ ϕ

))

log

(

1− γ cos

(

2πj

q
+ ϕ

))

,

where γ is chosen in such a way that all the summands are well-defined (the quantity
we compute the logarithm of is non-negative) and ϕ ∈ [−π

q
, π
q
] (by periodicity).

The change of sign inside summands is legal since we can replace ϕ with ϕ + π.
Without loss of generality, we may assume that at least one of the summands vanishes
(evaluations on extremal points of C have this property). Since ϕ ∈ [−π

q
, π
q
] this leads

to γ = (cosϕ)−1.
Therefore, the supremum of (4.1) equals

(4.2) sup
ϕ∈[−π

q
,π
q
]

q−1
∑

j=0

(

1−
cos(2πj

q
+ ϕ)

cosϕ

)

log

(

1−
cos(2πj

q
+ ϕ)

cosϕ

)

=

sup
ϕ∈[−π

q
,π
q
]

q−1
∑

j=0

(

1− cos
2πj

q
+ sin

2πj

q
tanϕ

)

log

(

1− cos
2πj

q
+ sin

2πj

q
tanϕ

)

.

Consider the function g:

g(x) =

q−1
∑

j=0

(aj + bjx) log(aj + bjx), x ∈

[

− tan
π

q
, tan

π

q

]

,

where aj = 1− cos 2πj
q

and bj = sin 2πj
q

.
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Lemma 4.1. For any q ≥ 3,

sup
x∈[− tan π

q
,tan π

q
]

g(x) = g

(

tan
π

q

)

.

In particular, the supremum in (4.2) is attained at the endpoints since tan is a
monotone function on [−π

q
, π
q
].

Proof of Lemma 4.1. Note that g is convex since the expressions aj + bjx are
linear and non-negative when x ∈ [− tan π

q
, tan π

q
], and the function t 7→ t log t is

convex on the positive semi-axis. It remains to add that g is symmetric. �

Proof of Theorem 1.4. The result follows from Theorem 2.10 and the already
proved formula

(4.3) κ′(1) = −
1

q

q−2
∑

j=1

(

1−
cos (2j+1)π

q

cos π
q

)

log

(

1−
cos (2j+1)π

q

cos π
q

)

for the case B = {1, q − 1}. �

5. Proofs of Lemma 1.5 and Proposition 1.6

Proof of Lemma 1.5. Consider the function f : R → R defined as follows:

f(a) =

q−1
∑

j=0

(

a− cos
(2j + 1)π

q

)

log

∣

∣

∣

∣

a− cos
(2j + 1)π

q

∣

∣

∣

∣

.

The sum on the left hand-side of (1.4) is then equal to

f(cos π
q
)

cos π
q

− q log cos
π

q
.

The function f is absolutely continuous and

f ′(a) = log

q−1
∏

j=0

∣

∣

∣

∣

a− cos
(2j + 1)π

q

∣

∣

∣

∣

+ q = log
(

2−q+2T 2
p (a)

)

+ q,

where q = 2p, by our assumptions, p ∈ N, and Tp is the Chebyshev polynomial of
order p, that is

Tp(x) = cos(p arccosx) = 2p−1

p−1
∏

j=0

(

x− cos

(

(j + 1
2
)π

p

))

, x ∈ [−1, 1].

Note that by symmetry (here we heavily use that q is even), f(0) = 0. Thus,
since f is an absolutely continuous function,

f

(

cos
π

q

)

=

ˆ cos π
q

0

(

log
(

2−q+2T 2
p (a)

)

+ q
)

da

= (1− log 2)q cos
π

q
+ (2 log 2) cos

π

q
+

ˆ cos π
q

0

log cos2(p arccos a) da

= (1− log 2)q cos
π

q
+ (2 log 2) cos

π

q
+

ˆ π
2

π
q

log cos2(px) sin x dx
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= (1− log 2)q cos
π

q
+ (2 log 2) cos

π

q
+

2

q

ˆ

qπ

4

π
2

log cos2 z sin
2z

q
dz.

So, the sum on the left hand-side of (1.4) equals

(1− log 2)q + 2 log 2 +
2

q cos π
q

ˆ

qπ

4

π
2

log cos2 z sin
2z

q
dz − q log cos

π

q
. �

Proof of Proposition 1.6. Since µa,q ∈ MC{1,q−1}
, Theorem 2.10 says that

dimH(µa,q) ≥ 1 +
κ′(1)

log q
.

Thus, it remains to combine this estimate with formula (4.3) and Lemma 1.5. �

Remark 5.1. Proposition 1.6 shows that in Theorem 1.4, in the case of even
q’s, our method gives the same asymptotics as we would expect from (1.3). Indeed,
the integral

2

q

ˆ

qπ

4

π
2

log(cos2 z) sin
2z

q
dz

is equal, up to an error of size O(1
q
), to the integral

2

π

ˆ π
2

0

log(cos2 z) dz = −2 log 2,

and thus it cancels with 2 log 2. To prove this, it suffices to observe that
∣

∣

∣

∣

∣

∣

q

2
−1
∑

j=1

sin

(

jπ

q

)

·

ˆ

(j+1)π
2

jπ

2

log(cos2 z) dz −

ˆ

qπ

4

π
2

log(cos2 z) sin
2z

q
dz

∣

∣

∣

∣

∣

∣

≤

q

2
−1
∑

j=1

ˆ

(j+1)π
2

jπ

2

∣

∣log(cos2 z)
∣

∣

∣

∣

∣

∣

sin

(

2

q
· j ·

π

2

)

− sin
2z

q

∣

∣

∣

∣

dz

≤
(q

2
− 1
)

· π log 2 ·
2

q
·
π

2
≤

π2

2
log 2,

and that the expression

π

q

q

2
−1
∑

j=1

sin

(

jπ

q

)

is a Riemann sum of
ˆ π

2

0

sin x dx = 1.

6. Proof of Proposition 1.7

Proof of Proposition 1.7. In view of the identity

1

2π

ˆ 2π

0

(1− cosx) log(1− cosx) dx = 1− log 2,
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we need to bound the expression below:
∣

∣

∣

∣

∣

1

q

q−2
∑

j=1

(

1−
cos (2j+1)π

q

cos π
q

)

log

(

1−
cos (2j+1)π

q

cos π
q

)

−
1

2π

ˆ 2π

0

(1− cosx) log(1− cosx) dx

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

1

q

q−2
∑

j=1

(

1−
cos (2j+1)π

q

cos π
q

)

log

(

1−
cos (2j+1)π

q

cos π
q

)

−
1

q

q−2
∑

j=1

(

1− cos
(2j + 1)π

q

)

log

(

1− cos
(2j + 1)π

q

)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

q

q−2
∑

j=1

(

1− cos
(2j + 1)π

q

)

log

(

1− cos
(2j + 1)π

q

)

−
1

2π

ˆ 2π

0

(1− cosx) log(1− cosx) dx

∣

∣

∣

∣

=: I + II.

Let us denote h(t) = (1− t) log(1− t), θq =
1

cos π
q

, and let us define the numbers mq,j

and Mq,j by

mq,j = min

{

cos
(2j + 1)π

q
, θq cos

(2j + 1)π

q

}

and

Mq,j = max

{

cos
(2j + 1)π

q
, θq cos

(2j + 1)π

q

}

.

By the mean value theorem, for some Θq,j ∈
[

mq,j,Mq,j

]

, j = 1, . . . , q − 2, we have:

I =
1

q

∣

∣

∣

∣

∣

q−2
∑

j=1

h

(

cos

(

(2j + 1)π

q

))

− h

(

θq cos

(

(2j + 1)π

q

))

∣

∣

∣

∣

∣

≤
1

q

q−2
∑

j=1

|1− θq| ·

∣

∣

∣

∣

cos

(

(2j + 1)π

q

)∣

∣

∣

∣

· |h′(Θq,j)|

≤
q − 2

q
|1− θq|+

|1− θq|

q

q−2
∑

j=1

| log(1−Θq,j)|

≤
q − 2

q

(

|1− θq|+ |1− θq| ·

∣

∣

∣

∣

log

(

1− θq cos

(

3π

q

))∣

∣

∣

∣

)

.

In the remaining part of calculations we will use the following three elementary
inequalities:

1− cosx ≤
x2

2
, x ∈ R,(6.1)

sin x ≥
2

π
x, x ∈ [0,

π

2
],(6.2)

|x log x| ≤
1

e
, x ∈ [0, 1].(6.3)
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The first one implies the following bound

|1− θq| =
1− cos π

q

cos π
q

≤

1
2

(

π
q

)2

1− 1
2

(

π
q

)2 ≤
(π

q

)2

.

On the other hand, by (6.2) we get

1− θq cos

(

3π

q

)

=
2 sin π

q
sin 2π

q

cos π
q

≥
16

q2
.

By combining the above estimates we obtain

I ≤ θq − 1 +

(

π

q

)2 ∣
∣

∣

∣

log
16

q2

∣

∣

∣

∣

(6.3)

≤ θq − 1 +
π2

2e
·
1

q
.

Thus, it remains to prove that

II ≤
4π

q
.

This is a consequence of the following bound
∣

∣

∣

∣

d

dx
(1− cosx) log(1− cos x)

∣

∣

∣

∣

= | sin x(1 + log(1− cosx))| ≤ 2.

To prove the last inequality, we estimate sin x by one and 1− cosx by e. �

7. Further examples and comments

A more general form of the backwards martingale that we used appears also as
an element of the proof of the dimension estimate in [13]. In that paper, it is used
to prove a version of the pointwise ergodic theorem with respect to Riesz products.

The assumption of being a non-negative measure from MB(T) implies the sym-
metry of B. Theorems corresponding to the case when B is (strongly) antisymmetric
were considered in [3].

Remark 7.1. For a fixed q we can define δq as the best constant such that the
inequality

dimH(µ) ≥ δq > 0

is true for any finite non-negative measure from MCB
(T) and B 6= Zq \ {0}. If q is

small, then the constant δq may be estimated by a direct computation of the extremal
points of

span{ωm}m∈B ∩ {x ∈ R
q
0 : ∀j xj ≥ −1},

for all possible choices of symmetric sets B 6= Zq \ {0}. Namely, for any choice of
such B, the function κ′(1) can be bounded from below by the smallest value of

x 7→ −
1

q

q
∑

j=1

(1 + xi) log(1 + xi)

on the set of all such extremal points.
For example, if q = 4 then we may take B = {2} or B = {1, 3}. In the first

case, the extremal points are ±(1,−1, 1,−1), while for the second choice they are
±(1, 1,−1,−1),±(1,−1,−1, 1). This gives δ4 ≥

1
2
.

An obvious converse of Theorem 1.3 says that singular measures have rich spec-
trum in the arithmetical sense.
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Corollary 7.2. Let µ ∈ M(T) be a non-negative finite measure such that

dimH(µ) < δq,

where δq is as in the above remark. Then for each m ∈ {1, . . . , q − 1} there exists

n ∈ spec(µ) such that n has a divisor with residue m modulo q.
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