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Abstract. Let f be the analytic self-map of the open unit disk D in complex plane with

f(0) = 0 and f ′(0) 6= 0. The classical Landau theorem shows that the image f(D) contains a

schlicht disk. In this note, it is proved that the injectivity of f in the Landau theorem can be

strengthened to be starlike. In particular, it provides a way to construct starlike functions from

bounded analytic functions. Furthermore, we obtain a new version of the Landau theorem for

vector-valued analytic functions from the perspective of modulus functions.

1. Introduction

Denote by D the open unit disk of the complex plane C. If f : D → D is an
analytic function normalized by f(0) = 0 and |f ′(0)| = α > 0, then the classical
Landau theorem states that f is injective on r0D with r0 = α/(1 +

√
1− α2) and

f(r0D) contains the disk R0D with R0 = r20, [13]. Furthermore, r0 and R0 are
both sharp with the extremal function f(z) = z(z + α)/(1 + zα). Historically, the
Landau theorem can be used to prove the celebrated Bloch theorem saying that f(D)
contains a schlicht disk of universal radius for any analytic function f with the only
normalization f ′(0) = 1, see, e.g., [8].

Recently, the Landau theorem has been studied extensively; see e.g. [16] for map-
pings of bounded and finite distortion, [5, 6, 7, 9, 11, 14] for harmonic mappings and
[1, 3, 4, 10] for holomorphic or pluriharmonic mappings. However, all of these exten-
sions and generalizations are not sharp. The sharp version of the Landau theorem
has been generalized into slice regular functions over quaternions in [2] and [21],
independently.

Let Ω be a starlike domain with respect to the origin, that is tΩ ⊂ Ω for all
t ∈ [0, 1]. For the analytic function f on Ω with f(0) = 0, f is said to be starlike on
Ω if f is injective on Ω and the image f(Ω) is starlike with respect to the origin. In
fact, the injectivity of f in the Landau theorem can be strengthened to be starlike
on r0D as shown by Theorem 1.1 and then f(D) contains a schlicht disk by the
1

4
-covering theorem.

For the complex-valued analytic function f on D with f(0) = 0 and f ′(0) 6= 0,
it is well known that the analytical characterization of starlikeness on D can be
presented as

Re
zf ′(z)

f(z)
> 0, ∀ z ∈ D.
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In fact, the formula above is also equivalent to that the modulus function M(r) =
|f(ru)| is strictly increasing on [0, 1) for each u ∈ ∂D. Furthermore, this conclusion
holds also for slice starlike functions over quaternions [20]. From this perspective,
we shall in this note establish a new and sharp version of the Landau theorem for
vector-valued analytic functions as follows.

Theorem 1.1. Let f : D → C
n be a vector-valued analytic function with f(0) =

0, |f ′(0)| = α > 0 and |f(z)| < 1 for all z ∈ D. Then, for any θ ∈ R, |f(reiθ)| and

r2/|f(reiθ)| are strictly increasing for r ∈ (0, r0), where r0 = α/(1 +
√
1− α2) is

sharp.

Theorem 1.1 provides a method of constructing starlike functions from bounded
analytic functions.

Corollary 1.2. If f is a complex-valued analytic function on D with f(0) =
0, |f ′(0)| = α > 0 and |f(z)| < M for all z ∈ D, then f(z) and z2/f(z) are starlike

functions on rD with r = α/(M +
√
M2 − α2).

Remark 1.3. In the proof of Theorem 1.1, we show directly the starlikeness of f
on r0D which means naturally that f is injective on r0D for complex-valued analytic
functions. This approach is totally different from the usual case; see for instance [3,
Theorem 1].

Remark 1.4. In the case of several complex variables, it is worth mentioning
that the starlikeness of analytic functions is not equivalent to that its modulus is
increasing in the radial direction. To see this, we take the vector-valued analytic
function f(z, w) = (z+azw, w) on the open unit ball B2 = {(z, w) ∈ C

2 : |z|2+|w|2 <
1}. For any a ∈ D, f is injective on B2 and f(B2) is a starlike domain with respect
to the origin [17, Example 6]. Hence, f is starlike on B2. However, |f(z, w)| is not
increasing in the radial direction. In fact, |f(z, w)| is given by

|f(z, w)|2 = |z′w′a|2r4 + 2Re (aw′)|z′|2r3 + r2,

with (z, w) = r(z′, w′), r =
√

|z|2 + |w|2 ≥ 0, and (z′, w′) ∈ ∂B2.
Then, we obtain

∂

∂r
|f(z, w)|2 = 2r

(

2|z′w′a|2r2 + 3Re (aw′)|z′|2r + 1
)

is negative for some r ∈ (0, 1) since the discriminant △ = |z′|2
(

9|z′|2(Re (aw′))2 −
8|aw′|2

)

takes some positive values.

The next section shall be devoted to the proof of our main result (Theorem 1.1).

2. Proof of Theorem 1.1

In order to prove Theorem 1.1, we need two lemmas.

Lemma 2.1. If f : D → C
n is a vector-valued analytic function satisfying

|f(z)| < 1 for all z ∈ D, then

(2.1) |〈f ′(z), f(z)〉| ≤ |f(z)|1− |f(z)|2
1− |z|2 .

In fact, for f(z) 6= 0, (2.1) can be rewritten as

∣

∣∇|f(z)|
∣

∣ ≤ 1− |f(z)|2
1− |z|2 ,
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which was first proved by Pavlović [15] and generalised by the author for analytic
functions of the open unit ball of JB∗-triples into Banach spaces [19]. The inter-
ested readers may refer to [12, 18] for the harmonic and pluriharmonic versions of
Lemma 2.1, respectively.

Lemma 2.2. If f : D → C
n is a vector-valued analytic function satisfying

|f(z)| < 1 for all z ∈ D, then

(2.2)
|f(0)| − |z|
1− |z||f(0)| ≤ |f(z)| ≤ |z| + |f(0)|

1 + |z||f(0)| , ∀ z ∈ D.

Proof. Fix l ∈ C
n with |l| = 1 and consider the analytic self-map of D given by

g(z) = 〈f(z), l〉. Applying the classical Schwarz–Pick lemma to the complex-valued
analytic function g, we have, for all z ∈ D,

∣

∣

∣

g(z)− g(0)

1− g(z)g(0)

∣

∣

∣
≤ |z|.

Equivalently,
∣

∣

∣
g(z)− (1− |z|2)g(0)

1− |z|2|g(0)|2
∣

∣

∣
≤ |z|

(

1− |g(0)|2
)

1− |z|2|g(0)|2 ,

which implies by the triangle inequality that

(2.3)
|g(0)| − |z|
1− |z||g(0)| ≤ |g(z)| ≤ |z| + |g(0)|

1 + |z||g(0)| .

Note that, for a ∈ (0, 1), the function h(x) = a+x

1+ax
is increasing for x ∈ (0, 1). Hence

the inequality |g(0)| = |〈f(0), l〉| ≤ |f(0)| shows that

(2.4) |g(z)| ≤ |z| + |g(0)|
1 + |z||g(0)| ≤

|z| + |f(0)|
1 + |z||f(0)| .

The right inequality in (2.2) is trivial if f(z) = 0 and otherwise obtained by taking
l = f(z)/|f(z)| in (2.4). On the other hand, (2.3) implies also that

(2.5)
|g(0)| − |z|
1− |z||g(0)| ≤ |g(z)| ≤ |f(z)|.

The left inequality in (2.2) is trivial if f(z) = 0 and otherwise can be obtained by
taking l = f(0)/|f(0)| in (2.5). �

We are now in a position to prove the main result.

Proof of Theorem 1.1. Consider the analytic function h : D → C
n given by

h(z) =

{

z−1f(z), if z ∈ D \ {0},
f ′(0), if z = 0.

By applying the maximum modulus principle for vector-valued analytic functions,
we have |h(z)| ≤ 1 for all z ∈ D. Lemma 2.1 states that

|〈h′(z), h(z)〉| ≤ |h(z)|1− |h(z)|2
1− |z|2 , ∀ z ∈ D.

From the left inequality in (2.2), for |z| = r < α, we have h(z) 6= 0 and
∣

∣

∣
〈h′(z),

h(z)

|h(z)| 〉
∣

∣

∣
≤ 1− |h(z)|2

1− r2
≤ 1

1− r2

(

1−
( α− r

1− rα

)2)

=
1− α2

(1− αr)2
.
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Note that, for r ∈ (0, r0), it holds that αr2 − 2r + α > 0. Equivalently,

r(1− α2)

(1− αr)2
<

α− r

1− αr
, r ∈ (0, r0).

Hence, Lemma 2.2 implies that, for r ∈ (0, r0),
∣

∣

∣
〈zh′(z),

h(z)

|h(z)| 〉
∣

∣

∣
< |h(z)|,

i.e.,
∣

∣

∣
〈zf ′(z)− f(z),

f(z)

|f(z)| 〉
∣

∣

∣
=

∣

∣

∣
〈zf ′(z),

f(z)

|f(z)| 〉 − |f(z)|
∣

∣

∣
< |f(z)|.

Especially, we have

0 < Re 〈zf ′(z),
f(z)

|f(z)|〉 < 2|f(z)|, r ∈ (0, r0).

Direct calculations show that

r
∂

∂r
|f(z)| = Re 〈zf ′(z),

f(z)

|f(z)| 〉, f(z) 6= 0,

and then we have

0 < r
∂

∂r
|f(z)| < 2|f(z)|, r ∈ (0, r0).

That is to say

0 <
∂

∂r
log |f(z)| < 2

r
, r ∈ (0, r0).

Integrating the above inequality from r1 to r2 with 0 < r1 < r2 < r0 gives that

0 < log
|f(r2eiθ)|
|f(r1eiθ)|

< 2 log
r2
r1
.

Hence, |f(reiθ)| and r2/|f(reiθ)| are strictly increasing for r ∈ (0, r0). To see the
sharpness of r0, take the analytic function f : D → C

n given by

f(z) = (z
z + α

1 + zα
, 0, . . . , 0), z ∈ D.

The proof is complete. �
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