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Abstract. We prove some general results on sequential convergence in Fréchet lattices that

yield, as particular instances, the following results regarding a closed ideal I of a Banach lattice

E: (i) If two of the lattices E, I and E/I have the positive Schur property (the Schur property,

respectively) then the third lattice has the positive Schur property (the Schur property, respectively)

as well; (ii) If I and E/I have the dual positive Schur property, then E also has this property; (iii)

If I has the weak Dunford–Pettis property and E/I has the positive Schur property, then E has

the weak Dunford–Pettis property. Examples and applications are provided.

1. Introduction

In the realm of Banach spaces, the Schur property (weakly null sequences are
norm null) is a 3-space property in the weak sense that a Banach space E has the
Schur property whenever a closed subspace F of E and the quotient space E/F have
the Schur property (see, e.g., [8]). But it is not a 3-space property in the strong sense
that, given a closed subspace F of the Banach space E, if two of the spaces E, F
and E/F have the Schur property, then the third one also has this property. To see
that, just remember that c0 is a quotient of ℓ1.

In the setting of Banach lattices, for the quotient E/F of a Banach lattice E over
a closed subspace F to be a Banach lattice, F should be an ideal of E (see, e.g., [3]).
So the natural transposition of the concept of 3-space property (in the strong sense)
to the realm of Banach lattices reads as follows.

Definition 1.1. A property P of Banach lattices is a 3-lattice property if the
following holds: given a closed ideal I of the Banach lattice E, if two of the lattices
E, I and E/I have P, then the third one has P as well.

A Banach lattice has the positive Schur property if weakly null sequences formed
by positive vectors are norm null. A lot of research has been done on this property,
for some recent contributions see, e.g., [6, 7, 13, 18, 24, 25, 26, 28]. Among other
results, in this paper we prove that, contrary to the case of the Schur property for
Banach spaces, the Schur and the positive Schur properties are 3-lattice properties.
These results will appear as applications of general results on the Schur and the
positive Schur properties in Fréchet lattices.
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Definition 1.2. Given linear topologies τ1 and τ2 in a Riesz space E, we say
that:

• E has the (τ1, τ2)-Schur property (in short, (τ1, τ2)-SP) if τ1-null sequences in
E are τ2-null.

• E has the (τ1, τ2)-positive Schur property (in short, (τ1, τ2)-PSP) if τ1-null
sequences in E formed by positive elements are τ2-null.

Of course, the Schur property is the (weak topology, norm topology)-SP and
the positive Schur property is the (weak topology, norm topology)-PSP in a Banach
lattice. The first part of the definition above is similar to the approach of Castillo
and Simões to the Schur property (see [9, Definition 4, Definition 5, Remark 5]).

After proving some general results on the (τ1, τ2)-SP and the (τ1, τ2)-PSP (see
Theorems 2.1 and 2.3), we conclude in Corollary 2.4 that the Schur and the posi-
tive Schur properties are 3-lattices properties in the context of σ-Dedekind complete
Fréchet lattices. Applying these results for Banach lattices we get, in Theorem 2.5,
that the Schur and the positive Schur properties are 3-lattice properties, and in
Proposition 2.12 that a Banach lattice E has the dual positive Schur property when-
ever a closed ideal I and the quotient lattice E/I have this property. A few more
applications to Banach lattices and an illustrative example are also provided. In a
short final section we show that the methods we use for Fréchet lattices can also be
helpful in the study of the weak Dunford–Pettis property in Banach lattices (cf. The-
orem 3.2 and Corollary 3.3).

For the basic theory of Banach lattices, Riesz spaces and linear topologies on
Riesz spaces we refer to [1, 2, 3, 17].

2. The Schur and the positive Schur properties

According to [2], a Fréchet lattice is a Riesz space endowed with a locally convex-
solid (hence linear), metrizable and complete topology. We just recall that a locally
convex topology on a Riesz space E is locally convex-solid if it is generated by a
family of Riesz seminorms, or, equivalently, if the origin has a basis of neighborhoods
formed by convex and solid sets (see [3, Section 3.3]).

If F is a Riesz subspace of the Risez space E endowed with the linear topologies
τ1 and τ2, we consider in F the corresponding relative topologies, still denoted by
τ1 and τ2. So, if E has the (τ1, τ2)-SP ((τ1, τ2)-PSP, respectively), then F has the
(τ1, τ2)-SP ((τ1, τ2)-PSP, respectively) as well.

Given a subspace M of a topological vector space (X, τ), by τ̇ we denote the
quotient topology on X/M , which is the finest topology on X/M making the quotient
operator π : X −→ X/M continuous. It is well known that τ̇ is a linear topology on
X/M (see, e.g., [22, I.2.2]).

Given an ideal I of the Riesz space E, the order in E/I is given by: ẋ ≤ ẏ if
there are x1 ∈ ẋ and y1 ∈ ẏ such that x1 ≤ y1 (see [3, pp. 99, 100] and [2, p. 16]).

The symbol xn
τ

−→ x means that the sequence (xn)n converges to x with respect
to the topology τ .

Theorem 2.1. Let τ1 and τ2 be linear topologies on the Riesz space E such
that (E, τ2) is a Fréchet lattice and E has the (τ2, τ1)-SP. Let I be a τ2-closed ideal
of E such that I has the (τ1, τ2)-PSP ((τ1, τ2)-SP, respectively) and E/I has the
(τ̇1, τ̇2)-PSP ((τ̇1, τ̇2)-SP, respectively). Then E has the (τ1, τ2)-PSP ((τ1, τ2)-SP, re-
spectively).
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Proof. Let us prove first the case of the (τ1, τ2)-PSP. Let (xn)n ⊆ E be a sequence

such that xn ≥ 0 for every n and xn
τ1−→ 0. Of course, an arbitrary subsequence of

(xn)n, still denoted by (xn)n, is positive and τ1-null. The continuity of the quotient
operator π : (E, τ1) −→ (E/I, τ̇1) gives

ẋn := π(xn)
τ̇1−→ 0 in E/I,

and the fact that π is a Riesz homomorphism [3, Theorem 2.22] gives ẋn ≥ 0 for

every n. Calling on the (τ̇1, τ̇2)-PSP of E/I, we get ẋn
τ̇2−→ 0 in E/I. Let d be

an invariant metric that generates the τ2 topology (see [1, Theorem 5.10]). Since

ẋn
τ̇2−→ 0 if and only if inf{d(xn, y) : y ∈ I} −→ 0, there exists a sequence (yn)n in I

and a further subsequence of (xn)n, still denoted by (xn)n, such that d(xn, yn) −→ 0,

that is, xn − yn
τ2−→ 0 in E. Since τ2 is a locally convex-solid topology on E, and

|xn − |yn|| = ||xn| − |yn|| ≤ |xn − yn|,

we get

xn − |yn|
τ2−→ 0 in E.

The (τ2, τ1)-SP of E gives xn−|yn|
τ1−→ 0 in E, and since xn

τ1−→ 0 we have |yn|
τ1−→ 0

in I. Since I has the (τ1, τ2)-PSP and each |yn| ∈ I is positive, it follows that

|yn|
τ2−→ 0 in I, hence |yn|

τ2−→ 0 in E. Now the linearity of τ2 gives

xn = (xn − |yn|) + |yn|
τ2−→ 0 in E.

We have proved that every subsequence of (xn)n admits a further subsequence that
is τ2-null. This is enough to conclude that (xn)n is itself τ2-null, proving that E has
the (τ1, τ2)-PSP.

The proof of the case of the (τ1, τ2)-SP follows the same steps, actually it is a bit
easier because there is no need to pass to the absolute value of yn. �

In the particular case for the Schur property where τ1 is the weak topology on E
with respect to the linear topology (E, τ2), we have τ1 ⊆ τ2, hence E has the (τ2, τ1)-
SP. This means that, for this particular choice of τ1, the part about the Schur property
of the theorem above collapses to [9, Proposition 6] (see also [8, Theorem 6.1.a]) due
to Castillo and Simões, whose proof was our first inspiration.

To proceed we need the following lemma. Given a Riesz space E endowed with
a linear topology τ , by wτ we denote the weak topology on E with respect to the
topology τ . It is well known that wτ is a linear topology on E (see, [20, 22]).

Lemma 2.2. If (E, τ) is a locally convex Hausdorff Riesz space with the (wτ , τ)-
PSP, then (E, τ) does not contain a lattice copy of ℓ∞, meaning that there is no Riesz
homomorphism from ℓ∞ to E that is a homeomorphism onto its range.

Proof. Suppose that there exists a Riesz homomorphism T : ℓ∞ −→ E that is
a homeomorphism onto T (ℓ∞). As τ is locally convex, by [20, Theorem 8.12.2] we
know that the weak topology on T (ℓ∞) with respect to τ is the the weak topology
wτ on E restricted to T (ℓ∞), which we still denote by wτ . Combining this with the
(wτ , τ)-PSP of E, it follows that T (ℓ∞) has the (wτ , τ)-PSP as well. Since T and
T−1 : T (ℓ∞) −→ ℓ∞ are positive operators (obvious) and weak-weak continuous [20,
Theorem 8.11.3(c)], we have that ℓ∞ has the PSP. This contradiction completes the
proof (to see that ℓ∞ fails the PSP, note, e.g., that c0 is a Banach sublattice of ℓ∞
[17, p. 12, Example iii)] and the canonical unit vectors in c0 form a non-norm null
weakly null sequence of positive vectors in c0). �
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Remember that if (E, τ) is a Riesz space with a linear topology, then the weak
topology wτ̇ on E/I with respect to the space (E/I, τ̇) coincides with the quotient
topology ẇτ with respect to the space (E,wτ) (see [20, Theorem 8.12.3(a)]).

Remember also that a Riesz space E has the projection property if every band
in E is a projection band; and a locally solid Riesz space (E, τ) has the Lebesgue

property if xα
τ

−→ 0 whenever xα ↓ 0 in E (here (xα)α is a net in E). More details
can be found in [2].

Theorem 2.3. Let τ be a locally convex-solid Hausdorff complete topology on
the Dedekind σ-complete Riesz space E. If E has the (wτ , τ)-PSP ((wτ , τ)-SP, re-
spectively), then, regardless of the τ -closed ideal I of E, the quotient space E/I has
the (wτ̇ , τ̇ )-PSP ((wτ̇ , τ̇)-SP, respectively).

Proof. Assume that E has the (wτ , τ)-PSP. As τ is locally convex, by Lemma 2.2
we know that (E, τ) does not contain a lattice copy of ℓ∞. Theorem 3.29 in [2]
tells us that (E, τ) has the Lebesgue property, thus E is Dedekind complete by [2,
Theorem 3.24]. We conclude that E has the projection property by [3, Theorem 1.42].

Let I be a τ -closed ideal of E. Since (E, τ) is locally solid with the Lebesgue
property, calling [2, Theorem 3.7] we have that I is a band, hence a projection band,
which means that E = I ⊕ Id, where Id = {x ∈ E : x ⊥ y for every y ∈ I}. Using
again that the weak topology on Id with respect to the τ is the restriction of the
weak topology wτ on E, the (wτ , τ)-PSP of E implies that Id has the (wτ , τ)-PSP
too. It follows from [2, p. 115] that (E/I, τ̇) is lattice isomorphic to (Id, τ), so E/I
has the (wτ̇ , τ̇ )-PSP.

The case of the (wτ , τ)-SP is similar. First observe that the (wτ , τ)-SP is inherited
by Riesz subspaces and is preserved by isomorphisms between locally convex spaces.
Next follow the steps above and, as (E/I, τ̇) is lattice isomorphic to (Id, τ) and this
latter space has the (wτ , τ)-SP, then E/I has the (wτ̇ , τ̇)-SP. �

As to the assumptions of the theorem above, recall that, as in the case of Banach
spaces, a linear subspace of a locally convex space is closed if and only if it is weakly
closed [20, Theorem 8.8.1].

Combining Theorems 2.1 and 2.3 we get the following:

Corollary 2.4. The (weak, strong)-positive Schur property and the (weak, str-
ong)-Schur property are 3-lattice properties in the context of σ-Dedekind complete
Fréchet lattices in the following sense: if I is a closed ideal of a σ-Dedekind complete
Fréchet lattice (E, τ) such that two out of the three following conditions hold:

(i) E has the (wτ , τ)-PSP ((wτ , τ)-SP, respectively),
(ii) I has the (wτ , τ)-PSP ((wτ , τ)-SP, respectively),
(iii) E/I has the (ẇτ , τ̇)-PSP ((ẇτ , τ̇)-SP, respectively);

then the third condition holds too.

The notion of 3-lattice properties in Banach lattices was defined in the Introduc-
tion.

Theorem 2.5. The Schur and the positive Schur properties are 3-lattice prop-
erties.

Proof. Since c0 fails the positive Schur property, Banach lattices with the Schur/
positive Schur property do not contain a copy of c0, hence they are KB-spaces [3,
Theorem 4.60]. But KB-spaces have order continuous norms [3, p. 232] and Banach
lattices with order continuous norms are Dedekind complete [3, Corollary 4.10]. So,
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Banach lattices with the Schur/positive Schur property are Dedekind complete. Of
course, in Banach lattices the Schur property is the (weak, norm)-SP and the positive
Schur property is the (weak,norm)-PSP, so the result follows from Corollary 2.4. �

Next we give applications and examples regarding the results obtained thus far.

Proposition 2.6. Let E and F be Banach lattices and T : E −→ F be a Riesz
homomorphism with closed range. If ker(T ) and F have the positive Schur prop-
erty (Schur property, respectively), then E has the positive Schur property (Schur
property, respectively).

Proof. Let us prove the case of the positive Schur property. As a Banach sub-
lattice of F , T (E) has the positive Schur property. We believe it is well known that
E/ ker(T ) is lattice isomorphic to T (E), but since we have found no reference to
quote, we give a short reasoning. Since T is a Riesz homomorphism, ker(T ) is an
ideal of E [3, p. 94]), and the continuity of T (Riesz homomorphisms are positive
hence continuous) guarantees that ker(T ) is closed. So E/ ker(T ) is a Banach lattice.
The operator

S : E/ ker(T ) −→ T (E), S(ẋ) = T (x),

is an isomorphism between Banach spaces such that S ◦ π = T , where π : E −→
E/ ker(T ) is the quotient operator [16, Theorem 1.7.14]. From the fact that T and π
are Riesz homomorphisms it follows easily that S is a Riesz homomorphism as well,
so E/ ker(T ) is lattice isomorphic to T (E). Therefore E/ ker(T ) has the positive
Schur property and Theorem 2.5 gives that E has the positive Schur property. The
case of the Schur property is identical. �

On the one hand, higher order duals E∗∗, E∗∗∗, . . . of infinite dimensional Banach
spaces E never have the Schur property (this follows from [19, Corollary 11]). On
the other hand, the bidual of an infinite dimensional Banach lattice with the positive
Schur property may have the positive Schur property. For example, every AL-space
has the positive Schur property [21, Examples 1.3] and the bidual of an AL-space is
an AL-space as well [3, Theorem 4.23]. We believe that, contrary to the case of the
Schur property in Banach spaces, it is not easy to give concrete examples of Banach
lattices E with the positive Schur property such that E∗∗ fails this property. In this
case, is E a closed ideal of E∗∗? If yes, our results imply that E∗∗/E fails the positive
Schur property. Our next aim is to give such an example.

Proposition 2.7. Let E be a Banach lattice with the positive Schur property
such that E∗ contains a lattice copy of ℓ1. Then E is a closed ideal of E∗∗ and E∗∗

and E∗∗/E fail the positive Schur property.

Proof. We have already noticed that Banach lattices with the positive Schur
property do not contain a lattice copy of c0, so E does not contain a lattice copy of
c0, therefore E is a KB-space (we have already used this fact). By [3, Theorem 4.60]
we know that E is a band, in particular a closed ideal, of E∗∗. So we can consider the
quotient lattice E∗∗/E. Since E∗ contains a lattice copy of ℓ1, from a result due to
Wnuk [25, p. 22] it follows that E∗∗ fails the positive Schur property. Corollary 2.5
gives that E∗∗/E lacks the positive Schur property. �

Example 2.8. For each n ∈ N let ℓ∞n denote the Banach lattice R
n endowed

with the maximum norm and coordinatewise order. Now let E denote the ℓ1-sum of
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the sequence (ℓ∞n )n, that is

E :=

(

⊕

n∈N

ℓ∞n

)

1

=

{

x = (xn)n : xn ∈ ℓ∞n for every n ∈ N and ‖x‖ :=

∞
∑

n=1

‖xn‖ < ∞

}

,

which is a Banach lattice endowed with the coordinatewise order. As a finite dimen-
sional Banach lattice, each ℓ∞n has the positive Schur property, so E has the positive
Schur property by another result due to Wnuk [25, p. 17].

Let us see now that E∗ contains a lattice copy of ℓ1. To do so, first remember
that (ℓ∞n )∗ is canonically lattice isometric to ℓ1n = (Rn, ‖·‖1). So, by [3, Theorem 4.6]
we know that E∗ is lattice isometric to
(

⊕

n∈N

ℓ1n

)

∞

:=

{

x = (xn)n : xn ∈ ℓ1n for every n ∈ N and ‖x‖ := sup
n

‖xn‖ < ∞

}

,

with the coordinatewise order, via the usual duality relation

(ϕj)j 7−→ (ϕj)j ((xj)j) =
∞
∑

j=1

ϕj(xj).

It is well know that the map

(xj)j ∈ ℓ1 7−→ ((x1), (x1, x2), (x1, x2, x3), . . .) ∈

(

⊕

n∈N

ℓ1n

)

∞

,

is a linear isometric embedding and a Riesz homomorphism. So, E∗ contains a lattice
copy of ℓ1, then Proposition 2.7 yields that E is a closed ideal of E∗∗ and that the
Banach lattices

(

⊕

n∈N

ℓ∞n

)∗∗

1

and

(

⊕

n∈N

ℓ∞n

)∗∗

1

/

(

⊕

n∈N

ℓ∞n

)

1

lack the positive Schur property.

It is well known that ℓ1 is projectively universal for the class of separable Banach
spaces in the sense that every separable Banach space is isometric to a quotient of ℓ1.
The fact that the Schur property is preserved under isomorphisms and Theorem 2.5
give immediately the following.

Corollary 2.9. Let E be a separable Banach space failing the Schur property.
Then any closed subspace M of ℓ1 such that E is isomorphic to ℓ1/M fails to be an
ideal.

Although ℓ1 is a Banach lattice, it is not true that every separable Banach lattice
is lattice isometric to a quotient of ℓ1 over a closed ideal. For example, c0 is a
separable Banach lattice that is not lattice isometric to a quotient of ℓ1 over a closed
ideal (otherwise c0 would be an AL-space because the quotient of an AL-space over
a closed ideal is an AL-space [3, p. 205]). In [15], Leung, Li, Oikhberg and Tursi
constructed a separable Banach lattice LLOT such that every separable Banach
lattice is lattice isometric to a quotient of LLOT over a closed ideal.

Example 2.10. Let us see that the Banach lattice LLOT lacks the positive
Schur property. Of course this is the case if it contains a lattice copy of c0. Sup-
pose that LLOT does not contain a lattice copy of c0 and has the positive Schur
property. In this case LLOT would be σ-Dedekind complete and, since the posi-
tive Schur property is preserved by lattice isomorphisms of Banach lattices, from
Theorem 2.3 it would follow that every separable Banach lattice has this property.
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The existence of separable Banach lattices failing the positive Schur property, ℓ2 for
example, completes the reasoning.

Remark 2.11. In [11], Flores, Hernández, Spinu, Tradacete and Troitsky in-
troduced and developed the notion of p-disjointly homogeneous Banach lattices,
1 ≤ p ≤ ∞. In [11, Proposition 4.9] they proved that a Banach lattice is 1-disjointly
homogeneous if and only if it has the positive Schur property. So, being a 1-disjointly
homogeneous Banach lattice is a 3-lattice property.

We finish this section with an application of our results to the dual positive Schur
property, introduced by Aqzzouz, Elbour and Wickstead [5] as follows: a Banach
lattice E has the dual positive Schur property if every weak∗-null sequence formed by
positive functionals in E∗ is norm null.

Let us see first that the dual positive Schur property is not a 3-lattice property.
According to Wnuk [27, p. 768], ℓ∞ and ℓ∞/c0 have the dual positive Schur property.
But c0 is a closed ideal of ℓ∞ lacking the dual positive Schur property (the canonical
unit vectors form a weak∗-null non-norm null sequence in ℓ1). We have just mentioned
that Wnuk [27] established that the dual positive Schur property passes to quotients
over closed ideals. So, all that is left to be established is the following:

Proposition 2.12. If the closed ideal I of the Banach lattice E and the quotient
lattice E/I have the dual positive Schur property, so has E.

Proof. For a Banach space X, let us call σ(X∗, X) the weak∗-topology on X∗

and ‖ · ‖X∗ the norm topology on X∗. So,

• E has the dual positive Schur property if and only if E∗ has the (σ(E∗, E), ‖ ·
‖E∗)-PSP;

• I has the dual positive Schur property if and only if I∗ has the (σ(I∗, I), ‖·‖I∗)-
PSP;

• E/I has the dual positive Schur property if and only if (E/I)∗ has the
(σ((E/I)∗, E/I), ‖ · ‖(E/I)∗)-PSP.

Since the annihilator I⊥ of I is a closed ideal of E∗ [23, Corollary 1 of Proposi-
tion II.5.5], combining [10, Theorems V.2.2 and V.2.3] and [23, Corollary 1 of Propo-
sition II.5.5] we get

• I∗ has the (σ(I∗, I), ‖ · ‖I∗)-PSP if and only if E∗/I⊥ has the
( ˙[σ(E∗, E)],

˙‖ · ‖E∗

)

-PSP, where ˙[σ(E∗, E)] is the quotient topology associated to the quo-

tient operator (E∗, σ(E∗, E)) −→ E∗/I⊥, and
• (E/I)∗ has the (σ((E/I)∗, E/I), ‖ · ‖(E/I)∗)-PSP if and only if I⊥ has the
(σ(E∗, E), ‖ · ‖E∗)-PSP.

The assumptions give that I⊥ has the (σ(E∗, E), ‖ · ‖E∗)-PSP and that the quotient

lattice E∗/I⊥ has the ( ˙[σ(E∗, E)], ˙‖ · ‖E)-PSP, therefore Theorem 2.1 yields that E∗

has the (σ(E∗, E), ‖ · ‖E∗)-PSP, that is, E has the dual positive Schur property. �

3. The weak Dunford–Pettis property

The weak Dunford–Pettis property was introduced by Leung [14] as follows: a
Banach lattice E has the weak Dunford–Pettis property if every weakly compact
operator on E sends weakly null sequences formed by pairwise disjoint vectors to
norm null sequences. In [8], the authors mention that it was then unknown if this
property is a 3-lattice property. As far as we know, this problem remains open, and
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the purpose of this short final section is to show that the methods we are applying
can be used to give a contribution in this direction.

Following the approach of Gabriyelyan [12], we give the following definition in
the context of Fréchet lattices.

Definition 3.1. A Fréchet lattice E has the sequential weak Dunford–Pettis

property if ϕn(xn) −→ 0 whenever (xn)n is a weakly null sequence in E formed by
positive vectors and (ϕn)n is a weakly null sequence in the strong dual E∗

β of E.

The next result was inspired by [8, Proposition 6.6.c] and its proof repeats some
of the steps of the proof of Theorem 2.1.

Theorem 3.2. Let I be a closed ideal of the Fréchet lattice (E, τ). If I has the
sequential weak Dunford–Pettis property and E/I has the (ẇτ , τ̇)-PSP, then E has
the sequential weak Dunford–Pettis property.

Proof. Given a weakly null sequence (xn)n of positive vectors of E and a weakly
null sequence (ϕn)n in E∗

β , let us denote an arbitrary subsequence of (ϕn(xn))n still by
(ϕn(xn))n. Of course, the corresponding subsequences of (xn)n and of (ϕn)n satisfy
the same properties of the original sequences. Considering the quotient operator
π : (E, τ) −→ (E/I, τ̇), we have that (ẋn)n = (π(xn))n is a sequence of positive

vectors in E/I and ẋn
ẇτ−→ 0 in E/I. The (ẇτ , τ̇)-PSP of E/I gives ẋn

τ̇
−→ 0 in E/I

and reasoning similarly to the proof of Theorem 2.1 we can find a further subsequence
of (xn)n, still denoted by (xn)n, and a sequence (yn)n of positive vectors of I such that,

up to an adjustment of the indexes if necessary, xn − yn
τ

−→ 0. Hence, xn − yn
wτ−→ 0

in E and from the linearity of the weak topology we get

yn = xn − (xn − yn)
wτ−→ 0

in E, thus in I. Since (ϕn)n is weakly null in E∗
β, denoting by ϕn|I the restriction of

each ϕn to I and applying [20, Theorem 8.11.3(d) and (c)] to the inclusion operator
(I, τ) −→ (E, τ) and its adjoint E∗

β −→ I∗β , we conclude that (ϕn|I)n is weakly null
in the strong dual I∗β of I. The sequential weak Dunford–Pettis property of I gives
ϕn|I(yn) −→ 0, that is, ϕn(yn) −→ 0.

On the other hand, (ϕn)n, along with all its subsequences, is pointwise bounded
because it is weakly null in E∗

β, therefore it is equicontinuous by the Banach–Steinhaus
Theorem [20, Theorem 11.9.1] (remember that E is a Fréchet space). So, given ε > 0
there is a 0-neighborhood U in E such that |ϕn(x)| < ε for every x ∈ U . Now the

convergence xn − yn
τ

−→ 0 implies that ϕn(xn − yn) −→ 0, therefore

ϕn(xn) = ϕn(xn − yn) + ϕn(yn) −→ 0.

We have proved that every subsequence of (ϕn(xn))n admits a further null subse-
quence. This is enough to conclude that ϕn(xn) −→ 0, and then E has the sequential
weak Dunford–Pettis property. �

Corollary 3.3. Let I be a closed ideal of the Banach lattice E. If I has the
weak Dunford–Pettis property and E/I has the positive Schur property, then E has
the weak Dunford–Pettis property.

Proof. Since the strong topology β(E∗, E) on the dual E∗ of a Banach space E
coincides with the norm topology [20, Example 8.8.9], the weak sequential Dunford–
Pettis property coincides with the weak Dunford–Pettis property in a Banach lattice
(see [4, Corollary 2.6]), so the result follows from Theorem 3.2. �
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