RINGS AND BILIPSCHITZ MAPS IN NORMED SPACES

Pekka Tukia and Jussi Väisälä
University of Helsinki, Department of Mathematics and Statistics
P. O. Box 68, FI-00014 University of Helsinki, Finland; pekka.tukia@helsinki.fi
University of Helsinki, Department of Mathematics and Statistics
P. O. Box 68, FI-00014 University of Helsinki, Finland; jussi.vaisala@helsinki.fi

Abstract

We define the geometric modulus $G M(A)$ of a ring A in a normed space E and show that a set-bounded homeomorphism $f: E \rightarrow E$ is bilipschitz if and only if $|G M(A)-G M(f A)| \leq c$ for all rings $A \subset E$.

1. Introduction

1.1. Background. A domain A in the eudlidean space $\mathbf{R}^{n}, n \geq 2$, is a ring domain or a ring if its complement consists of two components, a bounded C_{0} and an unbounded C_{1}. Let Γ_{A} be the family of all paths joining C_{0} and C_{1} in A, and let $\bmod \Gamma_{A}$ denote the n-modulus of Γ_{A}. Then

$$
M(A)=\left(\frac{\omega_{n-1}}{\bmod \Gamma_{A}}\right)^{1 /(n-1)}
$$

is the modulus of the ring A. Here ω_{n-1} is $(n-1)$-measure of the unit sphere $S^{n-1} \subset \mathbf{R}^{n}$. In particular, the modulus of the spherical ring $A=B^{n}(b) \backslash \bar{B}^{n}(a)$ is $\log b / a$.

Rings and their moduli have turned out to be a useful tool in the theory of quasiconformal maps, and S. Rohde [Ro] showed in 1997 that also bilipschitz maps of \mathbf{R}^{n} can be characterized in terms of rings. Indeed, a homeomorphism $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is α-bilipschitz iff there is a constant $c \geq 0$ such that

$$
|M(A)-M(f A)| \leq c
$$

for all rings $A \subset \mathbf{R}^{n}$. Moreover, if f fixes two points, then α and c depend only on each other and n.

The purpose of this paper is to prove a similar result for normed spaces. The modulus of a path family is now no more available and we will replace the modulus $M(A)$ by a number $G M(A)$ defined by (1.3) below.

We thank the referee for pointing out that our results hold for all normed spaces, not only for Banach spaces.
1.2. Terminology and notation. Throughout this paper E will denote a real normed space with $\operatorname{dim} E \geq 2$ and norm written as $|x|$. A homeomorphism $f: E \rightarrow E$ is called set-bounded if the image $f A$ and pre-image $f^{-1} A$ of every bounded set $A \subset E$ are bounded. If $\operatorname{dim} E<\infty$, then every homeomorphism $f: E \rightarrow E$ is set-bounded. A map $f: E \rightarrow E$ is α-bilipschitz, $\alpha \geq 1$, if

$$
|x-y| / \alpha \leq|f x-f y| \leq \alpha|x-y|
$$

https://doi.org/10.5186/aasfm.2021.4608
2020 Mathematics Subject Classification: Primary 30C65, 46B20.
Key words: Ring, bilipschitz, normed space, geometric modulus.
for all $x, y \in E$. We will give in 2.12 an example of a homeomorphism which is not set-bounded.

A domain $A \subset E$ is a ring if its complement consists of two components, a bounded C_{0} and an unbounded C_{1}. The geometric modulus of a ring A is the number

$$
\begin{equation*}
G M(A)=\log \left(1+\frac{2 d\left(C_{0}, C_{1}\right)}{d\left(C_{0}\right)}\right) . \tag{1.3}
\end{equation*}
$$

Here $d\left(C_{0}\right)$ is the diameter of C_{0} and $d\left(C_{0}, C_{1}\right)$ is the distance between C_{0} and C_{1}. Observe that

$$
G M(A)=\log \frac{b}{a}
$$

for the spherical ring $A=B(b) \backslash \bar{B}(a)$ where $B(r)$ is the ball $\{x \in E:|x|<r\}$. Rohde [Ro, Lemma 2.1] made use of almost the same number

$$
G R(A)=\log \left(1+\frac{d\left(C_{0}, C_{1}\right)}{d\left(C_{0}\right)}\right)
$$

for a ring A of \mathbf{R}^{n} and showed that $|M(A)-G R(A)| \leq C_{n}$ where C_{n} depends only on n. The proof was rather deep. Note that $G M(A)$ is between $G R(A)$ and $G R(A)+\log 2$.

If $f: E \rightarrow E$ is a set-bounded homeomorphism and if $x \in E, r>0$, we write

$$
\begin{aligned}
L(x, r) & =\sup \{|f y-f x|:|y-x|=r\}, \\
\ell(x, r) & =\inf \{|f y-f x|:|y-x|=r\} .
\end{aligned}
$$

2. Results

2.1. Notation. We assume in this section that $f: E \rightarrow E$ is a set-bounded homeomorphism. Let $P_{c}(E), c>0$, be the family of set-bounded homeomorphisms $f: E \rightarrow E$ satisfying the condition

$$
\begin{equation*}
|G M(A)-G M(f A)| \leq c \tag{2.2}
\end{equation*}
$$

for all rings $A \subset E$. If, in addition, $f(0)=0$ and there is a point $u \in E$ such that $|u|=|f u|=1$, we write $f \in P_{c}^{0}(E)$.

We will prove the following three theorems:
2.3. Theorem. If $f \in P_{c}(E)$ and if $x \in E, r>0$, then

$$
\frac{L(x, r)}{\ell(x, r)} \leq 3 e^{c}
$$

2.4. Theorem. If $f \in P_{c}(E)$ and if there are points $y, z \in E$ such that $|f(y)-f(z)|=|y-z| \neq 0$, then f is α-bilipschitz with $\alpha=27 e^{5 c}$.

Conversely:
2.5. Theorem. If $f: E \rightarrow E$ is an α-bilipschitz homeomorphism, then

$$
|G M(A)-G M(f A)| \leq 2 \log \alpha
$$

for all rings $A \subset E$.
Suppose that $x \in E, r>0$. If $\operatorname{dim} E<\infty$, then, by compactness, there are points $a, b \in S(x, r)$ such that $|f a-f x|=L(x, r)$ and $|f b-f x|=\ell(x, r)$. If $\operatorname{dim} E=\infty$, we need the following simple result. Here $[a, b\rangle$ is the ray from a through b.
2.6. Lemma. Let $\emptyset \neq F \subset E$ be a closed and bounded set and let $x \in E \backslash F$ and $\varepsilon>0$. Then there are $a, b \in F$ such that

$$
\begin{aligned}
& |a-x|<d(x, F)+\varepsilon \quad \text { and } \quad[x, a) \cap F=\emptyset \\
& |b-x|>\sup \{|y-x|: y \in F\}-\varepsilon \quad \text { and } \quad([x, b\rangle \backslash[x, b]) \cap F=\emptyset .
\end{aligned}
$$

Proof. There is a point $a_{1} \in F$ such that $\left|a_{1}-x\right|<d(x, F)+\varepsilon$. Since $\left[x, a_{1}\right]$ is compact, there is $a \in F \cap\left[x, a_{1}\right]$ with $[x, a) \cap F=\emptyset$.

The point b is found similarly.
The following result is trivial.
2.7. Lemma. Let A and A^{*} be rings of E with complementary components C_{0}, C_{1} and C_{0}^{*}, C_{1}^{*}. If $C_{0}^{*} \subset C_{0}$ and $C_{1}^{*} \subset C_{1}$, then $G M(A) \leq G M\left(A^{*}\right)$.
2.8. Proof of Theorem 2.3. Let $\varepsilon>0$ be a small number, we will later let $\varepsilon \rightarrow 0$. We apply Lemma 2.6 with $F=\partial f B(x, r)$. There are points $a_{0}, a_{1} \in S(x . r)$ such that

$$
\begin{aligned}
& \left|f a_{0}-f x\right|<\ell(x, r)+\varepsilon, \quad\left[f x, f a_{0}\right) \subset f B(x, r), \\
& \left|f a_{1}-f x\right|>L(x, r)-\varepsilon, \quad\left(\left[f x, f a_{1}\right\rangle \backslash\left[f x, f a_{1}\right]\right) \cap F=\emptyset .
\end{aligned}
$$

Set

$$
\begin{aligned}
& C_{0}^{\prime}=\left[f x, f a_{0}\right], \quad C_{1}^{\prime}=\left[f x, f a_{1}\right\rangle \backslash\left[f x, f a_{1}\right), \\
& C_{0}=f^{-1} C_{0}^{\prime}, \quad C_{1}=f^{-1} C_{1}^{\prime}, \quad A=E \backslash\left(C_{0} \cup C_{1}\right) .
\end{aligned}
$$

Then

$$
G M(A) \leq \log (1+2 r / r)=\log 3 .
$$

Writing $L=L(x, r), \ell=\ell(x, r)$, we have $d\left(C_{0}^{\prime}\right)=\left|f x-f a_{0}\right|<\ell+\varepsilon$.
To get a lower bound for $d\left(C_{0}^{\prime}, C_{1}^{\prime}\right)$, we assume that $y_{0} \in C_{0}^{\prime}, y_{1} \in C_{1}^{\prime}$. Then

$$
\begin{aligned}
\left|y_{1}-y_{0}\right| & \geq\left|y_{1}-f x\right|-\left|y_{0}-f x\right| \\
& \geq\left|f a_{1}-f x\right|-\left|f a_{0}-f x\right| \geq L-\ell-2 \varepsilon .
\end{aligned}
$$

Hence $d\left(C_{0}^{\prime}, C_{1}^{\prime}\right) \geq L-\ell-2 \varepsilon$, and we obtain

$$
G M(f A) \geq \log \left(1+2 \frac{L-\ell-2 \varepsilon}{\ell+\varepsilon}\right)
$$

As $\varepsilon \rightarrow 0$, this gives $G M(f A) \geq \log ((2 L-\ell) / \ell) \geq \log L / \ell$. Hence

$$
c \geq G M(f A)-G M(A) \geq \log \frac{L}{\ell}-\log 3=\log \frac{L}{3 \ell}
$$

and therefore $L / \ell \leq 3 e^{c}$.
2.9. Proof of Theorem 2.4. Performing two auxiliary similarity mappings we may assume that $f \in P_{c}^{0}(E)$ (defined as in 2.1). Since $f \bar{B}(1)$ is bounded, we can choose, using 2.3, a number $R>1$ such that $\ell(0, R)>L(0,1)$. We first show that

$$
\begin{equation*}
L(0, R) \leq 9 e^{3 c} R \tag{2.10}
\end{equation*}
$$

Let A be the spherical ring $B(R) \backslash \bar{B}(1)$ and set $Q=3 e^{c}$. We have by Theorem 2.3

$$
L(0,1) \leq Q \ell(0,1), \quad \ell(0, R) \geq L(0, R) / Q
$$

Since $\ell(0,1) \leq|f u|=1$, Lemma 2.7 gives

$$
G M(f A) \geq \log \frac{\ell(0, R)}{L(0,1)} \geq \log \frac{L(0, R)}{Q^{2}} .
$$

Since $G M(f A) \leq G M(A)+c=\log R+c$, we obtain

$$
\log \frac{L(0, R)}{Q^{2}} \leq \log R+c
$$

which implies (2.10).
Since $f^{-1} \in P_{E}^{0}(c)$, it suffices to show that f is α-Lipschitz. To get this, it suffices to show that

$$
\operatorname{Lip}(x, f)=\limsup _{s \rightarrow 0} \frac{L(x, s)}{s} \leq \alpha
$$

for each $x \in E$, see e.g. [Fe, 2.2.7].
Let $x \in E$. Choose a large number R such that $R>|x|$ and $\ell(0, R)>L(0,1)$. Next choose s with $0<s<R-|x|$, and let A be the $\operatorname{ring} B(R) \backslash \bar{B}(x, s)$. Then

$$
G M(A)=\log \left(1+2 \frac{R-|x|-s}{2 s}\right)=\log \frac{R-|x|}{s} .
$$

Let $C_{0}^{\prime}, C_{1}^{\prime}$ be the complementary components of $f A$. We have

$$
\begin{aligned}
d\left(C_{0}^{\prime}\right) & \geq 2 \ell(x, s), \\
d\left(C_{0}^{\prime}, C_{1}^{\prime}\right) & \leq L(0, R)-|f x|-\ell(x, s) \leq L(0, R)-\ell(x, s) .
\end{aligned}
$$

Hence

$$
G M(f A) \leq \log \frac{L(0, R)}{\ell(x, s)}
$$

and we obtain

$$
\log \frac{R-|x|}{s} \leq G M(A)-G M(f A)+G M(f A) \leq c+\log \frac{L(0, R)}{\ell(x, s)} .
$$

This yields using (2.10) and Theorem 2.3

$$
\frac{R-|x|}{s} \leq e^{c} \frac{L(0, R)}{\ell(x, s)} \leq \frac{9 e^{4 c} R}{L(x, s) / 3 e^{c}}
$$

which implies that

$$
\frac{L(x, s)}{s} \leq \frac{27 e^{5 c}}{1-|x| / R}
$$

As $R \rightarrow \infty$ and $s \rightarrow 0$, we obtain $\operatorname{Lip}(x, f) \leq 27 e^{5 c}=\alpha$.
2.11. Proof of Theorem 2.5. Observe that f is set-bounded as a bilipschitz map.

Let $A \subset E$ be a ring and let C_{0}, C_{1} and $C_{0}^{\prime}, C_{1}^{\prime}$ be the complementary components of A and $f A$, respectively. Set

$$
t=\frac{2 d\left(C_{0}, C_{1}\right)}{d\left(C_{0}\right)}
$$

Since $d\left(C_{0}^{\prime}\right) \geq d\left(C_{0}\right) / \alpha$ and $d\left(C_{0}^{\prime}, C_{1}^{\prime}\right) \leq \alpha d\left(C_{0}, C_{1}\right)$, we have

$$
G M(A)=\log (1+t), \quad G M(f A) \leq \log \left(1+\alpha^{2} t\right),
$$

and hence

$$
G M(f A)-G M(A) \leq \log g(t)
$$

where $g(t)=\left(1+\alpha^{2} t\right) /(1+t)$. Since $g(t)$ is increasing and $g(t) \rightarrow \alpha^{2}$ as $t \rightarrow \infty$, we have $g(t) \leq \alpha^{2}$ for all t. A similar argument for the inverse map f^{-1} gives $|G M(A)-G M(f A)| \leq 2 \log \alpha$.
2.12. Example. We give an example of a homeomorphism $f: E \rightarrow E$ which is not set-bounded. Let E be the Hilbert space l_{2} of sequences $a=\left(a_{1}, a_{2}, \ldots\right)$ such that $\sum_{i=1}^{\infty}\left|a_{i}\right|^{2}$ is finite.

Define now a map $f: E \rightarrow E$ by $f\left(a_{1}, a_{2}, \ldots\right)=\left(f_{1}\left(a_{1}\right), f_{2}\left(a_{2}\right), \ldots\right)$ where

$$
\begin{aligned}
f_{i}(t) & =t \text { if }|t| \leq 1, \\
& =\text { it if }|t| \geq 2, \\
& =1+(2 i-1)(t-1) \text { if } 1 \leq t \leq 2, \\
& =-f_{i}(-t) \text { if }-2 \leq t \leq-1
\end{aligned}
$$

Each f_{i} is a homeomorphism of the real line such that $f_{i}(t)=f_{i}^{-1}(t)=t$ if $|t|<1$. Given $a \in E$, there is i_{a} such that $\left|a_{i}\right|<1$ if $i \geq i_{a}$. Thus $f_{i}\left(a_{i}\right)=a_{i}$ if $i \geq i_{a}$. Hence $\sum_{i \geq i_{a}} f\left(a_{i}\right)^{2}=\sum_{i \geq i_{a}} a^{2}<\infty$ and so f is a well-defined map of E. In addition, we see that f is bijective and $f^{-1}=\left(f_{1}^{-1}, f_{2}^{-1}, \ldots\right)$.

Furthermore, both f and f^{-1} are continuous. To see this, fix $a=\left(a_{1}, a_{2}, \ldots\right) \in E$. Let F_{n} consist of points $x \in E$ of the form $x=\left(0, \ldots, 0, x_{n+1}, x_{n+2}, \ldots\right)$ and let U_{n} be the subset of F_{n} such that each $\left|x_{i}\right|<1$. There is n such that U_{n} is a neighbourhood of $\left(0, \ldots, 0, a_{n+1}, a_{n+2}, \ldots\right)$ in F_{n}. Let E_{n} consist of the sequences $\left(x_{1}, \ldots, x_{n}, 0, \ldots\right)$. Thus E is homeomorphic to the n-dimensional Euclidean space. Clearly, $f \mid E_{n}$ is continuous and so is $f \mid U_{n}$ as the the identity map of U_{n}. It follows that $f \mid E_{n} \times U_{n}$ is continuous and especially f is continuous at a. Similarly, f^{-1} is continuous at $f(a)$.

Set $e_{i}=(0, \ldots, 0,1,0, \ldots)$ (1 in the i-th place). Then f sends the bounded set $B=\left\{2 e_{i}\right\}_{i>0}$ to the unbounded set $\left\{2 i e_{i}\right\}_{i>0}$ and hence f is not set-bounded.

Note that if $g=\left(f_{1}, f_{2}^{-1}, f_{3}, f_{4}^{-1}, \ldots\right)$, then both g and g^{-1} are homeomorphisms of E sending the bounded set B to an unbounded set.

References

[Fe] Federer, H.: Geometric measure theory. - Springer, 1969.
[Ro] Rohde, S.: Bilipschitz maps and the modulus of rings. - Ann. Acad. Sci. Fenn. Math. 22, 1997, 465-474.

