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Abstract. In this article we study a Bernoulli-type free boundary problem and generalize a

work of Henrot and Shahgholian in [25] to A-harmonic PDEs. These are quasi-linear elliptic PDEs

whose structure is modelled on the p-Laplace equation for a fixed 1 < p < ∞. In particular, we show

that if K is a bounded convex set satisfying the interior ball condition and c > 0 is a given constant,

then there exists a unique convex domain Ω with K ⊂ Ω and a function u which is A-harmonic in

Ω\K, has continuous boundary values 1 on ∂K and 0 on ∂Ω, such that |∇u| = c on ∂Ω. Moreover,

∂Ω is C1,γ for some γ > 0, and it is smooth provided A is smooth in R
n \ {0}. We also show that

the super level sets {u > t} are convex for t ∈ (0, 1).

1. Introduction and statement of main results

Classical Bernoulli free-boundary problems arise in electrostatics, fluid dynamics,
optimal insulation, and electro chemistry. In the case of electrostatics, the task is to
design an annular condenser consisting of a prescribed boundary component ∂E, and
an unknown boundary component ∂Ω (where Ω ⊂ E), such that the electric field
∇u is constant in magnitude on the surface ∂Ω of the second conductor (see [18, 19]
for treatment of this problem and applications). This leads to the existence of the
following interior Bernoulli free-boundary (will be denoted by (IBFB)) problem:

(IBFB)



















−∆u = 0 in E \ Ω,

u = 1 on ∂E,

u = 0 on ∂Ω,

|∇u| = a on ∂Ω

(1.1)

for some given constant a > 0. The constraint |∇u| = a is called Bernoulli’s law.
Here Bernoulli’s law |∇u| = a should be understood in the following sense:

lim inf
y→x, y∈E\Ω

|∇u(y)| = lim sup
y→x, y∈E\Ω

|∇u(y)| = a for every x ∈ ∂Ω.

The existence and uniqueness of this problem can be stated in the following manner:
is there a domain Ω with Ω ⊂ E and a potential u : E \ Ω → R satisfying (1.2)? If
so, is the couple (Ω, u) unique?
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The exterior Bernoulli free-boundary problem ((EBFB) problem for short) is
defined in a similar fashion: is there a couple (Ω, u) such that E ⊂ Ω and (1.2) below

holds?

(EBFB)



















−∆u = 0 in Ω \ E,

u = 1 on ∂E,

u = 0 on ∂Ω,

|∇u| = a on ∂Ω.

(1.2)

In this paper our main goal is to generalize the work of [25] on the (EBFB) for A-
harmonic PDEs (see the definition below in (1.6)), proving existence and uniqueness
of (Ω, u) and showing that ∂Ω is smooth. (see Theorem 1.4).

Regarding the existing literature, the existence of solutions to the (EBFB) prob-
lem was obtained by Alt and Caffarelli in [9] by variational methods, and by Beurling
[12] using sub-super solution methods in the plane. The reader is also referred to
results of Acker in [2, 1] concerning the uniqueness and monotonicity of this problem.

If we assume E to be convex and require Ω to be convex as well, the question of
existence and uniqueness of a pair satisfying (1.2) in the plane was answered affir-
matively by Tepper in [35], by Hamilton in [22] both by using conformal mappings,
and by Kawohl in [27], using different methods. In higher dimensions, convexity and
uniqueness of Ω were shown by Henrot and Shahgholian in [24]. Under a convexity
assumption on E, the (EBFB) problem was also studied by Henrot and Shahgho-
lian in [25], where they proved existence of a pair (Ω, u) satisfying (1.2) without
assuming E to be bounded or regular. When E is bounded, it was shown in [25]
that the (EBFB) problem has a unique solution, and the same result was obtained
independently by Acker and Meyer in [3].

Neither existence nor uniqueness is always true in the (IBFB) case. In the plane,
existence of a pair (Ω, u) satisfying (1.1) was obtained by Lavrentèv in [30], Beurling
in [12], and Daniljuk in [14]. A higher dimensional result was proved by Alt and
Caffarelli in [9], and under certain assumptions Henrot and Shahgholian proved in
[24] that the mean curvature of ∂Ω is positive for any connected component. In [24],
it was shown that if the (IBFB) problem admits a solution and E is convex, then
Ω is also convex.

For further discussion of the problems we consider, we shall first introduce the
p-Laplace equation:

∆pu = ∇ ·
(

|∇u|p−2∇u
)

= |∇u|p−4[|∇u|2∆u+ (p− 2)
n
∑

i,j=1

uxi
uxj

uxixj
].

Here p is fixed with 1 < p < ∞, |∇u| = (u2
x1
+ . . .+u2

xn
)1/2, and ∇· is the divergence

operator.
It is well-known that, in general, solutions of the p-Laplace equation do not enjoy

second order derivatives in the classical sense, therefore solutions to these equations
have to be understood as weak solutions. That is, given a bounded, connected open
set Ω ⊂ R

n, u is a p-harmonic function in Ω provided u > 0 in Ω and u is in the
Sobolev space W 1,p(U) for each open set U with Ū ⊂ Ω and

ˆ

U

|∇u|p−2〈∇u,∇η〉 dx = 0 whenever η ∈ W 1,p
0 (U).(1.3)
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In the above paragraph W 1,p(U) denotes the space of equivalence classes of functions
h with distributional gradient ∇h both of which are p integrable in U , and W 1,p

0

denotes the closure of C∞
0 in the W 1,p norm.

In [26], the p-Laplace operator was treated in the (IBFB) case:


















∆pu = 0 in E \ Ω,

u = 1 on ∂E,

u = 0 on ∂Ω,

|∇u| = a on ∂Ω.

Existence of a solution, and regularity (that is, ∂Ω is C2,α) were shown in that article.
The authors of [24] proved uniqueness and convexity of the (EBFB) problem

if the Laplace operator is replaced by a general nonlinear operator L of the form
L = Lu = F(x, u,∇u,∇2u), if the operator L satisfies certain properties (see section
4 in that article).

In this article we consider the (EBFB) problem when the underlying PDE is
the so called A-harmonic PDE. We introduce this nonlinear elliptic equation in what
follows.

Definition 1.1. Let p, α ∈ (1,∞) be fixed and

A = (A1, . . . ,An) : R
n \ {0} → R

n,

be such that A = A(η) has continuous partial derivatives in ηk for k = 1, 2, . . . , n on
R

n \ {0}. We say that the function A belongs to the class Mp(α) if the following two
conditions are satisfied whenever ξ ∈ R

n and η ∈ R
n \ {0}:

(i) α−1|η|p−2|ξ|2 ≤
n
∑

i,j=1

∂Ai

∂ηj
(η)ξiξj ≤ α|η|p−2|ξ|2,

(ii) A is p− 1 homogeneous, i.e., A(η) = |η|p−1A(η/|η|).

We set A(0) = 0 and note that Definition 1.1 (i) and (ii) imply

c−1(|η|+ |η′|)p−2 |η − η′|2 ≤ 〈A(η)−A(η′), η − η′〉

≤ c|η − η′|2(|η|+ |η′|)p−2
(1.4)

whenever η, η′ ∈ R
n \ {0}. We will additionally assume that there exists 1 ≤ Λ < ∞

such that
∣

∣

∣

∣

∂Ai

∂ηj
(η)−

∂Ai

∂ηj
(η′)

∣

∣

∣

∣

≤ Λ |η − η′||η|p−3(1.5)

whenever 0 < |η| ≤ 2|η′| and 1 ≤ i, j ≤ n.

Definition 1.2. Given an open set Ω ⊂ R
n and A ∈ Mp(α), one says that u is

A-harmonic in Ω, and we write ∇ · A(∇u) = 0, provided u > 0 in Ω, u ∈ W 1,p(U)
for each open set U with Ū ⊂ Ω and

ˆ

〈A(∇u(x)),∇η(x)〉 dx = 0 whenever η ∈ W 1,p
0 (U).(1.6)

For more about PDEs of this type the reader is referred to [23]. Notice that when
A(η) = η then (1.6) is the usual Laplace’s equation, and when A(η) = |η|p−2η then
(1.6) becomes the p-Laplace equation.
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Definition 1.3. We say that a set K satisfies the interior ball condition if

for each x0 ∈ ∂D, there is a ball B(z, δ) ⊂ D with x0 ∈ B(z, δ)(1.7)

for some δ > 0.

Our main goal is to generalize the work of Henrot and Shahgholian in [25] on the
(EBFB) problem to A-harmonic PDEs. In particular, we show that

Theorem 1.4. Let c > 0 be a given constant and K be a bounded convex domain
satisfying the interior ball condition. Then there exist a unique convex domain Ω
with K ⊂ Ω and function u satisfying



















∇ · A(∇u) = 0 in Ω \ K̄,

u has continuous boundary values 1 on ∂K and 0 on ∂Ω,

the superlevel sets {u > t} are convex for every t ∈ (0, 1),

|∇u| = c on ∂Ω.

Moreover, ∂Ω ∈ C1,γ for some γ > 0. Furthermore we have that ∂Ω is smooth
provided A is smooth.

The plan of the paper is as follows. In section 2, we gather some known results
concerning the regularity of A-harmonic functions that are relevant for our work. We
also show that the levels of u are convex if K is convex by adapting an idea of Lewis
[31]. In section 3, using a method of Beurling (see also [25]), we prove the existence
result in Theorem 1.4. Uniqueness in Theorem 1.4 will essentially follow from [24].
Finally the regularity result in Theorem 1.4 is obtained using ideas inspired by the
work of Vogel in [37].

2. Notation and preparatory lemmas

Let x = (x1, . . . , xn) denote points in R
n and let E, ∂E, be the closure and

boundary of the set E ⊂ R
n. Let 〈·, ·〉 be the usual inner product in R

n and |x|2 =
〈x, x〉. Let d(E, F ) denote the distance between the sets E and F . Let B(x, r) be
the open ball centered at x with radius r > 0 in R

n and dx denote the Lebesgue
n-measure in R

n. Given U ⊂ R
n an open set and q with 1 ≤ q ≤ ∞, let W 1,q(U)

denote equivalence classes of functions h : Rn → R with distributional gradient ∇h =
〈hx1

, . . . , hxn
〉, both of which are q-integrable in U with Sobolev norm

‖h‖qW 1,q(U) =

ˆ

U

(|h|q + |∇h|q) dx.

Let C∞
0 (U) be the set of infinitely differentiable functions with compact support in

U and let W 1,q
0 (U) be the closure of C∞

0 (U) in the norm of W 1,q(U).
In the sequel, c will denote a positive constant ≥ 1 (not necessarily the same

at each occurrence), which may depend only on p, n, α,Λ unless otherwise stated.
In general, c(a1, . . . , an) denotes a positive constant ≥ 1 which may depend only on
p, n, α,Λ, a1, . . . , an, which is not necessarily the same at each occurrence. By A ≈ B
we mean that A/B is bounded above and below by positive constants depending only
on p, n, α,Λ. Finally, in this section we will always assume that 1 < p < ∞, and
r > 0.

We next introduce the notion of the Hausdorff measure. To this end, let r̂0 > 0
be given, and let 0 < δ < r̂0 be fixed. Let diam(·) denote the diameter of a set
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and let E ⊆ R
n be a given Borel set. For an arbitrary integer k > 0, we define the

(δ, k)-Hausdorff content of E in the usual way:

Hk
δ (E) := inf

{

∑

i

rki : E ⊂
⋃

i

B(xi, ri)with ri < δ

}

.

Here the infimum is taken over all possible covers {B(xi, ri)} of E. Then the Haus-

dorff k-measure of E is defined by

Hk(E) := lim
δ→0

Hk
δ (E).(2.1)

Lemma 2.1. Given p with 1 < p < ∞, assume that A ∈ Mp(α) for some α > 1.
Let u be an A-harmonic function in B(w, 4r). Then

(a) rp−n

ˆ

B(w,r/2)

|∇u|pdx ≤ c max
B(w,r)

up,

(b) max
B(w,r)

u ≤ c min
B(w,r)

u.

Moreover, there exists γ ∈ (0, 1) depending on p, n, α such that if x, y ∈ B(w, r),
then

(c) |u(x)− u(y)| ≤ c (|x− y|/r)γ max
B(w,2r)

u.

For a proof of Lemma 2.1 see [34].

Lemma 2.2. Given p with 1 < p < ∞, assume that A ∈ Mp(α) for some
α > 1. Let u be an A-harmonic function in B(w, 4r). Then u has a representative
locally in W 1,p(B(w, 4r)) with Hölder continuous partial derivatives in B(w, 4r) (also
denoted u), and there exist β ∈ (0, 1] and c ≥ 1 depending only on p, n, α such that
if x, y ∈ B(w, r), then

(i) |∇u(x)−∇u(y)| ≤ c(|x− y|/r)β max
B(w,r)

|∇u| ≤ cr−1(|x− y|/r)βu(w).

(ii)

ˆ

B(w,r)

n
∑

i,j=1

|∇u|p−2|uxixj
|2 dx ≤ crn−p−2u(w).

(2.2)

Moreover, if

γ r−1u ≤ |∇u| ≤ γ−1r−1u on B(w, 2r)

for some γ ∈ (0, 1) and (1.5) holds then u has Hölder continuous second partial
derivatives in B(w, r) and there exists θ ∈ (0, 1), c̄ ≥ 1, depending only on the data
and γ such that if x, y ∈ B(w, r/2), then

[

n
∑

i,j=1

(uxixj
(x)− uyiyj(y))

2
]1/2

≤ c̄(|x− y|/r)θ max
B(w,r)

(

n
∑

i,j=1

|uxixj
|

)

≤ c̄2rn(|x− y|/r)θ

(

n
∑

i,j=1

ˆ

B(w,2r)

u2
xixj

rdx

)1/2

≤ c̄3r−2(|x− y|/r)θu(w).

(2.3)

A proof of (2.2) can be found in [36]. Estimate (2.3) follows from (2.2), the added
assumptions and Schauder type estimates (see [21]).

We will make use of following lemma when we rotate our coordinate system. A
proof of it can be found in [32, Lemma 2.15].
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Lemma 2.3. Let Ω ⊂ R
n be a domain and let p with 1 < p < ∞ be given.

Let A ∈ Mp(α) for some α > 1 and u be A-harmonic in Ω. If F : Rn → R
n is the

composition of a translation and a dilation, then

û(z) = u(F (z)) is A-harmonic in F−1(Ω).

Moreover, if F̃ : Rn → R
n is the composition of a translation, a dilation, and a

rotation then

ũ(z) = u(F (z)) is Â-harmonic in F̃−1(Ω) for some Â ∈ Mp(α).

In what follows we make observations that will be useful throughout the paper
(see also [7, 8] for a similar computation). Define

(2.4) L(η, ξ) =
n
∑

i,j=1

∂

∂xi

[

bij(η)ξxj

]

, where bij(η) =
∂Ai

∂ηj
(η).

When η = ∇u we will write L(η, ξ) = Luξ, and when ξ = ∇w we will write Luξ =
Luw. We next show that if u is A-harmonic in Ω, then ξ = u and ξ = uxk

(for
k = 1, . . . , n) are both weak solutions to Luξ = 0.

We first see that if u is A-harmonic then

Luu =

n
∑

i,j=1

∂

∂xi

[

∂Ai

∂ηj
(∇u)uxj

]

= 0.

Indeed, using the (p− 1)-homogeneity of A in Definition 1.1 we obtain

Luu = (p− 1)

n
∑

i=1

∂

∂xi
Ai(∇u) = (p− 1)∇ · A(∇u) = 0.

To show that Luuxk
= 0 for k = 1, . . . , n, using Lemma 2.2 we first get u ∈

W 2,2(Ω). Then it follows that

(2.5) Luuxk
=

n
∑

i,j=1

∂

∂xi

[

∂Ai

∂ηj
(∇u)uxkxj

]

=
∂

∂xk
∇ · A(∇u) = 0.

Note that above argument should be understood in the weak sense. Using these
two observations and the structural assumptions on A from Definition 1.1 we also
conclude that

Lu(|∇u|2) =
n
∑

i,j=1

∂

∂xi

[

∂Ai

∂ηj
(∇u)(u2

x1
+ . . .+ u2

xn
)xj

]

= 2

n
∑

i,j,k=1

∂

∂xi

[

∂Ai

∂ηj
(∇u)uxk

uxkxj

]

(2.5)
= 2

n
∑

i,j,k=1

∂Ai

∂ηj
(∇u)uxkxi

uxkxj
≥ 2α−1|∇u|p−2

n
∑

i,j=1

(uxixj
)2.

Using this observation we conclude

Lu(|∇u|2) ≥ c−1|∇u|p−2

n
∑

i,j=1

(uxixj
)2.(2.6)

Lemma 2.4. Let Ω be a domain, K be a bounded, closed, convex set with
K ⊂ Ω, 1 < p < ∞ and α > 1 be given. Let A ∈ Mp(α) and u be A-harmonic in
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Ω \ K with u = 1 on ∂K. If K satisfies the interior ball property then then there
exists c∗ ≥ 1, depending only on p, n, α, r0 such that if x ∈ Ω \K

(a) c∗〈∇u(x), z − x〉 ≥ u(x),

(b) c−1
∗ |x|

1−n
p−1 ≤ |∇u(x)| ≤ c∗ |x|

1−n
p−1 .

(2.7)

Proof. A proof of this lemma can be found in [5] when 1 < p < n and in [6] when
n ≤ p < ∞. The proof uses Lemmas 2.2, 2.1, and 2.3. A barrier type argument is
also used, as in [32, Section 2] and [8, Section 4]. We skip the details. �

Now let u be a A-harmonic function in Ω \ K where K ⊂ Ω, it is continuous
on R

n with u ≡ 1 on K and u ≡ 0 on R
n \ Ω. The following lemma establishes

the convexity of the superlevel sets {u > t} when both K and Ω are convex. We
note that such a result plays a crucial role in the uniqueness assertion in Theorem
1.4. In the case of p-Laplacian, such a result was first established by Lewis in [31]
following Gabriel’s ideas as in [20]. Here we adapt the techniques in [31] and [5] to
our situation. We also refer to the interesting paper [13] for a different proof in the
case of the Laplacian.

Lemma 2.5. Let K ⊂ Ω be such that K,Ω are convex and let u be A-harmonic
in Ω \K, continuous on R

n with u ≡ 1 on K and u ≡ 0 on R
n \ Ω. If K satisfies

interior ball condition then for each t ∈ (0, 1), the set {x ∈ Ω: u(x) > t} is convex.

Proof. We note from (2.7) and Lemma 2.2 that










|∇u| 6= 0,

u has Hölder continuous second partial derivatives on compact subsets

of Ω.

(2.8)

Our proof of Lemma 2.5 is by contradiction, following the proof in [31, section 4].
We define for x̂ ∈ R

n,

u(x̂) = sup
ŷ,ẑ∈Rn

x̂=λŷ+(1−λ)ẑ,λ∈[0,1]

min{u(ŷ), u(ẑ)}.

Notice that u ≤ u, u ≡ 1 in K and u ≡ 0 in R
n \ Ω. It suffices to show that

u = u. If that were not true, then from the convexity of K, continuity of u, and
the fact that as w → w0 ∈ ∂Ω, u(w) → 0, we would conclude that there must exist
ǫ > 0, and x0 ∈ Ω such that

0 < u
1+ǫ(x0)− u(x0) = max

Rn
(u1+ǫ − u).(2.9)

For ease of writing we write v = u
1+ǫ and v = u1+ǫ. There exist λ ∈ (0, 1) and

y0, z0 ∈ Ω \ {x0} with

x0 = λy0 + (1− λ)z0 and v(x0) = min{v(y0), v(z0)}.(2.10)

We first show that

v(y0) = v(z0).(2.11)

Assume for contradiction, for instance, that v(y0) < v(z0). Since u ≤ u, u(x0) ≤
u(y0) = u(x0) < u(z0). By continuity, if z is in a small enough neighborhood of z0,
then u(z) > u(y0) + (u(z0) − u(y0))/2. Since |∇u| 6= 0 in Ω, we can choose y′ close
enough to y0 so that u(y′) > u(y0) and also such that after connecting y′ and x0 by
a line, we can pick a corresponding z′ in the previous neighborhood of z0. In this
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manner u(x0) ≥ min{u(y′), u(z′)} > u(y0) = u(x0), a contradiction. Thus (2.11) is
true.

Next we prove that

ξ =
∇v(y0)

|∇v(y0)|
=

∇v(z0)

|∇v(z0)|
=

∇u(x0)

|∇u(x0)|
(2.12)

Indeed, let us show that
∇v(y0)

|∇v(y0)|
=

∇v(x0)

|∇v(x0)|
.

Let y not be on the line through y0 and z0 and be such that ∇v(y0)·(y−y0) > 0. Draw
the line through y and z0 and denote by x its intersection with the line originating
at x0 with direction y − y0. One has that v(y) > v(y0) for y close to y0. Therefore
ṽ(x0) ≤ ṽ(x), for y near y0. From (2.9) we conclude u(x) ≥ u(x0), for y close to y0,
hence ∇u(x0) · (y− y0) ≥ 0 whenever ∇v(y0) · (y− y0) > 0, showing that ∇u(x0) and
∇v(y0) point in the same direction.

To simplify our notation, let

A = |∇v(y0)|, B = |∇v(z0)|, C = |∇u(x0)|, a = |x0 − y0|, b = |x0 − z0|.

Let η ∈ S
n−1 be such that ξ · η > 0. From (2.8) we can write

v(y0 + ρη) = v(y0) + A1ρ+ A2ρ
2 + o(ρ2),

v(z0 + ρη) = v(z0) +B1ρ+B2ρ
2 + o(ρ2),

u(x0 + ρη) = u(x0) + C1ρ+ C2ρ
2 + o(ρ2)

(2.13)

as ρ → 0. Also
A1/A = B1/B = C1/C = ξ · η,

where the coefficients and o(ρ2) depend on η. Given η with ξ ·η > 0 and ρ1 sufficiently
small we see from (2.8) that the inverse function theorem can be used to obtain ρ2
with

v
(

y0 +
ρ1
A
η
)

= v
(

z0 +
ρ2
B
η
)

.

We conclude as ρ1 → 0 that

ρ2 = ρ1 +
B

B1

(

A2

A2
−

B2

B2

)

ρ21 + o(ρ21).(2.14)

Now from geometry we see that λ = b
a+b

so

x = x0 + η
[ρ1

b
A
+ ρ2

a
B
]

a+ b
= λ(y0 +

ρ1
A
η) + (1− λ)(z0 +

ρ2
B
η).

From this equality and Taylor’s theorem for second derivatives we have

u(x)− u(x0) = C1

[

ρ1
λ

A
+ ρ2

(1− λ)

B

]

+ C2

[

ρ1
λ

A
+ ρ2

(1− λ)

B

]2

= C1ρ1
(1− λ)A+ λB

AB
+ C1

(1− λ)

B1

(

A2

A2
−

B2

B2

)

ρ21

+ C2ρ
2
1

(

(1− λ)A+ λB)

AB

)2

+ o(ρ21).

(2.15)

Now

v
(

y0 +
ρ1
A
η
)

− u(x) ≤ v(x)− u(x) ≤ v(x0)− u(x0) = v(y0)− u(x0).
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Hence the mapping

ρ1 → v(y0 +
ρ1
A
η)− u(x)

has a maximum at ρ1 = 0. Using the Taylor expansion for v(y0 +
ρ1
A
η) in (2.13) and

u(x) in (2.15) we have

v
(

y0 +
ρ1
A
η
)

− u(x) = v(y0) +
A1

A
ρ1 +

A2

A2
ρ21 − u(x0)

− C1ρ1
(1− λ)A+ λB

AB
−

C1

a+ b

a

B1

(

A2

A2
−

B2

B2

)

ρ21

− C2ρ
2
1

(

(1− λ)A+ λB

AB

)2

+ o(ρ21).

Now from the calculus second derivative test, the coefficient of ρ1 should be zero and
the coefficient of ρ21 should be non-positive. Hence combining terms we get

A1

A
= C1

(1− λ)A+ λB

AB

so taking η = ξ we arrive first at

1

C
=

(1− λ)A+ λB

AB
=

(1− λ)

B
+

λ

A
.(2.16)

Second using (2.16) in the ρ21 term we find that

0 ≥
A2

A2
− C1

(1− λ)

B1

(

A2

A2
−

B2

B2

)

−
C2

C2
.(2.17)

Using C1/B1 = C/B and doing some arithmetic in (2.17) we obtain

0 ≥ (1−K)
A2

A2
+K

B2

B2
−

C2

C2
(2.18)

where

K =
(1− λ)A

(1− λ)A+ λB
< 1.

We now focus on (2.18) by writing A1, B1, C1 in terms of derivatives of u and v;

0 ≥
n
∑

i,j=1

[

(1−K)

A2
vxixj

(y0) +
K

B2
vxixj

(z0)−
uxixj

(x0)

C2

]

ηiηj.(2.19)

From symmetry and continuity considerations we observe that (2.19) holds whenever
η ∈ S

n−1 Thus if

w(x) = −
(1−K)

A2
v(y0 + x)−

K

B2
v(z0 + x) +

uxixj
(x0 + x)

C2
,

then the Hessian matrix of w at x = 0 is positive semi-definite, i.e, (wxixj
(0)) has

non-negative eigenvalues. Also from (i) of Definition 1.1 we see that if

aij =
1

2

[

∂Ai

∂ηj
(ξ)) +

∂Aj

∂ηi
(ξ))

]

, 1 ≤ i, j ≤ n,

then (aij) is positive definite. From these two observations we conclude that

trace
(

((aij) · (wxixj
(0))

)

≥ 0.(2.20)
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To obtain a contradiction we observe from (1.6), the divergence theorem, (2.18), and
p− 2 homogeneity of partial derivatives of Ai, that

n
∑

i,j=1

aij uxjxi
= |∇u|2−p

n
∑

i,j=1

∂Ai

∂ηj
(∇u)uxjxi

= 0 at x0, y0, z0.(2.21)

Moreover, from the definition of v we have

vxi
= (u1+ǫ)xi

= (1 + ǫ)uǫuxi
,

vxixj
= (1 + ǫ)ǫuǫ−1uxi

uxj
+ (1 + ǫ)uǫuxixj

.
(2.22)

Using (2.21), (2.22), we find that

|∇u|p−2
n
∑

i,j=1

aij vxjxi
=

n
∑

i,j=1

∂Ai

∂ηj
(∇u)[(1 + ǫ)uǫ−1uxj

uxi
+ (1 + ǫ)uǫuxjxi

]

= (1 + ǫ)ǫuǫ−1

n
∑

i,j=1

∂Ai

∂ηj
(∇u)uxj

uxi
+ (1 + ǫ)uǫ

n
∑

i,j=1

∂Ai

∂ηj
(∇u)uxjxi

≥ α−1(1 + ǫ)ǫuǫ−1|∇u|p−2|∇u|2 + 0 > 0

(2.23)

at points y0 and z0 (∇u is also evaluated at these points). Using (2.21), (2.23), we
conclude that

trace
(

(aij) · (wxixj
(0))

)

=
n
∑

i,j=1

aij wxixj
(0) < 0.(2.24)

Equations (2.24) and (2.20) contradict each other. The proof of Lemma 2.5 is now
complete. �

3. Proof of Theorem 1.4

In this section we give a proof of Theorem 1.4 by a method of Beurling, inspired
by Henrot and Shahgholian in [25]. To this end, Let K be a convex domain and let
Px0,a denote the hyperplane in R

n passing through x0 with the normal a 6= 0 pointing
away from K.

A supporting hyperplane to K at boundary point x0 is a plane satisfying

Px,a := {x : aTx = aTx0}

where a 6= 0 and aTx ≤ aTx0 for all x ∈ K. By the supporting hyperplane theorem
it is known that there exists a supporting hyperplane at every boundary point of a
convex set K. Let Ω be another convex set containing K.

For each x ∈ ∂K there exists a point yx ∈ ∂Ω ∩ {z : a · (z − x) > 0} satisfying
a·(yx−x) = max a·(z−x), where maximum is taken over the set ∂Ω∩{z : a·(z−x) >
0}.

We will work on convex ring domains. That is, let D1 and D2 be two convex
domains satisfying D1 ⊂ D1 ⊂ D2. We first need an auxiliary lemma.

Lemma 3.1. Let D1, D2 be two convex domains with D1 ⊂ D1 ⊂ D2. Let u be
A−capacitary potential of D2 \D1, that is,











∇ · A(∇u) = 0 in D2 \D1,

u = c1 on ∂D1,

u = c2 on ∂D2,
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where c1 > c2 ≥ 0 are given constants. Then

lim sup
z→x

z∈D2\D1

|∇u(z)| ≥ lim sup
z→yx

z∈D2\D1

|∇u(z)|

for all x ∈ ∂D1.

Proof. Without loss of generality assume that c1 = 1 and c2 = 0 as we may using
the the translation and dilation invariance of (1.6). Now let x ∈ ∂D1 and also first
assume that ∂D1 is not C1 at x. Note that locally near x, u can be approximated by
functions uǫ, which are solutions to a uniformly elliptic PDE in non-divergence form
with ellipticity bounds independent of ǫ (see [4, section 2.3]). This later fact follows
from the structural assumptions on A as in (i) in Definition 1.1. Then it follows from
[33] that there exists a barrier v to such linear equations with v(x) = uǫ(x) = u(x),
v ≤ uǫ near x and moreover |∇v(x)| = ∞. Thus it follows that |∇u(x)| = ∞.
Likewise, if ∂D2 is not C1 at yx, then similarly it follows from [33] that there exists
an upper barrier v such that v(yx) = u(yx) and v ≥ u locally near yx and such that
|∇v(yx)| = 0. Then it follows that |∇u(yx)| = 0, which gives the desired result. Thus
in view of the above discussion, we may now restrict our attention to the case when
x, yx are in the regular part of ∂D1 and ∂D2 respectively. Let x ∈ ∂D1 be fixed
and let yx be the associated point on ∂D2 as described above. Let P = Px,a be a
supporting plane at x to D1.

∂D2
D1

x

a
yx

D′
2

P

Figure 1. The supporting place P = Px,a and the domains D1 and D2.

Note that D1 ⊂ {P < 0} and let D′
2 := D2 ∩ {P > 0}. By Lemma 2.3, we may

assume that P = {xn = 0}. Indeed, otherwise after a rotation we have P = {xn = 0};
we first prove the present lemma for ũ which is Ã-harmonic for some Ã ∈ Mp(α) and
follow by transferring everything back to u. Hence assume P = {xn = 0} and define
v = u+ αxn, where

α = lim sup
z→yx

z∈D2\D1

|∇u(z)| − ǫ,

with ǫ > 0 small. Since Lu = Lv = 0 in D′
2, v attains its maximum on ∂D′

2. By the
construction of D′

2, the maximum of v is either at x or yx. If the maximum were at
yx, then

0 ≤ lim sup
z→yx

z∈D2\D1

∂v

∂xn
(z) = − lim sup

z→yx
z∈D2\D1

|∇u(z)|+ α = −ǫ < 0.
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It follows that v attains its maximum at x, hence

0 ≤ − lim sup
z→x

z∈D2\D1

∂v

∂xn
(z) = lim sup

z→x
z∈D2\D1

|∇u(z)| − α

= lim sup
z→x

z∈D2\D1

|∇u(z)| − lim sup
z→yx

z∈D2\D1

|∇u(z)|+ ǫ.

We then conclude the validity of the lemma. �

We next show that if D1 satisfies the so called the interior ball property as in
(1.7) then the A-capacitary function u as above has bounded gradient.

Lemma 3.2. Let D1, D2 be as in Lemma 3.1 and let d0 = min d(∂D2, D1).
Assume also that D1 satisfies the interior ball property as in (1.7) with constant r0.
Then there is a constant M = M(d0, r0, n) such that

|∇u| ≤ M in D2 \D1.

Proof. In view of (2.6), it is enough to show that |∇u| ≤ M on ∂D1 ∪ ∂D2.
We first take care of points on ∂D2. Without loss of generality take c1 = 1, c2 = 0

as (1.6) is invariant under translation and dilation. Let x ∈ ∂D2 be fixed. By rotation,
assume, by Lemma 2.3, that xn = 0 is a supporting hyperplane to ∂D2 at x with
D2 ⊂ {xn > 0} and prove the present lemma for ũ which is Ã-harmonic for some

Ã ∈ Mp(α) and transfer the result back to u. Therefore, without loss of generality
xn = 0 is a supporting hyperplane. There exists a supporting hyperplane xn = d to
∂D1 for which D1 ⊂ {xn > d}. Let D̃2 = D2∩{0 < xn < d} and let ũ = xn/d. Basic
comparison principle applied to positive weak solutions of A-harmonic PDEs gives
u ≤ ũ in D̃2. This observation and the fact that u(x) = ũ(x) implies

|∇u(x)| ≤ |∇ũ(x)| ≤
1

d
≤

1

d0
.

This gives the desired results for points on ∂D2.
In order to show the same estimates for points on ∂D1, we proceed as follows.

We first construct a barrier as we did in the proof of Lemma 2.4 and then we prove
that Lemma 3.1 holds for uǫ. Finally, using Lemmas 2.1 and 2.2 we conclude that
Lemma 3.1 holds for u as well. �

3.1. A technique of Beurling. In this subsection we give a brief introduction
to a technique used by Beurling in [11] and in [25] as well. To this end, recall that
K is a convex domain and let

C := {Ω convex bounded open subset of Rn with K ⊂ Ω}.

Let uΩ denote the A-capacitary potential for Ω \K whenever Ω ∈ C. Following [26],
we also define

G := {Ω ∈ C : lim inf
y→x,y∈Ω

|∇uΩ(y)| ≥ c for all x ∈ ∂Ω},

G0 := {Ω ∈ C : lim inf
y→x,y∈Ω

|∇uΩ(y)| > c for all x ∈ ∂Ω},

B := {Ω ∈ C : lim sup
y→x,y∈Ω

|∇uΩ(y)| ≤ c for all x ∈ ∂Ω}.

In the language of Beurling, G is the collection of “subsolutions” and B is the
collection of “supersolutions”. Our aim is to show that G ∩ B 6= ∅. To this end, we
will make some observations.
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Lemma 3.3. B is closed under intersection. That is, if Ω1,Ω2 ∈ B, then Ω1∩Ω2

∈ B.

Proof. We will use the comparison principle for non-negative A-harmonic func-
tions. Let uΩi

for i = 1, 2 be A-capacitary functions for Ωi ∈ B. By the com-
parison principle, we have uΩ1∩Ω2

≤ min{uΩ1
, uΩ2

} in (Ω1 ∩ Ω2) \ K. Furthermore,
∂(Ω1 ∩ Ω2) ⊂ ∂Ω1 ∩ ∂Ω2, hence given x ∈ ∂(Ω1 ∩ Ω2) we can assume without loss of
generality x ∈ ∂Ω1. Then uΩ1

(x) = 0 = uΩ1∩Ω2
(x) and thereupon one concludes that

lim sup
y→x,y∈Ω1∩Ω2

|∇uΩ1∩Ω2
(y)| ≤ lim sup

y→x,y∈Ω1

|∇uΩ1
| ≤ c.

Therefore Ω1 ∩ Ω2 ∈ B. This finishes the proof of Lemma 3.3. �

Our next goal is to show the “stability” of B.

Lemma 3.4. Assume K satisfies the interior ball property. Let Ω1 ⊃ Ω2 ⊃ . . .
be a decreasing sequence of domains in B. Let

Ω =
˚⋂

n

Ωn.

Assume Ω ∈ C. Then Ω ∈ B.

Proof. Let Ω1 ⊃ Ω2 ⊃ . . . be a sequence of domains in B and let {uk} be
a sequence of capacitary A−harmonic functions for {Ωk} respectively. Then 0 ≤
uk ≤ 1. Moreover, by Lemmas 2.1, 2.2, and 3.2 it follows that {uk,∇uk} converges
uniformly on compact subsets of Ω \K to {u,∇u} where u is a A-harmonic function
in Ω \K. The proof that u is indeed the capacitary A-harmonic function for Ω \K
essentially follows from the convergence of Ωn to Ω in the Hausdorff distance sense
and Lemma 2.4.

We next show that Ω ∈ B. To this end, let M = maxk(sup |∇uk|) < ∞, by
Lemma 3.2. Let 0 < δk be such that δk → 0 as k → ∞ and

|∇uk|2 − c2

M2
−

1

k
≤ 0 on {uk = δk}.

Consider
uk − δk
1− 2δk

,

which is non-negative in {uk > δk} \ {uk < 1− δk} and has zero boundary values on

{uk = δk}. Recall definition (2.4). By (2.6) applied to |∇uk|
2−c2

M2 − 1
k
,

Luk

(

|∇uk|2 − c2

M2
−

1

k

)

≥ 0 = Luk

(

uk − δk
1− 2δk

)

in {uk > δk} \ {uk < 1− δk}. On the other hand, on {uk = δk} we have

|∇uk|2 − c2

M2
−

1

k
≤ 0 =

uk − δk
1− 2δk

.

Furthermore, on {uk = 1− δk} ∩ {uk ≥ δk} we have

|∇uk|2 − c2

M2
−

1

k
≤ 1 =

uk − δk
1− 2δk

.

It follows that

(3.1)
|∇uk|2 − c2

M2
−

1

k
≤

uk − δk
1− 2δk

in {uk > δk} \ {uk < 1− δk}.
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Given ǫ > 0 one can find a neighborhood Uǫ of ∂Ω such that

uk ≤ ǫ in Uǫ.

Letting k → ∞ and using (3.1) we obtain

|∇uk|2 − c2

M2
−

1

k
→

|∇u|2 − c2

M2
≤ u ≤ ǫ as k → ∞

uniformly on compact subsets of Uǫ ∩ Ω. By letting ǫ → 0 we conclude the proof of
the Lemma. �

As a consequence of Lemma 3.4, we claim that if G0 is not empty and for Ω0 ∈ G0

the set {Ω̃ ∈ B : Ω0 ⊂ Ω̃} is not empty, then there exists a domain Ω ∈ {Ω̃ ∈ B : Ω0 ⊂
Ω̃} with the property that

if Ω̂ ∈ {Ω̃ ∈ B : Ω0 ⊂ Ω̃} and Ω̂ ⊂ Ω, then Ω̂ = Ω.(3.2)

Such a domain Ω will be called minimal element in {Ω̃ ∈ B : Ω0 ⊂ Ω̃}. For
simplicity, define

C0 := {Ω̃ ∈ B : Ω0 ⊂ Ω̃}.

To prove our claim, let

I =
⋂

i

Ω̃i where Ω̃i ∈ C0.

Write I =
⋂∞

i=1 Ω̃i, with Ω̃i ∈ C0. Let Ω1 = Ω̃1 and Ωk+1 = Ω̃k+1∩Ωk for k = 2, 3, . . ..
Then each Ωk is convex and Ωk ∈ B by Lemma 3.3. Applying Lemma 3.4 to {Ωn}
we conclude that

Ω =
˚⋂

n

Ωn ∈ B.

This finishes the proof of our claim.
We proceed by studying the behavior of capacitary A-harmonic functions on

extremal points of Ω. To set the stage, let Ω be the minimal element in C0. A point
x ∈ ∂Ω is called extremal point if there exists a supporting hyperplane to Ω touching
∂Ω at x only. Let EΩ denote the set of extremal points of Ω.

Lemma 3.5. Let Ω be a minimal element in the class C0 and let x ∈ EΩ. Then

lim sup
y→x
y∈Ω

|∇uΩ(y)| = c.

Proof. The proof will be a contradiction argument. To this end, suppose there
exists y0 ∈ EΩ with

lim sup
y→y0
y∈Ω

|∇uΩ(y0)| = c(1− 4α̃).

for some α̃ > 0. By the Hölder continuity of ∇uΩ there exists a neighborhood N of
∂Ω with y0 ∈ N satisfying that

|∇uΩ(x)| ≤ c(1− α̃) for every x ∈ N ∩ Ω.(3.3)

Assume that y0 ∈ EΩ. Otherwise, we may choose a sequence in EΩ converging to y0
with the above property.

Let d > 0 and let Pd be a plane such that d(y0, Pd) = d with Pd ∩ Ω ⊂ N .
Notice that without loss of generality, by Lemma 2.3 we may assume that y0 = 0,
Pd = {xn = d}. Otherwise, we rotate our coordinate system, work with û, which is

Â-harmonic for some Â ∈ Mp(α), and at the end transfer everything back to uΩ.
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Hence assume y0 = 0, Pd = {xn = d}, let ǫ > 0 and define Ωǫ = Ω \ {xn ≤ ǫ}.
Assume ǫ is small enough so that Ω0 ⊂ Ωǫ. Let uǫ be the A-capacitary function for
Ωǫ\K. As uǫ ≤ uΩ on ∂Ωǫ, by the comparison principle for non-negative A-harmonic
functions we have

0 ≤ uǫ ≤ uΩ in Ωǫ.(3.4)

It follows that we have

(3.5) lim sup |∇uǫ| ≤ lim sup |∇uΩ| ≤ c on ∂Ω ∩ ∂Ωǫ.

At the points where ∂Ω ∩ ∂Ωǫ is not C1 we claim that |∇uǫ| = 0. This can be done
as in [5, Section 7] by considering A(η, δ) to obtain a uniformly elliptic equation
in divergence form and vδǫ which is A(η, δ)-harmonic in Ωǫ. Once again repeating
following [5, Section 7], one concludes that |∇vδǫ | = 0 and thereupon letting δ → 0
we obtain our claim.

Using (3.3) and (3.4) we have

max
Pd∩Ω

uǫ ≤ max
Pd∩Ω

uΩ ≤ d sup
{0≤xn≤d}∩Ω

|∇uΩ| ≤ d c(1− α̃).(3.6)

Let now

v := uǫ +
d c(1− α̃)

d− ǫ
(d− xn)

and note that
Luǫ

v = Luǫ
uǫ = 0 in Ωǫ ∩ {xn < d}.

Thereupon we conclude that v takes its maximum on the boundary of Ωǫ∩{xn < d}.
Moreover, using (3.6) we obtain

v ≤ c(1− α̃)d on ∂(Ωǫ ∩ {xn < d}) and v = d c(1− α̃) on Pǫ,

as
∂(Ωǫ ∩ {xn < d}) ⊂ Pd ∪ Pǫ ∪ (∂Ω ∩ {ǫ < xn < d})

Hence we have

0 ≥
∂v

∂xn
= |∇uǫ| −

c(1− α̃)d

d− ǫ
on Pǫ.

By choosing ǫ ≤ α̃d, we obtain |∇uǫ| ≤ c on Pǫ. In view of this result and (3.5) we
have Ωǫ ∈ B and by construction Ωǫ ⊂ Ω. By (3.2) we conclude that Ω = Ωǫ which
is a contradiction, hence the proof of Lemma 3.5 is complete. �

We next observe that if Ω is a minimal element in the class C0 and let uΩ be the
A-capacitary function for Ω \K then

|∇uΩ(x)| ≥ c for all x ∈ Ω \K.(3.7)

To prove (3.7) we use the fact that for every 0 < t < 1, {x ∈ Ω: uΩ(x) > t} is a
convex set due to Lemma 2.5. The conclusion follows by applying Lemma 3.1 to
{x ∈ Ω: uΩ > t} and Ω, and using Lemma 3.5.

3.2. Final Proof of Theorem 1.4. We split the proof into two steps, existence
of Ω and uniqueness of Ω.

3.2.1. Existence of Ω. In order to prove Theorem 1.4 we show that there
exist domains Ω0 and Ω1 such that Ω0 ∈ G0 and Ω1 ∈ B with Ω0 ⊂ Ω1. Then from
(3.2) there exists a minimal element Ω ∈ C0 and by using (3.7) we have Ω ∈ G. In
view of the definitions of G and B, this would allow us to assert existence result of
Theorem 1.4. Hence to finish the proof of existence, it remains to show the existence
of Ω0 ∈ G0 and Ω1 ∈ B with Ω0 ⊂ Ω1.
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Existence of Ω1 ∈ B: For this, choose R0 large enough so that K ⊂ BR0
. Let

R > R0 large to be fixed below. Without loss of generality assume 0 ∈ K. Let uR be
the A-capacitary function for B(0, R) \ K. Using (b) in Lemma 2.4 we can choose
R sufficiently large so that

|∇uR(x)| ≤ c⋆|x|
1−n
p−1 = c⋆R

1−n
p−1 ≤ c.

Therefore, Ω1 = B(0, R) ∈ B.

Existence of Ω0 ∈ G0: Let R > 0 be as above and uR be the A-capacitary function
for B(0, R) \ K. We first observe from the smoothness of B(0, R) and Lemma 3.1
that there is a constant C > 0 and a neighbourhood U of ∂K such that

|∇uR| ≥ C in U \K.

For a given t, 0 < t < 1, let Ωt = {x ∈ B(0, R) : uR(x) > 1 − t}. Then the
A-capacitary function for Ωt is

uΩt
(x) =

uR − (1− t)

t
.

By choosing t sufficiently small we have on ∂Ωt

|∇uΩt
| =

|∇uR|

t
≥

C

t
≥ c

Therefore, Ω0 := Ωt ∈ G0 and Ω0 ⊂ Ω1

In view of these two observations and our earlier remarks, the existence of Ω is
done.

3.2.2. Uniqueness of Ω. This will follow from [24], where uniqueness was
shown for the Laplace equation, and nonlinear elliptic differential equations satisfying
properties (i)–(iv) given below, by using the Lavrentèv principle. In order to make
use of this result for nonlinear elliptic equations, one needs to have four conditions
(see section 4 in [24]);

(i) The PDE is weakly elliptic and satisfies the comparison principle.
(ii) If u is a solution, then rotations and translations are also solutions

to some weakly elliptic PDE satisfying comparison principle.
(iii) u = xn is a solution.
(iv) If Ω and K are both convex and if uΩ is the A-capacitary function

for Ω \K, then superlevels of u are convex; Ωt = {x ∈ Ω: u(x) > t}
is convex.

(3.8)

Here (i) in (3.8) follows from the structural assumption on A, (ii) follows from
Lemma 2.3. Regarding (iii), it is clear that u = xn is A-harmonic, and (iv) fol-
lows from Lemma 2.5.

3.2.3. Proof of Ω ∈ C
1,γ. To obtain the C1,γ regularity of Ω, one repeats the

arguments of Vogel [37], which rely on the machinery of [9] and [10].
Furthermore, it follows from applying the Hodograph transform that if A ∈

C∞(Rn \ {0}), then ∂Ω ∈ C∞, see [28, 29]. We notice that an interesting alternative
method to obtain higher regularity has recently been done in [15], where the authors
prove higher order boundary Harnack estimates. See also [17, 16] in the context of
thin obstacle problems.

Now the proof of Theorem 1.4 is complete.
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