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Abstract. In this article, the open problem of finding the exact value of the norm of the
Hilbert matrix operator on weighted Bergman spaces AP, is adressed. The norm was conjectured
to be —a== by Karapetrovi¢. We obtain a complete solution to the conjecture for v > 0 and

s ———
P

24 a+/a? + %a + 3 <p < 2(2+«) and a partial solution for 24 2a < p < 2+a+/a? + %a + 3.
Moreover, we also show that the conjecture is valid for small values of a when 2 4+ 2a < p < 3+ 2.
Finally, the case o = 1 is considered.

1. Introduction

The Hilbert matrix operator H is a linear integral operator that can be defined
on several spaces of analytic functions on the open unit disk D = {z € C: |2]| <
1}. Historically, Magnus [14] was the first person to consider H as an operator
on the space (2 of square-summable complex sequences. The first results in the
direction of estimating the norm of H on analytic function spaces were obtained
by Diamantopoulos and Siskakis in [6, 5]. In [6], they considered H acting on the
Hardy spaces and established the boundedness of H for 1 < p < oo in combination
with upper estimates for the norm. Aleman, Montes-Rodriguez, and Sarafoleanu [1]
provided a description of the point spectrum of H acting on the Hardy spaces. The
starting point for the study of the Bergman space case was the article [5], in which
Diamantopoulos established an upper estimate for the norm of H for 4 < p < 0o and
a less precise estimate on the scale 2 < p < 4. In [7], Dostani¢, Jevti¢ and Vukoti¢
pursued the investigation of H on the Bergman space AP and Hardy space H? and
obtained the exact value of the norm for 4 < p < oo, namely

s
Pl =

and in the Hardy space case the precise value of the norm was proven to be

™
[Hlr-smr = ——

for 1 < p < co. They also conjectured that the value of the norm |||/ 4r—a» is the
same in the 2 < p < 4 case, see also [11]. Bozin and Karapetrovi¢ [4] confirmed
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the conjecture in the positive by reducing the problem to certain novel estimates of
the Beta function. In [13] the authors simplified the proofs of the key lemmas in [4]
significantly by discarding the use of a classical theorem of Sturm.

In this article, which is a continuation of [13|, the results concerning the un-
weighted Bergman space case are generalized to the weighted Bergman spaces AP,
where o« > 0. The study of the boundedness of the Hilbert matrix operator H acting
on AP was initiated in the article [8] where partial results were obtained. A complete
characterization of the boundedness of H on A? is given in the article [10] where it
is proven that H is bounded on AP if and only if p > 2+« > 1. The preceding result
provided the way to the question of the precise value of the norm of H acting on
the weighted Bergman spaces. Karapetrovi¢ considered H on A? in [12], where he
derives the exact value of the norm when 4 < 2(2 4+ «) < p < o0, that is

T
p p = —
||HHAQ—>AQ sin (2+a)m

and obtains a better than known upper bound for the norm when 2 <2+ a < p <
2(2 + «). In [12] Karapetrovi¢ conjectures that the norm of H is the same as above
also in the case 2 < 2+ a < p < 2(2+ «). In this article the conjecture is confirmed

in the positive for 2 + a + y/a?+ Ta+3 < p < 2(2 + «). The main result of the
article is as follows.

Theorem 1.1. Let o > 0. Suppose that either of the following conditions holds:

(a) 2+ a+ /a2 +1a+3<p<2(2+a);
(b) 2+2a <p<2+4+a+/a®+ Lo+ 3 and

b2 2 1
/ I ( + Oz’ L2t a) eS| _ytyag -~ <
0 p p 4(a+1)

where I, is the regularized incomplete Beta function.

Then |||l a1z = —gra=-

The proof of this result is based on two lemmas. In both lemmas, two func-
tions, central to our study, appear. These auxiliary functions are defined via in-
finite convergent sums and arise from the evaluation of an involved integral via
the use of series expansions. In the first lemma, an estimate for the Beta func-
tion is established and it confirms the conjecture for the large values of p, namely

for 24+ a+ 4 /a®+Ia+3 < p < 2(2+ a). In the second lemma, which is a
generalization of Lemma 2.6 in [4| for the weighted Bergman spaces, the values
2420 < p < 24a+/a?+ %a + 3 are considered. Furthermore, a sufficient

condition for the conjecture to hold is also introduced in the second lemma (see (b)-
part of Theorem 1.1). It turns out that this condition does not hold for every o > 0

when 2420 <p <2+4+a+4/a?+ %a + 3. Moreover, it is shown that the conjecture

is valid for 0 < a < 1/19, when 2 + 2a < p < g+2a and for 0 < a < m when
g + 2a < p < 3+ 2a. Lastly, the case a = 1 is studied as an example and it is
observed that the condition does not hold for small values of p, but it does hold for

large values of p.
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The article is organized as follows. In section 2, we recall some preliminaries,
including the integral representation of the Hilbert matrix operator in terms of cer-
tain weighted composition operators and classical identities concerning the Beta and
Gamma functions. Section 3 contains auxiliary results such as estimates for the Beta
function due to Bhayo, Sandor and Ividy and definitions of the aforementioned aux-
iliary functions. The two key lemmas are also presented in this section. In Section 4,
the proof of the main result is provided and it is followed by Lemma 4.1 and Propo-
sition 4.2, in which the focus is on the small values of «. Finally, we conclude with
the case a = 1 in Example 4.1.

2. Preliminaries

Let H(D) be the algebra of all analytic functions on the unit disk D. For an
analytic function f it holds that f(z) = Y 7o, ax2", where a, € C. The Hilbert
matrix operator H can be expressed as an operator on spaces of analytic functions
by its action on the Taylor coefficients ay in the following way

Mﬁ@=2%25f%ﬁ>ﬂ

k=0

The operator H can also be written as an integral average of certain weighted com-
position operators as follows

HW@ZAEW@%

where Ti(f)(2) = wi(2) f(de(2)), wi(2) = m and ¢(z) = (1&17 for z € D and
0 <t < 1. The standard weighted Bergman spaces are defined as

1/p
AL(D) = {f € HD): || fllaz = (/D If(W)|pdAa(w)) < OO},

where dA,(w) = (a+1)(1—|w|*)* dA(w) and dA(w) is the normalized Lebesgue area
measure on D. Throughout this article we will assume that p > 24+ o« and o > 0.
Note that the case o = 0, which was proven in [4], is also included, since it follows
from our results. We have the following upper estimate:

2.1) MOl < [ 1T

Moreover,

Il = [ PM(QW

(2.2) 1
< (e wﬂwwwm—wwwwo,
(1 — t) P Dy
where Dy = D(55, 3=%) is the disk with radius =% and center 5, see [12]. We will

also need the Beta function, which is defined as the integral

1
B(s,t) = / (1 — ),
0
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where s and t are complex numbers satisfying R(s) > 0 and R(¢) > 0. It can be

checked that B(s,t) = FF((SS)_I;g), where I is the Gamma function:

We will use the well-known reflection formula
s
Izra-z) = C\7Z.
(1 -2)= =" z€C\
The incomplete Beta function, denoted by B, is defined as

t
Bi(z,y) = / s H1 —s)¥ds.
0
By dividing By(x,y) with B(x,y) we obtain the regularized incomplete Beta function

]t(x7 y) _ Bt(x> y)

B(z,y)
The binomial series (1+2)* = Y77 () 2", where , z € C and () are the generalized
binomial coeflicients defined as

(Z) :oz(oz—l)-.];;!(a—kle)’ (3) 1

converges absolutely for all complex values of a@ when |z| < 1. In the context of the
article, the parameter « is always a real number. We refer the interested reader to
|2] for these and other identities regarding the Beta function and Gamma function.

3. Auxiliary results

In this section several lemmas needed for the main result are presented. The
following result can be found in [3, 9] and hence its proof is omitted.
Lemma 3.1. Let t > 1,0 <y < 1. Then
1,1 :
(b) B(z,y) > ;172

= zylday”

The inequalities reverse when z,y € (0, 1].

Let a > 0 and 2+ 2a < p < 2(2 + «). Define the functions

— (@ _1\k 1 _ 1 o Ayatl < o< -
H‘“”’(s)_z(k)( 1)p—2a—2+2k5 2(a+1)(1 )T, 0ss<

k=0
=/« 1
Ko p(s,t) :Z( )(-1)‘6 max{s?, t2}P20"22% 0 <s<1,0<t < 1.
P k p— 20 —2+ 2k
Since for every k£ > 1 it holds that
_1\k
(1) <1
p—2a—2+42k
and
(_1)k maX{s2 t2}p—2a—2+2k <1
p—2a—2+2k ’ ’

the functions are well defined. These functions will appear in our two key lemmas
needed for the main proof. The following expressions will turn out to be important
later.
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Lemma 3.2. Let « > 0 and 2 + 2a < p < 2(2 + «) and define 1, ,(t) =
£ (1-— t)_HTa. Then the following statements are equivalent:

(a)

71_

1
B (2 ta 2+ O‘) Ha,(0) — / Yap(t) Kap(0,) dt < 0
P p 0

(b)

2+« 24+ a) |1 p—20—2 1
B 1— B T i) e ——
( p T ){2 ( 2 ’“*) 2<a+1>}

(3.1) L s
- _/ Yap(t) Bys (]977(1 + 1) dt < 0;
2 /o ’ 2
(c)
! 2+« 2+« 1
2 I 1- gpAe=d (] —¢he gt — ——— < 0.
(3:2) /0 t( p p ) ( ) 4(a+1)_0

Proof. Assume that (a) holds. Then

2+« 2+a)\ [ [« . 1 1
B 1— ~1 —
( ’ P ) ;(l{?)( )p—2a—2+2/€ 2+ 1)

p
1 00 2(p—2a—2+2k)
o t
— | Cap(t) D —1)F
/Ow’p()[kzo(k)( Ly T
kt2(p72a72+2k)

Now we evaluate the sums » .- (z)(_l)km and > 7, (z)(—l) S T
For the first sum it holds that

(3.4) i (Z) (—1)kgp2am 3tk — gr2am3(] g2y

k=0

—~
w
w

~—

dt <0.

Integrating both sides gives us

i ICIL ! —/ltp_2a_3(1—t2)adt
k p—2a—2+2k  J, ’

k=0

where the order of integration and summation is justified by Lebesgue’s dominated
convergence theorem. For the right-hand side we have

/1 tp—2a—3(1 t2)a dt /1 p=2a=3 (1 )a ds
— = S 2 — S -
0 0 2\/g
1 1 p—2a—4
==/ sz (1-s)%ds
0

2

1 p— 20— 2
=—Bl———— 1).

5 ( 5 ,a+)

So we obtain

= [« 1 1 _(p—2a—2
—1)* =-_B(——~ 1).
;Q)( e N T ( > ’O“L)

0
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For the second sum we integrate both sides of (3.4) from 0 to ¢* and the dominated
convergence theorem implies that

e a L tp—2a—2+2k t? t2 _ )
Y 1 - p=20-3(1 _ )y
Q)< ){p—Qa—2+2AO ‘A § (1—s7)%ds,

k=0
> [« 2(p—20-2+2k) s ds 1 p— 20— 2

—1) - 1—s) 0 = —Ba (222 ).
Z;QJ( U P T AS S Wl ﬁ( > T )

Estimate (3.3) now takes the form

2+« 24+ a) |1 p—20—2 1
B 1— (P i) e ——
( p T ){2 ( 2 ’“*) 2<a+1>}

1 — 20— 2
3 [ stz (2 1) a0

which is estimate (3.1) and therefore (a) and (b) are equivalent. We now show that
p—2a—4

(b) and (c) are equivalent. Rewriting the term fol Yo p(t) f0t4 r—z (1 —r)*drdt in
(3.1) by using integration by parts we get

t o _ 1
{/ Yo p(1) drBa (%,ajtl)}
0
1 t °
_iA (Az%m@yh)4ﬁamkm”N1—t%ﬂdt
:B<2+a,1—2+&)B<p_2a_2,a+1)
j% % 2

! 2 2
—4/ &( +a@——i3)ﬁwm*ﬂ—#fﬁ.
0 p p

Thus, estimate (3.1) takes the form

2 2 1 2 2 1
R L (T -
p p 0 p p 4(a+1)

<0.

Hence (b) is equivalent to (3.2). O
The next two lemmas are the tools needed to prove the main result of the article.

They cover the two cases: 2+ 2a < p < 2+ a + \/oﬂ—i-%oz—l—?) and 2 + o +

\/ @2+ Ta+3 < p <22+ a). We begin with the latter case, because in this case
we have obtained a complete result.

Lemma 3.3. Let2+a—|—~/a2—|—%a—|—3§p<2(2+a),a20ands€ [0, 1].
Then

2 2 !
B ( - Oé’ 1- i Oé) Havp(s) < / wavp(t)Ka,p(Sat) dt.
D b 0
Proof. Let
2+« 2+« !
Fop(s) =B D 1= D Hep(s) — Vap(t)Kap(s,t)dt.
0
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We have

F,»(s) :B(
/ Yop(t) Ko p(s,t)dt

and we will show that F, ,(s) <0 for all s € [0,1]. By a computation we get
2 2 s
F(;p(s) =25%(1 — s*)*B ( i a, 1— i a) — QGa,p(s)/ Yo p(t)dt
’ p p 0

where Gop(s) = > ope g (4) (—1)ksP=207282k=1 Notice that F), (0) = 0. By a change
of variables, we write

2 2 5 sre .
B( Ty +a) /t“p (s—t) " »"dt, s#0.
p p 0

2 2
e +O‘) /%p Kop(s,t)dt

Hence, we obtain

2+«

Pl =250 | [ 57 (0= 075 =6, 600 - 07 ) .

Denote Qqps(t) = (1 —s*)%(s — t)_2+7a — 573G p(s)(1— t) ,t < s. By solving for
zeros of Qa5 and observing that s 3G, ,(s) = s*~4*78(1 — 34) , we have for s # 1
that
1—-t¢
s—1

_ (Szp—4a—8)2+% .

By solving for t we get ¢t = % where R, ,(s) = (s®~4=8)2fa  Now zeros exist

only if there exists some ¢y such that

1 —5Rup(s) >0

1 —Rup(s) —

The denominator 1 — R, ,(s) is strictly less than zero, since 2p — 4o — 8 < 0 and
s € (0,1) so that s??~*=8 > 1. For the numerator we have that 1—sR, ,(s) < 0 if and
only if o8t 25e > 1 and this inequality holds if and only if 2p —4a — 8+ QJFTO‘ <0.
But the last inequality is not valid (except when tq = 0) since 2p — 4o — 8 + 2+T°‘ <0

to =

if and only if 2p* — (4a + 8)p + 2 + o < 0 which in turn is equivalent to

7 7
2+a—\/a2+§a+3§p§2+a+\/a2+§a+3.

It follows that (), , s has no zeros or one zero at ty = 0 and since lim; 5~ Qap s(t) =
+00, we have that F, (s) > 0 on (0,1). Therefore [, ,(s) is non-decreasing on (0, 1).
Since F, ,(1) = 0, the statement follows.

With modifications of Lemma 2.6 in [4] we obtain one generalization of the afore-
mentioned result that works on the weighted Bergman spaces.

Lemma 3.4. Let2+2a<p<2+oz+w/oz2+%oz+3,ozZOandse 0, 1].

Assume that

2 2 1
/ It( +Oz’1_ +a> gpta=Sp e~ <,
0 p p Aa+1)
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1
B <2 ; 1= 2 ; O‘) Hap(s) < / Yoy (t) K ap(s, 1) dt.
0

Proof. Let F, ,(s) be the same as in Lemma 3.3. We will show that Fop(s) <0

for all s € [0,1]. Denote again G, ,(s) = > oo (§)(—1)Fs2P2072F20=1 " Ag in the
proof of Lemma 3.3 we obtain

Note that (1 —s*)* =27, (%)(—s")*. Using this we get

3 4\«
o 2p—2a—2)—1 | °(1 = 57) 24+« 24+«
F (s) =25 ) Lz(p_za_z)_lB ( 11— (1—s* %p t)dt

Then

p
2 2
= 2524075 — gt [38+4O‘_2PB ( + a, 1— + a) —/ Yo p(t) dt} )
p p 0
Thus we have
(3.5) Fl(s) = 2571972 (1 — 1) Gl p(s),
where
~ 2 2 S
(3.6) Gopls) = s"77"B ( : a’l -2 a) - / Ya,p(t) dt
p p 0
By taking the derivative we obtain
~ 2 2
Gl (5) = (8 + 4o — 2p)s™He 3 ( ; - ; O‘) ()
(3.7) 2+ 2+
« a\ ~
= Ya,p(s)(8 +4a —2p)B ( 1= ) E.p(s),
p p
where
~ N 1
(3.8) Bop(s) = (1 —s) 5 $¥Ha-2=57% _

24« 24« )
(8 + 4o — 2p)B (T, 1— —>

p
By differentiating we get
E,,(5)
= (8+4a—2p— 2+—a)37+4a -5 v (1— S)HTQ _ 2t a(l — S)HTa_lserA‘a_zp_HTa
p
— g'tda— 2P‘2+_a(1 — S)HTQ_I {(8 + 4o —2p — 2;:04) (1—3s)— 2 —; as]

8+ 4o —2p — 2+‘1
8+4a —2p

24«

= 5 T (1 — ) e "(8 4 4 — 2p)

— S

Define
8 +4da —2p — 2+a

8+4a—2p
SinceQ+2oz<p<2+oz+\/oz2+%oz+3implies that8+4oz—2p—2+a > 0, we

have that py € (0,1). Now E{Lp(s) > 0 on [0, po] and E{Lp(s) < 0 on [po, 1]. There-
fore E,, is non-decreasing on [0, po] and non-increasing on [po, 1]. Thus E,,(po) =

Po =
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mMaxg<s<i Ea,p(s). Equation (3.8) gives us
- - 1
Ea, (0) = E,, (1) = - < 0.
' ' (8+40z—2p)B<2+T°‘,1—2+—°‘)

p

Let us show that E,,(po) > 0. Assume to the contrary that Eqp(po) < 0. Then
Eqap(s) < 0 for every s € [0,1]. This implies that G, ,(s8) < 0 for all s € [0,1].

Hence G, is non-increasing on [0, 1]. Since Gap(0) = éap(l) = 0, we have that
Gap = 0 and therefore G = 0. Now it follows from (3.7) that Eap = 0, which

contradicts (3.8) and so Eap(po) > 0. There exists p; € (0,po) such that E,, < 0
on [0,p1), Eap(pl) =0 and E,p > 0 on (p1, po]. Moreover, there exists py € (po, 1)
such that Ea,p > 0 on [po, p2), Eap(pg) = 0 and Eap < 0 on (po,1]. Thus Ea,p <0
on [0,p1], Eap > 0 on [p1, po] and E,, < 0 on [ps, 1]. Utilizing (3.7) we get é’a,p <0
on [0, p1], fGV’fw > 0 on [p1, po] and é:w < 0 on [py, 1]. Thus fGV’a,p is non-increasing on
[0, p1], non-decreasing on [p;, p2] and non-increasing on [ps, 1]. By using (3.6) we get
Gap(0) = Gap(1) = 0. Hence there exists ps € (p1, po) such that G, < 0 on [0, ps],
éa,p(pg) =0 and éap > 0 on (ps,1]. Thus éam < 0 on [0, ps] and éa,p > 0 on [ps, 1].
By (3.5) we get F(;p < 0on [0,ps] and F, , > 0 on [ps, 1]. Thus F,, is non-increasing
on [0, ps] and F,, is non-decreasing on [ps,1]. If s € [0, ps], then Fi ,(s) < Fy,,(0)
and if s € [ps, 1] then F,,(s) < F,,(1) = 0. It remains to prove that F, ,(0) < 0.
Now

2 2 !
Fup(0) = B < tay 2t O‘) —/ by () K (0,8) dt < 0
p p 0
is equivalent to
2 2 1
/ Le( —I—Oz71_ +a>t2p—4a—5(1_t4>adt_7§0
0 p p 4(a+1)
by Lemma 3.2, which completes the proof. O

4. The norm of the Hilbert matrix operator on A?

In this section we provide a proof for the conjecture on the norm of the Hilbert
matrix operator on the weighted Bergman spaces A2 when 2+ a+ /a? + %a +3<
p < 2(2+ «) and a sufficient condition for the conjecture to hold when 2 + 2o <
p<2+a+/a®+ %a + 3. The outline of this section is the following: we begin

from the upper estimate (2.2). In the same way as in [4] a new upper estimate for
the right-hand side of (2.2) is obtained by integrating over an annulus Ry = {z €
C: t? < |z| < 1}. After deriving some further upper estimates we turn to the Taylor
series expansion of (1 — 7?)® to be able to proceed further. Finally, we use Lemma
3.3 for large p and Lemma 3.4 for small p to arrive at an upper estimate for the norm
of H.

We are now ready to begin. Denote

o) =1 / " \f ety di

™

and X (r) = ¢(r) —(0). If f is analytic in D, it follows that ¢ is non-decreasing and
differentiable on the interval (0,1). Thus, X" is also non-decreasing and differentiable
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on (0,1). Hence,
X'">0 on (0,1)

and
0= [ 2 ds

where 0 < 7 < 1. By (2.1) we have

1H(F)]Lar < / \T(F)| e

and by (2.2) we have an upper estimate for the integrand:

2+a_1

tr
L

We want to work with the expression on the right-hand side of (2.2). Now by (2.1)
and since D; C R,z it is enough to show that

1/p
w23 fw)(1 |w\2>adA<w>) .

1 1/p
an [ (/ Iw\p‘2“‘4\f(w)\pdAa(w)> t < — gz L

Now

1/p

T 1 1 .
otz s = [ tastt) (@00 [ =rtyar)

and
1

/R P2 f ()P dAn(w) = (0 + 1) / 2030 (1 - 1) dr.

2
" t

Utilizing this we get that (4.1) holds if the following inequality is true

/0 ) ( / PR (r) (1 — 1) dr) "
< st ([ et =y ar) e

By the inequality 2# —y? < By#~(z —y), where z > 0,y > 0 and 8 € (0, 1), we have

</; e dr) v (/01 o(r)r(1 — 1) dr) ’
< % </01 o(r)r(l —r?)° dr) 1/p—1
1 [ et =y (ot - ey ")

(4.2)
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Therefore, we arrive at the inequality

/ Yap(t) [(/ rP=20 30 (r) (1 — 1r2)e dr) v — </01 o(r)r(l —r*)~ dr) 1/17] dt

=3 (/0 o(r)r(l — r?)° df)l/p-l
' /01 i </t: e /o1 o(r)r(l —r?)® d?“) dt.

So instead by looking at the expression on the right-hand side, we get that (4.2)
holds if

(4.3) /0 el < /t (0 (1= )0 gy — /0 (1= 1) dr) dt < 0

or equivalently

1 1
[ asl) [0 -y ar
0 12

+¢(0) Uol@ba,p(t)/ rP20m3(] drdt—/ Yot / (1—r2)® drdt}
< /0 (D) /0 1X(r)r(1—r2)adrdt.

To proceed, we do two things: prove that the first term on the left-hand side is less
than or equal to the term on the right-hand side, and prove that the expression in
the brackets is less than zero. We begin with the second part. Recall that

24+« 2+« 1
) — / Yo p(t) Kap(s,t) dt.
0

F.p(s)=1B ( 1=
Utilizing the definition of F,, , and the dominated convergence theorem, we see that

TR
[y [ty [ [ o0 et

= [ vt [ (i () <—1>’“7“2’“> drat = [ sttt
i (S o)

v (G )
S (AT

1 SN £2(p—20—2+2k)
— ap(t —1)* dt
/Ow’p(> ;(l{)( )p—2a—2+2k
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_ (23:0471_2;@) (i (Z)(_l)kp_zaizju%_2(0z1+1)>

k=0

1 > /o £2(p—2a—2+2k)
— —1)k
0 ¢a’p(t)<kz:%<k)( )p—2a—2+2k‘>dt
= Fap(0) <0,

which holds according to Lemma 3.3, if 2+ a + y/a?+Ia+3 < p < 2(2 + «),

o > 0. If instead 2420 < p < 2+a+ /a2 + Lo + 3 and condition (3.2) holds, then
Lemma 3.4 gives the result. For the second part we need to show that

(4.5) /0 (D) /t 2 () (1) drdt < /0 () /0 X)) dr i,

By Fubini’s theorem we obtain

1 1 "
/ ,rp—3—2a)cv(,r)(1 o 7,2)04 dr = / TP—3—20‘(1 — 7"2)0‘/ X/(S) ds dr

5 2 0

t X ) t

0 max{s,t2}
1 ! 320\ (@ k, 2k
_ X'(s / P32 < ) —D)*r*" dr ds.
/0 ( ) max{s,t2} Z k ( )

k=0

Now, by the dominated convergence theorem

/0 X(s) (i (Z) (-1)" /m :X{s,tz} A dr) "

k=0

1 o0 (-1 k
- /0 X'(s) (Z ; _(Qk)_( 2a)+ % (1- max{s,tz}p_z_zo‘”k)) ds

k=0

/X r(1-r%) dr—//X ) dsr(1— ) dr
:/0 (s)/s r(1 =) drds

So inequality (4.5) takes the form

/0 wa,p(t)/o X'(s) (Z 5 _(22)_(;;)+ Qk(l — max{s,tQ}p_Q_m”k)) ds dt

k=0

< [ttt [ 20 [t s

and
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or equivalently

v [i WY i (-0 [

k=0
- /1 Vo (t)i () (-1)* max{s, t?}P7220F2 4t | ds < 0
o P p—2—2a+2k ’ =

which is the same as

b - (2)(—1)’“ 1 Natl 2+« 24+«
/OX(S)KZ —2—2a+2k_2(a+1)(1_8) >B< p 1T )

—o P
- /1 Ve (t)i (o) (1" max{s, t2}P~2720%2k gt | ds < 0.
0 P kzop—2—2oz+2k ’ -

a\/_ 1\k
Note that Zio%max{s,tz}pﬁ_zawk = Ka,,(v/s,t). Hence, we have to
show that

! ! = (:)(_1)k 1 2\a+1 2+« 2+a
/OX(S)KZ —2—2a+2k_2(a+1)(1_8) >B< p 1T )

k=0 p

_ /1 Vo p(t) Ko p(V/5, 1) dt] ds < 0.

a\/_1\k
Observe that Hep,(v/s) = > o p(k)( 2 L—(1— %)% so we get

—2-2042k  2(a+1)
/0 1 X'(s) {Ha,p(\/E)B< ) - /O 1 Vap(t) Kap(V/5, 1) dt} ds
- [ W R R s <o

24+« 1_2+a
p p

which holds by Lemma 3.3 when 2 + a4+ (/a2 + 2a+3 < p < 2(2 + a) and by
Lemma 3.4 when 2+ 2a < p < 2+a+4/a? + Lo+ 3 and given that condition (3.2)

holds. Therefore, when 2 + o + (/o + Lo+ 3 < p < 2(2 + «), we have

s
||HHA£—>A£ < W

P
In the case 0f2+2a<p<2+a—|—\/a2+%a+31t holds that
T

1HN 4z -4z < —Gram
- s (24+a)m
if o is such that condition (3.2) holds. We are now ready to proceed to the proof of
the main theorem.

Proof of Theorem 1.1. Note that the lower bound of the norm of H holds for
all « > 0 and all 2+ 2o < p < 2(2 + «) by Theorem 1.1 in [12]. For the upper
bound of the norm of H we have by the above argument that if (a) is true, then the
conclusion of the theorem holds. If instead (b) is assumed, then by Lemma 3.4 we
have that F, ,(s) <0 for all s € [0, 1], where F, , is the function defined in the proof
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of Lemma 3.3. Utilizing this in combination with the argument on the previous pages
we then obtain the upper bound of the norm of H. O

The next lemma gives us a stronger condition than condition (3.2). This new
condition is useful for our purposes. Note that when a = 0 the inequality in the

lemma becomes

1 1 1 _1<0

o4 = p(2op-a) 4T

which is equivalent to

B(§2p 4) =E

The inequality B (%, 2p — 4) < m holds for 2 < p < 4, by Lemma 2.5 in [4] or

Lemma 3.2 in [13|. The above inequality is one ingredient in the proof of the main
result in [4].

Lemma 4.1. Let « € [0,1] ora € [2,3] and 2 +2a <p <22+ ). If
1 1 1
2p — 4o — 4 (2p—4a—4)23<2+a 2 — 4a—4>

1 1 1
_a N
2p —4a (2p—4a)’p <2+a %9 — 4a)
ala—1) 1 1 1 1 <0
2 2]9—40("‘4 (2p—40&+4)2B<2+_04 2p—4a+4> 4(OK+1)_ ’
P )
then
2 2 1
/ I, ( -0—0471_ —0—04) t2p—40¢—5<1 —t4)o‘dt— <.
0 P p 4(a+1)
Proof. We begin with
2 2 1 1
/It< —|—Oé’1_ —I—Oé)tzp da— 5( )dt _
0 p p

4o+ 1) B<2+_a1_2+_a>
p?

p
24+« 1 2+a)

B(— .
2 2 ’
/Bt< +a,1— +a)t2p dob (1 _ ghyaqy — 2 P
0 P P 4(a+1)

Working with the expression in the parenthesis and using (1—¢)* <1 —at‘%twts,
see [4, p. 531], we get

2+« 2+« B<2+—a’1_2+—a>
/Bt< 11— )t2p‘4a‘5(1—t4)adt— a 4
0 p p 4(a+1)
2 2 2 2
/Bt< ta +a)t2p_4a_5dt—a/ Bt< R e
0 p p 0 p p

24a 1— 24a

B (21— 2e)
+a(a_1)/lBt<2+a71—2+a)t2p_4a+3dt— p p ]
2 0 P P 4o+ 1)
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Denote

1
2 2
Ji /Bt( ta +O‘)t2p—4a—5dt;
0 b

p
1
/ Bt(2+oz’ 2+a)t2p‘4a‘1dt;
0 p

p
1
9 9
J3:/ Bt( +O‘,1——+O‘)t2p—4a+3dt.
0 p D

Using integration by parts we get

1 ¢
J, = / </ SHTa_l(l — s)_HTa ds) 2p—4e=5 gy
0 0

_ 1 t2p—4a—4/t 27L—‘1—1(1 )—%—ad '
| —4a—14 . y s

0
1
1 Ip—da— 54 2t _24a
_ S p (1 —1t¢ pdt
/02p—4a—4 ( )
1 2 2 2 2
:7{3( o *“)_B(zp_4a_4+ to - “‘)]
2p —4a —4 p P p p

For J; and J5 we similarly get

J2

1 2 2 2 2
Jy = [B( tag +O‘)—B<2p—4a+ Ta +O‘)};
2p — 4o P P P P
1 2 2 2 2
Jy=—— |B +O‘,1— T _p 2p —da+4 + +O‘1— TN
2p —4da+4 D p p p

By combining these we arrive at

24« 2+a
T ol +a(a—1)J _3(771_T)
! ? 2 4(a+1)

2+« 24«
B 2+a1_2+a 1 1_B<2p—4a—4—|—%,1—%>
B p p 2p —4da—4 B(2+_a 1_2+_a)
p’ P
2+« 2+«
o |, B(Qp—ﬁla—l—Ll—%)
2p — da ( 2+a)
2a 24«

1— —
2(2]) — 4o + 4) B (2+a 1— 2—I—_a) 4(0( + 1)

p’ p
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Now finally we rewrite the Beta functions occurring in the above expression by using
the formulas [(z 4+ 1) = zI'(z) and B(z,y) = 259 and arrive at the inequality

T'(z+y)
1 1 1
2p — 4o — 4 (2p—4a—4)2B<2+_a 2p—4a—4>
p )
1 1 1
— a p—
2p—4da  (2p—4a)?p (24'70‘,21)—4@)
N ala—1) 1 1 1 1 <0
2 2p — 4o+ 4 (2p—4a—|—4)2B<2+Ta’2p_4a_|_4> dla+1) =7
which completes the proof. O

We now turn our attention to small a« > 0. The following result shows that
condition (3.2) holds for some values of the parameter p.

Proposition 1.

(a) If0 < a < 15 and 2+ 2a < p < 5 + 2a, then condition (3.2) holds;
(b) If 0 < o < 35555 and 2 4 2o < p < 3+ 2a, then condition (3.2) holds.
Proof. We will begin with (a). By Lemma 4.1 we want to show that

S, p) 1 1 1
a,p) = —
P Sy T 4a -1 Cp—da =17 p (22 2p 4o — 1)
p Y
1 1 1
_a J—
2p — 4o (2p_4o‘)2B<2+—0‘,2p—4a>
(4.6) P
+oz(oz—l) 1 1 1
2 2p—4a+4 (2p—4a—|—4)2B<2-i-_a 2p—4a+4>
p Y
1
- — <0.
4da+1) ~

Since « > 0 and 2+ 2a < p < g + 2a, we have by Lemma 3.1

1 9 14 (2p — 4o — 4)22
Slap) < 1 L2+l 2)+p)
2p —4da —4 % 2p —da—4+ ==

a [1 C2+a(+@2- 4a)2+7“)]

_2p—4a P 2p—4oz+2+7a
ala—1) (2+a)(1+(2p_404+4)2+7a) 1
2(2p — 4a + 4) p 2p —da + 4+ He 4la+1)

By simplifying the above expression we get the following estimate

9o(p) + h(a, p)
Sle.p) < u(a, p)
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where
go(p) = 64 + 136p + 112p* + 88p* + 32p* — 40p° — 16p° + 8p;
u(a, p) = 4(1 + a)p(—2 — a + dap — 2p*) (=2 — a — 4dp + dap — 2p?)
(=2 — o+ 4p + dap — 2p?)
and

h(a,p) = a’(2 — 16p + 32p®) + a®(12 — 72p + 104p* — 32p?)

+ a’(14 — 32p — 2p* — 64p® — 24p*)

+ a*(—44 + 248p — 236p? + 104p> + 40p* + 32p°)

+ a® (=112 + 353p — 162p* + 288p” — 72p* — 48p° — 8p°)
+ (=32 4 134p — 28p* + 174p® — 120p* 4 64p° + 16p°)

+ (96 + 140p + 72p* + 72p° + 28p° — 40p°).
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Observing that go(p) = 8(1 +p)*(1+ p*)(8+p —4p? + p3) and p> —4p* +p+8 > 1

Wehavef0r2+2a<p<%+2athat

go(p) = 8(1+p)*(1+ p?) > 8(1 + 2)*(1 + 2°) = 360.

It is also easily seen that u(«, p) < 0 on the interval 24+2a < p < g+2a. We now turn
our attention to the h(a,p) term. Our aim is to show that h(a, p) is non-increasing
with respect to both its parameters. We begin by showing it is non-increasing with

respect to the parameter p.

W (a,p) = a’(—16 + 64p) + a®(—72 + 208p — 96p?)
+ (=32 — 4p — 192p® — 96p?)
+ (248 — 472p + 312p? + 160p* + 160p*)
+ o®(353 — 324p + 864p? — 288p® — 240p* — 48p°)
+ o?(134 — 56p + 522p? — 480p° + 320p* + 96p°)
+ (140 + 144p + 216p* + 140p* — 240p°).

Proceeding like this and differentiating four times we arrive at

A (o, p) = —2880a — 17280 + 9600 — 5760° + 3360ap + 76800°p
— 57600p + 38400 p — 14400ap? + 5760a’p* — 2880a°p?
< —2880a* — 1728a* + 960a* — 5760°
+ (3360a + 76800 + 3840a* — 14400a + 57600 — 28800 )p?
= —2880a” — 1728a° + 960a* — 576a°
+ (—11040a + 13440a* — 28800° + 3840a*)p? < 0,

since the coefficient of p? inside the parentheses is negative for small . Hence,

" . . .
h" (e, p) is non-increasing and we get

R (e, p) < h"(a, 2 + 2a)
= —12a(2604 + 6313 + 4864a> + 13560° + 288a” + 112a°) < 0.
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Thus, A"(«, p) is non-increasing and further
R (e, p) < B'"(a, 2 + 2a)
= —4(3428 + 12076 + 15399a* + 8830a” + 2313a" + 332a° + 48a°)
< 0.
Therefore, h'(a, p) is non-increasing so
W (a,p) < B(a,2 + 2a) = —a(4148 + 20962a + 3863102 + 351280°
+ 16600 + 3664a° 4 240a5) < 0.

Hence, h(a, p) is non-increasing and

5 1
h(a,p) > h(a, 5t 2a) = —ga(40082 + 191376cr + 34987302 + 3411320°
+ 197168 + 65648a° + 9776a°).

From the above we then see that h(a, g + 2a) is non-increasing and so

5 15 2
> — > h(—, -+ —) =~ —336.
h(a,p) > hio, 5 +20) > h(g. 5 + 15) & —336.677,

. Recall that

|

fora112—|—2a<p<g+2aand0<a§1

90(p) + h(a, p)
u(a, p)

where go(p) > 360 and u(a,p) < 0 on 2+ 20 < p < 2 + 2a. Together with
h(a,p) > —336.677 we get

©

S(a,p) <

S(a,p) <0

and so condition (3.2) holds by Lemma 4.1.

Part (b) can be proved in a similar way as part (a). In (4.6), one can estimate
from above the term (1 — ¢)*~4=> by its second-degree Taylor polynomial when
2p —4a—5€ (0,1}, i.e., 5/24+2a < p < 3+ 2a and also estimate the Beta function

terms B <2+TO‘, 2p — 4a> and B <2+Ta’ 2p —4da + 4) from below by using the estimate
in part (b) of Lemma 3.1. We get the following upper estimate

f(p) + h(a,p)

S(a,p) < wap)

where
f(p) = —32 — 2800p — 3664p* — 1392p* — 1584p* + 736p° + 1760p°
— 528p" — 304p° + 144p° — 16p"°;
h(a, p) = a'?(—64 + 256p) + o' (—848 + 2944p — 384p?)
+ a'0(—4424 + 13224p — 3936p* — 256p°)
+ o’ (—9520 + 25064p — 14644p* — 1632p* + 704p*)
+ a®(7344 — 6488p — 14938p* — 3514p° + 4668p* — 240p°)
+ (99600 — 131288p + 57844p* — 6128p® + 9518p* — 1744p° — 248p%)
+ a®(286167 — 286832p + 235002p* — 30338p” + 294p* — 2926p°
— 560p° + 232p")
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+ (460581 — 314591p + 387378p? — 103552p° — 21254p* + 4800p°
— 745 + 464p™ — 72p%)
+ o1(462990 — 187559p + 338644p* — 180091p> — 20357p* 4 18132p°
—2272p% + 24p" — 76p° + 8p”)
+ (289288 — 57312p + 142238p? — 168460p® 4 2666p* + 15971p°
— 5496p° + 1464p" — 48p®)
+ (103136 — 13128p + 5524p* — 83368p° 4 8136p™* + 3252p° — 828p°
+2960p" — 944p® + 48p”)
+ (16016 — 8144p — 15800p* — 19184p> — 440p* + 44p° + 3992p°
+ 712p" — 1200p° + 236p° — 8p'%);
u(a,p) = 4(1 + @) (2 + 2a — p)?p(—2 — o + 4dap — 2p*) (=2 — a — 4p + dap — 2p?)
- (84 + 188c + 1570 + 580 + 8a* + 4p + dap + op — 20p*
— 23ap® — 60°p* + 4p® + 2ap®).
Now we may estimate the polynomial h(«a,p) with two variables from above by re-
placing p with 5/2 + 2« in terms of the form a;za’p®, j,k > 0, when aje < 0

and replacing p with 3 + 2a when a;; > 0. The obtained upper estimate h(«) is a
polynomial in a with positive coefficients and we have

ha,p) < h(a) < B(Wloo) — 453.23

for 0 < a < zhs. Moreover, it holds that u(a,p) > 0 and f(p) < —473.67. The

only difficult part is showing that f(p) < —473.67; one way of doing this is by using
Sturm’s theorem, see [15]. O

Now we concentrate on the @ = 1 case and so we investigate p when 4 < p <
3+ V7.5. The a = 1 case is of interest since in this case the two expressions in
Lemma 4.1 are identical, and therefore this case is an example of when condition

(3.2) does not hold for all 2+ 2« < p < 2+ a+/a? + Ta + 3. Note that by Lemma
3.2 the expression in Lemma 4.1 is the same as

1
23(5,1—5)
p p

where Fj,(0) is defined in Lemma 3.3. Hence, by using properties of the Gamma
function, we may write:

FLP(O)a

1_/3 3 2 2 1 1
F1,(0) _§B <Z_9’ 1— 5) [m p—-2 2 (p—4)2B (%721)_ 8)
n 1 (2p—5+3/p)(2p—6+3/p)(2p — 7+ 3/p)(2p — 8+ 3/p) ‘

B(g,zp—S) (p—2)%(2p—5)(2p— 6)(2p — 7)(2p — 8)
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The expression in the brackets can be written

2 2 1 1

p—4 p—-2 2 (p—4)2B(g,2p—8)

N 1 (2p—=5+3/p)(2p—6+3/p)(2p — 7+ 3/p)(2p — 8+ 3/p)
B (g,zp_gg) (p—2)2(2p—5)2p—6)(2p —7)(2p — 8)

1 ( 2 2 1) (3 ) 1
_ _ ) B(Z2p-8) - —
B(;,Qp—é%)[ p—4 p—2 2 p (p—4)?

(2p—5+3/p)(2p—6+3/p)(2p — 7+ 3/p)(2p — 8+ 3/p)
(p—2)2(2p—5)(2p —6)(2p — 7)(2p — 8)

So in the o = 1 case the inequality in Lemma 4.1 becomes

2 2 1 3 1
(ﬂ_ﬁ_5)3<5’2p_8) C(p—4)?
(2p—=5+3/p)(2p—6+3/p)(2p —7+3/p)(2p — 8+ 3/p)

(p—2)%(2p —5)(2p — 6)(2p — 7)(2p — 8)
Now by multiplying with the positive term (p — 4)(p — 2), we arrive at

%(—ﬁ +6p)B @ 2p — 8) - gfj

L (2p=5+3/p)(2p—6+3/p)(2p —7+3/p)(2p —8+3/p)
2(p—2)(2p—5)(2p—6)(2p - 7)

The following example shows that inequality (4.7) does not hold for all 4 < p <

3+ /7.5 ~ 5.73861.

Example 4.1. Let a = 1. Then condition (3.2) does not hold when 4 < p < 5.1
but it holds when 5.5 < p < 5.74.

The argument is split into four cases. In the first three cases we find a lower
bound for the left-hand side of inequality (4.7) and show that it is positive, proving
that (4.7) cannot hold. For the last case we find an upper bound for the left-hand
side of (4.7) and show that it is negative, proving that (4.7) holds.

(i) 4 < p < 4.5. By using Lemma 3.1 we have

3 1 P
B 2 8 - —1.
(P b )_2_8+3

Utilizing this and denoting J(p) = %, we get a lower estimate for (4.7):

(—p2+6p)<2 3 g—l)
(2p—5+3/p)(2p—6+3 )(229 7+3/p)(2p 8+3/p)

<0.

(4.7)

<0.

J(p)F1,(0) >

N —

- 2(p—2)(2p—5)(2p— 6)(2p —7)
1, 2% —14p+27 p—2
e

(2p 5+3/p)(2p—6+ /)(2p 7+3/p)(2p —8+3/p)
2(p—2)(2p—5)(2p—6)(2p—T7)

= S(p).
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Define f(p) = 15(—6—39p+18p? —2p*). Then f(p) > f(4) = —4. For the remaining
term we obtain

Now we get a lower bound for S(p), namely

(2-4—8+43/4) 3
245 2) <1+ (2-4.5—5)-4.5)

f(4) +

3 3 1
-1 1 ~ —— + 0.285185 > 0.
< +(2-4.5—6)-4.5>< +(2-4.5—7)-4.5) 6

So we have that Fy,(0) > ﬁS(p) >0 for all 4 < p <4.5.
(i) 4.5 < p < 4.9. Again by Lemma 3.1 we get

3 p 20> —8p+3
B(Z.2p—8) >
(p’ P )‘6@—4) Tp— 24

We now get a lower estimate for J(p)Fi ,(0):

144 — 78p — 3p* + 12p3 — 2p*
—288 + 84p

where

144 —78p — 3p* +12p° — 2p*
N —288 + 84p '

The function f(p) is non-increasing on the interval 4.5 < p < 4.9, so it holds that
f(p) > f(4.9) = —0.415875. For the second term we have

(2p2zp8_+2?;/p) (1 + ﬁ) <1 * ﬁ) (1 i ﬁ>
> (2- 4.25(;98:L2?;/4‘5) (1 + 219 i 5) -4.9) (1 + (2-4.9 i 6) -4.9)

3
(1 ~ 0.458474.
( i (2-4.9—7)~4.9)

Combining these two we get £y ,(0) > 0‘(?;1(15)99 >0 for 4.5 < p < 4.9.

(iii) 4.9 < p < 5.1. In this case we use the same estimate as in (ii). Now we get

f()

(144 — 78p — 3p? + 12p> — 2p)
(—288 + 84p)(2p — 8+ 3/p)

o mm) () (et |

J(p)F1,,(0) > (2p — 8+ 3/p) [



222 Mikael Lindstrém, Santeri Miihkinen and Niklas Wikman

where (2p — 8 +3/p) > 0 and

g@*:2@£2>G*{%fﬂm)<l+65%€%)(1+65%7%)
> g(5.1) ~ 0.242306.

So it remains to be shown that

(144 — 78p — 3p? + 12p3 — 2p*)
(—288 4 84p)(2p — 8+ 3/p)

h(p) ==

is a non-increasing function on the interval 4.9 < p < 5.1. By taking the derivative
we have

5184 — 5616p + 495p* + 4383p> — 4896p* + 2100p° — 396p° + 28p

W' (p) = 6(24 — 7p)2(3 — 8p + 2p?)?

Since the denominator is positive it remains to show that the nominator is positive
on the aforementioned interval. Set

g1(p) = 5184 — 5616p + 495p* + 4383p> — 4896p* + 2100p° — 396p° + 28p".

Then
g, (p) = —5616 + 990p + 13149p* — 19584p® + 10500p* — 2376p° + 196p°;
g (p) = 990 + 26298p — 58752p* + 42000p® — 11880p* + 1176p°;
g!"(p) = 26298 — 117504p + 126000p* — 47520p 4 5880p?;
g (p) = —117504 + 252000p — 142560p> + 23520p°;

i

¢ (p) = 252000 — 284120p + 70560p>;
©)
1

¢\ (p) = —285120 + 141120p > ¢\ (4.9) > 0.

Hence, 955)(]9) is non-decreasing and we have g§5)(p) > g1 (4 9) > 0. Therefore,
954) (p) is non-decreasing and so 954) (p) > 954) (4.9) > 0. Continuing like this we finally
obtain that g} (p) is non-decreasing and ¢;(4.9) > 0. Hence g1(p) > ¢1(4.9) > 0. Thus
R (p) < 0 and we get that h(p) > h(5.1) & —0.237716. Combining our results we
now have

F1,(0) 2 %(h(al) +g(5.1)) ~ %‘;5)90

(iv) 5.5 < p < 5.74. By plotting inequality (4.7) in Mathematica it is shown to
hold for the values 5.25 < p < 5.74. It is, however, difficult to prove for all these
values and therefore we will prove it for the values 5.5 < p < 5.74. We begin by using

3 1 P
B 2 8 — 1.
(pp )—% 573
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In the same way as in (i) we now get the upper estimate:

1 1 P p—2
Fi(0) < =(—p? L ) i
J(p)F1,(0) < 5(=p" + 6p) (2p_8+3 ) -

(2p—=5+3/p)2p—6+3/p)(2p — 7+ 3/p)(2p — 8+ 3/p)

_'_
2(p—2)(2p—5)(2p—6)(2p—17)
1 9 2p — 14p+27 p—2
= (- 6 _

N (2p—5+3/p)(2p—6+3/p)(2p — 7+ 3/p)(2p — 8+ 3/p)
2(p—2)(2p—5)(2p = 6)(2p = T7) ’

Set

f(p):%(—p2+6p) <2p1—8+§_1) _;%421

1
= E(_6 — 39p + 18p* — 2p?).

Now we write

By (i) we see that f is non-increasing on the interval 5.5 < p < 5.74. By dividing
the interval [5.5,5.74] into two intervals [; = [5.5,5.62] and I, = [5.62, 5.74], we show
that S(p) < 0. First we consider Iy:
(2-5.74—8+3/5.74) ] 3

2(5.62 — 2) (2-5.62—5)-5.62

S(p) < f(5.62) +

3 3
(1 1
( * (2-5.62)—6)-5.62) ( * (2-5.62)—7)-5.62)
~ —0.227916 < 0.

Now for I; we further divide it into two intervals I] = [5.5,5.56] and I = [5.56, 5.62].
For I7 we have

S(p) < f(5.56) + (2-5.62 - 8 +3/5.62) (1 = 3 )

2(5.56 — 2) 2-5.56 — 5) - 5.56

1+ ’ 1+ ;
(2-5.56) — 6) - 5.56 (2-5.56) — 7) - 5.56
~ —0.125168 < 0.

Finally, for the interval I we have

(2-5.56 — 8 + 3/5.56) 3
2(5.5 — 2) (1 T2 55-5). 5.5)

S(p) < f(5.5) +

3

' (1 T 255 —6)- 5.5) (1 LGy 5.5)3—7) : 5.5)
~ —0.010372 < 0,

and so S(p) < 0on 5.5 < p < 5.74. Since F ,(0) < ﬁS(p), we see that (4.7) holds.
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