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Abstract. Through the Loewner equation, real-valued driving functions generate sets called
Loewner hulls. We analyze driving functions that approach 0 at least as fast as a(T − t)r as t→ T ,
where r ∈ (0, 1/2), and show that the corresponding Loewner hulls have tangential behavior at time
T . We also prove a result about trace existence and apply it to show that the Loewner hulls driven
by a(T − t)r for r ∈ (0, 1/2) have a tangential trace curve.

1. Introduction and results

The Loewner equation provides a correspondence between continuous functions
(called driving functions) and certain families of growing sets (called hulls). We are
interested in the question of how analytic properties of the driving functions affect
geometric properties of the hulls, a question that has inspired much research (such
as [MR, Li, LMR, W, LT, KLS, ZZ], among others.)

In this paper, we examine the end behavior of Loewner hulls driven by functions
that are bounded below by a(T − t)r, where r ∈ (0, 1/2). We show that this results
in tangential hull behavior at the end time (noting that by scaling, we may simply
take T = 1).

Theorem 1.1. Assume that λ is a driving function defined on [0, 1] satisfying
that λ(1) = 0 and λ(t) ≥ a(1− t)r for a ≥ 4 and r ∈ (0, 1/2). Let Kt be the Loewner
hull generated by λ, and let p = inf{x ∈ K1 ∩R}. Then near p, K1 is contained in
the region {x+ iy : 0 ≤ x, 0 ≤ y ≤ C(x− p)2−2r} for C = C(a, r) > 0.

This is the counterpoint to a result in [KLS] which analyzes the initial behavior
of hulls driven by functions that begin faster than atr for r ∈ (0, 1/2) and shows that
these hulls leave the real line tangentially. The end-hull question, however, is slightly
harder to analyze due to the influence of the past on hull growth.

We view Theorem 1.1 as a partial extension of the following result from [LMR]
to the κ =∞ case.

Theorem 1.2. [LMR, Theorem 1.3] If λ : [0, T ] → R is sufficiently regular on
[0, T ) and if

lim
t→T

|λ(T )− λ(t)|√
T − t

= κ > 4,

then the trace γ driven by λ satisfies that γ(T ) = limt→T γ(t) exists, is real, and γ
intersects R in the same angle as the trace for κ

√
1− t.

Theorem 1.1 addresses the approach to R, but it does not address the question
of the existence of a trace. To give a fuller extension, we address the existence of the
trace in the following result.
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Proposition 1.3. If λ : [0, T ] → R is sufficiently nice on [0, T ) with |λ(T ) −
λ(t)| ≥ 4

√
T − t for all t ∈ [0, T ), then the trace γ driven by λ satisfies that γ(T ) =

limt→T γ(t) exists and is real.

The “sufficiently nice” assumption of Proposition 1.3, which utilizes the notion of
Loewner curvature introduced in [LRoh], will be made explicit in Section 4. To avoid
confusion, we point out that this condition is different than the “sufficiently regular”
condition of Theorem 1.2.

We also wish to comment on the assumptions of Theorem 1.1 and Proposition 1.3.
For instance, in Theorem 1.1, we assume control on λ on the full time interval [0, 1]
and we assume a ≥ 4. These assumptions will guarantee that K1 hits back on R at
time 1. However, if we weaken these assumptions to simply ask for control on λ near
time 1 and a > 0, then the theorem applies to the mapped-down hull gs(K1\Ks) for s
sufficiently close to 1. If we additionally knew that Ks was nice enough (for instance,
a smooth curve), then we could use the concatenation property to conclude that K1

hits R or itself tangentially at time 1. A similar comment holds for Proposition 1.3.
Taken together, Theorem 1.1 and Proposition 1.3 provide an understanding of

the hulls driven by functions a(T − t)r, as illustrated in Figure 1.

Figure 1. The trace curve driven by a(1 − t)1/3 hits back on itself tangentially when a = 2.5

(left) and hits R tangentially when a = 4 (right).

Corollary 1.4. Let a 6= 0 and r ∈ (0, 1/2). The Loewner hulls generated by
λ(t) = a(T − t)r have a trace curve for t ∈ [0, T ]. This curve approaches the real line
or itself tangentially as t→ T .

We have interest in applying Theorem 1.1 to some driving functions that lack the
regularity of a(T − t)r. See Figure 2 for one such example. We will briefly discuss
this and other examples in the last section.

Figure 2. The Loewner hull Kπ driven by Weierstrass function 4

∞∑
k=0

3−n/3 cos(3nt).

Due to our desire to understand the hulls of less regular driving functions, one
might ask if there are weaker conditions than those of Proposition 1.3 that would still
give the existence of a trace. In general, the question of the existence of the trace is
difficult and there has not been much progress on this front (as a notable exception
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to this statement, see the work in [ZZ]). We further discuss this question in the last
section, and we give an example to show that monotonicity, while used in the proof
of Proposition 1.3, is not enough to guarantee the trace existence.

We end with a brief note about the organization of this paper. Section 2 con-
tains background on the Loewner equation, and Section 3 contains the proof of
Theorem 1.1. In Section 4 we explore the trace existence question by proving Propo-
sition 1.3 and Corollary 1.4 and discussing some examples.

2. Loewner equation background

This section briefly introduces the relevant background regarding the Loewner
equation. See [La] for a more detailed introduction.

We work with the chordal Loewner equation in the setting of the upper halfplane
H. In this context, the Loewner equation is the following initial value problem:

(2.1) ∂tgt(z) =
2

gt(z)− λ(t)
, g0(z) = z,

where λ is a continuous real-valued function and z ∈ H. For each initial value
z ∈ H \ {λ(0)}, a unique solution to (2.1) exists as long as the denominator remains
non-zero. We collect the initial values that lead to a zero in the denominator into
sets called hulls:

Kt = {z : gs(z) = λ(s) for some s ∈ [0, t]}.
One can show that H\Kt is simply connected and gt is a conformal map from H\Kt

onto H. Since the driving function λ determines the families of hulls Kt, we say that
λ generates Kt or that Kt is driven by λ.

In many cases, there is a curve γ (called a trace) so that Kt is the complement of
the unbounded component of H \ γ[0, t] for all t. When the trace γ is a simple curve
in H∪ {λ(0)}, then the situation is especially nice and we have that Kt = γ[0, t]. In
this case, gt can be extended to the tip γ(t) and gt(γ(t)) = λ(t).

Figure 3. Top left: The hull Kt = [a, a+ i2
√
t] driven by the constant driving function λ ≡ a.

Top right: The hull driven by a linear driving function λ(t) = at with a > 0. Bottom left: The hull
K1 driven by 3

√
1− t. Bottom right: The hull K1 driven by 5

√
1− t contains the blue trace curve

γ and the points under γ in H.

See Figure 3 for some example Loewner hulls, which were computed in [KNK].
Note that in the bottom right example, the hull K1 driven by 5

√
1− t has a trace

γ which is not a simple curve in H ∪ {λ(0)}. As a result, the hull also contains the
points under the curve and a real interval. The third and fourth hulls in Figure 3
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are from an important family of driving functions k
√
1− t. We will use the following

useful information about this family:

Lemma 2.1. Let k ≥ 4. The Loewner hull K1 driven by k
√
1− t contains

the real points in the interval [(k −
√
k2 − 16)/2, k]. Further, the Loewner hull K1

driven by λ with λ(1) = 0 and λ(t) ≥ k
√
1− t contains the real interval [(k −√

k2 − 16)/2, λ(0)].

The first statment can be established by a short computation (see, for instance,
[LRob, Lemma 2.3]). The second statement follows from a comparison between the
driving functions λ and k

√
1− t (see, for instance, [LRob, proof of Theorem 1.1]).

While Lemma 2.1 can be used to determine when a Loewner hull is not a simple
curve, the following theorem gives a large class of hulls that are simple curves. We
use the notation

||λ||1/2 = sup
t6=s

λ(t)− λ(s)√
|t− s|

.

Theorem 2.2. [Li, Theorem 2] If ||λ||1/2 < 4, then the hulls Kt driven by λ
satisfy Kt = γ[0, t] for a simple curve γ contained in H ∪ {λ(0)}.

Additional driving function regularity provides additional regularity for the as-
sociated trace curves.

Theorem 2.3. [W, LT] Let λ ∈ Cβ[0, T ] for β > 1/2 with β + 1/2 /∈ N. Then
the Loewner trace driven by λ is in Cβ+ 1

2 (0, T ].

Loewner hulls satisfy some useful properties, which we will utilize frequently. If
a driving function λ generates hulls Kt, then the following hold:

• Translation: For a ∈ R, the driving function λ(t) + a generates hulls Kt + a.
• Scaling : For k > 0, the driving function kλ(t/k2) generates hulls kKt/k2 .
• Reflection: The driving function −λ(t) generates hulls RI(Kt), where RI

denotes reflection about the imaginary axis.
• Concatenation: For s ∈ (0, T ), the driving function λ(s + t) generates hulls
gs(Ks+t).

There is an alternate flow that one can use to generate Loewner hulls. Setting
ξ(t) = λ(s− t) for t ∈ [0, s], let ft satisfy the following initial value problem:

(2.2) ∂tft(z) =
−2

ft(z)− ξ(t)
, f0(z) = z.

Then fs = g−1s (where gt is the solution to (2.1) driven by λ), and so the hull Ks

driven by λ is the closure of H \ fs(H). We refer to (2.2) as the upward Loewner
flow, since ∂tIm(ft(z)) > 0 for z ∈ H.

For the convenience of the reader, we end this section with statements of results
from other papers (possibly rewritten in our notation) that we will use.

Lemma 2.4. [CR, Lemma 3.3b] Let 0 < ε < 1. If I ⊂ R is an interval of length√
T and 10I the concentric interval of size 10

√
T , and if

´ T
0
1{λ(t)∈10I}dt ≤ εT, then

KT ∩ I × [4
√
εT ,∞) = ∅.

Lemma 2.5. [ZZ, Lemma 4.2] Let I = {x ∈ R∩K1\
⋃
t<1Kt}. If I is an interval

and there exists x0 ∈ I◦ and c > 0 so that
|λ(t)− gt(x0)|√

1− t
> c
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for all t ∈ [0, 1), then there exists an open set B in C containing I◦ so that B ∩H ⊂
K1 \

⋃
t<1Kt.

The last result uses the concept of Loewner curvature introduced in [LRoh]. For
a driving function λ ∈ C2[0, T ) the Loewner curvature can be computed by

(2.3) LCλ(t) =

{
0 if λ′(t) = 0,
λ′(t)3

λ′′(t)
otherwise.

Note that driving functions α+ c
√
τ − t have constant Loewner curvature c2/2. The

Loewner curvature comparison principle (which is stated below in part) allows for
comparison with the hulls generated by constant curvature driving functions.

Theorem 2.6. [LRoh, Theorem 15b] Let γ be the trace driven by λ ∈ C2[0, T ).
If 9 ≤ c2/2 ≤ LCλ(t) < ∞, then γ[0, T ) does not intersect the interior of the hull
K∗τ driven by µ(t) = α+ c

√
τ − t, where α and τ are chosen so that λ(0) = µ(0) and

λ′(0) = µ′(0).

3. Proof of the tangential result

In this section, we prove Theorem 1.1. Our first step is to consider the mapped
down hull K̂s,1 := gs(K1 \ Ks) and show that this hull must be low near 0 (see
Lemma 3.2). Then, in the second step, we watch points from K̂s,1 under the upward
Loewner flow to gain bounds on K1 near p.

Lemma 3.1. Suppose λ is defined on [0, 1] and satisfies that λ(1) = 0 and λ(t) ≥
k
√
1− t for t ∈ [0, 1]. Let Kt be driven by λ. Then K1 ∩ ((−∞, 2]× [26/k,∞)) = ∅.
Proof. When k < 13, the result is trivially true because any Loewner hull at

time t = 1 has its height bounded by 2, and so we assume k ≥ 13. Let I ⊂ (−∞, 2]
be an interval of length 1. The amount of time that λ spends in 10I, the concentric
interval of length 10 which is contained in (−∞, 6.5], is at most (6.5/k)2. Therefore,
applying Lemma 2.4 with ε = (6.5/k)2, we conclude that K1 does not intersect
I × [26/k,∞). �

Lemma 3.2. Suppose that λ is defined on [0, 1] and satisfies that λ(1) = 0 and
λ(t) ≥ a(1 − t)r where a ≥ 4 and r ∈ (0, 1/2). Then for s < 1, K̂s,1 = gs(K1 \Ks)
satisfies that

(3.1) K̂s,1 ∩
(
(−∞, 2

√
1− s]× [26a−1(1− s)1−r,∞)

)
= ∅.

Further, inf{x ∈ K̂s,1 ∩R} ≤ 8
a
(1− s)1−r.

Proof. The rescaled hull 1√
1−sK̂s,1 is generated by the driving function

λ̂(t) =
1√
1− s

λ(s+ t(1− s)), t ∈ [0, 1],

which satisfies that λ̂(1) = 0 and λ̂(t) ≥ a(1 − s)r−1/2
√
1− t. To obtain (3.1), we

apply Lemma 3.1 with k = a(1− s)r−1/2 and then rescale by
√
1− s.

To establish the second statement, we apply Lemma 2.1 to driving function λ̂.
Thus for k = a(1− s)r−1/2, the hull driven by λ̂ contains the point

k −
√
k2 − 16

2
=

8

k +
√
k2 − 16

≤ 8

k
.
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In other words, there is a real point p̂ in the hull 1√
1−sK̂s,1 with p̂ ≤ 8

a
(1 − s)1/2−r.

Scaling then gives the desired result. �

Next we need to analyze the upward Loewner flow. For s fixed and t ∈ [0, s], we
set ξt = λ(s− t) and let ft = xt+ iyt satisfy (2.2), which can be decomposed into the
pair of equations

(3.2) ∂txt = 2
ξt − xt

(ξt − xt)2 + y2t
and ∂tyt = 2

yt
(ξt − xt)2 + y2t

.

Lemma 3.3. Let s ∈ (0, 1) be fixed and let ξt satisfy ξt ≥ a(1 − s + t)r for
t ∈ [0, s] and r ∈ (0, 1/2). Let xt and yt be the solutions to (3.2) with initial values
x0 and y0, respectively, and let pt = ft(p

s
0) be the solution to (2.2) with initial value

ps0 = inf{x ∈ K̂s,1 ∩ R}. There exists M = M(r) ≥ 4, so that when a ≥ M , the
following hold:

(i) If x0 ≤ 2
√
1− s, then xt ≤ 2

√
1− s+ t for all t ∈ [0, s].

(ii) If x0 ≤ 2
√
1− s, then yt ≤ 2y0 for all t ∈ [0, s].

(iii) If x0 ∈ [ps0+
√
1− s, 2

√
1− s] and y0 < 26a−1(1−s)1−r, then xt−pt ≥ x0−ps0

for all t ∈ [0, s].

Proof. Assume x0 ≤ 2
√
1− s. Let τ ∈ [0, s] be a time when xτ = 2

√
1− s+ τ .

Then since ξτ ≥ a(1− s+ τ)r ≥ a
√
1− s+ τ ,

(∂t xt)|t=τ ≤
2

ξτ − xτ
≤ 2

(a− 2)
√
1− s+ τ

≤ 1√
1− s+ τ

=
(
∂t 2
√
1− s+ t

)∣∣
t=τ

.

This implies that xt can never surpass 2
√
1− t+ s and hence (i) holds.

For (ii), we continue to assume that x0 ≤ 2
√
1− s. Then by (i), we have that

ξt − xt ≥ a(1− s+ t)r − 2
√
1− s+ t ≥ (a− 2)(1− s+ t)r.

At times τ when yτ ≤ 2y0, we have that

(∂t yt)|t=τ ≤
4y0

(a− 2)2(1− s+ τ)2r
≤ ∂t

(
y0 +

4y0
(a− 2)2(1− 2r)

(1− s+ t)1−2r
)∣∣∣∣

t=τ

We choose a large enough so that 4(a − 2)−2(1 − 2r)−1 ≤ 1. Thus we can conclude
that yt remains bounded by y0 + y0(1− s+ t)1−2r ≤ 2y0.

Lastly, assume that x0 ∈ [ps0 +
√
1− s, 2

√
1− s] and y0 < 26a−1(1 − s)1−r, and

assume that a is large enough for (ii) to hold. Then

(3.3) ∂t (xt − pt) = 2
ξt − xt

(ξt − xt)2 + y2t
− 2

ξt − pt
= 2

(ξt − xt)(xt − pt)− y2t
(ξt − pt)[(ξt − xt)2 + y2t ]

.

Let τ ∈ [0, s] be a time when xτ − pτ = x0 − ps0. Our goal is to show that the
numerator (ξτ − xτ )(xτ − pτ )− y2τ > 0, meaning that xt − pt is increasing at time τ
(and hence xt − pt ≥ x0 − ps0 for all t ∈ [0, s]). Now by applying (i) and (ii) and the
fact that x0 − ps0 ≥

√
1− s, we obtain

(ξτ − xτ )(xτ − pτ )− y2τ ≥ (a− 2)
√
1− s+ τ

√
1− s−

(
52

a

)2

(1− s)2−2r

≥ (1− s)

[
a− 2−

(
52

a

)2

(1− s)1−2r
]
.

We can guarantee that this is positive by taking a ≥ 15. �
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Proof of Theorem 1.1. We will first prove the case when a ≥ M (i.e. a is large
enough for Lemma 3.3 to hold). Set K∗ := K1 ∩ {z : Re(z) ≤ 2}. We will show that
K∗ is contained in the region {x+ iy : 0 ≤ x, 0 ≤ y ≤ 52a−1(x− p)2−2r}.

Let s ∈ [0, 1) and let z ∈ K̂s,1 with Re(z) ∈ [ps0 +
√
1− s, 2

√
1− s]}. Then

Lemma 3.2 and Lemma 3.3 imply that

Im (fs(z)) ≤ 2 Im(z) ≤ 52a−1(1− s)1−r

and
Re (fs(z))− p ≥ Re(z)− ps0,

where we used that fs(ps0) = p. Thus

fs(z) ∈ [p+
√
1− s, ∞]× [0, 52a−1(1− s)1−r].

It remains to show that

(3.4) K∗ ⊂
⋃

s∈[0,1)

fs

(
K̂s,1 ∩ {z : Re(z) ∈ [ps0 +

√
1− s, 2

√
1− s]}

)
,

which will follow once we show the boundary ∂K1 in {x + iy : x ≤ 2, y > 0} is
contained in the right hand side of (3.4). Let z ∈ ∂K1∩{x+ iy : x ≤ 2, y > 0}. Then
z is added to the hull K1 at some time T (z) < 1. (This follows from Proposition
4.27 in [La], which says that there is at most one t-accessible point.) Therefore as
s → T (z), f−1s (z) → λ(T (z)) ≥ a(1 − T (z))r. Since pT (z)0 ≤ 8

a
(1 − T (z))1−r, there

exists some T (z) < s < 1 so that Re(f−1s (z)) ∈ [ps0 +
√
1− s, 2

√
1− s].

Now suppose that 4 ≤ a < M . Let s ∈ (0, 1) satisfy that a(1 − s)r−1/2 = M .
Since the driving function λ̂ of 1√

1−sK̂s,1 satisfies λ̂(t) ≥M(1− t)r, the previous case
implies that(

1√
1− s

K̂s,1

)
∩ {x+ iy : x ≤ 2} ⊂ {x+ iy : 0 ≤ x, 0 ≤ y ≤ 52M−1(x− p̂)2−2r}

for p̂ = inf{x ∈ 1√
1−sK̂s,1 ∩ R}. The desired result follows since fs(

√
1− s z) is

conformal in a neighborhood of p̂ and takes 1√
1−sK̂s,1 to K1 \Ks with p̂ mapping to

p.
It remains to show that the constant C in the statement of Theorem 2 only

depends on a and r. This will follow from showing that |f ′s(ps0)| is bounded below,
since when y = Cxb, then (x̂, ŷ) = (kx, ky) satisfy ŷ = Ck1−bx̂b. Note that by
Schwarz reflection, fs can be extended to be conformal in C\I for an interval I ∈ R.
By the distortion theorem

|f ′s(ps0)| ≥
dist(p,Ks)

dist(ps0, I)
.

Set d = 1
10
min{ξt : t ∈ [0, s]}. Then dist(ps0, I) ≤ 10d. We claim that dist(p,Ks) ≥ d.

To prove the claim we will show that dist(pt, K̂s−t,s) ≥ d for all t ∈ [0, s]. This
holds at time 0, since K̂s,s = {ξ0}. For t close to 0, K̂s−t,s is near ξt and ξt − pt ≥
ξt/2 ≥ 5d. Let τ be the first time t when dist(pt, K̂s−t,s) = 2d. Let zτ ∈ K̂s−τ,s
with |pτ − zτ | = 2d, and for t ∈ [τ, s] let zt = xt + iyt satisfy (2.2). If yτ > d, then
|pt − zt| > d for all t ∈ [τ, s] since zt is moving upwards. Suppose yτ ≤ d, which
means that |xτ − pτ | ≥ d. We will consider the case that xτ − pτ ≥ d, as the other
case is similar. Then by (3.3)

∂t (xt − pt) |t=τ = 2
(xτ − pτ )(ξτ − pτ )− 4d2

(ξτ − pτ )[(ξτ − xτ )2 + y2τ ]
.
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Note that the numerator satisfies

(xτ − pτ )(ξτ − pτ )− 4d2 ≥ d
ξτ
2
− 4d2 > 0.

Therefore the distance between zt and pt is increasing at time τ , which shows that
dist(p,Ks) ≥ d. �

4. Discussion of trace existence and examples

In this section we discuss the existence of a trace curve, especially in the context
of the driving functions that we are considering in this paper, i.e., those with end
behavior bounded by a(T − t)r for r ∈ (0, 1/2). We consider the following question:

Question 4.1. Let λ : [0, T ]→ R be a continuous function such that the corre-
sponding Loewner hullKt has a trace curve for t ∈ [0, T ). What additional conditions
are needed to guarantee that Kt has a trace curve for t ∈ [0, T ]?

Questions such as this about the existence of the trace have often proved to be
difficult to answer. When |λ(T ) − λ(t)|/

√
T − t is bounded as t → T , then [ZZ,

Theorem 1.2] gives one possible answer to this question. Since this result does not
apply when the driving function is faster than a(T − t)r for r ∈ (0, 1/2) as t → T ,
we are interested in other answers to Question 4.1, such as the following result.

Proposition 1.3. Let λ : [0, T ] → R satisfy λ ∈ C2[0, T ) and |λ(T ) − λ(t)| ≥
4
√
T − t for all t ∈ [0, T ). Assume the Loewner curvature satisfies 9 ≤ LCλ(t) <∞

for all t ∈ [0, T ), and there exists δ > 0 so that for s ∈ (0, 1),

inf
t∈[s,T )

LCλ(t) ≥ δ
√
T − s λ′(s).

Then the trace γ driven by λ satisfies that γ(T ) = limt→T γ(t) exists and is real.

Proof. From (2.3) and the bound on Loewner curvature, λ′(t) 6= 0 for all t ∈
[0, T ). Hence, λ must be monotone and λ′ does not change sign. We make the
following simplifying normalizations: by the scaling property, we may assume that
T = 1, by the translation property, we may assume that λ(1) = 0, and by the
reflection property, we may assume that λ′(t) < 0.

If t ∈ [0, 1), then the Loewner hull Kt driven by λ satisfies Kt = γ[0, t] for a
simple curve γ in H ∪ {λ(0)}, by Theorem 2.2. Lemma 2.1 guarantees that K1 ∩R
is a non-degenerate interval with right endpoint λ(0). Set p = inf{x ∈ K1 ∩R} be
the left endpoint. We wish to show that

lim
t↗1

γ(t) = p.

First we will rule out the case that there are additional limit points of γ in R.
By way of contradiction, we assume that there is q ∈ (p, λ(0)) ⊂ R so that γ(tn)→ q
for a sequence tn increasing to 1. Let qt = gt(q) be the solution to (2.1). By Lemma
2.5, this implies that

lim inf
t→1

λ(t)− qt√
1− t

= 0.

Choose s so that
λ(s)− qs√

1− s
<
δ

2
.
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Consider the mapped and rescaled hulls

K̂t =
1√
1− s

gs(Ks+t(1−s) \Ks),

which are generated by the driving function

λ̂(t) =
1√
1− s

λ(s+ t(1− s)), t ∈ [0, 1].

Note that for t < 1, K̂t = γ̂[0, t] for a simple curve γ̂ and q̂ = qs√
1−s ∈ K̂1 is a limit

point of γ̂(t) as t→ 1 and satisfies that λ̂(0)− q̂ < δ/2.

q̂

γ̂

Figure 4. The Loewner curvature comparison principle implies that γ̂ (shown in blue) does not
intersect the region below the smaller curve (shown in red) that contains q̂.

p

Figure 5. The beginning of γ (shown in blue) when the set of limit points of γ as t → 1 is a
continuum (shown in red) containing p ∈ R and points in H.

To obtain a contradiction, we will utilize the Loewner curvature comparison
principle, which will show that there is a relatively open set B in H containing q̂ so
that B∩ γ̂[0, T ) = ∅, as illustrated in Figure 4. We compare λ̂ to µ(t) = α+c

√
τ − t,

with the constants chosen as follows: c is chosen so that c2/2 = inft∈[s,T ) LCλ(t), τ is
chosen so that λ̂′(0) = µ′(0), and α is chosen so that λ̂(0) = µ(0). Since

LCλ̂(t) = LCλ(s+ t(1− s)) ≥ c2

2
≥ 9,

the Loewner curvature comparison principle (Theorem 2.6) implies that γ̂ stays above
and never intersects the interior of the hull driven by µ. It remains to show q̂ is
contained in this hull. Note by Lemma 2.1 the hull driven by c

√
1− t contains a

real interval of length at least c/2. Hence by scaling, the hull driven by µ(t) =

α + c
√
τ
√

1− t/τ contains an interval of length at least

c
√
τ

2
=

c2

4
√
1− s λ′(s)

≥ δ

2

with right endpoint λ̂(0). This implies that q̂ is contained in the interior of the hull
generated by µ (using the relative topology of H), and hence q̂ cannot be a limit
point of γ̂.

To finish the proof, it remains to show that there cannot be a limit point of γ as
t → 1 in H. If there were, the set limit points of γ as t → 1 would be a continuum
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containing p ∈ R and γ would need to oscillate, such as in Figure 5. Since the set
of limit points extends into H, γ must alternate between following its left side, i.e.,
the prime ends g−1t (x) for x < λ(t), and its right side. This would require λ to be
non-monotone. �

We now apply Proposition 1.3 and Theorem 1.1 to analyze the Loewner hulls
driven by a(1− t)r.

Proof of Corollary 1.4. By scaling, we may assume that T = 1, and by reflection
we may assume that a > 0. Thus we take λ(t) = a(1− t)r for a > 0 and r ∈ (0, 1/2),
and we let Kt be the Loewner hulls driven by λ. By Theorems 2.2 and 2.3, there is
a simple curve γ ∈ C2.5(0, T ) so that Kt = γ[0, t] for t ∈ [0, T ).

We first assume that a ≥ 3
√
1−r
r

. Since 3
√
1−r
r
≥ 3
√
2 > 4, this assumption

guarantees that |λ(1)− λ(t)| ≥ 4
√
1− t. Computing Loewner curvature gives

LCλ(t) =
λ′(t)3

λ′′(t)
=

a2r2

1− r
· 1

(1− t)1−2r
≥ 9

and for δ = ar/(1− r),

inft∈[s,1) LCλ(t)√
1− s λ′(s)

=
ar

1− r
1

(1− s)1/2−r
≥ δ.

Thus Proposition 1.3 implies that γ(T ) = limt→T γ(t) exists and is real. Theorem 1.1
implies that γ(t) approaches R tangentially as t→ 1.

The result for a < 3
√
1−r
r

follows from the large a case and the concatenation
property. �

Since the monotonicity of the driving function played a role in the proof of
Proposition 1.3, it is natural to ask whether this property is sufficient to answer
Question 4.1. The following example shows that monotonicty alone is not enough to
guarantee the existence of a trace on the full time interval. We also note that this
example could be modified so that the driving function is in C2[0, 1), showing that
the problem is not the lack of smoothness.

Proposition 4.2. Let r ∈ (0, 1/2). There exists a continuous monotone driving
function λ : [0, 1] → R with λ(1) = 0 and λ(t) ≥ a(1 − t)r, where a > 0, such that
the corresponding Loewner hull Kt is a simple curve for t ∈ [0, 1), but K1 does not
have a trace.

Proof. The driving function λ will be constructed to alternate between constant
and linear portions, as pictured in the left image of Figure 6. In particular, each
interval of the form In = [1 − 2−n, 1 − 2−(n+1)] is divided into two subintervals. On
the first subinterval, λ is constant, equal to 2−nra, where a satisfies a ≥ 2/(1− 2−r).
On the second subinterval, λ is linear. Since we require that λ is continuous, choosing
the slope of the linear piece will uniquely identify λ on In. For t < 1, this construction
will give a simple curve γ in H∪{a} so that Kt = γ[0, t]. Let β0 be the line segment
{x+ iy : x ∈ [a−1, a], y = a−x}. We will construct a nested sequence of subintervals
βn converging to a and we will choose the slopes of the linear portions to guarantee
that γ intersects each βn. This will show that the limit points of γ as t → 1 is an
interval in R.
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Figure 6. Left: The beginning of the driving function λ of Proposition 4.2, shown in solid blue,
is bounded by the dashed curve a(1− t)r. Right: The hull K3/4 of Proposition 4.2, shown in solid
blue, and the dashed segment β0.

We begin with the first interval I0. Let s ∈ (0, 1/2), and let λ ≡ a on [0, s],
which implies γ[0, s] is the vertical slit from a to a + i2

√
s. Applying gs, the curve

gs(β0) has an endpoint at a−2
√
s. For t ∈ [s, 1/2], we set λ(t) = m(t− s)+a, where

m = m(s) = a(2−r−1)
1/2−s and we let γs be the Loewner curve generated by λ restricted

to [s, 1/2]. This curve begins at a and moves to the left. Making s closer to 1/2
increases the slope m(s), which in turn makes γs[s, 1/2] closer to R. As s → 1/2,
γs[s, 1/2] converges to the real interval [2−ra, a] of length a(1 − 2−r) ≥ 2. Since the
distance from a to the endpoint of gs(β0) is 2

√
s <
√
2, we are able to choose s close

enough to 1/2, so that γs[s, 1/2] intersects gs(β0). This gives us our definition of λ
on [0, 1/2] and we set β1 to be the connected component of β0 \ γ(0, 1/2] containing
a. Note that we may assume that g1/2(β1) is as close to 2−ra as we like (by simply
taking s closer to 1/2, if needed), and so we will assume that the distance between
g1/2(β1) and 2−ra is bounded by 2−1/2.

The construction for subsequent intervals is similar. To begin, let tn = 1 − 2−n

and assume that the driving function is defined on the interval [0, tn]. We further
assume the segment βn satisfies that gtn(βn) is within distance 2−n/2 of 2−nra. Let
s ∈ (tn, tn+1), to be determined momentarily. Set

λ(t) =

{
2−nra if t ∈ [tn, s],

mn(t− s) + 2−nra if t ∈ [s, tn+1],

where mn = mn(s) =
a2−nr(2−r−1)

tn+1−s . We must verify that we are able to choose s so
that gs(γ[s, tn+1]) intersects gs(βn). To determine the approximate location of gs(βn),
we use the bound on gtn(βn) and the fact that gs = φ ◦ gtn where φ maps down the
vertical slit gtn (γ[tn, s]) and is given by φ(z) =

√
(z − 2−nra)2 + 4(s− tn) + 2−nra.

Thus the curve gs(βn) is within distance
√
3 · 2−n/2 to the left of 2−nra. As s→ tn+1,

we have that gs(γ[s, tn+1]) converges to the real interval [2−(n+1)ra, 2−nra] of length
a2−nr(1 − 2−r) ≥ 2 · 2−nr. Since 2 · 2−nr >

√
3 · 2−n/2, we are able to choose s close

enough to tn+1 so that gs(γ[s, tn+1]) intersects gs(βn). Set βn+1 to be the connected
component of βn \ γ(0, tn+1] containing a, and note that by taking s even closer to
tn+1 if needed, we may also assume that gtn+1(βn+1) is within distance 2−(n+1)/2 of
2−(n+1)ra. �

Despite the lack of trace, we note that Theorem 1.1 still applies to the above
example. We end this section by discussing two further examples where we can
apply Theorem 1.1 but which lack the regularity of Proposition 1.3. It is currently
unknown whether either has a trace curve.
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The first example behaves similarly to the driving function of Proposition 4.2
in that it is monotone and has periods where it is constant. In particular, we are
interested in the driving function k

√
1− Et, where Et is an inverse α-stable subor-

dinator. See Figure 7. In [KLS] with Kobayashi and Starnes we looked at random
time-changed driving functions of the form φ(Et), and as an application of our results,
we showed that when α > 1/2, then a.s. k

√
Et generates a trace curve that leaves

the real line tangentially. Analyzing k
√
1− Et is more difficult. When α > 1/2, the

work of [KLS] shows that a.s. k
√
1− Et generates a trace curve on [0, T ), before the

final time T . When the hull includes points from the real line, then Theorem 1.1
gives the tangential behavior of the final hull. However, the question remains open
whether the trace exists on the full time interval [0, T ].

Figure 7. A simulation, courtesy of Andrew Starnes, of the Loewner trace driven by
√
1− Et,

where Et is an inverse α-stable subordinator with α = 0.7.

The second example comes from the family of Weierstrass functions

W (t) = Wb,r,k(t) = k
∞∑
n=0

b−rn cos(bnt).

The Loewner hulls driven byW have been studied in the r = 1/2 case (see [LRob, G,
ZZ].) When r ∈ (0, 1/2) (and k large enough), then we enter the situation in which
Theorem 1.1 applies. A simulation of one such example is shown in Figure 2. The
tangential behavior on the left side of the hull is due to Theorem 1.1, whereas the
tangential behavior on the right side of the hull is due to Proposition 1.2 of [KLS].
We also note that since the simulation that produced Figure 2 creates a trace that
approximates the hull, this picture suggests that the hull may be a spacefilling curve
(and the few white spots are most likely approximation error), but it is unknown
whether the trace exists for this example.

Acknowledgement. We thank Andrew Starnes and the anonymous referee for
their comments which led to improvements in the exposition.
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