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Abstract. Recently there has been interest in pairs of Banach spaces (E0, E) in an o–O

relation and with E∗∗

0
= E. It is known that this can be done for Lipschitz spaces on suitable

metric spaces. In this paper we consider the case of a compact subset K of Rn with the Euclidean

metric, which does not give an o–O structure, but we use part of the theory concerning these pairs

to find an atomic decomposition of the predual of Lip(K). In particular, since the space M(K) of

finite signed measures on K, when endowed with the Kantorovich–Rubinstein norm, has as dual

space Lip(K), we can give an atomic decomposition for this space.

1. Introduction

Hanin dedicated some papers [16, 17] to the description of spaces in duality with
Lipschitz spaces, namely spaces of finite signed Borel measures on compact metric
spaces K. His results have been extended to the case of separable metric spaces (non
necessarily compact) in [18]. In what follows we will consider K a compact domain
in Rn equipped with the Euclidean norm, which we denote here by | · |. The choice
of a compact domain and the Euclidean distance will be made clear in what follows.
More precisely, when we endow the space M(K) of such measures on K with the so-
called Kantorovich–Rubinstein norm and consider its completion, we obtain a space
that is isometric to the predual of the space of Lipschitz functions of K.

The Kantorovich–Rubinstein norm (see Section 2) was introduced in the context
of optimal transport theory. As a matter of fact, the distance, induced by the norm,
between two measures µ and ν with same total mass, i.e. µ(K) = ν(K), is simply
the cost of the optimal transport from one to the other (see next section for defi-
nitions). Other than identifying M(K)∗ as Lip(K), passing to duals, one can also
investigate embedding properties of M(K)c, or of M0(K)c, into its bidual Lip(K)∗,
where M0(K) is the subspace of M(K) containing only measures with null total
mass, called balanced measures.

An interesting consequence of this approach is that it inspires the introduction
of the dual problem in optimal transport theory. As a matter of fact, by thinking
of elements in M(K) as functionals on Lip(K) we obtain that the Kantorovich–
Rubinstein norm on M0(K) is equal to the norm

‖µ‖KR0 = sup

{
ˆ

K

f dµ, f ∈ Lip1(K)

}
,
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where Lip1(K) is the set of Lipschitz functions with Lipschitz constant L ≤ 1 (see
[26, Remark 6.5]). The fundamental problem of optimal transport theory, i.e. finding,
if it exists, a minimizer to the minimization problem occurring in the definition
of ‖µ − ν‖KR with µ and ν measures with same total mass, is then equivalently
formulated as a maximization problem. It was proven in [5] that elements in M0(K)c

are precisely those for which the dual problem admits maximizers. Moreover, in the
same paper, the space M0(K)c is also characterized as the space of the distributional
divergences of L1(K;Rn) functions.

In this paper we will give an atomic decomposition of the spaces M(K) and
M0(K) by restriction of the decomposition of their completions, seen as preduals of
Lipschitz spaces. We recall that the description of atomic decompositions of Hölder
spaces on compact spaces was given in [20] and [2], following different approaches;
in particular, in [20] the atomic decomposition is closer to other “classical” examples
[7, 9], while in [2] a more abstract atomic decomposition is obtained. We decided
to follow this second approach, based on techniques from [9], which are inspired by
the o–O construction in [24]. In particular, in the case of the distance dα(x, y) =
|x − y|α on a compact set of Rn, the o–O construction has already been shown in
[24], while in the general framework of doubling compact metric-measure spaces it
has been achieved, under some approximation hypotheses, in [2], where the atomic
decomposition in this case has been already deduced. However, as already stated in
[24], such approximation hypotheses do not cover the case of the Euclidean distance,
that is here covered without making use of the concept of a o–O structure.

In particular, we will see in the third section that elements of the embedded copy
of M0(K)c into Lip(K)∗ can be thought of as all the infinite sums of the type

µ =

+∞∑

j=1

δxj
− δyj

|xj − yj|
αj with αj satisfying

+∞∑

j=1

|αj| < +∞

and where {xj}j∈N and {yj}j∈N are two disjoint countable dense subsets of K. These
infinite sums are viewed as bounded linear functionals on Lipschitz functions f in
the following way

〈µ, f〉 =
+∞∑

j=1

f(xj)− f(yj)

|xj − yj |
αj ,

where the right hand side is finite because
|f(xj)−f(yj)|

|xj−yj |
is bounded by the Lipschitz

constant of f and αj is a sequence in ℓ1.
On the other hand, for some choices of αj, µ is not a finite signed Borel measure

on K, even if the sequence of partial sums is a Cauchy sequence in the Kantorovich
norm, showing that M0(K) is not complete. Section 4 of this paper is dedicated
to obtain a similar result for M(K)c. In such a case, since we are not identifying
functions that differ from each other by a constant, the atomic decomposition will be
not just expressed as an infinite linear combination of dipoles, but a correction term
in form of an atom (i.e. δxj

) has to be added to each summand.
Let us state that such atomic decomposition represent a first step towards obtain-

ing a Schauder basis for M(K)c, which is still an open problem (see [1, Problem 3]).
Moreover, atomic decompositions are actually powerful tools to obtain some inter-
esting functional properties. For instance, in [4], a general atomic decomposition
theorem is used to provide a different proof of Banach’s closed range theorem, while
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in [6], such decompositions are used to determine different properties concerning du-
ality and reflexivity of the decomposed spaces. Atomic decomposition are also used
to solve some eigenvalue problems, as done in [10], where some second-order ordinary
differential equations are solved by using atomic decompositions in Lp. Finally, let
us also recall that generalization of atomic decompositions (and of frames of Banach
spaces) have been provided, as in [19].

Concerning the atomic decomposition of M0(K)c and the series representation
of the elements of M(K)c, we think such series representation could be useful to
work in the framework of differential equations on Banach spaces, as for instance the
Kolmogorov equations that arise from Stochastic Partial Differential Equations (see
for instance [13] for a general introduction on Stochastic PDEs).

2. Lipschitz spaces, spaces of Borel measures and their completions

In this section we will introduce the notation concerning the spaces and the norms
we will work with. Let us fix a bounded open set Ω ⊂ Rn and let us denote K = Ω.

2.1. Lipschitz spaces and fractional Sobolev spaces.

Definition 2.1. We define the Lipschitz spaces

Lip(K) =





f : K → R : sup

(x,y)∈K2

x 6=y

|f(x)− f(y)|

|x− y|
< +∞






and

Lip0(K) = Lip(K)/R,

i.e. the Lipschitz space Lip(K) modulo constant functions. In Lip0(K), to simplify
the notation, we will identify any function f : K → R with its equivalence class. If
we endow Lip0(K) with the norm

‖f‖Lip0(K) = sup
(x,y)∈K2

x 6=y

|f(x)− f(y)|

|x− y|
,

then this normed space is a Banach space, while on Lip(K) the functional ‖ · ‖Lip0(K)

would only work as a seminorm. Furthermore, Lip(K) is a Banach space if endowed
with the norm

‖f‖Lip(K) = max{‖f‖Lip0(K) , ‖f‖L∞(K)}.

In the following we will need to embed the spaces Lip(K) and Lip0(K) into suit-
able reflexive Banach spaces. For our purposes, the natural candidates are fractional
Sobolev spaces. An almost complete survey on such spaces is given in [8].

Definition 2.2. Let us denote by W s,p(Ω) for s ∈ (0, 1) and p > 1 the fractional
Sobolev space consisting of the functions f ∈ Lp(Ω) such that

‖f‖p
Ẇ s,p(Ω)

:=

ˆ

Ω

ˆ

Ω

|f(x)− f(y)|p

|x− y|ps+n
dx dy < +∞.

If we endow W s,p(Ω) with the norm

‖f‖W s,p(Ω) = ‖f‖Ẇ s,p(Ω) + ‖f‖Lp(Ω)

it is a reflexive separable Banach space (since it is uniformly convex by means of a

Clarkson-type inequality [12]). The homogeneous fractional Sobolev space Ẇ s,p(Ω)
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is defined as Ẇ s,p(Ω) = W s,p(Ω)/R and if we endow this space with the norm
‖f‖Ẇ s,p(Ω) it is a reflexive separable Banach space (for the same reason as before).

Remark 2.1. Let us recall that if ps > n then, by a fractional Morrey-type em-
bedding theorem, we have that W s,p(Ω) →֒ C(K) (this is true for any doubling com-
pact metric-measure space as a consequence of the Morrey embedding for Hajłasz–
Sobolev spaces [14, Theorem 8.7] and the continuous embedding of Besov spaces into
them [11, Lemma 6.1]). In this case we will always consider the continuous realization
of a function in W s,p(Ω).

Another characterization of Ẇ s,p(Ω) for sp > n is given as the space of functions
f ∈ W s,p(Ω) such that f(z) = 0, for an a priori fixed point z ∈ K (here we are
implicitly using the embedding W s,p(Ω) →֒ C(K)). In particular we have (by using
the same idea adopted for Lip(K)) that the norm

‖f‖W s,p(Ω),z = ‖f‖Ẇ s,p(Ω) + |f(z)|

is equivalent to ‖·‖W s,p(Ω). By identifying C(K)/R in the same way we have Ẇ s,p(Ω)

→֒ C(K)/R.

2.2. Spaces of Borel measures. The definitions and considerations of this
section can be also applied for any general metric space. However, here we focus on
the Euclidean case, as it is the main scope of the paper.

Definition 2.3. We denote the space of finite signed Borel measures on K by
M(K), the subspace of finite positive measures on K by M+(K), and the subspace
of M(K) consisting only of measures µ such that µ(K) = 0 by M0(K). Via the
Hahn–Jordan decomposition, a signed measure µ can be seen as the difference of two
positive Borel measures µ+ and µ−, i.e. µ = µ+ − µ−; the total variation measure of
µ is defined as the sum of the two, i.e. |µ| = µ+ + µ−.

The total variation µ ∈ M(K) 7→ |µ|(K) ∈ R is a norm on M(K) that gives to
the space the structure of Banach space. However, it does not take into account the
metric structure of the domain K (for instance |δx − δy|(K) = 2, for any (x, y) ∈ K2

with x 6= y). On the other hand, even in the more general setting of a compact metric
space K, Kantorovich and Rubinstein (see [23] and [25] for a complete historical
review) introduced a norm ‖ · ‖KR on M(K) inducing a distance that is a natural
extension of the distance on K.

As a matter of fact, K naturally embeds into M(K) by associating to each point
x in K the Dirac measure δx concentrated in x. We will introduce a norm ‖ · ‖KR

that will have the interesting property that ‖δx − δy‖KR = min{|x− y|, 2}, in some
sense extending the metric on K to M(K).

To define the Kantorovich–Rubinstein norm on M(K), we first start by doing so
on the space M0(K) ⊂ M(K) of balanced measures µ, i.e. such that µ(K) = 0 and
hence µ+(K) = µ−(K).

Definition 2.4. [21, 22, 23] Consider any µ ∈ M0(K) and define a family Ψµ ⊂
M+(K ×K) of positive Borel measures on the Cartesian square K ×K of K in the
following way: Ψ ∈ Ψµ if and only if, for any Borel set E ⊂ K, Ψ(K×E)−Ψ(E×K) =
µ(E) (called balance condition). The Kantorovich–Rubinstein norm of µ is defined
as

‖µ‖KR0
:= inf

{
ˆ

K×K

|x− y| dΨ(x, y) : Ψ ∈ Ψµ

}
.
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Definition 2.5. For µ ∈ M(K) we define the “extended” Kantorovich–Rubinstein
norm (as done in [15]) of µ as

‖µ‖KR := inf{‖ν‖KR0
+ |µ− ν|(K) : ν ∈ M0(K)}.

An important thing to notice is that (M0(K), ‖·‖KR0
) and (M(K), ‖·‖KR) are

not Banach spaces.

Remark 2.2. Given (x, y) ∈ K we have ‖δx − δy‖KR0
= |x− y| while ‖δx‖KR =

1, showing that the Kantorovich–Rubinstein norm satisfies the desired property of
concordance with the metric on K.

The completion of the space of finite Borel measure on K with respect to the
Kantorovich–Rubinstein norm is denoted by M(K)c, while we denote by M0(K)c the
completion of M0(K) with respect to the norm ‖·‖KR0

.
It was shown (see for instance [15]) that M(K)∗ is isometric to Lip(K) while

M0(K)∗ is isometric to Lip0(K). Moreover, it is interesting to recall a characteriza-
tion of M0(K)c. Indeed, in [5] it is shown that, if K is a compact subset of Rn, then
for any functional µ ∈ M0(K)c there exists a function f ∈ L1(K;Rn) such that

µ = div f.

Moreover (see [5]), for any functional µ ∈ M0(K)c there exists a function g ∈ BLip0(K)

(where for any Banach space X we denote by BX the closed unit ball in X) such
that

‖µ‖KR0
= 〈g, µ〉,

so that the norm is attained. Let us remark that the last formula holds for any
separable metric space.

3. Atomic decomposition of M0(K)c

Our aim is to give an atomic decomposition of elements µ of M0(K)c, and so in
particular of measures that are balanced on K, i.e. such that µ(K) = 0, as an infinite
sum of simpler elements that we will call atoms.

Definition 3.1. We will call δ-atom any measure µ ∈ M(K) whose support is
finite. Moreover, we call dipole any measure µ ∈ M0(K) of the form µ = α(δx − δy)
for some α ∈ R and (x, y) ∈ K2, with α 6= 0 and x 6= y.

To obtain a decomposition of elements of M0(K)c—which will induce a decom-
position of elements of M0(K)—we generalize the approach of [3], which relies on the
o–O structure of (c0,α, C0,α), by using results contained in [9], which allow us to re-
move the dependence on the “little o” space, because for Lip and Lip0 it is trivial. We
start by writing Lip0 in a suitable way. Indeed we want to make use of [9, Theorem 3]
and, to do this, we have to characterize Lip0 by means of linear bounded operators
L : X → Y where X is a reflexive Banach space containing Lip0 and Y is some other
Banach space. In particular, we want to find a countable family F = {Lj}j∈N of
such operators such that

Lip0(K) = {f ∈ X : sup
j∈N

‖Ljf‖Y < +∞}.

As we will se from the following Lemma, the natural choice we have for Y is R and
for X is Ẇ s,p(K). Indeed, as we stated before, Ẇ s,p(K) is separable and reflexive
and contains Lip0(K) by definition. Moreover, we can chose s and p in a suitable

way such that Ẇ s,p(K) is continuously embedded into the quotient space C(K)/R.
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This choice will be useful to show the boundedness of Lj . Here the compactness of K
plays a prominent role, since in such case C(K) ⊂ L∞(K) (that will be important to
show boundedness of the Lj). In case we choose K to be not compact (for instance
unbounded), then we need to find a different approach to show boundedness of the
operators. For now, let us focus on the compact case.

Lemma 3.1. There exists a sequence of functionals (Lj)j∈N : X = (Ẇ s,p(Ω)) →
Y = R such that

Lip0(K) = {f ∈ Ẇ s,p(Ω) : sup
j∈N

|Ljf | < +∞}

and

‖f‖Lip0(K) = sup
j∈N

|Ljf |.

Proof. First of all, let us fix s ∈ (0, 1) and p > 1 such that ps > n, so that

Ẇ s,p(Ω) →֒ C(K)/R. Let us consider D1 ⊂ K, a countable set such that K = D1,
and K1 = K \D1. Now let us consider D2 ⊂ K1, a countable set such that K = D2.
Finally, let us define D = D1×D2. Observe that D1∩D2 = ∅ so, for any (x, y) ∈ D,
x 6= y. Moreover, D is countable, hence we can enumerate D = {(xj , yj)}j∈N. Finally
D = K ×K. Let us define

Lj : f ∈ Ẇ s,p(Ω) →
f(xj)− f(yj)

|xj − yj|
∈ R .

Lj is obviously linear. Moreover, since Ẇ s,p(Ω) →֒ C(K)/R we have

|f(xj)− f(yj)|

|xj − yj|
≤

2

|xj − yj|
‖f‖L∞(K) ≤ Cj ‖f‖Ẇ s,p(Ω) ,

hence Lj ∈ (Ẇ s,p(Ω))∗ for any j ∈ N.
Finally, let us observe that, by density of D in K × K and continuity of f ∈

Ẇ s,p(Ω),

‖f‖Lip0(K) = sup
j∈N

|Ljf |

concluding the proof. �

Now that we have this rewriting of the definition of Lip0(K) we can use the
techniques employed in [9] to obtain the desired atomic decomposition. Before giving
the main result, let us make use of the ideas behind [9]. Indeed, in such case, one can
define the operator V : Lip0 → ℓ∞ as, for any f ∈ Lip0, V f(j) = Ljf for any j ∈ N.
Thus, after obtaining that V Lip0 ≃ Lip0 (here we are using Y = R and R∗∗ ≃ R)
it is not difficult to check that a predual (Lip0)∗ is isometrically isomorphic to ℓ1/P
where P = (V Lip0)

⊥ ∩ ℓ1 (where with ⊥ we denote the annihilator). This gives us
a series representation of the elements of M0(K)c viewed as a predual of Lip0(K).
This is an underlying reason of the following result.

Theorem 3.2. There exists a constant C ∈ (0, 1) with the property that for any

functional µ ∈ M0(K)c there exists a sequence (αj)j∈N ∈ ℓ1(R) such that

µ =

+∞∑

j=1

δxj
− δyj

|xj − yj|
αj,



Atomic decomposition of finite signed measures on compacts of Rn
649

where the series converges in KR0, and

(3.1) C

+∞∑

j=1

|αj| ≤ ‖µ‖KR0
≤

+∞∑

j=1

|αj|,

where the sequences (xj)j∈N and (yj)j∈N are defined in Lemma 3.1. Moreover, the

sequence of δ-atoms (µj)j∈N ⊂ M0(K) defined as

µj =
δxj

− δyj
|xj − yj|

spans M0(K)c, with ‖µj‖KR0
= 1 for any j ∈ N. In particular, the δ-atoms µj are

dipoles, hence they have support of cardinality exactly 2.

Proof. By [9, Theorem 3] we know that there exists C ∈ (0, 1) such that for any
µ ∈ M0(K)c there exists a sequence (αj)j∈N such that

µ =

+∞∑

j=1

L∗
jαj,

where L∗
j is the adjoint operator of Lj , and

C

+∞∑

j=1

∥∥L∗
jαj

∥∥
KR0

≤ ‖µ‖KR0
≤

+∞∑

j=1

∥∥L∗
jαj

∥∥
KR0

.

Since one has

〈f, L∗
jαj〉 = 〈Ljf, αj〉 =

f(xj)− f(yj)

|xj − yj|
αj,

then

L∗
jαj =

δxj
− δyj

|xj − yj|
αj

concluding the proof. �

Remark 3.3. Let us remark that one could use any separable Banach space
X such that Lip(K) ⊂ X ⊂ L∞(K), where the second inclusion is continuous, in
place of W s,p(Ω). Moreover, let us observe that the previous Theorem provides a
ℓ1/P -atomic decomposition of M0(K)c.

The problem of characterizing the space M0(K)c has been approached in several
ways. In particular, it is interesting to remember that in [5], such a space is shown
to be isometric to the space L1(K;Rd)/V0 where V0 = {σ ∈ L1(K;Rd) : div σ =
0}, given by σ ∈ L1(K;Rd)/V0 7→ − div σ ∈ M0(K)c. The motivation of such
research towards a characterization of M0(K)c is linked (as the authors state in
the introduction of their paper) to the convergence of infinite sums of dipoles to
functionals that are not represented by balanced measures. Here we have shown that
such infinite sums of dipoles are indeed all the elements of M0(K)c and the dipoles
represent an atomic part of such a space. Let us finally recall that the infinite sums
of dipoles are shown to have a characterization as − div σ for some σ ∈ L1(K;Rd)
by using the theory of tangential measures (see [5, Example 3.7]). In particular, this
decomposition could be used to determine properties of distributional solutions of
partial differential equations involving divergences of L1 functions.
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4. Atomic decomposition of M(K)c

This section is devoted to a similar atomic decomposition in the larger space
M(K)c, with the help of the space Lip(K). This time we cannot use the same
operators as in Lemma 3.1 since they define a seminorm on Lip(K). The following
rewriting of Lip(K) relies on the fact that we can consider the ℓ∞ norm on R2.

Lemma 4.1. There exists a sequence of operators (Lj)j∈N ∈ L(W s,p(Ω),R2),
where we equip R2 with the norm ‖(x, y)‖ℓ∞ = max{|x|, |y|}, such that

Lip(K) = {f ∈ W s,p(Ω) : sup
j∈N

‖Ljf‖ℓ∞ < +∞}

and

‖f‖Lip(K) = sup
j∈N

‖Ljf‖ℓ∞ .

Proof. First of all, let us fix s ∈ (0, 1) and p > 1 such that ps > n, so that
W s,p(Ω) →֒ C(K), and let us consider the set D ⊂ K2 defined in Lemma 3.1. Let us
define

Lj : f ∈ W s,p(Ω) →

(
f(xj)− f(yj)

|xj − yj|
, f(xj)

)
∈ R2 .

Lj is obviously linear. Moreover, since W s,p(Ω) →֒ C(K) we have

max

{
|f(xj)− f(yj)|

|xj − yj|
, |f(xj)|

}
≤ max

{
2

|xj − yj|
, 1

}
‖f‖L∞(K) ≤ Cj ‖f‖W s,p(Ω) ,

hence Lj ∈ L(W s,p(Ω),R2) for any j ∈ N.
Finally, let us observe that by density of D in K ×K, D1 in K, and continuity

of f ∈ Ẇ s,p(Ω) we have

‖f‖Lip(K) = sup
j∈N

‖Ljf‖ℓ∞

concluding the proof. �

As we did in the previous section, we can now use the techniques of [9] to obtain
the atomic decomposition of M(K)c. Let us recall that the starting point of the
following result is still the series decomposition that follows from [9, Theorem 3] that
we discussed before Theorem 3.2. Moreover, let us recall that Remark 3.3 holds also
for this Theorem.

Theorem 4.2. There exists a constant C ∈ (0, 1) with the property that for any

functional µ ∈ M(K)c there exists a sequence ((α1
j , α

2
j ))j∈N ∈ ℓ1(R2) such that

µ =

+∞∑

j=1

(
δxj

− δyj
|xj − yj |

α1
j + δxj

α2
j

)
,

where the series converges in KR, and

(4.1) C
+∞∑

j=1

(|α1
j |+ |α2

j |) ≤ ‖µ‖KR ≤
+∞∑

j=1

(|α1
j |+ |α2

j |),

where the sequences (xj)j∈N and (yj)j∈N are defined in Lemma 4.1. In particular,

the sequence of δ-atoms (µj)j∈N ⊂ M(K) defined as

(4.2) µj =

{
δxk−δyk
|xk−yk|

, j = 2k − 1,

δxk
, j = 2k,

k ∈ N,
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spans M(K)c, and ‖µj‖KR ≤ 1 for any j ∈ N.

Proof. By [9, Theorem 3] we know that there exist C̃ ∈ (0, 1) and ((a1j , a
2
j))j∈N ∈

ℓ1(R2) such that for any µ ∈ M(K)c

µ =

+∞∑

j=1

L∗
jαj,

where L∗
j is the adjoint operator of Lj , αj = (α1

j , α
2
j ) ∈ R2, and

(4.3) C̃
+∞∑

j=1

∥∥L∗
jαj

∥∥
KR

≤ ‖µ‖KR ≤
+∞∑

j=1

∥∥L∗
jαj

∥∥
KR

.

As in the proof of Theorem 3.2, we have

L∗
jαj =

δxj
− δyj

|xj − yj|
α1
j + δxj

α2
j .

Now let us determine some upper and lower bounds for
∥∥L∗

jαj

∥∥
KR

. To do this, let
us recall that

‖δx − δy‖KR = min{|x− y|, 2} ≤ |x− y|, ‖δx‖KR = 1 ∀x, y ∈ K.

Hence we have for the upper bound

(4.4)
∥∥L∗

jαj

∥∥
KR

≤

∥∥δxj
− δyj

∥∥
KR

|xj − yj|
|α1

j |+
∥∥δxj

∥∥
KR

|α2
j | ≤ |α1

j |+ |α2
j |.

Concerning the lower bound, let us recall (see [18, Section 4.1]) that

(4.5)
∥∥L∗

jαj

∥∥
KR

= sup
‖f‖Lip(K)≤1

(
f(xj)− f(yj)

|xj − yj|
α1
j + f(xj)α

2
j

)
.

Let d = diam(K) and let us define the functions

fj(z;α
1
j , α

2
j ) =






1−|xj−z|

d+1
, α1

j , α
2
j ≥ 0,

1+|xj−z|

d+1
, α1

j < 0 and α2
j ≥ 0,

−1−|xj−z|

d+1
, α1

j ≥ 0 and α2
j < 0,

−1+|xj−z|

d+1
, α1

j , α
2
j < 0.

By using this function as test function in (4.5) we obtain

(4.6)
∥∥L∗

jαj

∥∥
KR

≥
1

d+ 1
(|α1

j |+ |α2
j |).

Using Equations (4.4) and (4.6) in Equation (4.3) and setting C = C̃
d+1

we finally
achieve Equation (4.1). �

Remark 4.3. Let us observe that the sequence of δ-atoms (µj)j∈N is composed
by delta measures and dipoles. In particular, if j is even, then µj is a delta measure
and then the cardinality of its support is exactly 1. On the other hand, if j is odd,
then µj is a dipole and then the cardinality of its support is exactly 2. Thus we have
that for any functional µ ∈ M(K)c there exists a sequence (αj)j∈N ∈ ℓ1(R) such that
µ =

∑+∞
j=1 αjµj where µj are δ-atoms with support of cardinality at most 2.

We still have a ℓ1/P -atomic decomposition of M(K)c. However, in this case, the
atoms µj are such that ‖µj‖KR ≤ 1. In particular, if diamK ≤ 2, we obtain again
‖µj‖KR = 1 for any j ∈ N, while, in general, this is true only for even j. Let us also
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observe that to obtain the lower bound in this case, Kantorovich–Rubinstein duality
for the norm on M(K)c (see [18]) is actually the main tool.

Remark 4.4. Let us stress that both inequalities (3.1) and (4.1) hold true for
respectively a specific sequence (αj)j∈N ∈ ℓ1(R) and ((α1

j , α
2
j))j∈N ∈ ℓ1(R2). In par-

ticular, setting µ ∈ M0(K)c, inequality (3.1) is not necessarily valid for a generic se-

quence (αj)j∈N ∈ ℓ1(R) such that µ =
∑+∞

j=1

δxj−δyj
|xj−yj |

αj in KR0 with the same constant

C. This is due to the fact that we have an isometric isomorphism between (M0(K))c

and ℓ1(R)/P , which is a quotient space with norm ‖[α]‖ℓ1/P = infβ∈P ‖α− β‖ℓ1 for

any α = (αj)j∈N ∈ ℓ1(R), while the inequality is expressed in terms of the ℓ1 norm
of one of the representatives of the class [α] characterizing µ ∈ (M0(K))c. The same
holds for (4.1).

Remark 4.5. Let us observe that if µ ∈ M0(K)c and

µ =

+∞∑

j=1

(
δxj

− δyj
|xj − yj|

α1
j + δxj

α2
j

)
, α1, α2 ∈ ℓ1(R)

then
∑+∞

j=1 α
2
j = 0. This is a direct consequence of the fact that µ(K) = 0.

With the same strategy exploited in the previous remark, we can prove a similar
property for any µ ∈ M(K)c, as we can see from the following Proposition.

Proposition 4.6. Let µ ∈ M(K)c and ((α1
j , α

2
j))j∈N ∈ ℓ1(R2) be the sequence

defined in Theorem 4.2. Suppose ((β1
j , β

2
j ))j∈N ∈ ℓ1(R2) is another sequence such

that

µ =

+∞∑

j=1

(
δxj

− δyj
|xj − yj |

β1
j + δxj

β2
j

)

and inequalities (4.1) hold. Then

+∞∑

j=1

(α2
j − β2

j ) = 0

Proof. Let us define the following measures for N ∈ N:

µα
N =

N∑

j=1

δxj
− δyj

|xj − yj|
α1
j + δxj

α2
j , µβ

N =

N∑

j=1

δxj
− δyj

|xj − yj|
β1
j + δxj

β2
j ,

νN = µα
N − µβ

N =
N∑

j=1

δxj
− δyj

|xj − yj|
(α1

j − β1
j ) + δxj

(α2
j − β2

j ).

First of all, let us observe that both µα
N and µβ

N converge in KR norm towards µ.
Now let us observe that

N∑

j=1

∥∥∥∥
δxj

− δyj
|xj − yj|

(α1
j − β1

j ) + δxj
(α2

j − β2
j )

∥∥∥∥
KR

≤
N∑

j=1

(|α1
j − β1

j |+ |α2
j − β2

j |)

≤
N∑

j=1

(|α1
j |+ |αj

2|) +
N∑

j=1

(|β1
j |+ |β2

j |).
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Taking the limit as N → +∞ we obtain that the series in the left-hand side converges
and in particular

+∞∑

j=1

∥∥∥∥
δxj

− δyj
|xj − yj|

(α1
j − β1

j ) + δxj
(α2

j − β2
j )

∥∥∥∥
KR

≤
2

C
‖µ‖KR .

Now let us consider M > N > 0 in N and observe that

‖νN − νM‖KR =

∥∥∥∥∥

M∑

j=N+1

δxj
− δyj

|xj − yj|
(α1

j − β1
j ) + δxj

(α2
j − β2

j )

∥∥∥∥∥
KR

≤
M∑

j=N+1

∥∥∥∥
δxj

− δyj
|xj − yj|

(α1
j − β1

j ) + δxj
(α2

j − β2
j )

∥∥∥∥
KR

.

In particular (νN )N≥1 is a Cauchy sequence in the Banach space M(K)c, thus it
admits a limit ν ∈ M(K)c given by

ν =

+∞∑

j=1

(
δxj

− δyj
|xj − yj|

(α1
j − β1

j ) + δxj
(α2

j − β2
j )

)
.

Now we need to identify ν. To do this, let us just observe that

ν = lim
N→+∞

νN = lim
N→+∞

(µα
N − µβ

N) = µ− µ = 0,

and then we have

(4.7) 0 =
+∞∑

j=1

(
δxj

− δyj
|xj − yj|

(α1
j − β1

j ) + δxj
(α2

j − β2
j )

)
.

However, we have, by [18, Equation 1.18]

0 = ‖0‖KR =

∥∥∥∥∥

+∞∑

j=1

(
δxj

− δyj
|xj − yj|

(α1
j − β1

j ) + δxj
(α2

j − β2
j )

)∥∥∥∥∥
KR

≥

∣∣∣∣∣

+∞∑

j=1

(α2
j − β2

j )

∣∣∣∣∣ ,

concluding the proof. �

Let us observe that the same strategy does not lead to uniqueness of the coef-
ficients. Indeed Equation (4.7) does not imply

∑+∞
j=1(|α

1
j − β1

j | + |α2
j − β2

j |) = 0, in
view of Remark 4.4.

Acknowledgements. We thank the referee for his/her precious advices and cri-
tiques, as they showed the way for a cleaner and more efficient exposition of the
topic.
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