MULTIPLICATION ON UNIFORM λ-CANTOR SETS

Jiangwen Gu, Kan Jiang, Lifeng Xi and Bing Zhao
Ningbo University, Department of Mathematics 315211, Ningbo, P. R. China; 1811071001@nbu.edu.cn
Ningbo University, Department of Mathematics 315211, Ningbo, P. R. China; jiangkan@nbu.edu.cn
Ningbo University, Department of Mathematics, 315211, Ningbo, P. R. China and Hunan Normal University, School of Mathematics and Statistics
Changsha, Hunan 410081, P. R. China; xilifeng@nbu.edu.cn
Ningbo University, Department of Mathematics
315211, Ningbo, P. R. China; zhaobing@nbu.edu.cn

Abstract

Let C be the middle-third Cantor set. Define $C * C=\{x * y: x, y \in C\}$, where $*=+,-, \cdot, \div($ when $*=\div$, we assume $y \neq 0$). Steinhaus [17] proved in 1917 that $$
C-C=[-1,1], \quad C+C=[0,2] .
$$

In 2019, Athreya, Reznick and Tyson [1] proved that

$$
C \div C=\bigcup_{n=-\infty}^{\infty}\left[3^{-n} \frac{2}{3}, 3^{-n} \frac{3}{2}\right] \cup\{0\} .
$$

In this paper, we give a description of the topological structure and Lebesgue measure of $C \cdot C$. We indeed obtain corresponding results on the uniform λ-Cantor sets.

1. Introduction

The middle-third Cantor set, denoted by C, is a celebrated set in fractal geometry. Many aspects of this set were analyzed [10, 11, 13]. In this paper, we shall investigate the arithmetic on the middle-third Cantor set. Arithmetic on the fractal sets has some connections to the geometric measure theory, dynamical systems, and number theory, see $[2,3,4,5,6,7,8,9,12,15,16,18,19,20]$ and references therein. However, relatively few papers investigate the structure of the fractal sets under some arithmetic operations. The theme of this paper is to explore this problem.

Let $C * C=\{x * y: x, y \in C\}$, where $*=+,-, \cdot, \div$ (when $*=\div$, we assume $y \neq 0$). Arithmetic on the middle-third Cantor set was pioneered by Steinhaus [17] who proved that

$$
C+C=[0,2], C-C=[-1,1] .
$$

It is natural to ask the multiplication and division on C. For this question, recently, Athreya, Reznick and Tyson [1] proved that $17 / 21 \leq \mathcal{L}(C \cdot C) \leq 8 / 9$, where \mathcal{L}

[^0]denotes the Lebesgue measure. Moreover, they also proved that
$$
C \div C=\bigcup_{n=-\infty}^{\infty}\left[3^{-n} \frac{2}{3}, 3^{-n} \frac{3}{2}\right] \cup\{0\} .
$$

Let f be a continuous function defined on an open set $U \subset \mathbf{R}^{2}$. Denote the continuous image by

$$
f_{U}(C, C)=\{f(x, y):(x, y) \in(C \times C) \cap U\}
$$

Jiang and Xi [14] proved that if $\partial_{x} f, \partial_{y} f$ are continuous on U, and there is a point $\left(x_{0}, y_{0}\right) \in(C \times C) \cap U$ such that one of the following conditions is satisfied,

$$
1<\left|\frac{\left.\partial_{y} f\right|_{\left(x_{0}, y_{0}\right)}}{\left.\partial_{x} f\right|_{\left(x_{0}, y_{0}\right)}}\right|<3 \quad \text { or } \quad 1<\left|\frac{\left.\partial_{x} f\right|_{\left(x_{0}, y_{0}\right)}}{\left.\partial_{y} f\right|_{\left(x_{0}, y_{0}\right)}}\right|<3
$$

then $f_{U}(C, C)$ has a non-empty interior. In particular, $C \cdot C$ contains infinitely many intervals. To date, to the best of our knowledge, there are few results for the structure of $C \cdot C$. This is one of the main motivations of this paper. We shall give an answer to this question. Let K_{λ} be the uniform λ-Cantor set generated by the iterated function system (IFS) [13]

$$
\left\{f_{i}(x)=\lambda x+i \delta\right\}_{i=0}^{m-1}
$$

where $m \geq 2,0<\lambda<1 / m, g=\frac{1-m \lambda}{m-1}$, and $\delta=\lambda+g$. Suppose $\sigma=i_{1} i_{2} \cdots i_{n} \in$ $\{0,1, \cdots m-1\}^{n}$ with its length $|\sigma|=n \geq 0$. If $n=0$, then $\sigma=\emptyset$. In this case, $f_{\sigma}([0,1])=[0,1]$. For any $I=f_{\sigma}([0,1])$, let $I^{(i)}=f_{\sigma i}([0,1]), 0 \leq i \leq m-1$. Denote

$$
I^{(i)} \cdot I^{(j)}=\left\{x y: x \in I^{(i)}, y \in I^{(j)}\right\}
$$

Define

$$
\widehat{I}= \begin{cases}\bigcup_{0 \leq p<q}\left(I^{(p)} \cdot I^{(q)}\right) & \text { if }|\sigma| \geq 1 \\ \bigcup_{1 \leq p<q}\left(I^{(p)} \cdot I^{(q)}\right) & \text { if } \sigma=\emptyset\end{cases}
$$

We denote

$$
\mathcal{A}=\left\{f_{\sigma}([0,1]): \sigma=i_{1} i_{2} \cdots i_{n}, i_{1} \geq 1\right\} \cup\{[0,1]\} .
$$

Let

$$
K_{R}=\bigcup_{i=1}^{m-1} f_{i}\left(K_{\lambda}\right)
$$

Now we state the first result of this paper.
Theorem 1. Let K_{λ} be the uniform λ-Cantor set. If $1 /(m+1) \leq \lambda<1 / m$, then

$$
K_{\lambda} \cdot K_{\lambda}=\left(\bigcup_{n=0}^{\infty} \lambda^{n}\left(K_{R} \cdot K_{R}\right)\right) \bigcup\{0\}
$$

where

$$
K_{R} \cdot K_{R}=\left(\bigcup_{I \in \mathcal{A}} \widehat{I}\right) \bigcup\left\{x^{2}: x \in K_{R}\right\}
$$

Remark 1. When $\lambda=1 / 3, m=2$, we give the structure of $C \cdot C$. With the help of a computer program, we are able to calculate the value of the Lebesgue measure of $C \cdot C$, which is about 0.80955 .

Remark 2. The main ingredient of $K_{R} \cdot K_{R}$ is $\bigcup_{I \in \mathcal{A}} \widehat{I}$ as the Lebesgue measure of $\left\{x^{2}: x \in K_{R}\right\}$ is zero. We shall use this fact in the proof of next result. It is natural to consider that whether some points in $\left\{x^{2}: x \in K_{R}\right\}$ can be absorbed by $\bigcup_{I \in \mathcal{A}} \widehat{I}$. We can prove, for instance, that for $m=2$, if $0.44<\lambda<1 / 2$, then

$$
K_{R} \cdot K_{R} \backslash \bigcup_{I \in \mathcal{A}} \widehat{I}=\left\{(1-\lambda)^{2}, 1\right\}
$$

Equivalently, in this case

$$
\bigcup_{I \in \mathcal{A}} \widehat{I}=\left((1-\lambda)^{2}, 1\right)
$$

The next result is to consider the function $\Phi(\lambda)=\mathcal{L}\left(K_{\lambda} \cdot K_{\lambda}\right)$. In terms of some basic results in analysis, we prove the following result.

Theorem 2. If $\lambda \in[1 /(m+1), 1 / m)$, then the function $\mathcal{L}\left(K_{\lambda} \cdot K_{\lambda}\right)$ is a continuous function of λ.

This paper is arranged as follows. In section 2, we give the proofs of main theorems. In section 3, we give some remarks and problems.

2. Proof of main results

In this section, we shall give the proofs of the main theorems.
2.1. Proof of Theorem 1. Let $E=[0,1]$. For any $\left(i_{1} \cdots i_{n}\right) \in\{0,1, \cdots m-1\}^{n}$, we call $f_{i_{1} \cdots i_{n}}(E)$ a basic interval with length λ^{n}. Denote by $E_{n}(n \geq 1)$ the collection of all the basic intervals with length λ^{n}. Let $J=f_{\sigma}([0,1]) \in E_{n}$ be a basic interval for some $\sigma \in\{0,1, \cdots, m-1\}^{n}$. Denote $\widetilde{J}=\bigcup_{i=0}^{m-1} f_{\sigma i}([0,1])$. Let $[A, B] \subset[0,1]$, where A and B are the left and right endpoints of some basic intervals in E_{k} for some $k \geq 1$, respectively. A and B may not be in the same basic interval. Let F_{k} be the collection of all the basic intervals in $[A, B]$ with length $\lambda^{k}, k \geq k_{0}$ for some $k_{0} \in \mathbf{N}^{+}$, i.e. the union of all the elements of F_{k} is denoted by $G_{k}=\bigcup_{i=1}^{t_{k}} I_{k, i}$, where $t_{k} \in \mathbf{N}^{+}, I_{k, i} \in E_{k}$ and $I_{k, i} \subset[A, B]$. Clearly, by the definition of G_{n}, it follows that $G_{n+1} \subset G_{n}$ for any $n \geq k_{0}$. Similarly, let M and N be the left and right endpoints of some basic intervals in E_{k} for some $k \geq k_{0}$. Denote by G_{k}^{\prime} the union of all the basic intervals with length λ^{k} such that all of these basic intervals are subsets of $[M, N]$, i.e. $G_{k}^{\prime}=\bigcup_{i=1}^{t_{k}^{\prime}} I_{k, i}^{\prime}$, where $t_{k}^{\prime} \in \mathbf{N}^{+}, I_{k, i}^{\prime} \in E_{k}$ and $I_{k, i}^{\prime} \subset[M, N]$. Now, we state a key lemma of our paper.

Lemma 1. Assume $F: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is a continuous function. Suppose A and B (M and N) are the left and right endpoints of some basic intervals in $E_{k_{0}}$ for some $k_{0} \geq 1$, respectively. Then $K_{\lambda} \cap[A, B]=\bigcap_{n=k_{0}}^{\infty} G_{n}\left(K_{\lambda} \cap[M, N]=\bigcap_{n=k_{0}}^{\infty} G_{n}^{\prime}\right)$. Moreover, if for any $n \geq k_{0}$ and any basic intervals $I_{1} \subset G_{n}, I_{2} \subset G_{n}^{\prime}$

$$
F\left(I_{1}, I_{2}\right)=F\left(\widetilde{I}_{1}, \widetilde{I}_{2}\right)
$$

then $F\left(K_{\lambda} \cap[A, B], K_{\lambda} \cap[M, N]\right)=F\left(G_{k_{0}}, G_{k_{0}}^{\prime}\right)$.
Proof. Let $G_{n}=\bigcup_{i=1}^{t_{n}} I_{n, i}$ for some $t_{n} \in \mathbf{N}^{+}$, where $I_{n, i} \in E_{n}$ and $I_{n, i} \subset[A, B]$. Then by the construction of G_{n}, i.e. $G_{n+1} \subset G_{n}$ for any $n \geq k_{0}$, it follows that

$$
K_{\lambda} \cap[A, B]=\bigcap_{n=k_{0}}^{\infty} G_{n} .
$$

Analogously, we can prove that

$$
K_{\lambda} \cap[M, N]=\bigcap_{n=k_{0}}^{\infty} G_{n}^{\prime}
$$

By the continuity of F, we conclude that

$$
\begin{equation*}
F\left(K_{\lambda} \bigcap[A, B], K_{\lambda} \cap[M, N]\right)=\cap_{n=k_{0}}^{\infty} F\left(G_{n}, G_{n}^{\prime}\right) . \tag{2.1}
\end{equation*}
$$

By virtue of the relation $G_{n+1}=\widetilde{G_{n}}\left(G_{n+1}^{\prime}=\widetilde{G_{n}^{\prime}}\right)$ and the condition in the lemma, we have

$$
\begin{aligned}
F\left(G_{n}, G_{n}^{\prime}\right) & =\bigcup_{1 \leq i \leq t_{n}, 1 \leq j \leq t_{n}^{\prime}} F\left(I_{n, i}, I_{n, j}^{\prime}\right)=\bigcup_{1 \leq i \leq t_{n}, 1 \leq j \leq t_{n}^{\prime}} F\left(\widetilde{I_{n, i}}, \widetilde{I_{n, j}^{\prime}}\right) \\
& =F\left(\bigcup_{1 \leq i \leq t_{n}} \widetilde{I_{n, i}}, \bigcup_{1 \leq j \leq t_{n}^{\prime}} \widetilde{I_{n, j}^{\prime}}\right)=F\left(G_{n+1}, G_{n+1}^{\prime}\right) .
\end{aligned}
$$

Therefore, $F\left(K_{\lambda} \cap[A, B], K_{\lambda} \cap[M, N]\right)=F\left(G_{k_{0}}, G_{k_{0}}^{\prime}\right)$ follows immediately from identity (2.1) and $F\left(G_{n}, G_{n}^{\prime}\right)=F\left(G_{n+1}, G_{n+1}^{\prime}\right)$ for any $n \geq k_{0}$.

Recall that $\delta=\lambda+g$ and $g=\frac{1-m \lambda}{m-1}$ with $m \geq 2$.
Proposition 1. Let $\lambda \in\left[\frac{1}{m+1}, \frac{1}{m}\right)$. Suppose $I \in \mathcal{A}$ and $I^{(0)}, \cdots, I^{(m-1)}$ are basic subintervals of I from left to right such that $\left|I^{(i)}\right| /|I|=\lambda$ for all $0 \leq i \leq m-1$. Then for any $p<q$, we have

$$
\left(I^{(p)} \cap K_{\lambda}\right) \cdot\left(I^{(q)} \cap K_{\lambda}\right)=I^{(p)} \cdot I^{(q)} .
$$

Proof. Given basic subintervals $I^{*} \subset I^{(p)}$ and $J^{*} \subset I^{(q)}$ with $I^{*}=[a, a+t]$ and $J^{*}=[b, b+t](b \geq a)$, we suppose that $A^{(0)}, \cdots, A^{(m-1)}\left(B^{(0)}, \cdots, B^{(m-1)}\right)$ are basic subintervals of $I^{*}\left(J^{*}\right.$ respectively) from left to right.

For rectangles $R_{1}=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]$ and $R_{2}=\left[c_{1}, d_{1}\right] \times\left[c_{2}, d_{2}\right]$ with $a_{1}, a_{2}, c_{1}, c_{2} \geq$ 0 , we denote by $R_{1} \rightarrow R_{2}$ if $b_{1} b_{2} \geq c_{1} c_{2}$. By Lemma 1 , it suffices to verify that

$$
\begin{aligned}
&\left(A^{(0)} \times B^{(0)}\right) \\
& \rightarrow\left(A^{(0)} \times B^{(1)}\right) \rightarrow\left(A^{(1)} \times B^{(0)}\right) \\
& \rightarrow\left(A^{(0)} \times B^{(2)}\right) \rightarrow\left(A^{(1)} \times B^{(1)}\right) \rightarrow\left(A^{(2)} \times B^{(0)}\right) \\
& \rightarrow\left(A^{(0)} \times B^{(3)}\right) \rightarrow\left(A^{(1)} \times B^{(2)}\right) \rightarrow\left(A^{(2)} \times B^{(1)}\right) \rightarrow\left(A^{(3)} \times B^{(0)}\right) \\
& \cdots \\
& \rightarrow\left(A^{(0)} \times B^{(m-1)}\right) \rightarrow\left(A^{(1)} \times B^{(m-2)}\right) \rightarrow \cdots \rightarrow\left(A^{(m-2)} \times B^{(1)}\right) \rightarrow\left(A^{(m-1)} \times B^{(0)}\right) \\
& \rightarrow\left(A^{(1)} \times B^{(m-1)}\right) \rightarrow\left(A^{(2)} \times B^{(m-2)}\right) \rightarrow \cdots \rightarrow\left(A^{(m-1)} \times B^{(1)}\right) \\
& \cdots \\
& \rightarrow\left(A^{(m-1)} \times B^{(m-1)}\right) .
\end{aligned}
$$

For example, please see Figure 1 when $m=5$.
In fact, we need to verify

$$
\begin{equation*}
\left(A^{(i)} \times B^{(j)}\right) \rightarrow\left(A^{(i+1)} \times B^{(j-1)}\right) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(A^{(k)} \times B^{(0)}\right) \rightarrow\left(A^{(0)} \times B^{(k+1)}\right) \text { and }\left(A^{(m-1)} \times B^{(i)}\right) \rightarrow\left(A^{(i+1)} \times B^{(m-1)}\right) \tag{2.3}
\end{equation*}
$$

Figure 1. $m=5$ and (i, j) represents rectangle $A^{(i)} \times B^{(j)}$.
(1) For inequality (2.2), let $(a, b)+(i, j) \delta t=(x, y)$, then $(a, b)+(i+1, j-1) \delta t=$ $(x+\delta t, y-\delta t)$. We only need to show

$$
\begin{equation*}
l(x, y)=(x+\lambda t)(y+\lambda t)-(x+\delta t)(y-\delta t) \geq 0 \tag{2.4}
\end{equation*}
$$

Note that $x \geq a, y \leq b+(1-\lambda) t$ and

$$
\frac{\partial l(x, y)}{\partial x}=\lambda t+\delta t>0 \quad \text { and } \quad \frac{\partial l(x, y)}{\partial y}=-g t<0
$$

We obtain that

$$
l(x, y) \geq l(a, b+(1-\lambda) t)=t\left(a \lambda+a \delta+t \lambda^{2}+t \delta^{2}-b g-g t+g t \lambda\right)=t \cdot u(\lambda, t)
$$

Since $a \geq \delta$ and $b \leq 1$ we have

$$
\begin{aligned}
u(\lambda, t) & \geq \delta \lambda+\delta^{2}+t \lambda^{2}+t \delta^{2}-g-g t+g t \lambda \\
& =t\left(\lambda^{2}+g \lambda+\delta^{2}-g\right)+\left(\delta^{2}+\lambda \delta-g\right)
\end{aligned}
$$

By $\delta=\lambda+g$ and $g=\frac{1-m \lambda}{m-1}$, one can get

$$
\lambda^{2}+g \lambda+\delta^{2}-g=\frac{m^{2} \lambda-m \lambda^{2}-m+2 \lambda^{2}-3 \lambda+2}{(m-1)^{2}}=\frac{h(\lambda)}{(m-1)^{2}} .
$$

Note that $\lambda<\frac{1}{m} \leq 1 / 2$, then

$$
h^{\prime}(\lambda)=\left(m^{2}-3\right)-2 \lambda(m-2) \geq m(m-1)-1 \geq 0
$$

Hence for any $\lambda \geq \frac{1}{m+1}$ and any $m \geq 2$,

$$
\frac{h(\lambda)}{(m-1)^{2}} \geq \frac{h\left(\frac{1}{m+1}\right)}{(m-1)^{2}}=\frac{1}{\left(m^{2}-1\right)^{2}}\left(m^{2}-m+1\right)>0 .
$$

On the other hand, we obtain

$$
\delta^{2}+\lambda \delta-g=\frac{1}{(m-1)^{2}}\left((2-m) \lambda^{2}+\left(m^{2}-3\right) \lambda+(2-m)\right)=\frac{1}{(m-1)^{2}} v(\lambda)
$$

If $m=2$, then $\delta^{2}+\lambda \delta-g \geq 0$. If $m=3$, then we note that the symmetric axis of the graph $w=v(\lambda)$ is

$$
\lambda=\frac{m^{2}-3}{2(m-2)} \geq \frac{1}{2} \frac{m^{2}-4}{m-2}=\frac{m+2}{2} \geq 2
$$

which implies

$$
\begin{aligned}
\inf _{\lambda \in\left[\frac{1}{m+1}, \frac{1}{m}\right)} v(\lambda) & \geq \min \left(v\left(\frac{1}{m}\right), v\left(\frac{1}{m+1}\right)\right) \\
& =\min \left(\frac{2(m-1)^{2}}{m^{2}}, \frac{m^{2}-m+1}{(m+1)^{2}}\right)>0 .
\end{aligned}
$$

Then (2.4) follows.
(2) For inequality (2.3), we will need the following

Claim 1. If $x_{1}+y_{1} \geq x_{2}+y_{2}$ with $x_{1}<y_{1}, x_{2}<y_{2}$ and $x_{1}>x_{2}$, then we have $x_{1} y_{1} \geq x_{2} y_{2}$.

In fact, let $H(x)=x(c-x)$ with $c=x_{1}+y_{1}$, then we have

$$
x_{2} y_{2} \leq x_{2}\left(y_{2}+\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)\right)=H\left(x_{2}\right)<H\left(x_{1}\right)
$$

since $x_{2}<x_{1}<c / 2$.
Let $\left(x_{1}, y_{1}\right)$ be the upper right corner of the rectangle $A^{(k)} \times B^{(0)}$, and $\left(x_{2}, y_{2}\right)$ the lower left corner of $A^{(0)} \times B^{(k+1)}$, then

$$
\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)=2 \lambda t-\delta t=t \frac{(2 m-1) \lambda-1}{m-1} \geq 0
$$

due to $\lambda \geq \frac{1}{m+1} \geq \frac{1}{2 m-1}$. Using Claim 1, we have $x_{1} y_{1} \geq x_{2} y_{2}$, i.e.,

$$
\left(A^{(k)} \times B^{(0)}\right) \rightarrow\left(A^{(0)} \times B^{(k+1)}\right)
$$

In the same way, we have $\left(A^{(m-1)} \times B^{(i)}\right) \rightarrow\left(A^{(i+1)} \times B^{(m-1)}\right)$.
The following lemma is from the fact

$$
K_{\lambda}=\{0\} \cup\left(\bigcup_{n=0}^{\infty} \lambda^{n}\left(K_{R}\right)\right) .
$$

Lemma 2.

$$
K_{\lambda} \cdot K_{\lambda}=\{0\} \cup\left(\bigcup_{n=0}^{\infty} \lambda^{n}\left(K_{R} \cdot K_{R}\right)\right) .
$$

Proof of Theorem 1. By Lemma 2, it remains to prove

$$
K_{R} \cdot K_{R}=\left(\bigcup_{I \in \mathcal{A}} \widehat{I}\right) \cup\left\{x^{2}: x \in K_{R}\right\} .
$$

By Proposition 1, it follows that

$$
K_{R} \cdot K_{R} \supset\left(\bigcup_{I \in \mathcal{A}} \widehat{I}\right) \cup\left\{x^{2}: x \in K_{R}\right\} .
$$

Conversely, for any $x, y \in K_{R}$, if $x=y$, then $x y \in\left\{x^{2}: x \in K_{R}\right\}$. If $x \neq y$, then there exists some basic interval, denoted by I, such that $x \in I^{(p)}, y \in I^{(q)}$ for $p \neq q$. Therefore, by Proposition 1, we have that $x \cdot y \in \bigcup_{I \in \mathcal{A}} \widehat{I}$.

2.2. Proof of Theorem 2.

Lemma 3. Let $\lambda \in[1 /(m+1), 1 / m)$. For any $n \geq 1$, we have

$$
\mathcal{L}\left(\left(K_{R} \cdot K_{R}\right) \backslash \bigcup_{I \in \mathcal{A}, \operatorname{rank}(I) \leq k} \widehat{I}\right) \leq 3 \frac{(m \lambda)^{k+1}}{1-m \lambda} .
$$

Proof. First, note that for any basic interval $I=[a, a+t]$, by the definition of \widehat{I}, we have

$$
\mathcal{L}(\widehat{I}) \leq(a+t)^{2}-a^{2}=t(2 a+t) \leq 3 t=3 \mathcal{L}(I) .
$$

Now we have the following estimation:

$$
\begin{aligned}
\mathcal{L}\left(K_{R} \cdot K_{R} \backslash\left(\bigcup_{I \in \mathcal{A}, \operatorname{rank}(I) \leq k} \widehat{I}\right)\right) & \leq \mathcal{L}\left(\bigcup_{I \in \mathcal{A}, \operatorname{rank}(I)>k} \widehat{I}\right) \\
& \leq \sum_{I \in \mathcal{A}, \operatorname{rank}(I)>k} 3(m \lambda)^{k+1}=3 \frac{(m \lambda)^{k+1}}{1-m \lambda}
\end{aligned}
$$

Let

$$
\phi_{n}(\lambda)=\mathcal{L}\left(\bigcup_{k=0}^{n} \lambda^{k}\left(\bigcup_{I \in \mathcal{A}, \operatorname{rank}(I) \leq n} \widehat{I}\right)\right)
$$

which is a continuous function for $\lambda \in[1 /(m+1), 1 / m)$. Lemma 3 implies the following result.

Lemma 4. If $\alpha>0$, then $\phi_{n}(\lambda)$ uniformly converges to $\Phi(\lambda)=\mathcal{L}\left(K_{\lambda} \cdot K_{\lambda}\right)$ for any $\lambda \in[1 /(m+1), 1 / m-\alpha)$.

Proof. Note that

$$
\Phi(\lambda)=\mathcal{L}\left(\bigcup_{k=0}^{\infty} \lambda^{k}\left(K_{R} \cdot K_{R}\right)\right) .
$$

It follows from Lemma 3 that

$$
\begin{aligned}
& \left|\Phi(\lambda)-\phi_{n}(\lambda)\right| \\
& \leq\left|\Phi(\lambda)-\mathcal{L}\left(\bigcup_{k=0}^{n} \lambda^{k}\left(K_{R} \cdot K_{R}\right)\right)\right|+\left|\mathcal{L}\left(\bigcup_{k=0}^{n} \lambda^{k}\left(K_{R} \cdot K_{R}\right)\right)-\phi_{n}(\lambda)\right| \\
& \leq \mathcal{L}\left(\bigcup_{k=n+1}^{\infty} \lambda^{k}\left(K_{R} \cdot K_{R}\right)\right)+\sum_{k=0}^{n} \lambda^{k} 3 \frac{(m \lambda)^{n+1}}{1-m \lambda} \\
& \leq \sum_{k=n+1}^{\infty} \lambda^{k}+3 \frac{1-\lambda^{n+1}}{1-\lambda} \frac{(1-m \alpha)^{n+1}}{1-m \lambda} \leq \frac{m^{-n-1}}{1-\lambda}+\frac{3}{1-\lambda} \frac{(1-m \alpha)^{n+1}}{1-m \lambda} .
\end{aligned}
$$

Since λ is bounded, it follows that the last number of the above inequalities is only dominated by n. Therefore, the convergence is the uniform convergence.

Proof of Theorem 2. By the continuity of $\phi_{n}(\lambda)$ and Lemma 4, it follows that $\Phi(\lambda)$ is continuous.

3. Final remarks

From the graph of function $\mathcal{L}\left(K_{\lambda} \cdot K_{\lambda}\right)$ (Figure 2), we pose a natural question.
Conjecture 1. The function $\mathcal{L}\left(K_{\lambda} \cdot K_{\lambda}\right)$ is an increasing function for any $\lambda \in$ $[1 /(m+1), 1 / m)$.

Here the graph is due to Python. In terms of Theorem 1, we use Python to approximate the graph of $\mathcal{L}\left(K_{\lambda} \cdot K_{\lambda}\right)$. Due to Figure 2, it is natural to have the above conjecture.

Figure 2. The graph of $\mathcal{L}\left(K_{\lambda} \cdot K_{\lambda}\right)$ with $m=2$.

References

[1] Athreya, J. S., B. Reznick, and J. T. Tyson: Cantor set arithmetic. - Amer. Math. Monthly 126:1, 2019, 4-17.
[2] de A. Moreira, C. G. T., and J.-C. Yoccoz: Stable intersections of regular Cantor sets with large Hausdorff dimensions. - Ann. of Math. (2) 154:1, 2001, 45-96.
[3] BÁrány, B.: On some non-linear projections of self-similar sets in \mathbf{R}^{3}. - Fund. Math. 237:1, 2017, 83-100.
[4] Barrionuevo, J., R. M. Burton, K. Dajani, and C. Kraaikamp: Ergodic properties of generalized Lüroth series. - Acta Arith. 74:4, 1996, 311-327.
[5] Bond, M., I. Łaba, and J. Zahl: Quantitative visibility estimates for unrectifiable sets in the plane. - Trans. Amer. Math. Soc. 368:8, 2016, 5475-5513.
[6] Dajani, K., and C. Kraaikamp: Ergodic theory of numbers. - Carus Math. Monogr. 29, Mathematical Association of America, Washington, DC, 2002.
[7] Dajani, K., and M. de Vries: Measures of maximal entropy for random β-expansions. - J. Eur. Math. Soc. (JEMS) 7:1, 2005, 51-68.
[8] Dajani, K., and M. de Vries: Invariant densities for random β-expansions. - J. Eur. Math. Soc. (JEMS) 9:1, 2007, 157-176.
[9] Dajani, K., and M. Oomen: Random N-continued fraction expansions. - J. Approx. Theory 227, 2018, 1-26.
[10] Falconer, K.: Fractal geometry. Mathematical foundations and applications. - John Wiley \& Sons, Ltd., Chichester, 1990.
[11] Feng, D.-J., S. Hua, and Z.-Y. Wen: The pointwise densities of the Cantor measure. - J. Math. Anal. Appl. 250:2, 2000, 692-705.
[12] Hochman, M., and P. Shmerkin: Local entropy averages and projections of fractal measures. - Ann. of Math. (2) 175:3, 2012, 1001-1059.
[13] Hutchinson, J. E.: Fractals and self-similarity. - Indiana Univ. Math. J. 30:5, 1981, 713-747.
[14] Jiang, K., and L. Xi: Interiors of continuous images of the middle-third cantor set. arXiv:1809.01880, 2018.
[15] Jiang, K., X. Ren, J. Zhu, and L. Tian: Multiple representations of real numbers on selfsimilar sets with overlaps. - Fractals 27:4, 2019, 1950051.
[16] Mendes, P., and F. Oliveira: On the topological structure of the arithmetic sum of two Cantor sets. - Nonlinearity 7:2, 1994, 329-343.
[17] Steinhaus, H.: Mowa własność mnogości Cantora. - Wector 6, 1917, 105-107. English transl. in H. Steinhaus: Selected papers, Polish Scientific Publishers, 1985.
[18] Tian, L., J. Gu, Q. Ye, L. Xi, and K. Jiang: Multiplication on self-similar sets with overlaps. - J. Math. Anal. Appl. 478:2, 2019, 357-367.
[19] Palis, J., and F. Takens: Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations. - Cambridge Stud. Adv. Math. 35, Cambridge Univ. Press, Cambridge, 1993.
[20] Peres, Y., and P. Shmerkin: Resonance between Cantor sets. - Ergodic Theory Dynam. Systems 29:1, 2009, 201-221.

Received 18 October 2019 • Accepted 13 October 2020

[^0]: https://doi.org/10.5186/aasfm.2021.4643
 2020 Mathematics Subject Classification: Primary 28A80.
 Key words: Self-similar set, uniform Cantor sets, arithmetic, Lebesgue measure.
 Kan Jiang is the corresponding author. This work is supported by the Zhejiang Provincial Natural Science Foundation of China with No. LY20A010009, and by the National Natural Science Foundation of China (Nos. 11701302, 11831007, 11771226, 11371329, 11301346, 11671147) and K. C. Wong Magna Fund in Ningbo University.

