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Abstract. Let D be a planar domain, let a be a reference point fixed in D, and let bk,
k = 1, . . . , n, be n controlling points fixed in D \ {a}. Suppose further that each bk is connected to
the boundary ∂D by an arc lk. In this paper, we propose the problem of finding a shape of arcs lk,
k = 1, . . . , n, which provides the minimum to the harmonic measure ω(a,

⋃n
k=1 lk, D\

⋃n
k=1 lk). This

problem can also be interpreted as a problem on the minimal temperature at a, in the steady-state
regime, when the arcs lk are kept at constant temperature T1 while the boundary ∂D is kept at
constant temperature T0 < T1.

In this paper, we mainly discuss the first non-trivial case of this problem when D is the unit
disk D = {z : |z| < 1} with the reference point a = 0 and two controlling points b1 = ir, b2 = −ir,
0 < r < 1. It appears, that even in this case our minimization problem is highly nontrivial and the
arcs l1 and l2 providing minimum for the harmonic measure are not the straight line segments as it
could be expected from symmetry properties of the configuration of points under consideration.

1. Introduction

Consider a devise consisting of an insulated planar plate D, a reference point a in
D, and n ≥ 1 distinct controlling points bk in D \ {a}. Suppose that each controlling
point bk is connected to the boundary ∂D of D with a wire lk. Suppose further that,
to make our devise operational, we keep all wires lk at constant temperature T1 and
that the temperature of the surrounding media along ∂D is T0 < T1.

We wish to know what shape of the wires lk, 1 ≤ k ≤ n, guarantees the minimal
temperature at the reference point a after long enough period of time. Thus, we deal
with a variational problem for the steady-state heat distribution in planar domains.

As is well known, the heat distribution is governed by the heat equation ωt =
k∆ω, which in the steady-state case (when ωt = 0) reduces to the Laplace equation
(1.1) ∆ω = ωxx + ωyy = 0.

Solutions to the Laplace equations are harmonic functions. If ω is a solution to
(1.1) with boundary values T1 on L = ∪nk=1lk and T0 on ∂D, then ω̃ = (ω−T0)/(T1−
T0) is a solution to (1.1) with boundary value 1 on L and 0 on ∂D. Therefore, every
solution of our variational problem for the steady-state distribution of heat coincides
up to scaling with the harmonic measure of the set L =

⋃n
k=1 lk, which we call a

configuration of wires, with respect to a given domain D.
To get formal definitions, we assume that D is a domain on the complex plane

C and that E is a Borel set on ∂D. Then ω(z, E,D) will denote the harmonic
measure of E with respect to D. More precisely, ω(z, E,D) is a Perron solution to
the Dirichlet problem in D with boundary values 1 on E and 0 on E ′ = ∂D \ E.
If E is a closed set on C and z ∈ D \ E, then ω(z, E,D) will denote the harmonic
measure of the set E ∩ ∂(Dz) with respect to the connected component Dz of D \E,
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which contains z. In case when the domain D in the problem under consideration
is fixed, we often use a shorter notation ωE(z) = ω(z, E,D). For more information
on the harmonic measure, the reader may consult a monograph [9] by Garnett and
Marshall, which contains many useful properties and applications.

Now, the problem on the shape which provides the minimum temperature at a
given point can be stated as follows.

Problem P1. Given a domain D ⊂ C, a point a ∈ D, and a set B = {b1, . . . , bn}
of points bk ∈ D \ {a}, let L = L(a,B,D) denote the family of the all configurations
of wires of the form L =

⋃n
k=1 lk, where lk is a continuum in D \ {a} connecting the

point bk to the boundary ∂D. The problem is to identify all possible sets L∗ =
⋃n
k=1 l

∗
k

in L(a,B,D) such that

(1.2) ωL∗(a) = inf ωL(a),

where the infimum is taken over all L in L(a,B,D).

If a domain in Problem P1 is simply connected then we can use the Riemann
mapping function to transplant the problem into the unit disk D = {z : |z| < 1}.
Thus, in the case of simply connected domains we may assume that D = D and
a = 0; see Figure 1, which presents an example of an admissible set of wires in this
case.

••

•

•

•

•

b1

b3

b2

l2

l1

l3

•
0

D

Figure 1. Round plate with three wires.

One particularly interesting case of Problem P1 in D is when the set B consists
of n points equally distributed along the circle Cr = {z : |z| = r}, 0 < r < 1.
Assuming that B = Bn(r), where Bn(r) = {br,k = reπi(2k−1)/n, 1 ≤ k ≤ n}, we
obtain the following special case of Problem P1, which we will call Problem P ∗n or
Problem P ∗n(r), when we want to emphasize dependence on r.

Problem P ∗
n . Given 0 < r < 1, and n ≥ 1, identify all possible configurations

of wires L∗ =
⋃n
k=1 l

∗
k in L(0, Bn(r),D) such that ω(0, L∗,D) = ω∗n(r), where

(1.3) ω∗n(r) = inf ω(0, L,D)

and the infimum is taken over all L in L(0, Bn(r),D). It is also desirable to find
explicit expression for the infimum ω∗n(r) (when possible) or at least to find its as-
ymptotic for fixed 0 < r < 1 as n→∞ and asymptotic for fixed n as r → 1− and as
r → 0+.

Problem P ∗n was suggested by this author as a counterpart of the Gonchar prob-
lem on the maximal harmonic measure of n radial segments of the form l(r, α) = {z =
teiα : r ≤ t ≤ 1}, where 0 < r < 1, 0 ≤ α < 2π. Gonchar conjectured that, for fixed
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n ≥ 1 and 0 < r < 1, the maximum of the harmonic measure ω(0,
⋃n
k=1 l(r, αk),D)

of n radial segments of equal length occurs for symmetric configurations only; i.e. for
rotations of the set Ln(r) =

⋃n
k=1 lr,k, where lr,k = {teπi(2k−1)/n : r ≤ t ≤ 1}. Using

conformal mapping from the domain D \ Ln(r) onto D, one can easily verify the
following formula for the harmonic measure of the symmetric configuration Ln(r):

(1.4) ω(0, Ln(r),D) =
2

π
arcsin

1− rn

1 + rn
=

2

π
arccos

2rn/2

1 + rn
= 1− 4

π
rn/2 + o(rn/2).

Gonchar’s conjecture was confirmed by Dubinin in [4] who, for this purpose,
invented a new geometric transformation called dissymmetrization. Some remaining
open question related to Gonchar’s problem will be discussed in Section 10.

Motivated by Dubinin’s solution of Gonchar’s problem, this author suggested a
conjecture that the symmetric configuration Ln(r), extremal for the Gonchar prob-
lem, is extremal for Problem P ∗n as well. A more general motivation for this conjecture
was the Julio Frederick Curie heuristic principle, which suggests that in the physi-
cal world “symmetric assumptions imply symmetric consequences”. As an additional
supporting point to our conjecture, we recall that for n = 1, this conjecture is a direct
consequence of the well known Beurling’s projection theorem for harmonic measure
of a compact subset of the unit disk; see [3]. In general, problems whose solutions
do not inherit some of the symmetry properties present in the assumptions of these
problems (although they may inherit some other of these symmetry properties) are
rare and present significant interest.

After I communicated this conjecture to A. Fryntov, he soon surprised me with a
counterexample, which shows that for large n the n-symmetric set of segments Ln(r)
is not a minimizing set of wires for Problem P ∗n . This counterexample, which was
published by Fryntov in [8] and was also mentioned in [25], can be constructed as
follows.

For fixed 0 < r < 1 and n ≥ 1, consider sets

F1(r, n) =
{
z = reiθ :

π

n
≤ θ ≤ 2π − π

n

}
∪ [−1,−r]

and
F2(r, n) =

{
z = reiθ :

π

n
≤ θ ≤ 2π − π

n

}
∪ [−∞,−r].

Let D1(r, n) = D \ F1(r, n), D2(r, n) = C \ F2(r, n). Then by the classical Carleman
extension principle for the harmonic measure (see Chapter VIII, §4 in [10])

(1.5) ω(0, F1(r, n), D1(r, n)) < ω(0, F1(r, n), D2(r, n)).

Harmonic measure ω(0, F1(r, n), D2(r, n)) can be calculated explicitly via conformal
mapping from D2(r, n) onto the upper half-plane H = {z : =z > 0}, see Section 2(c).
For any fixed 0 < r < 1, the right-hand side of (1.5) satisfies the following asymptotic
relation, which was obtained in [25]:

(1.6) ω(0, F1(r, n), D2(r, n)) = 1−
√
r

4(1 + r)

π

n2
+ o(n−2) as n→∞.

Comparing (1.4), (1.5), and (1.6), we conclude (after Fryntov) that, for a fixed 0 <
r < 1,

ω(0, F1(r, n), D1(r, n)) < ω(0, Ln(r),D) for all sufficiently large n.

Our discussion above shows that symmetric configuration Ln(r) is extremal for
Problem P ∗n when n = 1 and is not extremal for this problem when n is large enough.
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This leaves a possibility that Ln(r) remains extremal for small n > 1. One of the goals
of this paper is to show that Ln(r) is not extremal even for the simplest nontrivial
case of Problem P ∗n when n = 2. This break of at least one of the symmetries makes
the problem more difficult and therefore more interesting.

In what follows, we mostly discuss questions related to Problem P ∗2 , except for the
last section, where we discuss related open problems. Since L2(r) = [ir, i]∪ [−i,−ir]
is an admissible configuration of wires for Problem P ∗2 , we may use formula (1.4) to
obtain the following inequalities:

(1.7) 0 <
2

π
arcsin

1− r
1 + r

< ω∗2(r) ≤ ωL2(r)(0) =
2

π
arcsin

1− r2

1 + r2
< 1

for all 0 < r < 1. The second inequality in (1.7) follows from the Beurling projection
theorem for the harmonic measure, which was mentioned above.

The rest of the paper has the following structure. In Section 2, we discuss several
examples where the harmonic measure can be calculated explicitly. Some of the
formulas presented in this section will be needed for our proofs. In Section 3, we
show that for every r, 0 < r < 1, there exists at least one configuration of wires L∗ in
L(0, B2(r),D) extremal for Problem P ∗2 . In Section 4, we prove that every extremal
configuration L∗ possesses certain symmetry properties. For these purposes, some
symmetrization transformations will be used.

Then we will distinguish two cases of Problem P ∗2 , when an admissible config-
uration of wires L = l1 ∪ l2 is connected and when it is disconnected. These two
possibilities lead to two auxiliary problems. The first of these auxiliary problems,
discussed in Section 5, deals with pairs of wires l1 and l2, which have a common
contact point on T. In this case, the set L = l1 ∪ l2 is connected.

The second auxiliary problem, discussed in Sections 6 and 7, deals with disjoint
wires l1 and l2, which are symmetric to each other with respect to the real axis. To
introduce this problem, we first give necessary definitions.

We recall that a quadrilateral Q = Q[z1, z2, z3, z4] is a configuration consisting
of a simply connected domain Q with four distinct boundary points z1, z2, z3, z4,
called vertices, marked on ∂Q. We assume here that the vertices zk are enumerated
in the positive direction on ∂Q and also assume cyclic agreement, i.e., that z5 = z1,
z0 = z4. The boundary arcs αk ⊂ ∂Q connecting the vertices zk and zk+1 are sides
of Q. The sides α1 and α3 will be called horizontal and the sides α2 and α4 will be
called vertical. Then mod(Q) will denote the module of Q with respect to the family
of curves γ ⊂ Q connecting vertical sides of Q.

If the wires l1 and l2 are disjoint, then the domain Q = D \ (l1 ∪ l2) can be
considered as a quadrilateral, which has l1 and l2 as a pair of its horizontal sides.
The complementary boundary set ∂Q\ (l1 ∪ l2) consists of two arcs, which we denote
by l′1 and l′2, of the unit circle. These two arcs l′1 and l′2 are vertical sides of Q. Then
our second auxiliary problem is the following. For given m > 0, find the minimum of
the harmonic measures ω(0, l1∪l2,D) over all pairs of wires l1, l2, which are symmetric
to each other with respect to the real axis and such that mod(D \ (l1 ∪ l2)) = m.

An alternative way to treat the second auxiliary problem is to consider the triple
(l1, l2,D) as a condenser with plates l+ = l1 and l− = l2 carrying positive and
negative charges, respectively. Then our second auxiliary problem can be restated as
a problem on the minimal temperature at the origin among all symmetric condensers
of the form (l+, l−,D), which have a prescribed capacity. We assume here that a
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condenser at work supports temperature 1 on the plates l+ and l− and temperature
0 on ∂D.

In Section 6, we consider an auxiliary problem on the extremal partitioning of the
unit disk into three quadrilaterals, which we need for our proofs in Section 7. This
problem is a particular case of Jenkins’ module problem, which has found numerous
applications in different areas of mathematics; see [14], [29], [27], and [28]. Then,
in Section 7, we discuss and solve the problem on the minimal harmonic measure in
quadrilaterals of a fixed module m.

In Section 8, we derive systems of equations, whose solutions can be used to
calculate the minimal harmonic measure numerically. In Section 9, we discuss how
the change in the harmonic measure is related to the change in the module of related
quadrilaterals. Finally, in Section 10, we present some open problems and questions
for future discussion.

2. Examples of harmonic measures and related moduli

In this section, we find explicit formulas for the harmonic measures and related
quantities in a few simple cases. Some of these formulas are needed for our proofs
and discussions in further sections.

(a) The upper half-plane H provides a basic example for calculation of the
harmonic measures. If a, b are real such that a < b and if =z > 0, then it follows
directly from the definition of the harmonic measure that

(2.1) ω(z, [a, b],H) =
1

π
arg

z − b
z − a

.

Applying (2.1) to the set consisting of segments [1, 1/k] and [−1/k,−1], where
0 < k < 1, we obtain

(2.2) ω(it, [−1/k,−1] ∪ [1, 1/k],H) =
2

π
arctan

(1− k)t

1 + kt2
, t > 0.

(b) Symmetric radial slits. For 0 < r < ρ ≤ 1 and n ≥ 1, let Ln(r, ρ) =

∪nk=1lk(r, ρ), where lk(r, ρ) = {z = te
πi(2k+1)

n : r ≤ t ≤ ρ}, 1 ≤ k ≤ n. To find the
harmonic measure ω(0, Ln(r, ρ),D\Ln(r)), we first note that the function ϕ1(z) = zn

is an n to 1 mapping from D \ Ln(r) onto D \ [−1,−rn]. This implies that

(2.3) ω(0, Ln(r, ρ),D \ Ln(r)) = ω(0, [−ρn,−rn],D \ [−1,−rn]).

To find the harmonic measure in the right-hand side of this equation, we note that
the function

ϕ2(z) = i

√
z

(1− z)2
+

rn

(1 + rn)2

maps D \ [−1,−rn] conformally onto H such that ϕ2(0) = irn/2

1+rn
and ϕ([−ρn,−rn]) =

[−a, a], where

a =

√
(ρn − rn)(1− rnρn)

(1 + rn)(1 + ρn)
.

Now, using (2.1), we find

(2.4) ω(0, Ln(r, ρ),D \ Ln(r)) =
2

π
arccos

(
rn/2

1 + rn
:
ρn/2

1 + ρn

)
.

For ρ = 1, the latter equation implies (1.4).
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In the special case when n = 2, the domain Q = D \ L2(r) can be considered as
a quadrilateral with segments [−i,−ir] and [ir, i] as its pair of horizontal sides. It
is left to the interested reader to verify that the module of this quadrilateral can be
calculated as

(2.5) m2(r) =
2K(r2)

K′(r2)
=
π

2

1

log(1/r)
− π log 2

2

1

(log(1/r))2
+ o(

1

(log(1/r))2
.

Here and below K(τ) =
´ 1

0
dx√

(1−x2)(1−τ2x2)
and K′(τ) = K(

√
1− τ 2) denote the com-

plete elliptic integrals of the first kind. The asymptotic expansion in (2.5) follows
from the well-known series expansions for the complete elliptic integrals given by
formulas (8.113) in [11].

(c) Circular slit. For 0 < r < 1 and 0 < ε < π, let E(r, ε) = {z =
reiθ : ε ≤ θ ≤ 2π − ε} ∪ [−1,−r] and let G(r, ε) = C \ (E(r, ε) ∪ (−∞,−1]). To find
ω(0, E(r, ε), G(r, ε)), we consider a function ϕ0 = ϕ3 ◦ϕ2 ◦ϕ1 with ϕ1, ϕ2, ϕ3 defined
by equations:

(2.6) ϕ1(z) =
r − z
r + z

, ϕ2(z) =
√
z2 + cot2(ε/2), ϕ3(z) = i

√
z − cot(ε/2)

z + csc(ε/2)
.

Then it is a standard exercise in conformal mappings to check that ϕ0(z) maps G(r, ε)
conformally onto H such that ϕ0(0) = i sin(ε/4). Using explicit expressions (2.6) and
formula (2.1), after routine calculations one can find that

ω(0, E(r, ε), G(r, ε))

= 1− 2

π
arctan

(
sin

ε

4

√
1 + r −

√
1 + 2r cos ε+ r2

(1 + r) cos ε
2

+
√

1 + 2r cos ε+ r2

)
.

(2.7)

Taking two term Taylor approximation of (2.7) with ε = π/n, we obtain the asymp-
totic expansion shown in (1.6).

(d) Harmonic measure in quadrilaterals and rectangles. LetQ = Q[z1, z2,
z3, z4] be a quadrilateral with horizontal sides α1 and α2. It is well known that there
is a univalent function f(z) which maps Q conformally onto a rectangle of the form
R(m) = {z : |<z| < 1, |=z| < m} with some m > 0 such that the vertices z1, z2,
z3, z4 are mapped to the geometric vertices −1 − im, 1 − im, 1 + im, −1 + im,
respectively. It is also well known that the parameter m is defined uniquely by the
condition m = mod(Q). Since the harmonic measure is conformally invariant we
have

ω(z, α1 ∪ α2, Q) = ω(f(z), [−1− im, 1− im] ∪ [−1 + im, 1 + im], R(m)).

Thus, to study the harmonic measure in quadrilaterals, we may work with the
harmonic measure in appropriate rectangles. In particular, we are interested in
the formula for the harmonic measure ω(t, h− ∪ h+, R(m)), −1 < t < 1, where
h− = {z = τ − im : − 1 < τ < 1} and h+ = {z = τ + im : − 1 < τ < 1} are
horizontal sides of R(m).

Let f0(z) denote the elliptic function

f0(z) = sn((i/2)K′(k)z + (i/2)K′(k), k)
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with 0 < k < 1 defined by the equation
2K(k)

K′(k)
= m.

It follows from the well-know properties of elliptic functions that f0(z) maps R(m)
conformally onto the upper half-plane such that f0(h−) = [1, 1/k] and f0(h+) =
[−1/k,−1]. Since the harmonic measure is conformally invariant, we may use (2.2)
to obtain the following formula for the harmonic measure of horizontal sides of R(m):

(2.8) ω(t, h− ∪ h+, R(m)) =
2

π
arctan

i(k − 1)sn((i/2)K′(k)t+ (i/2)K′(k), k)), k)

1− k sn2((i/2)K′(k)t+ (i/2)K′(k), k)
.

In particular, for t = 0, this implies the following formula for the harmonic measure
of the rectangle R(m) at its center z = 0:

(2.9) ω = ω(0, h− ∪ h+, R(m)) =
2

π
arccot

2
√
k

1− k
=

2

π
arccos

2
√
k

1 + k
.

Solving (2.9) for k, we obtain

k =
1− sin πω

2

1 + sin πω
2

.

Substituting this into (2.8) and then simplifying, we obtain the following more direct
relation between the module m of the rectangle R(m) and the harmonic measure ω
of its horizontal sides evaluated at the center of R(m):

(2.10)
K′(sin πω

2
)

K(sin πω
2

)
= m.

(e) Harmonic measure and the module of a triad. According to Jenkins,
a triad (D,α, z0) is a configuration consisting of a simply connected domain D, an
open boundary arc α on ∂D, and a point z0 ∈ D. Then the module mod(D,α, z0)
of the triad (D,α, z0) is defined to be the maximal module among all quadrilaterals
Q ⊂ D\{z0}, which have its horizontal pair of sides on the complementary boundary
arc ∂D \α and separate α from z0 inside D. The harmonic measure ωt = ω(z0, α,D)
and the module mt = mod(D,α, z0) of a triad are related via the following formula
due to Hersch [13]:

(2.11)
K′(sin πωt

2
)

K(sin πωt
2

)
= 2mt.

The similarity of formulas (2.10) and (2.11) is not coincidental. Indeed, let Q∗
be the quadrilateral of the maximal module for the triad (D,α, z0). Then there
is a function w = f(z) which maps Q∗ conformally onto a rectangle R+(mt) =
{w : − 1 < <w < 1, 0 < =w < mt} such that the horizontal sides of Q∗ corresponds
to the horizontal sides of R+(mt) and f(z0) = 0. It follows from the conformal
invariance of the harmonic measure and from the Schwarz reflection principle for
harmonic functions that

(2.12) ω(z0, α,D) = ω(0, [−1− imt, 1− imt] ∪ [−1 + imt, 1 + imt], R(mt)).

Since mod(R(mt)) = 2 mod(Q∗), (2.11) follows from (2.10) and (2.12).
Equation (2.11) implies that the harmonic measure ω(z0, α,D) is a strictly de-

creasing function of the module of the triad (D,α, z0). An advantage of relation
(2.11) is that the module of a triad usually admits easier estimates in terms of the
geometric characteristics of D and α than the harmonic measure itself.
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3. Existence of extremal configurations of wires

Lemma 1. For every 0 < r < 1, there exists at least one configuration of wires
L(r) = l+(r) ∪ l−(r) in L(0, B2(r),D) that is extremal for Problem P ∗2 .

Proof. Let Lk = lk1
⋃
lk2 , k = 1, 2, . . ., be a sequence of sets such that ωLk(0) →

ω∗2(r) as k →∞. Let Dk be a connected component of D\Lk containing 0 and let fk
be a conformal mapping from D onto Dk such that fk(0) = 0. The set {fk}∞k=1 is a
normal family of analytic functions. Therefore, taking a subsequence if necessary, we
may assume that fk → f0 uniformly on compact subsets of D, where f0 is analytic
on D such that f0(0) = 0. Since ω∗2(r) < 1, it follows from the Nevanlinna–Beurling
projection lemma (see Lemma 10 in [1]) that there is r0, 0 < r0 < 1 such that
Dr0 ⊂ Dk = fk(D) for all k. This implies that f0 is not constant and therefore f0 is
univalent by Hurwitz theorem.

Taking a subsequence, if necessary, we may assume that either each Lk is discon-
nected or each Lk is connected.

Assume first that the sets Lk are disconnected for all k. Then T \ Lk contains
exactly two open arcs, say Γk1 and Γk2, lying on ∂Dk. Precomposing fk with rotation
if necessary, we may assume that for j = 1, 2, Γkj = fk(γ

k
j ), where γk1 = {ζ =

eiθ : 0 < θ < ϕk1}, γk2 = {z = eiθ : αk2 < θ < αk3} with some αk1, αk2, αk3 such that
0 < αk1 < αk2 < αk3 < 2π for k = 1, 2, . . .. Taking a subsequence if necessary, we may
assume that for j = 1, 2, 3, αkj → α0

j as k →∞. Then 0 ≤ α0
1 ≤ α0

2 ≤ α0
3 ≤ 2π and

2π lim
k→∞

ωLk(0) = 2π − α0
3 + α0

2 − α0
1 = 2πω∗2(r).

Since ω∗2(r) < 1 by (1.7), the latter implies that at least one of the limit arcs γ0
1 =

{z = eiθ : 0 < θ < α0
1} and γ0

2 = {z = eiθ : α0
2 < θ < α0

3} is not empty. Since
|fk(eiθ)| = 1 for eiθ ∈ γkj and all k, the Schwarz reflection principle implies that fk
can be analytically continued across γkj . If γ0

j 6= ∅, the latter implies that f0 can be
analytically continued across γ0

j and |f0(eiθ)| = 1 for all eiθ ∈ γ0
j . Therefore,

(3.1) 2πω(0, f0(γ0
1 ∪ γ0

2), f(D)) = α0
1 + α0

3 − α0
2 = 2π(1− ω∗2(r)).

Since f0(D) is simply connected and f0 omits the points ±ir in D, it follows that
there are continua l01 and l02 in D \ (f0(D ∪ γ0

1∪0
2)) such that l01 joins ir and T and l02

joins −ir and T. It follows from (3.1) that

ω(0, l01 ∪ l02,D) ≤ ω(0, ∂f0(D \ f0(γ0
1 ∪ γ0

2), f0(D) ≤ ω∗2(r).

Since l01∪ l02 is an admissible set for Problem P ∗2 , we must have ω(0, l01, l
0
2,D) = ω∗2(r),

which proves the lemma in the case under consideration.
In the case when all sets Lk are connected, the proof follows the same lines. �

Remark 1. The existence proof given above is standard. It can be easily
modified to show that ifD is finitely connected, then there is at least one configuration
of wires extremal for Problem P1.

Remark 2. One of the consequences of Fryntov’s construction of a counterex-
ample mentioned in the introduction is that, for large n, an extremal configuration
for Problem P ∗n is not unique. Indeed, if it is unique then it must possess the same
group of symmetries as the set of controlling points Bn(r) possesses. In the latter
case, straightforward application of Carleman’s extension principle for the harmonic
measure (see Chapter VIII, §4 in [10]) implies that an extremal configuration must
coincide with Ln(r), but that is not the case for large n.
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As we will see later, an extremal configuration of Problem P ∗n is not unique even
in the simplest case when n = 2.

If we assume that the existence result stated in Remark 1 is established, then the
following lemma is an immediate corollary of Carleman’s extension principle.

Lemma 2. For fixed n ≥ 1, the minimal harmonic measure ω∗n(r) strictly de-
creases from 1 to 0 as r runs from 0 to 1.

Proof. Suppose that 0 < r1 < r2 < 1 and suppose that L =
⋃n
k=1 lk is an

admissible configuration of wires for the problem P ∗n(r1). Let l̃k be the shortest
subarc of lk connecting br,k to the circle Cs = {z : |z| = s}. Then the set L̃ =

{z : sz ∈ ∪nk=1l̃k} is an admissible configuration of wires for the problem P ∗n(r2).
It follows from the conformal invariance of the harmonic measure and Carleman’s
extension principle that

(3.2) ω(0, L̃,D) = ω(0,
⋃n
k=1 l̃k,Ds) < ω(0, L,D),

where Ds = {z : |z| < s}. The latter inequality implies the non-strict inequality
ω∗n(r2) ≤ ω∗n(r1). Thus, to prove non-strict monotonicity of ω∗n(r), we do not need to
know that an extremal configuration of wires does exist.

Assuming existence of an extremal configuration of wires for the problem under
consideration and letting L to be one of those extremal configurations, we conclude
from (3.2) that ω∗n(r) strictly decreases in the interval 0 < r < 1. �

4. Symmetries of extremal configurations of wires

To prove Lemma 3 below, we will use a geometric transformation called polar-
ization. This transformation, for many useful properties of which the reader may
consult a recent book [6] and papers [5], [23], [25], [28], can be defined as follows, see
[5]. Let L be a directed straight line on C and let H+ and H− be the left half-plane
and the right half-plane with respect to L, respectively. For z ∈ C, let z∗ denote
the reflection of z in L. The polarization EL of a given set E ⊂ C into H+ (or with
respect to L) is then defined by

(4.1) EL = ((E ∪ E∗) ∩H+
) ∪ ((E ∩ E∗) ∩H−),

where E∗ = {z : z∗ ∈ E}.
Lemma 3. Let L(r) be an extremal configuration of wires of Problem P ∗2 . Then

L(r) lies either in the closed half-disk D− = {z ∈ D : < z ≤ 0} or in the closed
half-disk D+ = {z ∈ D : < z ≥ 0}.

Proof. Let L−(r) be the polarization of L(r), defined as in (4.1), into the left half-
plane Hl = {z : < z < 0}. Then there exists a configuration of wires L̂, admissible
for Problem P ∗2 , such that L̂ ⊂ L−(r) ∩Hl.

Applying the polarization comparison theorem for harmonic measure [23, Theo-
rem 2] and Carleman’s principle for harmonic measure, see [12], and using the fact
that L̂ is an admissible configuration, we obtain

(4.2) ω(0, L(r),D) ≥ ω(0, L−(r),D) ≥ ω(0, L̂,D) ≥ ω(0, L(r),D).

Thus, each relation in (4.2) must hold with the sign of equality. By Theorem 2 in
[23], equality occurs in the first of the inequalities (4.2) if and only if L−(r) = L(r)
up to reflection in the imaginary axis. It follows from the maximum principle for
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harmonic functions that equality occurs in the second of these inequalities if and
only if L̂ = L−(r). This shows that L(r) satisfies the desired properties. �

To prove our next lemma, we need some facts about hyperbolic ellipsis. The
hyperbolic plane will be identified with the unit disk D supplied with the hyperbolic
distance

ρ(z1, z2) =
1

2
log

1 +
∣∣∣ z1−z21−z1z̄2

∣∣∣
1−

∣∣∣ z1−z21−z1z̄2

∣∣∣ , z1, z2 ∈ D.

For 0 < r, t < 1, let E(r, t) denote the hyperbolic ellipse with foci at the points
±ir defined by E(r, t) = {z ∈ D : ρ(z, ir) + ρ(z,−ir) = ρ(t, ir) + ρ(t,−ir)}. To
define E(r, t) for t = 0 and t = 1, we put E(r, 0) = [−ir, ir] and E(r, 1) = T. Thus,
t ∈ E(r, t) for 0 ≤ t ≤ 1.

A closed set E ⊂ D is said to be symmetric with respect to E(r, t) if the inter-
section E ∩ E(r, t) is either empty, or the whole E(r, t), or consists of a single closed
arc of E(r, t) (possibly degenerate), which is symmetric with respect to the negative
real axis.

Let L(r) ⊂ D− be an extremal configuration of wires for Problem P ∗2 and let
D(r) = D\L(r). It follows from the maximum principle for harmonic functions that
D(r) is a simply connected domain. Let Ω(r) denote a closed set on D− bounded by
L(r), [−ir, ir], and γ, where γ is a closed arc of the semicircle T− = {z ∈ T : <z ≤
0} joining the connected components of L(r) if L(r) is not connected and γ = ∅
otherwise. More precisely, Ω(r) = C \ Ω̃(r), where Ω̃(r) is the unbounded connected
component of C \ (L(r) ∪ γ ∪ [−ir, ir]).

Lemma 4. If L(r) ⊂ D− is an extremal configuration of wires for Problem P ∗2
and Ω(r) is the corresponding closed set defined above, then L(r) is symmetric with
respect to the real axis and for each t ∈ [0, 1], the set Ω(r) is symmetric with respect
to E(r, t).

Proof. Let R be a doubly-sheeted Riemann surface over the disk D branched at
the points ±ir. The surface R can be obtained by gluing two copies, let G1(r) and
G2(r), of the slit disk D \ [−ir, ir] across their boundary segments [−ir, ir]. Let L̂(r)

be the lift of L(r) onto R. Then R \ L̂(r) consists of two copies, let D1 and D2, of
the domain D(r) lying on R.

Let ζ = f(z) be a conformal mapping from G1(r) onto a suitable annulus A(ρ, 1)
with some ρ = ρ(r) < 1 such that f(1) = 1. Applying the Schwarz reflection
principle, we find that f can be analytically continued to a function, still denoted
by f , which maps R conformally and one-to-one onto the annulus A(ρ2, 1). Then f
maps G2(r) conformally onto A(ρ2, ρ).

We do not need the explicit expression of f , although it is available, see [17].
Simple geometric properties of f , which we explore below, can be found in [17].

First we note that f maps each hyperbolic ellipse E(r, t), 0 < t < 1, embedded
in G1(r), onto a circle Cτ with some τ = τ(r, t) such that ρ < τ < 1. Similarly, f
maps E(r, t), 0 < t < 1, embedded in G2(r), onto a circle Cτ with some τ = τ(r, t)
such that ρ2 < τ < ρ.

Let Ω1 = f(D1) and Ω2 = f(D2). The symmetry properties of f imply that the
pair of nonoverlapping domains {Ω1,Ω2} is invariant under the mapping ζ 7→ −ρ2/ζ;
see [17]. The relation between hyperbolic ellipsis and circles mentioned above implies
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that to prove the lemma, it suffices to show that Ω1 is circularly symmetric with
respect to the positive real axis.

Since harmonic measure is conformally invariant and since f(0) = ρ if 0 ∈ D1,
we have

(4.3) ω(0,T, D(r)) = ω(ρ,T ∪Tρ2 ,Ω1) = ω(−ρ,T ∪Tρ2 ,Ω2).

Let Ω∗1 and Ω∗2 be the circular symmetrizations of Ω1 and Ω2 with respect to the
positive and negative real semi-axes, respectively. It follows from a symmetrization
result of Krzyz [16] or from a more general Theorem 7 in Baernstein’s paper [1] that

(4.4) ω(ρ,T ∪Tρ2 ,Ω
∗
1) ≥ ω(ρ,T ∪Tρ2 ,Ω1).

Furthermore, it follows from Theorem 10 in [7] that equality occurs in (4.4) if
and only if Ω∗1 coincides with Ω1 up to rotation about the origin.

Since the pair of domains {Ω1,Ω2} is invariant under the mapping ζ 7→ −ρ2/ζ,
it is easy to see that the domains Ω∗1 and Ω∗2 do not overlap and the pair {Ω∗1,Ω∗2} is
also invariant under this mapping. The latter implies that the inverse function f−1

is univalent on Ω∗1 (as well as on Ω∗2) and the set D∗ = f−1(Ω∗1) omits the points ±ir.
Therefore the compact set L∗ = (D \D∗) is an admissible configuration of wires for
Problem P ∗2 . Combining this with the conformal invariance property of harmonic
measure and equations (4.3) and (4.4), we find that

ω(0, L∗,D) = 1− ω(ρ,T ∪Tρ2 ,Ω
∗
1) ≤ ω(0, L(r),D) ≤ ω(0, L∗,D).

Thus, we must have the sign of equality in each relation of this chain. Therefore,
(4.4) must hold with the sign of equality. Then Ω1 = eiαΩ∗1 and Ω2 = eiαΩ∗2 for some
α ∈ R. Hence Ω1 and Ω2 are circularly symmetric with respect to the rays Rα and
Rα+π, respectively. Here Rβ = {z = teiβ : t ≥ 0}. Since the pair of domains {Ω1,Ω2}
is invariant under the mapping ζ 7→ −ρ2/ζ, it follows that Ω2 is also circularly
symmetric with respect to the ray Rπ−α. Therefore we must have α + π = π − α,
mod (2π). Or equivalently, α = 0, mod (π). Since ρ ∈ Ω1, we conclude that α = 0
and therefore Ω1 = Ω∗1. Now the desired conclusion follows. �

Now that symmetry with respect to the real axis of any extremal configuration
is established, we have a simpler way (at least theoretically) to evaluate related har-
monic measures. To explain this, we consider a disconnected admissible configuration
of wires L = l+ ∪ l−, where l+ ⊂ D+ = {z : =z > 0} and l− = {z : z̄ ∈ l+}. Then the
domain DL = D \ L can be considered as a quadrilateral with l+ and l− as a pair
of its opposite sides. It is well-known that any such quadrilateral can be mapped
by an analytic function w = f(z) conformally onto a rectangle R(m) considered in
Section 2 with some m > 0 in such a way that its boundary arcs l+ and l− correspond
to the vertical sides of R(m). Since L is symmetric with respect to the real axis, it
follows that f(0) is pure imaginary and −m < =f(0) < m. Furthermore, if L is also
symmetric with respect to the imaginary axis then f(0) = 0. Thus, the question on
evaluation of the harmonic measure in the domain DL is reduced to the question on
evaluation of the harmonic measure in the rectangle R(m). The latter question was
discussed in part (d) of Section 2.

5. Pairs of wires with a common contact point on T

The collection of wires in Fryntov’s counterexample forms a connected set. Thus,
there is a possibility that, at least for certain values of r, two wires extremal for
Problem P ∗2 will merge at some point and then will follow to the unit circle T along
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the same path. In this case, we say that the wires have a common contact point on
T. To discuss this case, we consider the family Lc−(r) consisting of all pairs of wires
in D−, which have a common contact point on T and connect the points ir and −ir
with T. Let

(5.1) ω∗con(r) = inf
L∈Lc−(r)

ωL(0)

Since every L ∈ Lc−(r) is an admissible configuration of wires for Problem P ∗2 it
follows that ω∗2(r) ≤ ω∗con(r) for all 0 < r < 1.

The minimal harmonic measure problem over the class Lc−(r) is a particular case
of D. Gaier’s problem considered in [27]. Other interesting extremal problems on the
harmonic measure, related to Gaier’s problem, were discussed in [18], [19], and [20].
It follows from Theorem 1 in [27] that every Gaier’s problem has a unique extremal
configuration formed by a subset of critical trajectories of an appropriate quadratic
differential. Two quadratic differentials relevant to the Problem P ∗2 are presented
in the equations (5.2) and (5.3) below. For necessary definitions and properties of
quadratic differentials, we recommend the reader to consult books [15], [29], [17]
and papers [25] and [28]. Here we remind only that a trajectory γ of a quadratic
differential Q(z) dz2 is a smooth open arc or Jordan curve such that Q(z) dz2 > 0
along γ. A trajectory γ of Q(z) dz2 is called critical if at least one of its endpoints
is a zero or a simple pole of Q(z) dz2. Furthermore, by a closed critical trajectory we
will understand the closure of the corresponding critical trajectory.

For 0 < r < 1, 0 ≤ p ≤ 1, and π/2 < ϕ ≤ π, let Q1(z) dz2 = Q1(z, r, p) dz2 and
Q2(z) dz2 = Q2(z, r, ϕ) dz2 denote quadratic differentials defined by the following
equations:

(5.2) Q1(z) dz2 =
(z + p)(z + 1/p)

z(z2 + r2)(z2 + 1/r2)
dz2

and

(5.3) Q2(z) dz2 =
(z − eiϕ)(z − e−iϕ)

z(z2 + r2)(z2 + 1/r2)
dz2.

Examples of possible trajectory structures of the quadratic differentials Q1(z) dz2

and Q2(z) dz2 are shown in Figures 2 and 3, respectively.

Figure 2. Critical trajectories of Q1(z) dz
2.
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Figure 3. Critical trajectories of Q2(z) dz
2.

Theorem 1. (1) For every 0 < r < 1, there is a unique continuum E(r) ∈
Lc−(r) minimizing the harmonic measure ωL(0) over the class Lc−(r).

(2) Let r0 = 2 −
√

3. Then E(r0) consists of two closed critical trajectories
γ+ and γ− of a quadratic differential Q(z, r0) dz2 having the form (5.2) with
r = r0 and p = 1. Here γ+ and γ− denote the closed critical trajectories of
Q(z, r0) dz2 joining z = −1 with the points ir0 and −ir0, respectively. The
minimal harmonic measure in this case is ω∗con(r0) = 2

π
arccos(1/3).

(3) If 0 < r < r0, then E(r) consists of the interval [−1,−p], where p = p(r) is
determined by the equation (5.4) below, and two closed critical trajectories
γ+ and γ− of the quadratic differential Q(z, r) dz2 of the form (5.2). Here γ+

and γ− are the closed critical trajectories of Q(z, r) dz2 joining z = −p with
the points ir and −ir, respectively. For every r, 0 < r < r0, there is a unique
p = p(r), 0 < p < 1, satisfying the equation

(5.4)
ˆ 1

0

√
(1− x)(1− p2x)

x(x2 + (r/p)2)(1 + r2p2x2)
dx =

ˆ π

0

√
1 + 2p cos t+ p2

1 + 2r2 cos 2t+ r4
dt.

The minimal harmonic measure ω∗con(r) in this case can be found from equa-
tion (2.12) with the module m = mcon(r) defined by equation

(5.5) 2m =

ˆ π

0

√
1 + 2p cos t+ p2

1 + 2r2 cos 2t+ r4
dt

/ˆ 1

0

√
(x+ p)(1 + px)

x(x2 + r2)(1 + r2x2)
dx.

(4) For r0 < r < 1, the extremal continuum E(r) consists of the circular arc
{eiθ : ϕ ≤ θ ≤ 2π − ϕ}, where ϕ = ϕ(r) is determined by the equation
(5.6) below, and two closed critical trajectories γ+ and γ− of the quadratic
differential Q(z, r) dz2 of the form (5.3). Here γ+ and γ− are the closed critical
trajectories of Q(z, r) dz2 joining the points ir and −ir with the points eiϕ
and e−iϕ, respectively. For every r, r0 < r < 1, there is a unique ϕ = ϕ(r),
π/2 < ϕ < π, satisfying the equation

(5.6)
ˆ 1

0

√
1 + 2x cosϕ+ x2

x(x2 + r2)(1 + r2x2)
dx =

ˆ ϕ

0

√
2(cos t− cosϕ)

1 + 2r2 cos 2t+ r4
dt.

The minimal harmonic measure ω∗con(r) in this case can be found from equa-
tion (2.12) with the module m = mcon(r) defined by equation

(5.7) 2m =

ˆ 1

0

√
1 + 2x cosϕ+ x2

x(x2 + r2)(1 + r2x2)
dx

/ˆ 1

0

√
1− 2x cosϕ+ x2

x(x2 + r2)(1 + r2x2)
dx.
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(5) The minimal harmonic measure ω∗con(r) strictly decreases from 1 to 1
2
as r

varies from 0 to 1.

Proof. First, we prove all statements concerning extremal configurations. After
that we will explain our approach to calculate the corresponding harmonic measures.

Part (1) follows from Theorem 1 in [25], which also implies that the extremal
continuum E(r) consists of three or two closed critical trajectories of a quadratic
differential Q(z, r) dz2 having the form (5.2) or (5.3). In particular, E(r) consists of
two closed critical trajectories if and only if Q(z, r) dz2 has a second order zero at
z = −1. In addition, Theorem 1 in [25] implies that for every r, 0 < r < 1, there
exists precisely one quadratic differential of the form (5.2) or (5.3), which has critical
trajectories as described in parts (2), (3), or (4) of this theorem.

Assume first, that the quadratic differential Q(z, r) dz2 has the form (5.2) with
p = p(r) ∈ (0, 1). Let C = C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 be a positively oriented closed
contour, where C1 is the semicircle {eiθ : 0 ≤ θ ≤ π}, C2 = [−1,−p(r)], C3 is the
trajectory γ+ traversed twice, C4 = [−p, 0], and C5 = [0, 1]. Since the branch of the
radical

√
Q(z, r) is analytic in the interior of C,

´
C

√
Q(z, r) dz = 0 by Cauchy’s

Theorem. Since
√
Q(z, r) dx is real on C2 ∪ C3 ∪ C5 and it is pure imaginary on

C1 ∪C4, we must have
´
C1∪C4

√
Q(z, r) dz = 0. Parameterizing C1 and C4, it is easy

to see that the latter equation is equivalent to (5.4).
If the quadratic differential Q(z, r) dz2 has the form (5.3) with ϕ = ϕ(r) ∈

(π/2, π), then a similar argument leads to the equation (5.6).
Assume now that for some r ∈ (0, 1), Q(z, r) dz2 has a second order pole at

z = −1; i.e. Q(z, r) dz2 has the form (5.2) with p = 1. Changing variables via
conformal mapping ζ = k(z), where k(z) = z/(1 − z)2 is the Koebe function, and
transplanting Q(z, r) dz2 into the plane Cζ , we obtain the quadratic differential

Q1(ζ) dζ2 = C
dζ2

ζ(ζ − ζ0)(ζ − ζ̄0)

with ζ0 = ir/(1 − ir)2 and some C > 0. This change of variables defines Q1(ζ) dζ2

only in the slit plane Cζ \ (−∞,−1/4]. But since Q1(ζ) dζ2 < 0 for all real ζ < 0,
the quadratic differential Q1(ζ) dζ2 can be extended to a quadratic differential (still
denoted by Q1(ζ) dζ2) defined on Cζ .

Now one can easily verify that the circular arc γ0 = {ζ = |ζ0|eiψ : Arg ζ0 ≤ ψ ≤
2π−Arg ζ0} is a closed critical trajectory of Q1(ζ) dζ2, which corresponds under the
mapping ζ = k(z) to the union γ+ ∪ γ−. Then we must have k(−1) = −|ζ0|. This is
equivalent to the equation r/(1+r2) = 1/4, the only solution of which in the interval
(0, 1) is r0 = 2−

√
3.

Thus, we conclude that Q(z, r) dz2 has a second order zero at z = −1 if and only
if r = r0. In addition, a standard continuity argument based on the Carathèodory
convergence theorem (see, for example, the proof of Theorem 1 in [27]) shows that
the quadratic differential Q(z, r) dz2 depends continuously on the parameter r. Since
the semicircle {eiθ : π/2 ≤ θ ≤ 3π/2} is the only arc, which minimizes the harmonic
measure ωL(0) over all arcs L ⊂ D− joining the points z = i and z = −i, the con-
tinuity argument implies also that Q(z, r) dz2 converges to the quadratic differential
Q(z, 1) dz2 = [z(z2 + 1)]−1 dz2 as r → 1. Therefore, Q(z, r) dz2 must have the form
(5.3) for all r ∈ (r0, 1).

Let us show that for all r ∈ (0, r0) the quadratic differential Q(z, r) dz2 has the
form (5.2). If not, then Q(z, r) dz2 has the form (5.3). Notice that the trajectory
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structure of Q(z, r) dz2 coincides with the trajectory structure of the quadratic dif-
ferential

Q1(z, r) dz2 =
(z − eiϕ)(z − e−iϕ)

z(z2 + r2)(1 + r2z2)
dz2.

We can choose a sequence rk → 0 such that ϕ(rk)→ ϕ∗, π/2 ≤ ϕ∗ ≤ π, as k →
∞. Then Q1(z, rk) converges to Q∗(z) = z−3(z−eiϕ∗)(z−e−iϕ∗) uniformly in C\{0}.
We note that the limit quadratic differential Q∗(z) dz2 has two critical trajectories,
let γ∗+ and γ∗−, which join z = 0 with the points eiϕ∗ and e−iϕ

∗ , respectively. We
assume here that =z ≥ 0 for all z ∈ γ∗+. Since z = 0 is the third order pole of
Q∗(z) dz2 and Q∗(z) dz2 > 0 for z ∈ (0, 1) it follows that the trajectories γ∗+ and γ∗−
each forms a zero angle with the segment [0, 1] at z = 0. In particular, γ∗+ contains
a point z∗ such that <z∗ > 0.

Since Q1(z, rk) converges to Q∗(z) uniformly in C \ {0}, it is not difficult to see
that for all sufficiently large k, the critical trajectory γ+ of the quadratic differential
Q(z, rk) dz

2 must intersect the disk {z : |z − z∗| ≤ (1/2)<z∗}. The latter contradicts
to part (1) of this theorem, which says that E(r) ∈ Lc−(r) and therefore γ+ ∪ γ− can
not have common points with the half plane {z : <z > 0}. This contradiction shows
that Q(z, r) dz2 has the form (5.2) for all r ∈ (0, r0). Now all statements concerning
extremal configurations are proved.

To find mcom(2 −
√

3), we use the fact, mentioned above in this proof, that the
Koebe function k(z) maps D \ (γ+∪ γ−) onto a domain G that is the plane slit along
the ray (−∞,−1

4
] and along a circular arc centered at −1

4
. Then it is a standard

exercise in Complex Analysis to find a function mapping G conformally onto the
upper half-plane. Then the interested reader may use formula (2.1) to verify that
ω∗con(2−

√
3) = 2

π
arccos(1/3).

To prove equation (5.4) in the part (3) of this theorem, we note that the critical
trajectories γ+ and γ− have one of their endpoints at z = −p if and only if the
Q1-length of the interval [−p, 0] is equal to the Q1-length of the upper half-circle
T+ = {z ∈ T : =z ≥ 0}; i.e. if and only if

´ 0

−p |Q1(z)|1/2 |dz| =
´
T
|Q1(z)|1/2 |dz|. The

latter equation after some routine calculations yields (5.4).
To obtain (5.5), we note that the triple (D \ (γ+ ∪ γ− ∪ [−1,−p]), γ+ ∪ γ− ∪

[−1,−p], 0) can be considered as a triad, whose module m can be calculated as in
(5.5). Then the minimal harmonic measure ω∗con(r) can be obtained as a solution to
the equation (2.12).

Equations (5.6) and (5.7) in the part (4) of this theorem can be justified using
same arguments as in our discussion of equations (5.4) and (5.5) above.

To prove (5), we assume that 0 < r1 < r2 < 1. For 0 < s < 1, let fs(z) denote
the Riemann mapping function from the domain Ω(s) = D \ ([−i,−is] ∪ [is, i]) onto
D such that fs(0) = 0, f ′s(0) > 0. There is s0, r1 < s0 < 1, such that fs0(ir1) = ir2,
fs0(−ir1) = −ir2. Then the continuum fs0(E(r1)) is in Lc−(r2). Now, using the
conformal invariance property of the harmonic measure and the Carleman’s principle
for the harmonic measure, we obtain

ω(0, E(r2),D) ≤ ω(0, fs0(E(r1)),D) = ω(0, E(r1),Ω(s0)) < ω(0, E(r1),D),

which proves that ω∗con(r) is strictly decreasing on 0 < r < 1. �
Remark 3. It follows from general results of the theory of Jenkins’ module

problem (see Theorem 4.1 in [27]) that the quadratic differentials Q(z, r) dz2 defined
in parts (3) and (4) of Theorem 1, depend continuously on the parameter r, which
means that the solution p = p(r) of equation (5.4) and solution ϕ = ϕ(r) of equation
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(5.6) each depends continuously on r. This continuity property can be also obtained
directly by considering p(r) and ϕ(r) as implicit functions defined by the relevant
equation. This approach implies also that p(r) and ϕ(r) are differentiable functions
of the parameter r.

The graphs of functions p(r) and ϕ(r) shown in Figure 41 suggest that p(r) strictly
increases from 0 to 1 a r varies from 0 to 2−

√
3 and ϕ(r) strictly decreases from π to

π/2 as r varies from 2−
√

3 to 1, but we were not able to prove these monotonicity
properties rigorously. Some partial results concerning properties of p(r) are stated
in the following corollary.

Figure 4. Functions p(r) (left graph) and ϕ(r) (right graph).

Corollary 1. For 0 < r < 2 −
√

3, let p = p(r) be solution to equation (5.4).
Then:

(a) p(r)→ 1 as r → 2−
√

3;
(b) p(r)/r → 1/δ as r → 0, where δ = 0.423543 . . . is the unique solution to the

equation

(5.8)
ˆ 1

0

√
1− x

x(x2 + δ2)
dx = π.

Proof. Part (a) follows from the fact that the extremal configuration in the
problem under consideration depends continuously on the parameter r and that the
corresponding quadratic differentials Q(z, r) dz2 have the form (5.2) for 0 < r <
2−
√

3 and the form (5.3) for 2−
√

3 < r < 1.
To prove part (b), we note first that there are constants c1 > 0 and c2 > 0 such

that c1 < p(r)/r < c2 for all r > 0 small enough. Indeed, if p(rn)/rn → ∞ for
some sequence rn → 0, then the value of the integral in the left-hand side of (5.4)
will diverge to ∞ while the integral in the right-hand side of (5.4) remains bounded.
Similar argument shows that p(rn)/rn cannot converge to 0 if rn → 0. Now, assuming
that p(rn)/rn → 1/δ, with 0 < δ <∞, and taking the limit in (5.4), we obtain (5.8),
which defines δ uniquely. �

1Numerical computations presented in this paper were performed by Dr. J. Padgett using “Math-
ematica” package. In particular, he provided us with the graphs of the functions p(r) and ϕ(r)
shown in Figure 4 as well as with the graphs of the module and harmonic measure functions shown
in Figure 5.
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Figure 5. Moduli (left graph) and harmonic measures (right graph). Solid lines represent
functions mcon(r) and ω∗

con(r) while dashed lines represent functions (1/2)m2(r) and ωL2(r)(0).

Next, we want to compare the minimal harmonic measure ω∗con(r) for wires
with a common contact point defined by equation (5.1) with the harmonic mea-
sure ω(0, L2(r),D) of two radial slits. The graphs of these two harmonic measures
displayed in Figure 5 (right graph) show that ω∗con(r) < ω(0, l2(r),D) for all r < r∗,
where r∗ = 0.1005 . . . This gives a numerical evidence that the configuration L2(r)
consisting of two radial slits is not an extremal configuration of wires for Prob-
lem P ∗2 (r) for small r. To support this with rigorous argument, we find the asymp-
totic expansions for the the moduli of triads relative to each of these configurations
of wires.

For 0 < r < 2 −
√

3, consider the triad (D \ E(r), E(r), 0), where E(r) is the
extremal set of wires from Theorem 1. Then the module m = mod(D\E(r), E(r), 0)
of this triad is given by formula (5.5) with p = p(r) defined by equation (5.4). Using
the relation p(r)/r → 1/δ of Corollary 1, we find asymptotic of the integrals in the
right-hand side of (5.5):

(5.9)
ˆ π

0

√
1 + 2p cos t+ p2

1 + 2r2 cos 2t+ r4
dt = π + o(1) as r → 0

and
ˆ 1

0

√
(x+ p)(1 + px)

x(x2 + r2)(1 + r2x2)
dx =

ˆ 1/r

0

√
(τ + p/r)(1 + prτ)

τ(τ 2 + 1)(1 + r4τ 2)
dτ

≤
ˆ 1

0

√
(τ + p/r)(1 + prτ)

τ(τ 2 + 1)(1 + r4τ 2)
dτ +

ˆ 1/r

1

√
(τ + p/r)(1 + p)

τ(τ 2 + 1)(1 + r2)
dτ

≤ A log(1/r) + o(log(1/r)) as r → 0,

(5.10)

where

(5.11) A =

√
(1 + p/r)(1 + p)

(1 + r2)(1 + r4)
→
√

1 + δ−1 = 1.83331 . . . as r → 0.
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Combining (5.9)–(5.11) with (5.5), we obtain

(5.12) mcon(r) ≥ π

2

1√
1 + δ−1

1

log(1/r)
+ o

(
1

log(1/r)

)
as r → 0.

We want to compare mcon(r) with the module related to the configuration L2(r).
By (2.3), we have ω(0, L2(r),D\L2(r) = ω(0, [−1,−r2],D\ [−1,−r2]). This together
with equation (2.12) imply that ω∗con(r) < ω(0, L2(r),D \ L2(r)) if and only if

(5.13) mcon(r) >
1

2
m2(r),

where m2(r) is given by (2.5). Using (5.12) and (2.12), we conclude that there is r1,
0 < r1 < r0, such that (5.13) holds for all r such that 0 < r < r1. Thus, we have
established the following.

Corollary 2. There is r1, 0 < r1 < r0, such that

ω∗con(r) < ωL2(r)(0)

for all r such that 0 < r < r1. In particular, the set L2(r) consisting of two radial
wires is not extremal for Problem P ∗2 (r) if r > 0 is small enough.

6. Disconnected sets of wires: a related module problem

As we have seen in Section 5, the minimal harmonic measure problem for con-
nected sets of wires is linked to a special module problem. So, it is reasonable to
expect that the minimal harmonic measure problem for disconnected sets is also re-
lated to some module problem. This is indeed the case and the relevant module
problem will be introduced in this section.

First, we recall some definitions. A simply connected domain G with four distinct
boundary points marked on ∂G is called a quadrilateral. Each quadrilateral has two
pairs of opposite sides, one of which is considered as “distinguished”. Then the module
of G, denoted by mod(G), is defined as the module of a family of all rectifiable arcs
γ in G, which join the distinguished sides of G, see [15] or [17].

Next, we introduce configurations (G0, G1, G2) consisting of three quadrilaterals
in the unit disk D. For a given 0 < r < 1, let D′r = D \ {0,±ir}. For ε > 0 small
enough, let γε0, γε1, and γε2 be Jordan arcs on D′r defined as follows: γε0 = [eiε, i sin ε]∪
{εeiθ : π/2 ≤ θ ≤ 3π/2} ∪ [−i sin ε, e−iε], γε1 = [ieiε,− sin ε+ ir]∪ {ir+ εeiθ : π ≤ θ ≤
2π} ∪ [sin ε+ ir, ie−iε], γε2 = {z : z̄ ∈ γε1}.

By Γ0, Γ1, and Γ2 we will denote the homotopy classes of arcs on D′r having
the arcs γε1, γε1, and γε2 as their representatives, respectively. We will say that a
quadrilateral G ⊂ D′r is associated with the class Γk if the arcs γ in G joining the
distinguished sides of G belong to Γk.

Problem M3Q. (Module problem for three quadrilaterals in D) For given
0 < r < 1 and α > 0, find the maximum

(6.1) M(r, α) = max{α2 mod(G0) + mod(G1) + mod(G2)}

and identify all extremal configurations {G∗0, G∗1, G∗2} over all triples {G0, G1, G2} of
nonoverlapping quadrilaterals G0, G1, and G2 on D′r associated with the classes Γ0,
Γ1, and Γ2, respectively.

In the statement of Problem M3Q we allow triples with one or more degenerate
quadrilaterals. In this case we put mod(Gk) = 0 if Gk = ∅.
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Problem M3Q is a particular case of the Jenkins’ module problem discussed in
many texts, see [14], [17], [27]. Its solution is given by Theorem 2 below, whose
statement requires some terminology of the theory of quadratic differentials Q(z) dz2

defined on the unit diskD and real-valued on its boundaryT. The critical trajectories
of every such quadratic differential divide D into a finite system of domains called the
domain configuration of Q(z) dz2. In this paper, we deal with quadratic differentials,
the domain configuration of which consists of at most three domains, say G0, G1,
and G2, each of which is a quadrilateral with respect to Q(z) dz2. The latter means
that each Gk can be considered as a quadrilateral as defined above, which has a pair
of distinguished sides on T such that Gk is swept out by the regular trajectories of
Q(z) dz2 having their end points on the opposite distinguished sides of Gk.

Theorem 2. For every 0 < r < 1 and α > 0, there is a unique triple, denoted
by {G0(r, α), G1(r, α), G2(r, α)}, which realizes the maximum in (6.1).

(1) If 0 < α ≤ 1, then G0(r, α) = ∅, G1(r, α) = D+ \ [ir, i], G2(r, α) = D− \
[−i,−ir].

(2) Let 0 < r ≤ r0 = 2−
√

3 and let α0 = α0(r) be defined by the equation

(6.2) α0 =
2
´ 1

0

√
(x+p)(x+1/p)

x(x2+r2)(x2+1/r2)
dx

´ 1

0

√
(x+p)(x+1/p)

x(x2+r2)(x2+1/r2)
dx+

´ p
0

√
(x−p)(x−1/p)

x(x2+r2)(x2+1/r2)
dx
,

where p = p(r) is determined from the equation (5.4), and let α0(r0) = 2. If
1 < α < α0, then the extremal triple coincides with the domain configuration
{G0, G1, G2} of the quadratic differential having the form (5.2) with p =
p(r, α) uniquely determined from the equation

(6.3) α

ˆ p

0

√
(x− p)(x− 1/p)

x(x2 + r2)(x2 + 1/r2)
dx = (2− α)

ˆ 1

0

√
(x+ p)(x+ 1/p)

x(x2 + r2)(x2 + 1/r2)
dx.

If α ≥ α0, then G1(r, α) = G2(r, α) = ∅ and G0(r, α) is a single quadrilateral,
which constitutes the domain configuration of the quadratic differential hav-
ing the form (5.2) with p (independent of α) determined from the equation
(6.3) with α = α0(r).

(3) Let r0 < r < 1 and let α1 = α1(r) > 2 be defined by the equation

(6.4) α1 =
2
´ 1

0

√
x2+2x cosϕ+1

x(x2+r2)(x2+1/r2)
dx

´ 1

0

√
x2+2x cosϕ+1

x(x2+r2)(x2+1/r2)
dx+

´ ϕ
0

√
cos t−cosϕ

cos 2t−(1+r4)/(2r2)
dt
,

where ϕ = ϕ(r) is determined from the equation (5.6). If 1 < α ≤ 2, then
the extremal triple coincides with the domain configuration of the quadratic
differential having the form (5.2), where p = p(r, α) ∈ (0, 1) is uniquely
determined from the equation (6.3) if 1 < α < 2 and p(r, 2) = 1. If 2 < α <
α1, then the extremal triple coincides with the domain configuration of the
quadratic differential having the form (5.3) with ϕ = ϕ(r, α), π < ϕ < π/2,
uniquely determined from the equation

(6.5) (α− 2)

ˆ 1

0

√
x2 + 2x cosϕ+ 1

x(x2 + r2)(x2 + 1/r2)
dx = α

ˆ ϕ

0

√
cos t− cosϕ

cos 2t− (1 + r4)/(2r2)
dt.

If α ≥ α1(r), then G1(r, α) = G2(r, α) = ∅ and G0(r, α) is the single quadrilat-
eral, which constitutes the domain configuration of the quadratic differential
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having the form (5.3) with ϕ (independent of α) uniquely determined from
the equation (6.5) with α = α1(r).

Proof. The main part of this theorem follows from Jenkins’ Theorem 1 in [14]. A
particular case of Jenkins’ theorem concerning the module problem on the unit disk
was discussed in details by Kuz’mina in [17]. It follows from Theorem 0.2 in [17] that
for every 0 < r < 1 and α > 0 the extremal triple is unique and coincides with the
domain configuration of a quadratic differential Q(z, r, α) dz2 having the form (5.2) or
(5.3). It is also well known that the quadratic differential Q(z, r, α) dz2 and therefore
its domain configuration {G0, G1, G2} depend continuously on the parameters r and
α; see Theorem 4.1 in [27]. Figure 3 shows three possible domain configurations
extremal for Problem M3Q.

If neither of the quadrilaterals G0, G1, and G2 is degenerate, then the Q-lengths
of the trajectories γ and γ′ of Q(z, r, α) dz2 lying in the quadrilaterals G0 and G1,
respectively, satisfy the following equation:

(6.6) α

ˆ
γ

|Q1/2(z, rα)| |dz| =
ˆ
γ′
|Q1/2(z, r, α)| |dz|.

If Q(z, r, α) dz2 has the form (5.2), then integrating along corresponding critical
trajectories one can easily see that (6.6) is equivalent to the equation (6.3). If
Q(z, r, α) dz2 has the form (5.3), then, integrating along corresponding critical tra-
jectories once more, we find that (6.6) is equivalent to the equation (6.3).

Next we will discuss possible degenerate configurations. The following facts are
special cases of well-known results concerning degeneration of some domains of the
extremal partitions related to the Jenkins’ module problem; see [27, Theorem 4.3]:

(a) There are real α′ = α′(r) and α′′ = α′′(r), 0 < α′ < α′′, such that G0(r, α) = ∅
for all α ≤ α′ and G0(r, α) 6= ∅ for all α > α′ and G1(r, α) = G2(r, α) = ∅ for all
α ≥ α′′ and G1(r, α) 6= ∅ (and therefore G2(r, α) 6= ∅) for all α < α′′.

(b) To find α′(r), we consider the module problem (6.1) with α = 0. Then
the extremal triple {G0, G1, G2} consists of the degenerate quadrilateral G0 = ∅ and
quadrilaterals G1 = D+ \ [ir, i] and G2 = D− \ [−i,−ir]. Let Q0(z) dz2 denote the
quadratic differential associated with this problem, which has the form

Q0(z) dz2 = C(r)
[
(z2 + r2)(z2 + 1/r2)

]−1
dz2,

where the constant C(r) is chosen in such a way that the Q0-length of every trajectory
γ of Q0(z) dz2 lying in G1 equals 1; i.e.

´
γ
|Q1/2

0 (z)| |dz| = 1. Then it follows from
Theorem 4.3 in [27] that

α′(r) = inf
γ′∈Γ0

Q0-length(γ′) = 2

ˆ 1

0

Q
1/2
0 (x) dx = 1.

(c) To find α′′(r), we consider the problem on the maximum max mod(G0) over
all quadrilaterals G0 associated with the class Γ0. Let Q1(z) dz2 be the quadratic
differential associated with this problem, which has the form

Q1(z) dz2 = C1(r)Q(z, r) dz2,

where Q(z, r) dz2 is the quadratic differential described in Theorem 1 and the con-
stant C1(r) > 0 is chosen in such a way that the minimal Q1-length of arcs γ ∈ Γ1

equals 1; i.e.

inf
γ∈Γ1

ˆ
γ

|Q1(z)| |dz| = 1.
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Then, using Theorem 4.3 in [27] once more, we conclude that α′′(r) = α0(r),
where α0(r) is defined by (6.2), if the quadratic differential Q(z, r) dz2 has the form
(5.2) and α′′(r) = α1(r), where α1(r), is defined by (6.4) if Q(z, r) dz2 has the form
(5.3). �

7. Minimal harmonic measure in quadrilaterals of a fixed module

Let 0 < r < 1 and let α ≥ 1 be such that G1(r, α) 6= ∅. Then G2(r, α) =
{z : z̄ ∈ G1(r, α)} is not empty as well. Let γ+(r, α) denote the side of G1(r, α)
joining the point ir with the unit circle T. Similarly, let γ−(r, α) denote the side of
G2(r, α) joining −ir with T. Then the domain Ω(r, α) = D \ (γ+(r, α) ∪ γ−(r, α))
can be considered as a quadrilateral having γ+(r, α) and γ−(r, α) as a pair of its
non-distinguished sides.

It follows from part (1) of Theorem 2 that Ω(r, 1) = D \ ([ir, i] ∪ [−i. − ir]).
Mapping Ω(r, 1) conformally onto a suitable rectangle, it is not difficult to find that
mod(Ω(r, 1)) = m(r), where

(7.1) m(r) = 2K(r2)/K′(r2).

Lemma 5. (1) For a fixed r such that 0 < r < r0, the module mod(Ω(r, α))
is a continuous function of α, which strictly decreases from m(r) to 0 as α
runs from 1 to α0(r).

(2) For a fixed r such that r0 < r < 1, the module mod(Ω(r, α)) is a continuous
function of α, which strictly decreases from m(r) to mod(Ω(r, α1(r))) > 0 as
α runs from 1 to α1(r).

Proof. It is well know (see, for instance, Theorems 4.1 and Theorem 4.2 in [27])
that the extremal triple {G0(r, α), G1(r, α), G2(r, α)} depends continuously on the
parameters r and α. This implies continuity of mod(Ω(r, α)) as a function of r and
α. It follows from Theorem 1 in [14] (or from part (1) of Theorem 2) that for all
α ≥ 1, mod(Ω(r, α)) ≤ mod(Ω(r, 1)).

Thus, to prove strict monotonicity of mod(Ω(r, α)) with respect to α, it remains
to show that mod(Ω(r, α1)) 6= mod(Ω(r, α2)) whenever α1 6= α2. Proceeding by
contradiction, let us assume that mod(Ω(r, α1)) = mod(Ω(r, α2)) for some r and
α1, α2 such that 1 ≤ α1 < α2. Then there is a conformal mapping f1 : Ω(r, α1) →
Ω(r, α2), which maps the sides γ+(r, α1) and γ−(r, α1) onto the sides γ+(r, α2) and
γ−(r, α2), respectively. Since Ω(r, α1) and Ω(r, α2) are symmetric with respect to the
real axis it follows that f1([−1, 1]) = [−1, 1]. Hence, −1 < f1(0) < 1.

Assume first that a = f1(0) < 0. Then the triple {f1(G0(r, α1)), f1(G1(r, α1)),

f1(G2(r, α1))} is admissible for the module problem on M(r, α1). Let G̃0 = f1(G0(r,

α1))∪ [a, 0). Then G̃0 can be considered as a quadrilateral, the distinguished sides of
which coincide with the distinguished sides of f1(G0(r, α1)). Now the comparison the-
orem for quadrilaterals implies the inequality mod(G̃0) > mod(f1(G0(r, α1))). Since
the triple {G̃0, f1(G1(r, α1)), f1(G2(r, α1))} is admissible for the module problem on
M(r, α1), the latter inequality leads to the following contradiction:

α2
1 mod(G̃0) + mod(f1(G1(r, α1))) + mod(f1(G2(r, α1))) > M(r, α1),

which proves strict monotonicity in the case under consideration.
If f1(0) > 0, then we have f2(0) < 0, where f2 = f−1

1 maps Ω(r, α2) conformally
onto Ω(r, α1). In this case, repeating our previous proof with f1 replaced by f2 and
with Ω(r, α1) replaced by Ω(r, α2), we again will get a contradiction.
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If f1(0) = 0, then arguing as in the previous cases we conclude that the triple
{f1(G0(r, α1)), f1(G1(r, α1)), f1(G2(r, α1))} is extremal for the module problem on
M(r, α1). Since the extremal triple is unique we must have f1(Gk(r, α1)) = Gk(r, α1)
for k = 0, 1, 2. Thus, γ+(r, α1) = γ+(r, α2). Since Q(z, r, αk) dz

2 > 0 along γ+(r, αk)
we must have

(7.2) Q(z, r, α1)/Q(z, r, α2) > 0 for z ∈ γ+(r, α1).

Assume that the quadratic differentials Q(z, r, α1) dz2 and Q(z, r, α2) dz2 each
has the form (5.2) with p = p1 and p = p2, respectively. Taking the limit in (7.2) as
z → ir along γ+(r, α1), we obtain the inequality

1− r2 + ir(p1 + 1/p1)

1− r2 + ir(p2 + 1/p2)
> 0.

Therefore we must have p1 = p2. Hence, α1 = α2 by (6.3) contradicting the assump-
tion α1 < α2. Thus, mod(Ω(r, α1)) 6= mod(Ω(r, α2)) in the case under consideration.

In the cases when Q(z, r, α1) dz2 has the form (5.2) and Q(z, r, α2) dz2 has the
form (5.3) or when both quadratic differentials have the form (5.3) the proof is similar.
So, we leave it to the reader. Thus, strict monotonicity of mod(Ω(r, α)) as a function
of α is proved. If 0 < r ≤ r0, then one of the distinguished sides of Ω(r, α) shrinks
to a point as α approaches α0(r) from the left. This implies that mod(Ω(r, α))→ 0
as α → α0(r). If r0 < r < 1, then the family of the quadrilaterals Ω(r, α) converges
to the non-degenerate quadrilateral Ω(r, α1(r)) as α approaches α1(r) from the left.
This implies that mod(Ω(r, α))→ mod(Ω(r, α1(r))) as α → α1(r). The proof of the
lemma is complete. �

The monotonicity property established in Lemma 5 allows us introducing, for
each r, 0 < r < 1, a parametric family of quadrilaterals Ωr(m) depending continu-
ously on the parameter m, 0 < m ≤ m(r), as follows.

If 0 < r ≤ r0, then for 0 < m ≤ m(r), we put Ωr(m) = Ω(r, α(m)), where α(m)
is chosen such that mod(Ω(r, α(m))) = m.

If r0 < r < 1, then for m1(r) ≤ m ≤ m(r), where m1(r) = mod(Ω(r, α1(r))), the
quadrilateral Ωr(m) is defined as above; i.e. Ωr(m) = Ω(r, α(m)). For 0 < m < m1(r),
we define Ωr(m) to be the domain D \ (γ+(r, α1(r)) ∪ γ−(r, α1(r))) considered as a
quadrilateral, the distinguished sides of which are the circular arcs {eiθ : |θ| < ϕ(r)}
and {eiθ : |θ−π| < π−ϕr(m)}, where ϕr(m), ϕ(r) < ϕr(m) < π, is chosen such that
mod(Ωr(m)) = m.

For 0 < r < 1 and 0 < m ≤ m(r), let Lr(m) be the union of the closed non-
distinguished sides of the quadrilateral Ωr(m). For m = 0, we put Lr(0) = L(r),
where L(r) is the extremal connected set of wires defined in Theorem 1. Then, for
each fixed 0 < r < 1, {Lr(m) : 0 ≤ m ≤ m(r)} is a family of sets of wires Lr(m) ∈ D−
depending continuously on the parameter m, which are symmetric with respect to R
and admissible for the Problem P ∗2 (r).

It follows from Lemmas 3 and 4 that finding the minimal harmonic measure of
Problem P ∗2 (r), we may restrict ourselves with sets of wires L, which are symmetric
with respect toR and lay onD−. The connected extremal sets of wires are completely
described by Theorem 1. Below in this section we consider only disconnected sets
of wires L ⊂ D−, which are symmetric with respect to R. Let L = l+ ∪ l−, where
l+ = L ∩ H+, l− = L ∩ H−. The domain Ω(L) = D \ L can be considered as a
quadrilateral having l+ and l− as its pair of non-distinguished sides. Since ±ir ∈ L,
the module of Ω(L) satisfies the inequality 0 < mod(Ω(L)) ≤ m(r). Theorem 3 below
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solves the problem 1.3 over the subclass of symmetric with respect to R disconnected
sets of wires L such that mod(Ω(L)) = m, where m, 0 < m ≤ m(r), is fixed.

Theorem 3. Let r and m be fixed such that 0 < r < 1, 0 < m ≤ m(r). Let
L ⊂ D− be a symmetric disconnected set of wires admissible for the Problem P ∗2 (r)
such that mod(Ω(L)) = m. Then

(7.3) ωL(0) ≥ ωLr(m)(0).

Equality occurs in (7.3) if and only if L = Lr(m).

Proof. Arguing by contradiction, suppose that there is a set of wires L 6= Lr(m)
satisfying the assumptions of the theorem such that

(7.4) ωL(0) ≤ ωLr(m)(0).

Since mod(Ω(L)) = mod(Ωr(m)), there is a function f , which maps Ωr(m) con-
formally onto Ω(L) such that f(Lr(m)) = L. Since Ω(L) and Ωr(m) are symmetric
with respect to R we have the inequality −1 < f(0) < 1. It follows from the polariza-
tion comparison theorem for harmonic measure [23, Theorem 2] that ω(x, L,Ω(L))
strictly decreases on the interval 0 ≤ x ≤ 1. Therefore, (7.4) implies that f(0) ≤ 0.
Let {G∗0, G∗1, G∗2} be the triple extremal for the module ProblemM3Q with α = α(m).
Since f(0) ≤ 0, one can easily see that the triple {f(G∗0), f(G∗1), f(G∗2)} is admissible
for this problem. By Theorem 2, the extremal triple of the module Problem M3Q is
unique. Since L 6= Lr(m), the uniqueness and conformal invariance of moduli imply
the following inequality

M(r, α(m)) = (α(m))2 mod(G∗0) + mod(G∗1) + mod(G∗2)

= (α(m))2 mod(f(G∗0)) + mod(f(G∗1)) + mod(f(G∗2)) < M(r, α(m)),

which, of course, is absurd. Therefore, our assumption (7.4) is not satisfied. The
proof is complete. �

8. Computation of the harmonic measure and module

As Theorems 1 and 3 show, for every r andm such that 0 < r < 1, 0 ≤ m ≤ m(r),
there is a unique (up to reflection in the imaginary axis) set of wires Lr(m), which
minimizes the harmonic measure at z = 0. These theorems also provide qualitative
solutions, in terms of related quadratic differentials, to the corresponding problems
on the minimal harmonic measure. In this section, we discuss how to compute the
minimal harmonic measure ωLr(m)(0) numerically.

For computational purposes, it is convenient to transplant the quadratic differ-
entials (5.2) and (5.3) and the corresponding module problems into two auxiliary
complex planes Cζ and Cw.

Let ζ = g1(z), where g1(z) = 2z/(1+z2). In terms of ζ, the quadratic differential
differentials (5.2) and (5.3) both take the same form

(8.1) Q1(ζ, t, q) dζ2 = − ζ + q

ζ(ζ2 − 1)(ζ2 + t2)
dζ2.

Here t = 2r/(1 − r2) and q = 2p/(1 + p2) if Q(z, r, α) dz2 has the form (5.2) or
q = − cscϕ if it has the form (5.3). We note also that the range 0 < q ≤ 1
corresponds to the form (5.2) while the range 1 < q ≤ q0, where q0 = − csc(ϕ(r)),
corresponds to the form (5.3).
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The module Problem M3Q is equivalent to the following module problem on the
extremal partition of Cζ . For given t > 0 and α ≥ 1, find the maximum

(8.2) M1(t, α) = max
{
α2 mod(D0) + 4 mod(D1)

}
over all pairs {D0, D1} of doubly-connected domains D0 and D1 on C′ζ = C \
{0,±1,±it} such that the curves γ separating the boundary components of D0 are
homotopic on C′ζ to narrow ellipses having foci at 0 and 1 and the curves γ separat-
ing the boundary components of D1 are homotopic on C′ζ to narrow ellipses having
foci at ±1. Figures 6 and 7 show domain configurations of the quadratic differential
Q1(ζ, t, q) dζ2 for some typical values of t and q.

Figure 6. Geometry of critical trajectories of Q1(ζ, t, q) dζ
2 for t > 0 and 0 < q < 1.

Figure 7. Geometry of critical trajectories of Q1(ζ, t, q) dζ
2 for t > 0 and q ≥ 1.

Let {Dζ,0(t, α), Dζ,1(t, α)} be the extremal pair of domains of the problem (8.2).
The problems (6.1) and (8.2) correspond each other in the following sense: g1(G0(r,
α)) = Dζ,0(t, α), g1(G1(r, α)) = Dζ,1(t, α) ∩ H+, and g1(G2(r, α)) = Dζ,1(t, α) ∩
H−. Thus, the pair of the quadrilaterals g1(G1(r, α)) and g1(G2(r, α)), being glued
along the corresponding intervals of the real axis, form the doubly-connected domain
Dζ,1(t, α).

Below we assume that Dζ,1(t, α) 6= ∅. Let γζ,1 = γζ,1(t, α) denote the boundary
component of Dζ,1(t, α) joining the points it and −it. Let w = g2(ζ) be a conformal
mapping from the domain Dζ(t, α) = C \ γζ,1(t, α) onto the domain Dτ

w = Cw \
((−∞,−1/τ ] ∪ [1/τ,∞)) with some 0 < τ < 1 such that g2(−1) = −1, g2(1) = 1.
Existence of such mapping g2 follows from the Riemann mapping theorem but the
parameter τ can not be arbitrarily prescribed. Its value τ = τ(t, α) is uniquely
determined by the following equation for the moduli of the corresponding doubly-
connected domains:

(8.3) mod(Cζ \(γζ,1(t, α)∪ [−1, 1])) = mod(Cw \((−∞,−1/τ ]∪ [−1, 1]∪ [1/τ,∞))).

Using the reflection principle for the module of a quadrilateral and equation (8.3),
we obtain the following relation between the parameters m and τ :

(8.4) m = 4 mod(Cw \ ((−∞,−1/τ ] ∪ [−1, 1] ∪ [1/τ,∞))) =
K′(τ)

K(τ)
.
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Changing variables in (8.1) via conformal mapping w = g2(ζ), we obtain an
equivalent quadratic differential Q2(w, τ, a, b) dw2 defined in the w-plane:

(8.5) Q2(w, τ, a, b) dw2 =
w − b

(w − a)(w2 − 1)(w2 − 1/τ 2)
dw2,

where a = g2(0) and b = g2(−q) are such that − 1
τ
< b < a < 1.

Moreover, we claim that a > 0. Indeed, since γζ,1(t, α) is a subset of the closed
left half-plane, it follows from the polarization comparison theorem for harmonic
measure [23, Theorem 2] that

mod(Cζ \ (γζ,1(t, α) ∪ [−1, 0])) < mod(Cζ \ (γζ,1(t, α) ∪ [0, 1])).

Since the module of a doubly connected domain is conformally invariant, the latter
inequality implies that

mod(Cw \ ((−∞,− 1
τ
] ∪ [−1, a] ∪ [ 1

τ
,∞))) < mod(Cw \ ((−∞,− 1

τ
] ∪ [a, 1] ∪ [ 1

τ
,∞))),

which, in turn, implies that a > 0.
The module problem corresponding to the quadratic differential (8.5) is the fol-

lowing. For given τ , a, and α such that 0 < τ < 1, 0 ≤ a < 1, α ≥ 1, find the
maximum

(8.6) M2(τ, a, α) = max
{
α2 mod(Dw,0) + 4 mod(Dw,1)

}
over all pairs {Dw,0, Dw,1} of doubly-connected domains Dw,0 and Dw,1 on the punc-
tured plane C′w = C \ {a,±1,±1/τ} such that the curves γ separating the boundary
components of Dw,0 are homotopic on C′w to narrow ellipses having foci at a and 1
and the curves γ separating the boundary components of Dw,1 are homotopic on C′w
to narrow ellipses having foci at ±1.

Let {Dw,0(τ, a, α), Dw,1(τ, a, α)} be the extremal pair of doubly-connected do-
mains of the problem (8.6). Since the module of a doubly-connected domain is invari-
ant under conformal mapping it follows that Dw,k(τ, a, α) = g2(Dζ,k(t, α)), k = 0, 1.
Figure 8 shows domain configurations of the quadratic differential Q2(w, τ, a, b) dw2

for some typical values of τ , a, and b.

Figure 8. Geometry of critical trajectories of Q2(w, τ, a, b) dw
2 for 0 < τ < 1, 0 < a < 1,

−1/τ < b < a.

Let g = g2 ◦ g1. Then g maps Ω(r, α) conformally onto D1
w = Cw \ ((−∞,−1] ∪

[1,∞)) such that g(0) = a and g(γ±(r, α)) = R \ (−1/τ, 1/τ). Since the harmonic
measure is conformally invariant, we have

(8.7) ωr(m) = ω(a,R \ (−1/τ, 1/τ), D1
w).

To compute the harmonic measure in the right-hand side of (8.7), we consider
the function w1 = g3(w), where g3(w) =

√
w−1
w+1

with the branch of the radical defined
by g3(0) = i. The function g3 maps D1

w conformally onto the upper half plane H+.
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Let g3(a) = iA, g3(1/τ ± i0) = ±κ. Then A =
√

1−a
1+a

> 0, 0 < κ =
√

1−τ
1+τ

< 1 and
g3(−1/τ ± i0) = ±1/κ.

Using symmetry and conformal invariance of the harmonic measure we obtain

ω(a,R \ (−1/τ, 1/τ), D1
w) = 2ω(iA, [κ, 1/κ],H+) =

2

π

(
arctan

1

κA
− arctan

κ

A

)
.

This after some algebra gives the desired formula for the harmonic measure ωr(m):

(8.8) ωr(m) =
2

π

(
arctan

√
(1 + τ)(1 + a)

(1− τ)(1− a)
− arctan

√
(1− τ)(1 + a)

(1 + τ)(1− a)

)
.

We recall that τ is related to m via formula (8.4). Next, we discuss how the
parameters τ , a, and b defined above can be calculated for given values of t and q.
Since t and q are related to r and m, the latter will also provide a way to express a
and b in terms of r and m.

First, we assume that 0 < r ≤ 2−
√

3. In this case, r and m are in a one-to-one
correspondence with the parameters t, 0 < t ≤

√
3/3, and q, 0 < q ≤ 2p(r)

1+p2(r)
, of

the quadratic differential (8.5). Thus, our goal is to express τ , a, and b as functions
of t and q. Using the fact that Q1-lengths of the critical trajectories (orthogonal
trajectories) of Q1(ζ) dζ2 are proportional to Q2-lengths of the corresponding critical
trajectories (orthogonal trajectories) of Q2(w) dw2 and integrating over appropriate
intervals, we obtain the following system of equations:´

[−1,−q]

√
Q1(ζ) dζ´

[0,1]

√
Q1(ζ) dζ

=

´
[−1,b]

√
Q2(w) dw´

[a,1]

√
Q2(w) dw

,(8.9)

´
[−q,0]

√
Q1(ζ) dζ´

[0,1]

√
Q1(ζ) dζ

=

´
[b,a]

√
Q2(w) dw´

[a,1]

√
Q2(w) dw

,(8.10)

=
´

[0,it]

√
Q1(ζ) dζ´

[0,1]

√
Q1(ζ) dζ

=
=
´

[1,1/τ ]

√
Q2(w) dw´

[a,1]

√
Q2(w) dw

.(8.11)

Using appropriate parameterizations of the intervals of integration, we rewrite
equations (8.9)–(8.11) in the following form, which includes only real-valued integrals:

´ 1

q

√
x−q

x(1−x2)(x2+t2)
dx

´ 1

0

√
x+q

x(1−x2)(x2+t2)
dx

=

´ 1

−b

√
x+b

(x+a)(1−x2)(1−τ2x2)
dx

´ 1

a

√
x−b

(x−a)(1−x2)(1−τ2x2)
dx

,(8.12)

´ q
0

√
q−x

x(1−x2)(x2+t2)
dx

´ 1

0

√
x+q

x(1−x2)(x2+t2)
dx

=

´ a
b

√
x−b

(a−x)(1−x2)(1−τ2x2)
dx

´ 1

a

√
x−b

(x−a)(1−x2)(1−τ2x2)
dx
,(8.13)

´ t
0

√
x+
√
x2+q2

2x(1+x2)(t2−x2)
dx

´ 1

0

√
x+q

x(1−x2)(x2+t2)
dx

=

´ 1
τ

1

√
x−b

(x−a)(x2−1)(1−τ2x2)
dx

´ 1

a

√
x−b

(x−a)(1−x2)(1−τ2x2)
dx
.(8.14)

It follows from our previous results, for fixed t and q, such that 0 < t ≤ t(r0) =
√

3/3,
0 < q ≤ 2p(r)

1+p2(r)
with p(r) defined by equation (5.4), there is a unique solution
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a = a(t, q), b = b(t, q), τ = τ(t, q) of the system of equations (8.12)–(8.14) such that

(8.15) 0 < a < 1, −1 < b < a, 0 < τ < 1.

Suppose now that 2 −
√

3 < r < 1. In this case, r and m are in a one-to-one
correspondence with the parameters t,

√
3/3 < t < ∞, and q, 0 < q ≤ − cscϕ(r),

where ϕ(r) is defined by equation (5.6). In this case, if 0 < q ≤ 1, then a(t, q), b(t, q),
and τ(t, q) can be found from equations (8.12)–(8.14). In the case 1 < q ≤ − cscϕ(r),
we use the proportionality of the Q1-lengths and Q2-lengths of appropriate intervals
to find the following counterpart of system of equations (8.12)-(8.14):

´ q
1

√
q−x

x(x2−1)(x2+t2)
dx

´ 1

0

√
x+q

x(1−x2)(x2+t2)
dx

=

´ −b
1

√
x+b

(x+a)(x2−1)(1−τ2x2)
dx

´ 1

a

√
x−b

(x−a)(1−x2)(1−τ2x2)
dx

,(8.16)

´ 1

0

√
q−x

x(1−x2)(x2+t2)
dx

´ 1

0

√
x+q

x(1−x2)(x2+t2)
dx

=

´ a
−1

√
x−b

(a−x)(1−x2)(1−τ2x2)
dx

´ 1

a

√
x−b

(x−a)(1−x2)(1−τ2x2)
dx

,(8.17)

´ t
0

√
x+
√
x2+q2

2x(1+x2)(t2−x2)
dx

´ 1

0

√
x+q

x(1−x2)(x2+t2)
dx

=

´ 1
τ

1

√
x−b

(x−a)(x2−1)(1−τ2x2)
dx

´ 1

a

√
x−b

(x−a)(1−x2)(1−τ2x2)
dx
.(8.18)

Once more, it follows from our previous results that for fixed t and q, such that√
3/3 < t < ∞, 1 < q ≤ − cscϕ(r) with ϕ(r) defined by equation (5.6), there is

a unique solution a = a(t, q), b = b(t, q), τ = τ(t, q) of the system of equations
(8.16)-(8.18) such that

(8.19) 0 < a < 1, −1/τ < b < −1, 0 < τ < 1.

Computational Problem. Systems of equations, similar to systems (8.12)–
(8.14) and (8.16)–(8.18), arise quite often in extremal problems related to quadratic
differentials. It appears that numerical solution of such problems is rather chal-
lenging, especially when the number of unknown parameters is relatively large (say
greater than 5). The reason here is, of course, the presence of singularities inside
of the integrals. It will be very useful to have a program build in “Mathematica” or
“MATLAB”, which can be used to solve systems of equations as above with reasonably
large number of integral equations with singularities.

Remark 4. Numerical computation of the harmonic measure usually requires
numerical computation of relevant conformal mappings, which is rather difficult prob-
lem. An interesting approach to compute the harmonic measure, capacity of a con-
denser and some other conformally invariant characteristics of a planar domain was
recently suggested by Nasser and Vuorinen [21], [22].

9. Relative growth of the harmonic measure and module

Summarizing our findings in the previous sections, we obtain the following qual-
itative solution of Problem P ∗2 (r) for every fixed r, 0 < r < 1. If L is an extremal
set of wires for (1.3) with n = 2, then either L ⊂ D− or L ⊂ D+. In the latter case,
the set of wires −L = {z : − z ∈ L} is also extremal and −L ⊂ D−. If L ⊂ D−,
then L = Lr(m

′) for some m′ ∈ [0,m(r)]. Thus, every extremal set of wires up to a
symmetry with respect to the imaginary axis belongs to the parametric family of sets
of wires {Lr(m) : 0 ≤ m ≤ m(r)} related to the module Problem M3Q. Since the
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harmonic measure ω(z, E,Ω) is an increasing function of E, we conclude in addition
that for r ∈ (r0, 1) each extremal set of wires is disconnected.

This discussion shows that in order to find the minimal harmonic measure ω∗2(r)
and identify the extremal sets of wires, we have to find the absolute minimum of
the function ωr(m) := ωLr(m)(0) on the interval 0 ≤ m ≤ m(r) if 0 < r ≤ r0 or on
the interval m1(r) ≤ m ≤ m(r) if r0 < r < 1. Thus, on this stage we have to deal
with a standard calculus problem for a complicated transcendental function of the
parameter m defined implicitly.

If the harmonic measure ωr(m) defined by equation (8.8) achieves its minimum
for some values of τ and m then we must have dωr(m) = 0 for these values. Differ-
entiating (8.8) and then simplifying, we find that the latter equation is equivalent to
the equation

(9.1) aτ(1− τ 2) da = (1− a2) dτ.

As we have shown in Section 8, the quadratic differentials (8.1) and (8.5) are
related to the extremal problems (8.2) and (8.6). Therefore, for fixed t, the ze-
ros and some poles of these quadratic differentials, as well as the module m of the
correspondent quadrilateral Ωr(m) are actually functions of the weight α ≥ 1. To
emphasize this dependence, we will write τ = τ(α), a = a(α), m = m(α), etc. Thus,
if ωr(m(α)) achieves its minimum at α = α0, then the functions a(α) and τ(α) satisfy
the equation (9.1) at α = α0.

Next, we will discuss how the weighted sum of moduli M2(τ, a, α) depend on α.
Since

M2(τ(t, α), a(t, α), α) = M1(t, α),

differentiating we obtain

(9.2)
∂M2

∂τ

∂τ

∂α
+
∂M2

∂a

∂a

∂α
+
∂M2

∂α
=
∂M1

∂α
.

To find ∂M2/∂α and ∂M1/∂α, we apply the differentiation formula of Theo-
rem 5.1 in [27]. Then we obtain

(9.3)
∂M1

∂α
= 2αmod(Dζ,0),

∂M2

∂α
= 2αmod(Dw,0).

Since Dζ,0 and Dw,0 are conformally equivalent, we have mod(Dζ,0) = mod(Dw,0).
Using this and (9.3), we simplify (9.2) as follows

(9.4)
∂M2

∂a
da = −∂M2

∂τ
dτ.

To find ∂M2/∂a and ∂M2/∂τ , we consider M2 as a function of simple poles a,
v1 = 1/τ , and v2 = −1/τ of the quadratic differential (8.5). Then applying the
differentiation formula of Theorem 5.2 in [27], we find:

∂M2

∂a
= πC lim

w→a
(Q2(w, τ, a, b)(w − a)) = πC

τ 2(a− b)
(1− a2)(1− a2τ 2)

,(9.5)

∂M2

∂v1

= πC lim
w→1/τ

(Q2(w, τ, a, b)(w − 1/τ)) = πC
τ 3(1− bτ)

2(1− τ 2)(1− aτ)
,(9.6)

∂M2

∂v2

= πC lim
w→−1/τ

(Q2(w, τ, a, b)(w + 1/τ)) = −πC τ 3(1 + bτ)

2(1− τ 2)(1 + aτ)
.(9.7)
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Here C = C(τ, a, b) > 0 is a normalizing constant defined by the following condition:

C1/2 = α/

(
2

ˆ 1

a

√
Q2(w, τ, a, b) dw

)
.

Using (9.6) and (9.7) after some algebra, we obtain

(9.8)
∂M2

∂τ
=
∂M2

∂v1

dv1

dτ
+
∂M2

∂v2

dv2

dτ
= −πC τ(1− abτ 2)

(1− τ 2)(1− a2τ 2)
.

Finally, substituting (9.5) and (9.8) into (9.4) and simplifying, we obtain the
following equation for the functions τ = τ(t, α) and a = a(t, α):

(9.9) τ(1− τ 2)(a− b) da = (1− a2)(1− abτ 2) dτ.

Comparing equations (9.1) and (9.9), we obtain the following necessary condition
for the quadratic differential (8.5) if it corresponds to the minimum of the harmonic
measure in the problem P ∗2 for a fixed r, 0 < r < 1.

Lemma 6. For a given 0 < r < 1, let Q2(w, a, b, τ) dw2 be a transplantation into
the w-plane of the quadratic differential Q(z, r, α) dz2. If Q(z, r, α) dz2 corresponds
to a disconnected set of wires extremal for the Problem P ∗2 (r), then b = b(r, α) = 0.

10. Further discussion and questions

It follows from our discussions in the previous sections that an extremal config-
uration of Problem P ∗2 exists, is not unique, and every such configuration consists of
arcs of critical trajectories of a related quadratic differential. In the case of a general
domain D with n controlling points bk ∈ D, we suggest the following steps toward a
solution of Problem P1.

Problem P2.
(a) Under the assumptions of Problem P1, prove that there is at least one con-

figuration of wires L ∈ L(a,B,D) minimizing the harmonic measure in (1.2).
(b) Prove that every configuration of wires, extremal for Problem P1, consists of

arcs of trajectories of some Jenkins–Strebel quadratic differential.

Next, we want to recall a generalization of the Gonchar’s problem mentioned in
the Introduction, which was suggested by Baernstein II [2].

Problem P3. Let Θn = (θ1, θ2, . . . , θn) denote the set of angles 0 ≤ θ1 < θ2 <
· · · < θn < 2π and let Θ∗n = (θ∗1, θ

∗
2, . . . , θ

∗
n) with θ∗k = 2πk/n, denote the set of

equally distributed angles. Let E be a compact set on the interval (0, 1] such that
ω(0, E,D \ E) > 0, let EΘn =

⋃n
k=1

(
eiθkE

)
, and let EΘ∗n =

⋃n
k=1

(
e2πi(k−1)/nE

)
.

Prove that

(10.1) ω(0, EΘn ,D \ EΘn) ≤ ω(0, EΘ∗n ,D \ EΘ∗n)

with equality sign if and only if EΘn coincides with EΘ∗n up to rotation about the
origin. Baernstein II suggested even a more general problem to prove the following
inequality for integral means:ˆ 2π

0

Φ(ω(reiθ, EΘn ,D \ EΘn)) dθ ≤
ˆ 2π

0

Φ(ω(reiθ, EΘ∗n ,D \ EΘ∗n)) dθ,

where 0 < r < 1 and Φ(t) is a non-negative, non-decreasing, convex function.

Problem P3 is more challenging than the original Gonchar’s problem because
now we have to work with multiply connected domains D \EΘn while in the original
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problem these domains were simply connected. Baernstein himself solved Problem P3
for n = 2 and n = 3. The only known case when the inequality (10.1) is proved for
all n for multiply connected domains is when E = [r1, r2] with 0 < r1 < r2 < 1, see
[26].

The following version of Gonchar’s problem also presents significant interest.

Problem P4. For 0 < r1 < r2 < 1, let F = [r1, 1], E = [r1, r2]. Prove that

(10.2) ω(0, EΘn ,D \ FΘn) ≤ ω(0, EΘ∗n ,D \ FΘ∗n)

with equality sign if and only if EΘn coincides with EΘ∗n up to rotation about the
origin.

We note that, although Problem P4 deals with the harmonic measure ω(0, EΘn ,D\
FΘn) considered with respect to a simply connected domain, Dubinin’s dissym-
metrization approach (in its original form) fails and therefore additional new ideas
are needed.

We want to mention one more problem, about n ≥ 2 wires growing in D starting
at the points zk = e2πi(k−1)/n, which is in line with previous problems.

Problem P5. Find

(10.3) M∗
n(s) = max

L
ω(0, L,D \ L),

where the maximum is taken over all sets L = ∪nk=1lk consisting of n ≥ 2 Jordan
arcs lk ⊂ D each of length s, 0 < s < min{1, 2π/n}, such that lk has its initial
point at z = e2πi(k−1)/n. Describe all sets L, for which the maximum in (10.3) is
attained. The problem to find exact values of M∗

n(s) for all s sounds very difficult to
this author. A more realistic problem is to find asymptotic of M∗

n(s) as s → 0 and
as s→ min{1, 2π/n}.

For the case of one arc, i.e. when n = 1, problem (10.3) was solved in [24]. In this
case, the straight line segment [1 − s, 1] is extremal for all s, 0 < s < 1. It is clear
that the union of straight line segments [(1 − s)e2πi(k−1)/n, e2πi(k−1)/n], k = 1, . . . , n,
is not extremal when n > 6 and s is close to 2π

n
. Thus, an extremal configuration

is not unique and is not trivial in this case. The latter makes Problem P5 rather
challenging.
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