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Abstract. It is proved that a bijection between the interiors of two pairs of pants is an isometry

if it and its inverse preserve geodesics as subsets.

1. Introduction

In 1847 von Staudt [14] proved the Fundamental Theorem of Affine Geometry:
A bijective self-mapping of a Euclidean space is affine if it maps lines to lines. Since
then, von Staudt’s theorem has been generalized to various settings by Beltrami,
Levi–Civita, Weyl, Sinyukov, Mikeš, and others (see [2, 15, 9, 4, 8, 10, 6, 16, 12, 11,
1, 13]).

Recently, Shulkin and van Limbeek considered the generalization in the setting
of manifolds and posed a new problem:

Problem 1. [13, Question 1.7] Let M be a closed nonpositively curved manifold
of dimension > 1. Suppose f : M → M is a bijection that maps geodesics to geodesics
(as sets). Is f affine (i.e., smooth and preserves the Levi–Civita connection)?

And they gave an affirmative answer for flat tori in [13]. Since any affine map
between two closed negatively curved manifolds is homothetic (see [7, Theorem 5.2]),
it is natural to ask:

Problem 2. Let M,N be two compact negatively curved manifolds. Suppose
f : M → N is a bijection that maps geodesics to geodesics (as sets). Is f homothetic?
Here we say f is homothetic if there is a constant k such that the length l(α) of any
arc α ⊂ M and the length l(f(α)) of its image f(α) ⊂ N satisfy l(f(α)) = k · l(α).

In this paper we deal with the case where M,N are two pairs of pants and
establish:

Theorem 3. Let P1 and P2 be two pairs of pants. Let S1 and S2 be the interiors
of P1 and P2, respectively. Suppose f : S1 → S2 is a bijection such that f and f−1

map geodesics to geodesics (as sets). Then f is an isometry.

Since a geodesic in a hyperbolic surface with boundary is a boundary component
if and only if it intersects another geodesic at most twice, by Theorem 3 we obtain:

Corollary 4. Let P1 and P2 be two pairs of pants. Suppose f : P1 → P2 is a
bijection such that f and f−1 map geodesics to geodesics (as sets). Then f is an
isometry.
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We face the same difficulties as described in [13, Remark 1.5], that is, f cannot
be lifted to the universal cover at once and the classical proof of the Fundamental
Theorem of Affine Geometry does not work here. Our proof will be based on a
characterization of simple geodesics in terms of intersections with geodesics.

2. Preliminaries

Here we recall some definitions and results from the theory of hyperbolic surfaces,
see [3] or [5] for more details.

We say a subset of a Riemannian manifold is a geodesic if it is the image of a
locally shortest curve which cannot be extended to any other locally shortest curve.
A geodesic is called closed if it is the image of a closed curve, and otherwise it is
called non-closed. We say a mapping between two Riemannian manifolds f : M → N
is a geodesic mapping if it maps each geodesic in M onto some geodesic in N . We say
a bijection f : M → N is a bi-geodesic mapping if f and f−1 are geodesic mappings.

A compact hyperbolic surface with totally geodesic boundary is called a pair of

pants if it is homeomorphic to a disk with two holes. Throughout this article, we
fix a pair of pants P . Let α, β, γ denote the three boundary components of P . The
interior of P will be denoted by S. We say a subset of S fills S if it intersects every
geodesic in S.

Let τ1, τ2 be two curves in S. We say τ1 and τ2 have the same topological type if
some self-homeomorphism of S maps τ1 to τ2. We use the Klein disk model ∆ for
hyperbolic plane. In this model, geodesics are straight Euclidean segments.

The following theorem is essential to understand the behavior of geodesics in
hyperbolic surfaces, though we will not mention it in the proofs since it is used too
frequently.

Theorem 5. (Gauss–Bonnet) In the hyperbolic plane, an n-gon with angles
α1, · · · , αn has area (n− 2)π − (α1 + · · ·+ αn).

For example, it follows that the curves τ1, τ2, τ3 illustrated in Figure 1 cannot be
geodesics.

α β

γ

τ2
α β

γ

τ1

α β

γ

τ3

Figure 1. Since there is no 2-gon in the hyperbolic plane, it follows that τ1 and τ3 cannot be

geodesics. To see that τ2 cannot be a geodesic, we cut P along τ2 and obtain a 3-gon, a 4-gon and

a surface homeomorphic to a disk with two holes. If τ2 is a geodesic, then the sum of the interior

angles of the 4-gon is greater than 2π, contradicting the Gauss-Bonnet theorem.

3. A characterization of simple geodesics

First of all, we associate two words to every non-closed geodesic in S as follows.
As illustrated in the top left of Figure 2, let τa be the shortest geodesic from γ

to α. We associate the words pαpγ and pγpα to τa, and denote them by τa ≈ pαpγ
and τa ≈ pγpα. Similarly we have τb ≈ pαpβ, τb ≈ pβpα, τc ≈ pβpγ and τc ≈ pγpβ.
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Denote the connected components of S − τa ∪ τb ∪ τc by Q1 and Q2. Let τ /∈
{τa, τb, τc} be a non-closed geodesic in S. Let rτ : (x1, x2) → S be a smooth curve
parametrized by arc length such that τ is the image of (x1, x2) under τ , where x1, x2 ∈
[−∞,∞]. Let Iτ be a subset of (x1, x2) such that

rτ (Iτ ) = τ ∩ (τa ∪ τb ∪ τc).

Then the elements of Iτ can be listed as an increasing sequence

· · · < si−1 < si < si+1 < · · · .

For si ∈ Iτ , set ti = a if rτ goes across τa from Q1 to Q2 at rτ (si), set ti = a−1 if rτ
goes across τa from Q2 to Q1 at rτ (si). Similarly we have b, b−1, c, c−1; see the bottom
left of Figure 2.

α β

γ

pαpβ

α β

γ

α β

γ

pαpγ pβpγ

α β

γ

a−1

a

b−1
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c−1

c

Q1
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Q2

τ

τ

τa τb τc

Figure 2. Words associated to geodesics.

We associate to τ a word wτ = T1 · · · ti−1titi+1 · · ·T2 and write τ ≈ wτ , where
T1, T2 are defined as follows. If rτ (x) tends to a point in α as x → xj , we substitute
Tj = pα. Similarly we have pβ and pγ . If rτ (x) does not tend to any point in ∂P as
x → xj , we leave Tj empty. For example, we have τ ≈ pγab

−1cpγ and τ ≈ pγc
−1ba−1pγ

in the top right of Figure 2, τ ≈ pγc
−1bpγ and τ ≈ pγb

−1cpγ in the bottom right of
Figure 2, and τ ≈ pαca

−1(cb−1)∞ and τ ≈ (bc−1)∞ac−1pα in Figure 3.
On the one hand, to simplify the notation, we write ∞α instead of (ab−1)∞ and

(a−1b)∞, write ∞β instead of (bc−1)∞ and (b−1c)∞, and write ∞γ instead of (ac−1)∞

and (a−1c)∞. For example, we have τ ≈ pαca
−1c∞β in Figure 3. On the other hand,

we regard pα, pβ, pγ as the ordinary endpoints of the geodesic, and ∞α,∞β,∞γ as
the ideal endpoints of the geodesic.

α β

γ
~α

~β

~γ

τ

~τ

lift to the

universal cover

Figure 3. A geodesic τ ≈ pαca
−1c∞β.
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Remark 6. Every non-closed geodesic is associated with two words. However,
given an arbitrary word, there may be no geodesic associated with it. For example,
any word in the form of “ · · ·ab · · · ” is not associated to any geodesic. Nevertheless,
geodesics associated with the same word are homotopic, simple geodesics associated
with the same word are isotopic, and any word associated to a geodesic will be
associated to a unique geodesic if the ordinary endpoints are given.

Lemma 7. Let τ be a geodesic in S. Then τ does not fill S if and only if τ has
the same topological type as one of the following geodesics:

(1) ≈ pα(c
−1b)npγ with exactly n self-intersections for some n > 0;

(2) ≈ pαc
−1(bc−1)npα with exactly n self-intersections for some n > 0;

(3) ≈ pαb(c
−1b)npα with exactly n self-intersections for some n > 1.

α β

γ

α β

γ

τ ≈ pαc
−1bpγ

τ

τ

τ ≈ pαbc
−1bpα

α β

γ

τ

τ ≈ pαpβ

α β

γ

τ ≈ pαc
−1pα

τ

α β

γ

τ

τ ≈ pαc
−1bc−1pα

Proof. To prove the “if” assertion, we only need to show that each geodesic listed
in the lemma does not fill S.

We first check the case where

τ ≈ ∞αac
−1ac−1∞β = (ab−1)∞ac−1ac−1(bc−1)∞.

Notice that τ is a geodesic that has the same topological type as the geodesics
≈ pαc

−1bpγ with one self-intersection. By cutting S along τ , we obtain an annulus
and a 5-gon; see Figure 4. The 5-gon is convex, since p1, p2, p3 are copies of p. In
the annulus there is no geodesic disjoint from τ , but in the 5-gon there is exactly one
geodesic connecting ∞α to ∞β that is disjoint from τ . Therefore, τ does not fill S.

γ

1α
1β

p

cut along τ

τ

γ

p

τ

1α 1β
p1

p2 p3

Figure 4. τ ≈ ∞αac
−1ac−1∞β .
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Next we check the case where

τ ≈ pαc∞β = pαc(b
−1c)∞.

Notice that τ is a geodesic that has the same topological type as the simple geodesics
≈ pαpβ. By cutting S along τ , we obtain an annulus whose boundary consists of γ
and a geodesic triangle; see Figure 5. Let ρ be a geodesic from α to γ in the annulus.
Then ρ is disjoint from τ . Therefore, τ does not fill S.

α

γ

τ
1β

cut along τ
γ

α

τ

τ

1βρ

Figure 5. τ ≈ pαc∞β .

The other cases are similar. We check all the cases in Table 1.

topological type
without loss of

generality
by cutting S along τ we

obtain
where is the
geodesic

we may assume
τ ≈

disjoint from τ

pα(c
−1b)npγ

pαpβ an annulus in the annulus
pαc

−1bpγ an annulus and a 7-gon in the 7-gon

pα(c
−1b)npγ

(n > 2)

an annulus, a 3-gon,
(n− 2) 4-gons and an

8-gon
in the 8-gon

pαc
−1pα two annuli in the annuli

pαc
−1(bc−1)npα pαc

−1bc−1pα
two annuli and a 3-gon or

4-gon
in the annulus
that has γ as
one of its
boundary
components

pαc
−1(bc−1)npα

(n > 2)

two annuli, a 3-gon,
(n− 2) 4-gons and a

4-gon or 5-gon

pαb(c
−1b)npα

pαbc
−1bpα two annuli and a 3-gon

same as above
pαb(c

−1b)npα
(n > 2)

two annuli, two 3-gon and
(n− 2) 4-gons

Table 1. The geodesics that do not fill S.

It remains to prove the “only if” assertion. Recall that the closed curve τ8 illus-
trated in Figure 6 fills S. In fact, if τ contains two subsets that are circles homotopic
to distinct boundary components of P , then τ fills S.

Suppose τ is a closed geodesic in S. Then τ is a geodesic with self-intersection,
since the only simple closed geodesics in P are boundary components of P . Notice
that there is no geodesic with self-intersection in a hyperbolic annulus. It follows
that τ separates the boundary components of P . Thus every boundary component
of P is homotopic to a circle contained in τ . Therefore τ fills S.
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α β

γ

τ8

Figure 6. A closed curve that fills S.

A simple geodesic in S has the same topological type as a geodesic ≈ pαpβ or
pαc

−1pα, so it does not fill S according to the “if” assertion we have just proved.
Finally, suppose τ is a non-closed geodesic in S that has self-intersections. Let

rτ : (x1, x2) → S be a smooth curve parametrized by arc length such that τ is the
image of (x1, x2) under τ , where x1, x2 ∈ [−∞,∞]. Let Jτ be the preimage of the set
of self-intersections of τ under rτ . Then there exist two distinct points y1, y2 ∈ Jτ

such that:

• rτ (y1) = rτ (y2);
• There is no point z ∈ (y1, y2) ∩ Jτ such that rτ (z) = rτ (y1);
• There are no distinct points z1, z2 ∈ (y1, y2) ∩ Jτ such that rτ (z1) = rτ (z2).

In other words, the restriction of rτ to [y1, y2] is a circle. Without loss of generality,
we may assume that this circle is freely homotopic to γ; see Figure 7.

α β

γ

Figure 7. A self-intersection arises when τ wraps around γ.

Suppose τ does not fill S. Since τ has contained a circle homotopic to γ, it can
not contain a circle homotopic to α or β. It follows that α and β are not separated
by τ . Hence there exists an arc ρ homotopic to τb ≈ pαpβ and disjoint from τ . Thus
τ is contained in the annulus S − ρ. And all the possibilities of geodesics disjoint
from ρ in the annulus must have the same topological type as one of the geodesics
listed in the lemma. �

Lemma 8. Let τ be a geodesic with self-intersection in S. Then there exists a
geodesic ρ 6= τ such that every geodesic disjoint from τ is disjoint from ρ.

Proof. If τ fills S, then no geodesic in S is disjoint from τ , and the condition is
automatically satisfied. For the case that τ does not fill S, we need only check the
geodesics listed in Lemma 7.

We first check the case where τ ≈ pα(c
−1b)2pγ is a geodesic with two self-

intersections. By cutting S along τ , we obtain an annulus, a 3-gon and an 8-gon;
see Figure 8. It follows that the union of all geodesics disjoint from τ is the 4-gon
D = p′αpγp

′

γpα, and we can choose ρ to be a geodesic connecting pα to β in S −D.
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Figure 8. τ ≈ pα(c
−1b)2pγ .
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Figure 9. τ ≈ pαbc
−1bpα.

Next we check the case where τ ≈ pαbc
−1bpα. By cutting S along τ , we obtain

a 3-gon and two annuli. The union D of all geodesics disjoint from τ is also an
annulus. As illustrated in the right of Figure 9, the boundary components of D are
γ and α′ ∪ τ ′, where τ ′ ≈ pαcpα is a geodesic having the same endpoints as τ . We
can choose ρ ≈ pαpβ to be a geodesic in S −D.

The other cases are similar. We check all the cases in Table 2. �

topological type
without loss of

generality
the union of all geodesics a geodesic ρ

in S −D
we may assume

τ ≈
disjoint from τ is D =

pα(c
−1b)npγ

pαc
−1bpγ

pαpαpγpγ, a 4-gon in a
7-gon

connects pα
to β

pα(c
−1b)npγ

(n > 2)
pαpαpγpγ , a 4-gon in an

8-gon

pαc
−1(bc−1)npα

pαc
−1(bc−1)npα

(n > 1) an annulus that has γ as
one of its boundary
componentspαb(c

−1b)npα
pαb(c

−1b)npα
(n > 1)

Table 2. The geodesics with self-intersection that do not fill S.

1α β

γ

τ

cut along τ τ

1α

τ

1α

β γ

Aβ Aγ

Figure 10. τ ≈ ∞αac
−1b∞α.
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We can classify the simple geodesics in S as follows:

set every element in the set example

G(∞) has the same
topological type as a
geodesic ≈ pαcpα

does not reach the
boundary of P

∞αac
−1b∞α

G(p)

reaches the
boundary of P in
both directions, i.e.
of finite length

pαcpα

G(p, p′) has the same
topological type as a
geodesic ≈ pαpβ

same as G(p) pαpβ

G(p,∞′)

reaches the
boundary of P in
exactly one
direction

pα∞β

G(∞,∞′)
does not reach the
boundary of P

∞αac
−1∞β

Table 3. Simple geodesics in S.

Theorem 9. Let τ be a geodesic in S. Then τ is simple if and only if the union
of all geodesics disjoint from τ intersects every geodesic in S except τ .

Proof. The “if” assertion is just the contrapositive of Lemma 8, so it has already
been proved.

Now assume τ is simple. We prove the “only if” assertion by checking all the
cases in Table 3.

Suppose τ ∈ G(∞). Without loss of generality we may assume τ ≈ ∞αac
−1b∞α.

By cutting S along τ , we obtain two annuli Aβ and Aγ; see Figure 10. In Aβ the
geodesic ρ illustrated in Figure 11 fills Aβ . Thus we can find two geodesics disjoint
from τ such that their union intersects every geodesic in S except τ .

τ

1α

β

lift to the

universal cover
ρ

~β

~1α

~1α
~1α

~1α
~ρ ~ρ

Figure 11.

Suppose τ ∈ G(p). Without loss of generality we may assume τ ≈ pαcpα hits α
at one point. By cutting S along τ , we obtain two annuli. Then the union of the
geodesics ρ1 and ρ2 illustrated in Figure 12 intersects every geodesic in S except τ .

α β

γ

τ

cut along τ

β

τ

pα

pα p0α

τ

γ
ρ1

ρ2

Figure 12. τ ≈ pαcpα.
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Suppose τ ∈ G(p, p′). Without loss of generality we may assume τ ≈ pαpβ. By
cutting S along τ , we obtain an annulus. Then the union of the geodesics ρ1 and ρ2
illustrated in Figure 13 intersects every geodesic in S except τ .

α β

γ

τ cut along τ

pα

p0α

pβ

p0β

τ

τ

ρ1

ρ2

γ

Figure 13. τ ≈ pαpβ.

Suppose τ ∈ G(p,∞′). Without loss of generality we may assume τ ≈ pα∞β. By
cutting S along τ , we obtain an annulus. Then the geodesic ρ illustrated in Figure 14
intersects every geodesic in S except τ .

α

γ

τ
1β

cut along τ
γ

α

τ

τ

1β
ρ

Figure 14. τ ≈ pα∞β .

1α

γ

τ cut along τ1β

1α

1β

γ

ρ
τ

τ

Figure 15. τ ≈ ∞αac
−1∞β .

Suppose τ ∈ G(∞,∞′). Without loss of generality we may assume τ ≈ ∞αac
−1∞β.

By cutting S along τ , we obtain an annulus. Then the geodesic ρ illustrated in
Figure 15 intersects every geodesic in S except τ . �

Proposition 10. Let τ be a simple geodesic in S. Then τ ∈ G(∞,∞′)∪G(p,∞′)
if and only if there exists a geodesic ρ with self-intersection and disjoint from τ such
that ρ ∪ τ fills S.

Proof. If τ ∈ G(∞,∞′), without loss of generality, we may assume that τ ≈
∞αac

−1∞β. By cutting S along τ , we obtain an annulus. Then the geodesic ρ
illustrated in Figure 15 is a desired geodesic.

If τ ∈ G(p,∞′), without loss of generality, we may assume τ = pα∞β. By cutting
S along τ , we obtain an annulus too. Then the geodesic ρ illustrated in Figure 14 is
a desired geodesic.

It is easy to check that the other three kinds of simple geodesics do not satisfy
the condition (see Figure 10, 12 and 13), and the proof is complete. �
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Proposition 11. Let τ be a simple geodesic in S. Then τ ∈ G(∞) ∪ G(p) if
and only if there exist two geodesics ρ1, ρ2 with self-intersections such that ρ1, ρ2, τ
are mutually disjoint.

Proof. This is because τ ∈ G(∞)∪G(p) if and only if when we cut S along τ we
obtain two annuli but not one. �

4. From bijection to isometry

Let f : S → S be a bijection such that f and f−1 map each geodesic onto some
geodesic.

Theorem 9 implies that f maps each simple geodesic onto some simple geodesic.
According to Proposition 10 and 11, G(∞,∞′) ∪ G(p,∞′) and G(∞) ∪ G(p) are
invariant under f . It follows that G(p, p′) is also invariant under f .

Lemma 12. The sets G(p, p′), G(∞,∞′), G(p,∞′), G(∞) and G(p) are invariant
under f .

Proof. If τ1 ∈ G(∞,∞′) and τ2 ∈ G(p,∞′), then there exists ρ ∈ G(p, p′) that
intersects τ2 finitely many times. For example, if τ2 ≈ pαc∞β, then we can choose
ρ ≈ pαpγ. However, every element of G(p, p′) intersects τ1 infinitely many times, a
contradiction. Hence G(∞,∞′) and G(p,∞′) are invariant under f .

If τ1 ∈ G(∞) and τ2 ∈ G(p), then there exists ρ ∈ G(p, p′) that intersects
τ1 infinitely many times. For example, if τ1 ≈ ∞αac

−1b∞α, then we can choose
ρ ≈ pαpβ. However, every element of G(p, p′) intersects τ2 finitely many times, a
contradiction. Hence G(∞) and G(p) are invariant under f . �

We can classify the simple geodesics of finite length, up to homotopy with the
boundary of P invariant, as follows:

set G(pα, pβ) G(pα, pγ) G(pβ, pγ) G(pα) G(pβ) G(pγ)
the homotopy

pαpβ pαpγ pβpγ pαcpα pβapβ pγbpγclass of

Lemma 13. There exists a permutation (α′, β ′, γ′) of (α, β, γ) such that f maps
G(pα, pβ), G(pα, pγ), G(pβ, pγ) to G(pα′ , pβ′), G(pα′ , pγ′), G(pβ′, pγ′), respectively.

Proof. Suppose τ1 ∈ G(pα, pβ), τ2 ∈ G(pβ, pγ) and τ3 ∈ G(pα, pγ).
If f(τ1), f(τ2), f(τ3) ∈ G(pα, pβ), then ρ ≈ pα∞γ intersects f(τ1 ∪ τ2 ∪ τ3) finitely

many times. But every element of G(p,∞′) intersects τ1 ∪ τ2 ∪ τ3 infinitely many
times, a contradiction.

If f(τ1) ∈ G(pα, pβ) and f(τ2), f(τ3) ∈ G(pα, pγ), then ρ ≈ pα∞β intersects
exactly one element of {f(τ1), f(τ2), f(τ3)} infinitely many times. But every element
of G(p,∞′) intersects exactly two elements of {τ1, τ2, τ3} infinitely many times, a
contradiction.

Thus we conclude that f(τ1), f(τ2) and f(τ3) belong to distinct sets. Hence f
induces a permutation of {G(pα, pβ), G(pα, pγ), G(pβ, pγ)}, and the lemma follows.

�

Suppose τ ∈ G(pα) ∪ G(pβ) ∪ G(pγ). Then τ ∈ G(pα) if and only if τ inter-
sects every element of G(pβ, pγ). Therefore f maps G(pα) to G(pα′) by Lemma 13.
Similarly, f must map G(pβ) and G(pγ) to G(pβ′) and G(pγ′), respectively.
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Lemma 14. Suppose τ ∈ G(p, p′). Then for any ε-neighborhood V (f(τ)) of
f(τ) there is a neighborhood U(τ) of τ whose image under f is contained in V (f(τ)).

Proof. Without loss of generality we may assume τ ≈ pαpβ.
Let τ2 ≈ pα′pγ′ , τ3 ≈ pβ′pγ′ be two geodesics such that f(τ), τ2, τ3 are mutually

disjoint even in P . For any ξ2 ∈ G(pα′ , pγ′) and ξ3 ∈ G(pβ′, pγ′), we set

L′(ξ2, ξ3) := {ρ ∈ G(pα′ , pβ′) : ρ, ξ2, ξ3 are mutually disjoint}.

For any set L of geodesics, we set D(L) = {x ∈ S : x ∈ l for some l ∈ L}. Then
D(L′(τ2, τ3)) is a closed domain that contains f(τ).

α
0 β0

γ
0

cut

γ0

γ0

α0

β0

D(L(τ2; τ3))

α
0 β0

f(τ)

τ2

τ2

τ3

τ3

ρ1

ρ2

"

"f(τ)

τ2 τ3

Figure 16.

Choose ρ1, ρ2 ∈ G(pα′ , pβ′) in V (f(τ)) as illustrated in Figure 16. Then choose
(τ1,2, τ1,3), (τ2,2, τ2,3) ∈ G(pα′ , pγ′)×G(pβ′, pγ′) disjoint from f(τ) ∪ ρ1 ∪ ρ2 such that

D

(
2⋂

i=1

L′(τi,2, τi,3)

)
⊂ V (f(τ)).

For any ξ2 ∈ G(pα, pγ) and ξ3 ∈ G(pβ, pγ), we set

L(ξ2, ξ3) := {ρ ∈ G(pα, pβ) : ρ, ξ2, ξ3 are mutually disjoint}.

Now

U(τ) := D

(
2⋂

i=1

L(f−1(τi,2), f
−1(τi,3))

)

= D

(
2⋂

i=1

f−1(L′(τi,2, τi,3))

)
= f−1

(
D

(
2⋂

i=1

L′(τi,2, τi,3)

))

is a neighborhood of τ ∪ f−1(ρ1) ∪ f−1(ρ2), as desired. �

Recall that τa ≈ pαpγ , τb ≈ pαpβ and τc ≈ pβpγ are the shortest geodesics joining
the boundary components of P . By cutting S along τa ∪ τc, we obtain an octagon,
which we regard as a fundamental domain in the universal cover; see the shaded
region in the middle of Figure 17.

α β

γ

τa τb τc

1α

1α

1γ 1γ

1γ1γ

1β

1β

1α

1α

1γ 1γ

1γ1γ

1β

1β

~τ
1

a

~τ
2

a

~τ
1

c

~τ
2

c

E

η1

η2 η3

η4

Figure 17. The symbols ∞α, ∞β and ∞γ stand for the ideal endpoints of the lifts of α, β and

γ, respectively.
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As illustrated in the right of Figure 17, we take two geodesics η1, η2 connecting
∞α to ∞γ, and take two geodesics η3, η4 connecting ∞β to ∞γ. Then η1, η2, η3, η4
bound a quadrilateral E, which we regard as a closed domain in S.

Suppose x ∈ S\E. It follows from the construction of E that there exist two
geodesics τ1, τ2 ∈ G(p, p′) such that x is an intersection of τ1 with τ2. Notice that
any neighborhood of x can be constructed as the intersection of a neighborhood of
τ1 with a neighborhood of τ2. Since x is arbitrary, we conclude from Lemma 14 that
f : S\E → S\f(E) is continuous. One can show similarly that f−1 : S\f(E) → S\E
is continuous. Therefore f : S\E → S\f(E) is a homeomorphism.

Before proceeding further, we recall the following lemma and its proof for the
convenience of the reader.

Lemma 15. Let T1, T2 be two geodesic triangles in the hyperbolic plane. Sup-
pose h : T1 → T2 is a homeomorphism that maps each geodesic onto some geodesic.
Then h ∈ PGL(3,R).

Proof. By postcomposing with an element of PGL(3,R), we can assume that
T1 = T2 and h fixes the vertices of T1 and an interior point in T1, namely A1, A2,
A3 and A0 in Figure 18. Let A4 be the intersection point of the edge A2A3 and the
geodesic ray with initial point A1 passing through A0. Similarly we have A5 and A6.
Note that A4, A5, A6 are fixed points of h.

A2

A0

A1 A3A5

A6

A4

A2

A1 A3A5

Ai

Aj

Ak pi

pj

Figure 18. All intersection points are fixed points of h.

As illustrated in the right of Figure 18, suppose Ai and Aj are two distinct fixed
points of h in the edge A1A2. Here we allow Aj to be A1. Suppose the geodesic
segment A2A5 intersects the geodesic segments AiA3 and AjA3 at pi and pj , respec-
tively. Let Ak be the intersection point of the edge A1A2 and the geodesic ray with
initial point A3 passing through the intersection point of the geodesic segments Aipj
and Ajpi. Then Ak is a new fixed point of h.

Repeating the (similar) process, we can find more and more fixed points that
ultimately are dense in the edges of T1. Hence h must be the identity map on the
edges of T1, and finally h : T1 → T1 is the identity map. �

Now consider the universal covering map π : S̃ → S, where S̃ ⊂ ∆. Let Ẽ =

π−1(E) and f̃(E) = π−1(f(E)). Then f : S\E → S\f(E) can be lifted to a homeo-

morphism f̃ : S̃\Ẽ → S̃\f̃(E) that maps geodesics to geodesics.

Suppose A ⊂ S̃\Ẽ is a geodesic triangle. Then f̃ : A → f̃(A) is a homeomor-
phism between two geodesic triangles that maps geodesics to geodesics, and hence

f̃ |A ∈ PGL(3,R) by Lemma 15. Further, since S̃\Ẽ is path connected, we see that

f̃ : S̃\Ẽ → S̃\f̃(E) belongs to PGL(3,R). Now ∂∆ is invariant under f̃ , hence f̃ is
an isometry. Therefore f : S\E → S\f(E) is an isometry.

In fact, by a similar argument we obtain:
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Proposition 16. A homeomorphism between the interiors of two hyperbolic
surfaces of finite type is an isometry if it maps geodesics to geodesics.

Since E and f(E) are quadrilaterals, we can extend the isometry f : S\E →
S\f(E) to an isometry F : S → S. Suppose that p ∈ S. Then there is a family of
geodesics {τi}i∈I whose unique intersection is p. Since a geodesic in S is uniquely
determined by its intersection with E, we see that f(τi) = F (τi) for i ∈ I. Hence
f(p) = F (p). It follows that f : S → S is an isometry.

Finally, Theorem 3 follows from the fact that our proof works for bi-geodesic
mapping f : S1 → S2.
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