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Abstract. Although various operators in the space of functions of bounded variation have
been studied by quite a few authors, no simple necessary and sufficient conditions guaranteeing
compactness of linear integral operators acting in such spaces have been known. The aim of the
paper is to fully characterize the class of kernels which generate compact linear integral operators
in the BV-space. Using this characterization we show that certain weakly singular and convolution
operators (such as the Abel and Volterra operators), when considered as transformations of BV [a, b],
are compact. We also provide a detailed comparison of those new necessary and sufficient conditions
with various other conditions connected with compactness of linear (integral) operators in the space
of functions of bounded variation which already exist in the literature.

1. Introduction

Compactness in its various forms and shapes, since its introduction more than a
century ago, is one of the key concepts of analysis. It is especially evident in fixed
point theory, where results involving compactness conditions (like, for example, the
Schauder fixed point theorem and many of its generalizations, or the Leray–Schauder
degree) constitute a main branch of the theory. For this sole reason it seems that
the quest for characterizing compactness of subsets of certain spaces or operators is
worth embarking on.

Until very recently the only one (not very useful from the application point of
view) characterization of compactness in the space of functions of bounded variation
was known (see [17, Exercise IV.13.48]). However, in [9] Bugajewski and Gulgowski
gave another necessary and sufficient condition for compactness of subsets of BV [a, b],
which is simpler and easier to use.

The situation concerning compactness of linear operators in the space of functions
of bounded variation is more or less similar—no full (and “applicable” at the same
time) characterization has been known in the literature. Although linear operators
acting to BV [a, b] (or to some of its subspaces) or in BV [a, b] were studied, respec-
tively, in the late 1930’ and very recently (for “older” results we refer the reader, for
example, to [16, 19, 26, 27, 42]–see also [17, Table VI, pp. 543–551]—the “newer” ones
can be found in [4, 5, 10, 11, 38, 39, 40]), there are only few sufficient conditions guar-
anteeing compactness of such operators, which, by no means, are necessary. There
are also two results due to Gelfand which describe the general form of a continuous
and compact linear operator from an arbitrary Banach space X into the subspace
of BV [a, b] consisting of those function which vanish at the point a (see [19, Sec-
tion II.9]). However, because of their generality (properties of the given operator are

https://doi.org/10.5186/aasfm.2021.4652
2020 Mathematics Subject Classification: Primary 47G10, 47B07, 26A45.
Key words: Abel operator, bounded variation, compact linear operator, convolution kernel,

integral operator, space of functions of bounded variation, Volterra operator, weakly singular kernel.



796 Piotr Kasprzak

characterized by some abstract function of bounded variation with values in the dual
space X∗), it seems that they cannot be used directly, for example, in applications
to integral equations. (Another approach to characterize the general form of a lin-
ear operator on BV [a, b]—this time utilizing the correspondence between functions
of bounded variation and additive set functions—is described in [24]). We have de-
voted the whole last section of the paper to presenting a detailed comparison of our
conditions and various conditions connected with compactness of linear (integral)
operators acting in BV [a, b].

The aim of the paper is to fill in the gap and to provide necessary and sufficient
conditions for a linear integral operator in the space of functions of bounded variation
to be compact. It is worth pointing out that our conditions are imposed on the kernel
of the operator, and thus they can be easily utilized in integral equations. Although,
we consider integral operators defined by the Lebesgue integral, the proof of the main
result relies heavily on the fact that it is possible (at least in certain situations) to
look at the given transformation also from the “Riemann–Stieltjes perspective”; this
approach allows us to “keep” the absolute value on the outside of the integral, which
is important when computing variations. In the second part of the paper we show
that certain weakly singular and convolution kernels satisfy our conditions, and thus
generate compact integral operators on BV [a, b].

On the one hand, the paper is a continuation of the article [10], where necessary
and sufficient conditions for continuity of linear integral operators in BV [a, b] were
studied. On the other hand, it can be also regarded as a part of a larger whole, as var-
ious topological and algebraic properties of linear and nonlinear operators on BV [a, b]
have been studied extensively recently (acting conditions as well as continuity of non-
linear superposition operators—also known as Nemytskii operators—were studied in,
respectively, [6, 32] and [22, 29], while properties of multiplication operators and sets
of multipliers were studied in [4, 5, 7, 13]). The works of Maćkowiak and Gulgowski
concerning continuity of Nemytskii operators in BV [a, b] (see [22, 29]) are especially
interesting here, since, together with the results from [10] and the compactness re-
sults from this paper, they enable more flexibility of assumptions while, for example,
looking for solutions of integral equations in the space of functions of bounded vari-
ation (balancing the linear and nonlinear parts of the nonlinear operators associated
with such problems is crucial here).

The paper is organized as follows. In Section 2 we gather definitions and basic
facts from functional and classical analysis which will be needed throughout the
article. In Section 3 we briefly recall the necessary and sufficient conditions under
which the linear integral operator maps the space of functions of bounded variation
into itself and is continuous. Section 4 is devoted to proving the main theorem of the
paper characterizing compact linear integral operators in such a space. To illustrate
our result we show, for example, that the kernels of the Volterra and Abel integral
operators satisfy our conditions. The aim of the last fifth section is to compare
the results established in the paper with those concerning compactness of integral
operators on the BV-space already existing in the literature.

2. Preliminaries

The aim of this section is to recall some basic facts concerning functions of
bounded variation, Riemann–Stieltjes integration and operator theory that will be
needed in the sequel.
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Let us begin with some notation and conventions. If X is a normed space, then
by BX(x, r) we will denote the closed ball in X with center at x and radius r > 0.
Sometimes, for simplicity, we will, however, write BBV (x, r) instead of BBV [a,b](x, r).
Unless stated otherwise, we will always assume that all the intervals [a, b] consist of
at least two points, that is, will assume that −∞ < a < b < +∞. If A ⊆ R, then by
χA we will denote the characteristic function of the set A. To avoid misunderstand-
ings, throughout the paper the Lebesgue integral will be denoted by “(L)

´

,” the
(original/ordinary) Riemann–Stieltjes integral will be denoted by “(RS)

´

” and the
Perron–Stieltjes integral will be denoted by “(PS)

´

.” While both the Lebesgue and
Riemann–Stieltjes integrals are nowadays regarded as classics and do not need to be
advertised, the Perron–Stieltjes (or, equivalently, Kurzweil–Stieltjes) integral is not
so well-known, although—similarly to its famous relatives—it has found applications
in various mathematical theories, for example, in generalized differential equations.
In the sequel we will use the fact that if a function f is Riemann–Stieltjes integrable
with respect to a function g, then f is also Perron–Stieltjes integrable with respect
to g and both those integrals coincide. For more information on the Perron–Stieltjes
(Kurzweil–Stieltjes) integral see [33, Chapter 6] or [40, Section I.4] and the references
therein.

2.1. Compact operators. Let us recall that a linear operator T : X → Y ,
acting between Banach spaces X and Y , is called compact if the image T (A) of
any bounded subset A of X (or, equivalently, the image T (BX(0, 1))) is a relatively
compact subset of Y . Since the notion of a compact operator is well-known, we will
not dwell on this topic any longer (for more details see, for example, [31, Section 3.4]
or [14, Section VI.3]).

2.2. Functions of bounded variation. Let f be a real-valued function defined
on the interval [a, b]. The number

var
[a,b]

f := sup
n

∑

i=1

∣

∣f(ti)− f(ti−1)
∣

∣,

where the supremum is taken over all finite partitions a = t0 < t1 < · · · < tn = b
of the interval [a, b], is called the (Jordan) variation of the function f over the
interval [a, b]. If var[a,b] f < +∞, then the function f is said to be of bounded

variation (or just a BV-function). Sometimes, when considering functions of two (or
more) variables, we will write vart∈[a,b] f(t, s) to denote the variation of the horizontal
sections t 7→ f(t, s) with s fixed. To avoid unnecessary technicalities, we restrict
our further considerations to the unit interval [0, 1]. The linear space consisting
of all functions f : [0, 1] → R of bounded variation, that is the space BV [0, 1] =
{f : [0, 1] → R | var[0,1] f < +∞}, endowed with the BV-norm ‖f‖BV := |f(0)| +
var[0,1] f , is a Banach space. It is well-known that functions of bounded variation
are bounded and that for every f ∈ BV [0, 1] we have ‖f‖∞ ≤ ‖f‖BV , where the
symbol ‖f‖∞ stands for the supremum norm of the function f , that is, ‖f‖∞ :=
supt∈[0,1]|f(t)|. Finally, let us recall that if the function f : [0, 1] → R is of bounded
variation, then it can be written as a difference of two real-valued non-decreasing
functions defined on [0, 1]. In particular, functions of bounded variation are Borel
measurable. For a thorough treatment of functions of bounded variation in the sense
of Jordan we refer the reader to [3, Chapter 1] and [12, Section 13].
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To prove our main theorem, we will need a result concerning compact subsets of
the space BV [0, 1] established recently by Bugajewski and Gulgowski in [9]. However,
before we will be able to state it, we need the following definition.

Definition 1. [9, Definition 2] A non-empty set A ⊆ BV [0, 1] is said to be
equivariated, if for each ε > 0 there exists a finite partition 0 = tε0 < tε1 < · · · < tεn = 1
of the interval [0, 1] such that for every f ∈ A we have var[0,1] f ≤ ε +

∑n

i=1|f(tεi )−
f(tεi−1)|.

Proposition 1. [9, Lemma 3] If A is a non-empty and relatively compact subset

of BV [0, 1], then A is equivariated.

In the sequel we will also need the following two-dimensional generalization of
the Jordan variation. Let f be a real-valued function defined on the rectangle I :=
[a, b]× [c, d]. The number

ϑ-var
I

f := sup
m
∑

i=1

n
∑

j=1

∣

∣f(ti, sj)− f(ti−1, sj)− f(ti, sj−1) + f(ti−1, sj−1)
∣

∣,

where the supremum is taken over all finite partitions a = t0 < · · · < tm = b and
c = s0 < · · · < sn = d of the intervals [a, b] and [c, d], respectively, is called the Vitali

variation of the function f over I. More information on the Vitali variation can be
found in [3, Section 1.4] or [40, Section I.6].

2.3. Riemann–Stieltjes integrals. The proof of our main result relies heavily
on the fact that in certain situations it is possible to rewrite the Lebesgue integral
as the Riemann–Stieltjes integral.

Proposition 2. [28, Theorem 7.4.10] Let f : [0, 1] → R be a Lebesgue integrable

function and let g : [0, 1] → R be of bounded variation. Then,

(L)

ˆ 1

0

f(t)g(t) dt = (RS)

ˆ 1

0

g(t) dF (t),

where F is the primitive of f , that is, F (t) = (L)
´ t

0
f(s) ds for t ∈ [0, 1].

Although this result seems to be well-known, we have not found any book con-
taining its simple proof. Hence, for readers’ convenience, let us share an elementary
argument, which we learnt from Jürgen Appell during our stay at Oberwolfach Re-
search Institute for Mathematics (see [2]).

Proof. First, let us note that since F is absolutely continuous, the Riemann–

Stieltjes integral (RS)
´ 1

0
g(t) dF (t) exists (see [28, Theorem 1.5.6]). Now, let us fix

ε > 0. Then, there clearly exists a partition 0 = t0 < t1 < · · · < tn = 1 of the interval
[0, 1] such that max1≤i≤n(L)

´ ti

ti−1

|f(t)| dt ≤ 1
2
(1 + var[0,1] g)

−1ε and

∣

∣

∣

∣

∣

n
∑

i=1

g(ti)[F (ti)− F (ti−1)]− (RS)

ˆ 1

0

g(t) dF (t)

∣

∣

∣

∣

∣

≤ 1

2
ε.
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And thus,
∣

∣

∣

∣

∣

(L)

ˆ 1

0

f(t)g(t) dt− (RS)

ˆ 1

0

g(t) dF (t)

∣

∣

∣

∣

∣

≤ 1

2
ε+

∣

∣

∣

∣

∣

(L)

ˆ 1

0

f(t)g(t) dt−
n

∑

i=1

g(ti)[F (ti)− F (ti−1)]

∣

∣

∣

∣

∣

≤ 1

2
ε+

n
∑

i=1

(L)

ˆ ti

ti−1

|g(t)− g(ti)||f(t)| dt

≤ 1

2
ε+

n
∑

i=1

var
[ti−1,ti]

g · (L)
ˆ ti

ti−1

|f(t)| dt

≤ 1

2
ε+ var

[0,1]
g · max

1≤i≤n
(L)

ˆ ti

ti−1

|f(t)| dt ≤ ε.

As the number ε was arbitrary, we obtain the desired equality. �

Another result which will come in handy is the integration-by-parts formula for
the Riemann–Stieltjes integral.

Proposition 3. [28, Theorem 1.6.7] If f, g : [0, 1] → R are two functions of

bounded variation which do not have common points of discontinuity, then

(RS)

ˆ 1

0

f(t) dg(t) + (RS)

ˆ 1

0

g(t) df(t) = f(1)g(1)− f(0)g(0).

3. Integral operators in BV-spaces

In this short section we recall some results concerning linear integral operators
in the space of functions of bounded variation generated by the function k : [0, 1]×
[0, 1] → R, that is, operators of the form

(1) (Kx)(t) = (L)

ˆ 1

0

k(t, s)x(s) ds, t ∈ [0, 1],

where x ∈ BV [0, 1]. Clearly, the formula (1) makes sense for any x ∈ BV [0, 1] only
if the function k satisfies the following condition

(H1) for every t ∈ [0, 1] the function s 7→ k(t, s) is Lebesgue integrable on [0, 1].

(In the last section, we will also briefly discuss integral operators given by the for-
mula (1) defined on a different space than BV [0, 1]; for example, on L1[0, 1]. We will
not, however, introduce a new symbol for such operators, as it will be always clear
from which space the functions x are taken.)

In [10], the following theorem, which characterizes continuous linear integral op-
erators in the space of functions of bounded variation, was established.

Theorem 1. [10, Theorem 4] Let k : [0, 1]× [0, 1] → R be a kernel satisfying the

condition (H1) and let K be the linear integral operator given by (1). The operator

K maps the space BV [0, 1] into itself and is continuous if and only if the following

condition is satisfied:

(H2) there exists a constant M > 0 such that vart∈[0,1]
(

(L)
´ ξ

0
k(t, s) ds

)

≤ M for

every ξ ∈ [0, 1].
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Remark 1. It is known that if T is a continuous linear operator acting in a
reflexive Banach space X, then for every point x ∈ X and radius r > 0 the set
T (BX(x, r)) is closed (cf. [14, Exercise 1, p. 181]). Interestingly, although the space
of functions of bounded variation is not reflexive (see, for example, [36]), continuous
integral operators acting in BV [0, 1] also have the above-mentioned property. Indeed,
if K : BV [0, 1] → BV [0, 1] is an integral operator generated by a kernel k : [0, 1] ×
[0, 1] → R satisfying the conditions (H1) and (H2) and if (yn)n∈N is a sequence in
K(BBV (x, r)) which converges to a function y0 ∈ BV [0, 1] with respect to the BV-
norm, then for every n ∈ N we have yn = Kxn for some xn ∈ BBV (x, r) and, in view
of Helly’s selection theorem (see [12, Theorem 13.16]), the sequence (xn)n∈N admits
a subsequence (xnm

)m∈N converging pointwise on [0, 1] to a function x0 ∈ BBV (x, r).
Therefore, by the Lebesgue dominated convergence theorem, ynm

= Kxnm
→ Kx0

pointwise on [0, 1]. As the BV-convergence is stronger than the pointwise one, this
proves that y0 = Kx0 ∈ K(BBV (x, r)).

In [10], it was also shown that if a kernel satisfies the conditions (H1)–(H2), then
the corresponding integral operator does not need to be compact (see [10, Exam-
ple 3]). Therefore, a natural problem arises: give necessary and sufficient conditions
on the kernel k : [0, 1]× [0, 1] → R under which the linear integral operator K maps
the space BV [0, 1] into itself and is compact.

4. Compact integral operators in BV-spaces

In this section we are going to give a complete answer the question raised at the
end of Section 3; namely, we are going to provide necessary and sufficient conditions
on the kernel under which the linear integral operator, generated by this kernel, maps
the space BV [0, 1] into itself and is compact.

Let us begin with the following abstract result.

Proposition 4. Let k : [0, 1]× [0, 1] → R satisfy the conditions (H1) and (H2)
and let K : BV [0, 1] → BV [0, 1] be the linear integral operator given by (1). Then,

the following conditions are equivalent:

(i) the operator K is compact,
(ii) for every sequence (xn)n∈N of elements of BBV (0, 1) which is pointwise conver-

gent on [0, 1] to a function x : [0, 1] → R, we have limn→∞‖Kxn−Kx‖BV = 0,

(iii) for every sequence (xn)n∈N of elements of BBV (0, 1) which is pointwise con-

vergent on [0, 1] to the zero function, we have limn→∞‖Kxn‖BV = 0.

Proof. (i) ⇒ (ii) First, let us note that if a sequence (xm)m∈N of elements of the
closed unit ball in BV [0, 1] is pointwise convergent to a function x : [0, 1] → R, then
necessarily x is of bounded variation; actually, it can be shown that x belongs to
BBV (0, 1)—cf. [28, Theorem 1.3.5]. In particular, by Theorem 1, the function Kx is
well-defined and is of bounded variation. Using the Lebesgue dominated convergence
theorem, it is easy to show that Kxm → Kx pointwise on [0, 1] as m → +∞. To
show that Kxm → Kx with respect to the BV-norm, let us consider an arbitrary
subsequence (Kxmn

)n∈N of the sequence (Kxm)m∈N. The operator K is compact,
and so there exists a subsequence (Kxmnl

)l∈N and a function y ∈ BV [0, 1] such that
‖Kxmn

l
− y‖BV → 0 as l → +∞. But then, since the BV-convergence is stronger

than the uniform convergence (and thus, than the pointwise convergence), we obtain
y = Kx and ‖Kxmn

l
−Kx‖BV → 0 as l → +∞. This shows that Kxm → Kx with

respect to the BV-norm.
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(ii) ⇒ (iii) The proof is obvious.
(iii) ⇒ (i) Let (xm)m∈N be an arbitrary sequence of elements of the closed unit

ball in BV [0, 1]. By Helly’s selection theorem (see [12, Theorem 13.16]) there exists a
subsequence (xmn

)n∈N of (xm)m∈N and a function x ∈ BBV (0, 1) such that xmn
→ x

pointwise on [0, 1]. Then, clearly, the functions ymn
:= 1

2
(xmn

− x) form a sequence
satisfying the predecessor of the implication in (iii), and thus Kymn

→ 0 in BV [0, 1]
as n → +∞. Therefore, Kxmn

→ Kx with respect to the BV-norm, which implies
that the operator K is compact. �

In the discussion of compact integral operators in BV [0, 1] the following condition
imposed on the kernel k : [0, 1]× [0, 1] → R will play a key role:

(H3) for every ε > 0, there exists δ := δ(ε) > 0 such that

var
t∈[0,1]

(

(L)

ˆ b

a

k(t, s) ds

)

≤ ε

for any subinterval [a, b] of [0, 1] of length not exceeding δ.

Remark 2. It turns out that if the kernel k : [0, 1]×[0, 1] → R satisfies (H1), then
the condition (H3) is stronger than the condition (H2). To show this let δ := δ(1) be
a number chosen according to the condition (H3) for ε = 1, and let M := [1/δ] + 1;
here, [·] denotes the floor function, that is, [a] is the greatest integer less than or
equal to a. Of course, we may assume that δ < 1. Then, for every ξ ∈ [0, 1] there
exists some l ∈ {0, 1, . . . ,M − 1} such that lδ ≤ ξ < (l + 1)δ, and thus

var
t∈[0,1]

(

(L)

ˆ ξ

0

k(t, s) ds

)

≤
l−1
∑

i=0

var
t∈[0,1]

(

(L)

ˆ (i+1)δ

iδ

k(t, s) ds

)

+ var
t∈[0,1]

(

(L)

ˆ ξ

lδ

k(t, s) ds

)

≤ l + 1 ≤ M.

This shows that

sup
ξ∈[0,1]

var
t∈[0,1]

(

(L)

ˆ ξ

0

k(t, s) ds

)

≤ M,

and proves our claim.

Now, we are in position to prove the characterization of compact integral opera-
tors in BV-spaces. For completeness, let us add that the idea to use refinements of a
given partition in the proof was inspired by a simple result for the Riemann–Stieltjes
integral—cf. [28, Lemma 1.5.2].

Theorem 2. Let k : [0, 1]× [0, 1] → R be a kernel satisfying the condition (H1)
and let K be the linear integral operator given by (1). The operator K maps the

space BV [0, 1] into itself and is compact if and only if k satisfies the condition (H3).

Proof. First, let us assume that the kernel k satisfies the conditions (H1) and (H3).
Note that in view of Remark 2 and Theorem 1, the operator K maps the space
BV [0, 1] into itself.

Let us consider an arbitrary sequence (xv)v∈N of elements of the closed unit ball
in BV [0, 1] which is pointwise convergent on [0, 1] to the zero function. We will show
that Kxv → 0 with respect to the BV-norm.

Given ε > 0 let us consider an arbitrary (but fixed) partition Ξ : 0 = ξ0 < ξ1 <
· · · < ξn = 1 of the interval [0, 1] such that max1≤i≤n|ξi − ξi−1| ≤ δ, where δ := δ(1

6
ε)
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is chosen according to (H3). Moreover, let v0 ∈ N be such that

|xv(1)| ≤
1

3M
ε and

n
∑

i=1

|xv(ξi)− xv(ξi−1)| ≤
1

3M
ε for every v ≥ v0,

where M := supξ∈[0,1] vart∈[0,1]
(

(L)
´ ξ

0
k(t, s) ds

)

< +∞ (cf. Remark 2).
Now, let us fix v ≥ v0 and an arbitrary partition 0 = t0 < t1 < · · · < tm = 1

of the interval [0, 1]. As the function ξ 7→ (L)
´ ξ

0
[k(tj , s)− k(tj−1, s)] ds is absolutely

continuous, the Riemann–Stieltjes integral

(RS)

ˆ 1

0

(

(L)

ˆ ξ

0

[k(tj , s)− k(tj−1, s)] ds

)

dxv(ξ)

exists for every j ∈ {1, . . . , m} (see [28, Theorem 1.5.5]). In particular, there is a
partition Ξ: 0 = ξ0 < ξ1 < · · · < ξp = 1 which is a refinement of Ξ such that

(2)
m
∑

j=1

∣

∣

∣

∣

S
v

j − (RS)

ˆ 1

0

(

(L)

ˆ ξ

0

[k(tj , s)− k(tj−1, s)] ds

)

dxv(ξ)

∣

∣

∣

∣

≤ 1

6
ε,

where S
v

j is the approximating Riemann–Stieltjes sum, that is,

S
v

j :=

p
∑

l=1

(

(L)

ˆ ξl

0

[k(tj , s)− k(tj−1, s)] ds

)

[xv(ξl)− xv(ξl−1)].

(Clearly, the partition Ξ depends on v; however, to simplify the notation, we have
decided not to use any superscript and not to write ξ

v

l .) Let us set

Sv
j :=

n
∑

i=1

(

(L)

ˆ ξi

0

[k(tj , s)− k(tj−1, s)] ds

)

[xv(ξi)− xv(ξi−1)].

Since Ξ is a refinement of Ξ, we have ξi = ξαi
where 0 = α0 < · · · < αn = p, and

thus we can write

Sv
j =

n
∑

i=1

αi
∑

l=αi−1+1

(

(L)

ˆ ξi

0

[k(tj, s)− k(tj−1, s)] ds

)

[xv(ξl)− xv(ξl−1)]

and

S
v

j =
n

∑

i=1

αi
∑

l=αi−1+1

(

(L)

ˆ ξl

0

[k(tj , s)− k(tj−1, s)] ds

)

[xv(ξl)− xv(ξl−1)].

Then,
m
∑

j=1

|Sv
j − S

v

j | =
m
∑

j=1

∣

∣

∣

∣

∣

n
∑

i=1

αi
∑

l=αi−1+1

(

(L)

ˆ ξi

ξl

[k(tj , s)− k(tj−1, s)] ds

)

[xv(ξl)− xv(ξl−1)]

∣

∣

∣

∣

∣

≤
n

∑

i=1

αi
∑

l=αi−1+1

m
∑

j=1

∣

∣

∣

∣

(L)

ˆ ξi

ξl

[k(tj , s)− k(tj−1, s)] ds

∣

∣

∣

∣

· |xv(ξl)− xv(ξl−1)|

≤
n

∑

i=1

αi
∑

l=αi−1+1

var
t∈[0,1]

(

(L)

ˆ ξi

ξl

k(t, s) ds

)

· |xv(ξl)− xv(ξl−1)|

≤ 1

6
ε ·

n
∑

i=1

αi
∑

l=αi−1+1

|xv(ξl)− xv(ξl−1)|,
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and so
m
∑

j=1

|Sv
j − S

v

j | ≤
1

6
ε · var

[0,1]
xv ≤

1

6
ε.

This, together with (2), implies that
m
∑

j=1

∣

∣

∣

∣

Sv
j − (RS)

ˆ 1

0

(

(L)

ˆ ξ

0

[k(tj , s)− k(tj−1, s)] ds

)

dxv(ξ)

∣

∣

∣

∣

≤ 1

3
ε.

Moreover, we have
m
∑

j=1

|Sv
j | =

m
∑

j=1

∣

∣

∣

∣

∣

n
∑

i=1

(

(L)

ˆ ξi

0

[k(tj , s)− k(tj−1, s)] ds

)

[xv(ξi)− xv(ξi−1)]

∣

∣

∣

∣

∣

≤
n

∑

i=1

m
∑

j=1

∣

∣

∣

∣

(L)

ˆ ξi

0

[k(tj , s)− k(tj−1, s)] ds

∣

∣

∣

∣

· |xv(ξi)− xv(ξi−1)|

≤ M ·
n

∑

i=1

|xv(ξi)− xv(ξi−1)|,

and thus
m
∑

j=1

∣

∣

∣

∣

(RS)

ˆ 1

0

(

(L)

ˆ ξ

0

[k(tj, s)− k(tj−1, s)] ds

)

dxv(ξ)

∣

∣

∣

∣

≤
m
∑

j=1

∣

∣

∣

∣

Sv
j − (RS)

ˆ 1

0

(

(L)

ˆ ξ

0

[k(tj , s)− k(tj−1, s)] ds

)

dxv(ξ)

∣

∣

∣

∣

+
m
∑

j=1

|Sv
j |

≤ 1

3
ε+M ·

n
∑

i=1

|xv(ξi)− xv(ξi−1)|.

This, since the partition 0 = t0 < t1 < · · · < tm = 1 was arbitrary, gives

var
t∈[0,1]

(

(RS)

ˆ 1

0

(

(L)

ˆ ξ

0

k(t, s) ds

)

dxv(ξ)

)

≤ 1

3
ε+M ·

n
∑

i=1

|xv(ξi)− xv(ξi−1)|.

Therefore, as v ≥ v0, we have

var
t∈[0,1]

(

(RS)

ˆ 1

0

(

(L)

ˆ ξ

0

k(t, s) ds

)

dxv(ξ)

)

≤ 2

3
ε.

By Propositions 2 and 3, for every t ∈ [0, 1] we have

(Kxv)(t) = (L)

ˆ 1

0

k(t, s)xv(s) ds

= xv(1) · (L)
ˆ 1

0

k(t, s) ds− (RS)

ˆ 1

0

(

(L)

ˆ ξ

0

k(t, s) ds

)

dxv(ξ),

and hence

var
[0,1]

Kxv ≤ |xv(1)| ·M +
2

3
ε ≤ ε for v ≥ v0.

In other words, limv→∞ var[0,1]Kxv = 0. To end the proof of the sufficiency part it is
enough to observe that from the assumptions it follows easily that

lim
v→∞

(Kxv)(0) = lim
v→∞

(L)

ˆ 1

0

k(0, s)xv(s) ds = 0,
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and thus ‖Kxv‖BV → 0 as v → +∞. This, by Proposition 4, shows that the linear
integral operator K is compact.

Now, we proceed to the second part of the proof. Let us assume that the integral
operator K maps the space BV [0, 1] into itself and is compact, and let us fix ε > 0.
Since, by the assumption, K(BBV (0, 2)) is a relatively compact subset of BV [0, 1],
in view of Proposition 1, there exists a finite partition 0 = tε0 < tε1 < · · · < tεn = 1 of
the interval [0, 1] such that

var
[0,1]

Kχ(a,b) ≤
1

2
ε+

n
∑

i=1

∣

∣(Kχ(a,b))(t
ε
i )− (Kχ(a,b))(t

ε
i−1)

∣

∣ for every (a, b) ⊆ [0, 1].

Choose δ to be a positive real number such that

(L)

ˆ

A

|k(tεi , s)| ds ≤
ε

4(n + 1)
for i = 0, . . . , n,

whenever A is a Lebesgue measurable subset of [0, 1] with measure not exceeding δ.
If [a, b] is an arbitrary subinterval of [0, 1] of length at most δ, then

var
t∈[0,1]

(

(L)

ˆ b

a

k(t, s) ds

)

= var
[0,1]

Kχ(a,b) ≤
1

2
ε+

n
∑

i=1

∣

∣(Kχ(a,b))(t
ε
i )− (Kχ(a,b))(t

ε
i−1)

∣

∣

≤ 1

2
ε+ 2

n
∑

i=0

(L)

ˆ b

a

|k(tεi , s)| ds ≤ ε.

This shows that

var
t∈[0,1]

(

(L)

ˆ b

a

k(t, s) ds

)

≤ ε

for any subinterval [a, b] of [0, 1] such that b− a ≤ δ. The proof is complete. �

Remark 3. At this point it should be noted that there is also another approach
which allows to prove the sufficiency part of the above theorem. It is based on
the notion of an abstract Riemann–Stieltjes integral and a certain convergence re-
sult for such an integral (we refer a reader interested in this topic to, for example,
[25, Section 3.3]). Since this concept is significantly less known than the classical
Riemann–Stieltjes integral, we chose to provide in full detail a little bit longer but
more elementary proof. Now, however, we will sketch the other approach.

Let us assume that the kernel k : [0, 1]× [0, 1] → R satisfies the conditions (H1)
and (H3) (and, thus, also (H2)—see Remark 2) and let us define the mapping
F : [0, 1] → BV [0, 1] which to each real number ξ ∈ [0, 1] assigns the BV-function

t 7→ (L)
´ ξ

0
k(t, s) ds. Note that thanks to (H1) and (H2) the map F is well-defined,

and thanks to the absolute continuity of the integral as well as (H1) and (H3) it is
continuous when BV [0, 1] is considered with the norm topology (in other words, F
is strongly continuous). This, in particular, implies that for each x ∈ BV [0, 1] the

abstract Riemann–Stieltjes integral (RS)
´ 1

0
F (ξ) dx(ξ) exists (in the norm topology)

and is an element of BV [0, 1] (see [25, Theorem 3.3.2]). Now, if we take an arbitrary
sequence (xn)n∈N of elements of BBV (0, 1) which is pointwise convergent on [0, 1] to
the zero function and apply convergence results for the Riemann–Stieltjes integral,
both the classical and the abstract one, (see [28, Theorem 1.6.10] and [25, Corol-

lary 2, p. 65]), we get limn→∞

∥

∥(RS)
´ 1

0
F (ξ) dxn(ξ)

∥

∥

BV
= 0. Observe also that by
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Propositions 2 and 3 for every t ∈ [0, 1] we have

(3) (Kxn)(t) = xn(1) · (L)
ˆ 1

0

k(t, s) ds− (RS)

ˆ 1

0

(

(L)

ˆ ξ

0

k(t, s) ds

)

dxn(ξ)

(cf. the proof of Theorem 2), and so

(4) ‖Kxn‖BV ≤ |xn(1)| · ‖F (1)‖BV +

∥

∥

∥

∥

(RS)

ˆ 1

0

F (ξ) dxn(ξ)

∥

∥

∥

∥

BV

;

let us add that in (3) the Riemann–Stieltjes integral should be understood in the
classical sense, while in (4) in the abstract one. Thus, ‖Kxn‖BV → 0 as n → +∞.
To end the proof it suffices to apply Proposition 4.

Remark 4. Let us note that using a similar technique to that used in [10,
Remark 7] we can show that not every linear compact operator acting in BV [0, 1] is
an integral operator.

Indeed, it is easy to see that the linear operator T : BV [0, 1] → BV [0, 1] given
by the formula (Tx)(t) = x(0) for t ∈ [0, 1] is compact. However, if there existed a
kernel k : [0, 1]× [0, 1] → R such that Kx = Tx, that is,

(5) (L)

ˆ 1

0

k(t, s)x(s) ds = x(0) for every t ∈ [0, 1] and x ∈ BV [0, 1],

then for every fixed t ∈ [0, 1] and every a ∈ (0, 1), taking χ(a−h,a+h) in place of x
in (5), we would have

1

2h
(L)

ˆ a+h

a−h

k(t, s) ds = 0,

provided that h > 0 is sufficiently small. This, together with the Lebesgue differen-
tiation theorem, would imply that for every t ∈ [0, 1] the function s 7→ k(t, s) is zero
a.e. on [0, 1], and hence Tx = Kx = 0 for every x ∈ BV [0, 1]—a contradiction.

From Theorem 2 and the results on the continuity of autonomous Nemytskii oper-
ators we immediately get the following corollary concerning compactness of nonlinear
integral operators.

Corollary 1. Let k : [0, 1]× [0, 1] → R be a kernel satisfying the conditions (H1)
and (H3), and let f : R → R be locally Lipschitz continuous, that is, we assume that

for each r > 0 there exists a constant Lr ≥ 0 such that |f(u)− f(w)| ≤ Lr|u−w| for

all u, w ∈ [−r, r]. Then, the nonlinear integral operator F which to each x ∈ BV [0, 1]
assigns the function given by the formula

F (x)(t) = (L)

ˆ 1

0

k(t, s)f(x(s)) ds, t ∈ [0, 1],

maps the space BV [0, 1] into itself and is completely continuous1.

Proof. The result is a direct consequence of Theorem 2 and the result of Maćko-
wiak which says that the autonomous superposition operator x 7→ f ◦x, generated by
a function f satisfying a local Lipschitz condition, acts in BV [0, 1] and is continuous

1A word of caution is in order: for mathematicians working in nonlinear analysis and/or fixed
point theory the notions of a compact and completely continuous operator may mean something
slightly different than for those working in functional analysis. Here, writing that a nonlinear

operator F : X → Y acting between metric spaces X and Y is completely continuous, we mean that
it is continuous and for every bounded set A in X , the image F (A) is contained in a compact subset
of Y (cf. [15, Definition 1.1, p. 112]).
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(see [29, Theorem 7]); the fact that such a superposition operator carries bounded
subsets of BV [0, 1] into bounded ones is trivial. �

Remark 5. It is worth noting here that [29, Theorem 7] was first obtained by
Morse in 1937 (see [34, Theorem 7.1]). However, the original proof was very long
and tedious. In [29], Maćkowiak gave a new, much shorter, proof of this result.

As regards non-autonomous superposition operators in BV [0, 1] (that is, opera-
tors which to each x ∈ BV [0, 1] assign the function t 7→ f(t, x(t)), where t ∈ [0, 1]), no
simple necessary and sufficient conditions guaranteeing continuity of such operators
are known. (Although, in Section 5 of [29], Maćkowiak gave some such conditions,
they cannot be labelled as “user-friendly”.) For completeness, let us add that, for ex-
ample, continuous differentiability of the non-autonomous generator (t, u) 7→ f(t, u)
on a certain set is one of sufficient conditions guaranteeing that the corresponding
non-autonomous Nemytskii operator maps the space BV [0, 1] into itself and is uni-
formly continuous on bounded subsets (for more details on this topic see [22, 29]).

After introducing a new condition, it is a good practise to provide some examples
of objects (in this case, kernels) satisfying it.

Proposition 5. If f : [0, 1] → R is a Lebesgue integrable function, then the

kernel k : [0, 1]× [0, 1] → R given by the formula

(6) k(t, s) =

{

f(t− s), if 0 ≤ s < t ≤ 1,

0, if 0 ≤ t ≤ s ≤ 1,

satisfies the conditions (H1) and (H3).

Proof. Since it is clear that the kernel satisfies the condition (H1), we will only
focus on showing that it also satisfies (H3). It can be shown that given an interval
[a, b] ⊆ [0, 1], we have

(L)

ˆ b

a

k(t, s) ds =



























0, if 0 ≤ t ≤ a,

(L)

ˆ t−a

0

f(s) ds, if a ≤ t ≤ b,

(L)

ˆ t−a

t−b

f(s) ds, if b ≤ t ≤ 1.

For a given ε > 0 let δ > 0 be chosen in such a way that (L)
´ δ

0
|f(s)| ds ≤ 1

2
ε

and (L)
´

R
|ϕ(s)−ϕ(s+ τ)| ds ≤ 1

2
ε for all 0 ≤ τ ≤ δ, where ϕ is defined by ϕ(s) = 0

for s /∈ [0, 1] and ϕ(s) = f(s) for s ∈ [0, 1]. Note that the existence of such a number
δ follows from the absolute continuity of the Lebesgue integral and the continuity of
the translation of a given function in the L1-norm (cf. [28, Theorem 6.2.8] and [23,
Theorem 13.24]). Now, let us fix an interval [a, b] ⊆ [0, 1] such that b − a ≤ δ, and
let us observe that

var
t∈[0,a]

(

(L)

ˆ b

a

k(t, s) ds

)

= 0.

Of course, only the case a 6= 0 is interesting here; if the number a happens to be
equal to zero, then we simply skip this part and move on to the next one.
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If a = t0 < t1 < · · · < tn = b is an arbitrary finite partition of [a, b], then
n

∑

i=1

∣

∣

∣

∣

(L)

ˆ b

a

k(ti, s) ds− (L)

ˆ b

a

k(ti−1, s) ds

∣

∣

∣

∣

=

n
∑

i=1

∣

∣

∣

∣

(L)

ˆ ti−a

ti−1−a

f(s) ds

∣

∣

∣

∣

≤ (L)

ˆ b−a

0

|f(s)| ds,

which proves that

var
t∈[a,b]

(

(L)

ˆ b

a

k(t, s) ds

)

≤ (L)

ˆ b−a

0

|f(s)| ds ≤ 1

2
ε.

To estimate the variation of the function t 7→ (L)
´ b

a
k(t, s) ds over the interval

[b, 1] we will use the fact that this function is absolutely continuous on that interval.
As before, this part is needed only if b 6= 1. For t ∈ [b, 1] we have

(L)

ˆ b

a

k(t, s) ds = (L)

ˆ t−a

t−b

f(s) ds = (L)

ˆ t

a

f(s− a) ds− (L)

ˆ t

b

f(s− b) ds.

Therefore,

var
t∈[b,1]

(

(L)

ˆ b

a

k(t, s) ds

)

= (L)

ˆ 1

b

|f(s− a)− f(s− b)| ds

(see [3, Theorem 3.19]). But

(L)

ˆ 1

b

|f(s− a)− f(s− b)| ds = (L)

ˆ 1−b

0

|f(s+ b− a)− f(s)|ds

= (L)

ˆ 1−b

0

|ϕ(s+ b− a)− ϕ(s)| ds

≤ (L)

ˆ

R

|ϕ(s+ b− a)− ϕ(s)| ds ≤ 1

2
ε.

Thus,

var
t∈[b,1]

(

(L)

ˆ b

a

k(t, s) ds

)

≤ 1

2
ε.

Summing the above cases and using the additivity of the variation as a function
of the interval, we finally get

var
t∈[0,1]

(

(L)

ˆ b

a

k(t, s) ds

)

≤ ε.

This completes the proof. �

From Proposition 5 we immediately get the following corollary.

Corollary 2. Let α ∈ (0, 1). The weakly singular kernel k : [0, 1] × [0, 1] → R

given by the following formula

(7) k(t, s) =

{

(t− s)−α for 0 ≤ s < t ≤ 1,

0 for 0 ≤ t ≤ s ≤ 1,

satisfies the conditions (H1) and (H3).

Another consequence of Theorem 2 and Proposition 5 is the following result
concerning convolutions.
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Corollary 3. Let f : [0, 1] → R be a Lebesgue integrable function. Then, the

convolution, that is, the operator given by x 7→ f ∗ x, where (f ∗ x)(0) = 0 and

(f ∗ x)(t) = (L)

ˆ t

0

f(t− s)x(s) ds, t ∈ (0, 1],

is a compact linear operator on the space BV [0, 1].

Remark 6. The fact that the convolution operator acts in the space BV [0, 1]
and is continuous has been already known in the literature (see, for example, [21,
Theorem 2.2 (iii)]). It seems, however, that the fact that this operator is compact is
new.

Two well-known examples of linear integral operators are the Volterra operator
V and the Abel operator Jα (see, for example, [1, 14, 20]) defined by the formulas

(8) (V x)(t) = (L)

ˆ t

0

x(s) ds, t ∈ [0, 1],

and

(Jαx)(t) =











1

Γ(α)
· (L)

ˆ t

0

(t− s)α−1x(s) ds, if t ∈ (0, 1],

0, if t = 0,

respectively; here α ∈ (0, 1) is fixed and Γ is the Gamma function, and the function
x belongs to a suitable function space. Let us add that the function Jαx is sometimes
also called the Abel transform of x.

Of course, the operators V and Jα can be regarded as convolution operators gen-
erated by the kernel (6) with the Lebesgue integrable function f given by f(t) = 1 and
f(t) = 1

Γ(α)
tα−1 for t ∈ (0, 1], respectively. Compactness properties of the Volterra

and Abel operators are well-known for the spaces of integrable or continuous func-
tions (see, for example, [14, pp. 43–45], [20, Section 4.3] and [37]). Using Corollary 3
and the above characterization of those operators as convolutions we obtain a result
of a similar vein for the space BV [0, 1].

Corollary 4. The Volterra operator V and the Abel operator Jα with α ∈ (0, 1)
map the space BV [0, 1] into itself and are compact.

Remark 7. Using a similar approach to that used in the proof of [20, Theo-
rem 4.1.4] it can be shown that the Abel transform Jαx of a BV-function x, where
α ∈ (0, 1), is not only of bounded variation but is also Hölder continuous with ex-
ponent α. (This is especially interesting, since neither of the spaces BV [0, 1] and
Lipα[0, 1], that is, the space of all Hölder continuous real-valued functions with ex-
ponent α defined on the interval [0, 1], is a linear subspace of the other one—cf. [3,
Examples 1.23–1.25].) Indeed, if x ∈ BV [0, 1], then for any t, τ ∈ [0, 1] such that
t > τ > 0 we have

Γ(α) · |(Jαx)(t)− (Jαx)(τ)|

=

∣

∣

∣

∣

(L)

ˆ τ

0

[(t− s)α−1 − (τ − s)α−1]x(s) ds+ (L)

ˆ t

τ

(t− s)α−1x(s) ds

∣

∣

∣

∣

≤ (L)

ˆ τ

0

[(τ − s)α−1 − (t− s)α−1]|x(s)| ds+ (L)

ˆ t

τ

(t− s)α−1|x(s)| ds

≤ 2α−1‖x‖∞(t− τ)α + α−1‖x‖∞(τα − tα) ≤ 2α−1‖x‖BV |t− τ |α;
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of course, if τ = 0 the same reasoning applies. This, in particular, shows that Jα

with α ∈ (0, 1) maps continuously BV [0, 1] into the space Lipα[0, 1] endowed with
the norm

(9) ‖x‖α = |x(0)|+ sup

{ |x(t)− x(τ)|
|t− τ |α

∣

∣

∣

∣

t, τ ∈ [0, 1], t 6= τ

}

.

In connection with Corollary 4, a natural question arises whether the operator
Jα : BV [0, 1] → Lipα[0, 1] is also compact. The answer to this question is negative
as evidenced by the following example. Let us consider the sequence (xn)n∈N of
increasing functions xn : [0, 1] → R given by the formulas

xn(t) =
Γ(1 + α + 1

n
)

Γ(1 + 1
n
)

t
1

n for t ∈ [0, 1].

Since 4
5
≤ Γ(t) ≤ 2 for t ∈ [1, 3], we clearly have xn ∈ BV [0, 1] and ‖xn‖BV ≤ 5

2

for every n ∈ N. It is also easy to see that (Jαxn)(t) = tα+
1

n for t ∈ [0, 1]. This, in
particular, means that the sequence (Jαxn)n∈N is pointwise convergent on [0, 1] to the
function x ∈ Lipα[0, 1] given by x(t) = tα. So, if the Abel operator Jα were compact,
the sequence (Jαxn)n∈N should admit a subsequence convergent in the norm ‖·‖α
to the function x (because the norm convergence in Lipα[0, 1] is stronger than the
pointwise one). However, for every n ∈ N, we have

‖Jαxn − x‖α ≥ |(Jαxn − x)( 1
2n
)− (Jαxn − x)(0)|

| 1
2n

− 0|α =
1

2
.

This shows that the Abel operator Jα is not compact when considered as a map
acting from BV [0, 1] into Lipα[0, 1].

Similarly, it can be shown that although the Volterra operator V maps contin-
uously BV [0, 1] into the space of all Lipschitz continuous mappings defined on the
interval [0, 1] and endowed with the norm ‖·‖α with α = 1, it is not compact; it
suffices to consider the functions xn(t) = tn.

Remark 8. For a fixed n ∈ N let xn(t) := tn for t ∈ [0, 1]; we also set x0(t) := 1
for t ∈ [0, 1]. A trivial observation that the set of monomials A = {xn | n ∈ N∪{0}} is
mapped by the Volterra operator to a linearly independent set V (A) = { 1

n
xn | n ∈ N}

shows that V as an operator acting in the space of functions of bounded variation has
not finite rank2, that is, V (BV [0, 1]) is not finite dimensional. Since V : BV [0, 1] →
BV [0, 1] is compact, it means that the range of the Volterra operator is not a closed
subspace of BV [0, 1] (cf. [31, Proposition 3.4.6]). Thus, V is an example of an
operator showing that in the classical result from functional analysis which states
that if a continuous linear operator T : X → Y carries closed bounded subsets of a
Banach space X to closed subsets of a Banach space Y , then it has closed range (see,
for example, [1, Problem 2.1.10 (c)]), one cannot replace the assumption “all closed

bounded subsets” with “all closed balls” (cf. Remark 1).

5. A short excursion through the literature

In this last section we are going to compare the condition (H3) with some condi-
tions connected with compactness of linear integral operators in spaces of functions
of bounded variation which are known in the literature.

2The fact that the Volterra operator has not finite rank as an operator acting in, for example,
L2[0, 1] is well-known. However, the only place I could find it stated explicitly (and in an elementary
way) was at the Mathematics Stack Exchange forum (question 1887169).
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5.1. Bugajewski’s condition. When dealing with the existence of BV-
solutions to certain non-linear integral equations, Bugajewski in [8] introduced the
following condition imposed on the kernel k : [0, 1]× [0, 1] → R:

(H4) vart∈[0,1] k(t, s) ≤ m(s) for a.e. s ∈ [0, 1], where m : [0, 1] → [0,+∞) is a
Lebesgue integrable function.

In [11], using the Lebesgue dominated convergence theorem and Helly’s selection
theorem, it was proved that under the conditions (H1) and (H4) the linear integral
operator K given by (1) maps the space BV [0, 1] into itself and is compact (see [11,
Proposition 6]). This, in particular, means that if the kernel k : [0, 1] × [0, 1] → R

satisfies (H1), then the condition (H3) is weaker than the condition (H4). To see
that (H3) is strictly weaker than (H4) it suffices to consider, for example, the weakly
singular kernel

(10) k(t, s) =

{

1
2
(t− s)−

1

2 for 0 ≤ s < t ≤ 1,

0 for 0 ≤ t ≤ s ≤ 1

(cf. Corollary 2 and [10, Example 2]).
Let us also note that the direct proof of the fact that under the general hy-

pothesis (H1) the condition (H4) implies (H3) is quite straightforward. Indeed, if
the kernel k satisfies (H4), for a given ε > 0 let δ > 0 be a real number such that
(L)
´

A
m(s) ds ≤ ε, whenever A is a Lebesgue measurable set with measure not ex-

ceeding δ. Then, for every interval [a, b] ⊆ [0, 1] of length at most δ and an arbitrary
finite partition 0 = t0 < · · · < tn = 1 of [0, 1], we have

n
∑

i=1

|k(ti, s)− k(ti−1, s)| ≤ var
t∈[0,1]

k(t, s) ≤ m(s)

for a.e. s ∈ [0, 1], and thus
n

∑

i=1

∣

∣

∣

∣

(L)

ˆ b

a

[

k(ti, s)− k(ti−1, s)
]

ds

∣

∣

∣

∣

≤ (L)

ˆ b

a

n
∑

i=1

|k(ti, s)− k(ti−1, s)| ds

≤ (L)

ˆ b

a

m(s) ds ≤ ε.

This implies that

var
t∈[0,1]

(

(L)

ˆ b

a

k(t, s) ds

)

≤ ε,

and shows that k satisfies (H3).

5.2. Schwabik’s condition. Compact linear integral operators were also stud-
ied by Schwabik in, for example, [38, 39] (see also [40, Chapter II]). In particular, he
proved that the integral operator S defined for x ∈ BV [0, 1] by the formula

(11) (Sx)(t) = (PS)

ˆ 1

0

x(s) dsl(t, s), t ∈ [0, 1],

maps the space BV [0, 1] into itself and is compact provided that the kernel l : [0, 1]×
[0, 1] → R satisfies the condition var[0,1] l(0, s) + ϑ-varI l < +∞, where I := [0, 1]×
[0, 1] (see [38, Theorem 3.1] or [40, Theorem II.1.5]).

Remark 9. Let us note that thanks to Proposition 2, if the kernel k : [0, 1] ×
[0, 1] → R satisfies the general condition (H1) it is always possible to represent the
linear integral operator K given by (1) in the Schwabik’s form (11). Indeed, let the
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function l : [0, 1]× [0, 1] → R be given by l(t, s) = (L)
´ s

0
k(t, z) dz. Then, for every

x ∈ BV [0, 1] and t ∈ [0, 1] we have

(Kx)(t) = (L)

ˆ 1

0

k(t, s)x(s) ds = (RS)

ˆ 1

0

x(s) d

(

(L)

ˆ s

0

k(t, z) dz

)

= (PS)

ˆ 1

0

x(s) d

(

(L)

ˆ s

0

k(t, z) dz

)

= (PS)

ˆ 1

0

x(s) dsl(t, s) = (Sx)(t);

in the above equality we used the fact that the Perron–Stieltjes integral is a general-
ization of the Riemann–Stieltjes integral (see [33, Chapter 6] or [40, Section I.4]).

However, it is worth noting that the sufficiency part of Theorem 2 does not follow
from Schwabik’s result as evidenced by the following example.

Example 1. Let k : [0, 1] × [0, 1] → R be given by (10). From Corollary 2
we know that the kernel k satisfies both conditions (H1) and (H3), and hence it
generates the linear integral operator K which maps the space BV [0, 1] into itself and
is compact. However, this compactness result cannot be obtained using Schwabik’s
representation of K described in Remark 9 and his theorem, as it turns out the
function l(t, s) := (L)

´ s

0
k(t, z) dz is not of bounded Vitali variation on the square

I := [0, 1]× [0, 1]. Indeed, for any t, s ∈ [0, 1] we have l(t, s) =
√
t−

√

t−min{t, s}.
And so, for any n ∈ N we obtain

ϑ-var
I

l ≥
n

∑

i=1

∣

∣l( i
n
, i
n
)− l( i−1

n
, i
n
)− l( i

n
, i−1

n
) + l( i−1

n
, i−1

n
)
∣

∣ =
√
n,

which shows that ϑ-varI l = +∞.

For completeness, let us add that in the papers [38, 39] Schwabik also studied
operators of the form

(Ŝx)(t) = (PS)

ˆ 1

0

l(t, s) dx(s), t ∈ [0, 1],

and proved some compactness results (see also [40, Chapter II]); here, as before, one of
the main assumptions imposed on the kernel l : [0, 1]× [0, 1] → R was that ϑ-varI l <
+∞. Functions satisfying (H1) and (H3), clearly, do not need to be of bounded Vitali
variation. To see this it suffices to consider the kernel k : [0, 1]× [0, 1] → R given by
k(t, s) = t · χQ∩[0,1](s).

5.3. Vulich’s conditions. In the late 1930’ Vulich studied the general form of
a continuous linear operator acting in certain Banach spaces. Among other things,
in [42] he proved the following characterization of continuous linear operators between
the space of Lebesgue integrable functions L1[0, 1] and BV [0, 1].

Theorem 3. [42, Theorem 3] Each continuous linear operator mapping L1[0, 1]
into BV [0, 1] is an integral operator K given by (1) with the kernel k : [0, 1]× [0, 1] →
R satisfying the following conditions:

(H5) for every t ∈ [0, 1] the function s 7→ k(t, s) is Lebesgue measurable on [0, 1],

(H6) there exists a constant M > 0 such that for every a, b ∈ [0, 1] we have

∣

∣

∣

∣

(L)

ˆ b

a

k(0, s) ds

∣

∣

∣

∣

+ var
t∈[0,1]

(

(L)

ˆ b

a

k(t, s) ds

)

≤ M |a− b|.
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Conversely, if a kernel k : [0, 1] × [0, 1] → R of the linear integral operator K given

by (1) satisfies the above conditions, then K maps L1[0, 1] into BV [0, 1] and is

continuous.

Let us add that the proof of Vulich’s result is completely different than the proof
of Theorem 2, and, in a sense, much simpler, as it utilizes the fact that the set of
step functions is dense in the space L1[0, 1].

Remark 10. Note that our general hypothesis (H1) is “hidden” in the condi-
tions (H5)–(H6); otherwise the integrals in (H6) would not be finite (or, would not
exist at all) and the condition itself would make no sense. It is a matter of taste
which approach to take: either state (H1) explicitly or impose a weaker regularity
condition (like (H5)) instead and assume that all the integrals appearing in all the
other conditions are understood to exist and be finite.

Remark 11. Let k : [0, 1]× [0, 1] → R be a kernel satisfying the condition (H1).
If, additionally, k satisfies (H6), then for each fixed t ∈ [0, 1] it is essentially bounded
on [0, 1] with respect to s. Indeed, for any fixed τ ∈ [0, 1] the condition (H6) with
a := σ − h and b := σ + h, where σ ∈ (0, 1) and 0 < h < min{σ, 1− σ}, yields
∣

∣

∣

∣

(L)

ˆ σ+h

σ−h

k(τ, s) ds

∣

∣

∣

∣

≤
∣

∣

∣

∣

(L)

ˆ σ+h

σ−h

k(0, s) ds

∣

∣

∣

∣

+ var
t∈[0,1]

(

(L)

ˆ σ+h

σ−h

k(t, s) ds

)

≤ 2Mh.

And so,
∣

∣

∣

∣

1

2h
· (L)

ˆ σ+h

σ−h

k(τ, s) ds

∣

∣

∣

∣

≤ M,

which, together with the Lebesgue differentiation theorem, implies that |k(τ, σ)| ≤ M
for a.e. σ ∈ [0, 1].

Remark 12. In view of Corollary 2 and Remark 11 it is easy to see that, under
our general hypothesis (H1), the Vulich condition (H6) is strictly stronger that the
condition (H3).

At this point it is also worth noting that not every continuous linear operator
from L1[0, 1] into BV [0, 1] is compact. We are going to show even more interesting
example illustrating that an operator which is compact as an operator from BV [0, 1]
into BV [0, 1] may fail to be compact when considered as an operator from L1[0, 1]
into BV [0, 1].

Example 2. Let us consider the Volterra operator defined by formula (8). Ac-
cording to Corollary 4 V is a compact linear integral operator when considered as an
operator acting in BV [0, 1].

However, as we will see, V is not compact as an operator from L1[0, 1] into
BV [0, 1]. First, note that V is a (norm-to-norm) continuous operator between L1[0, 1]
and BV [0, 1] (in fact, it is not difficult to check directly that the kernel generating
V satisfies the conditions (H5)–(H6) with M = 1), and thus it is also weak-to-weak
sequentially continuous. Now, let us consider a sequence (xn)n∈N of functions in
L1[0, 1] given by the formulas xn(t) = sin(2πnt) for n ∈ N and t ∈ [0, 1]. Clearly, this
sequence is bounded in L1[0, 1]; actually, it can be shown that it is weakly convergent
to zero (cf. [18, Exercise 2.57]). Therefore, (V xn)n∈N is weakly convergent to zero.
Since evaluation functionals et, defined for any t ∈ [0, 1] and x ∈ BV [0, 1] by the
formulas et(x) = x(t), are continuous on the space of functions of bounded variation,
this means that the sequence (V xn)n∈N is pointwise convergent on [0, 1] to the zero
function. So, if the operator V : L1[0, 1] → BV [0, 1] were compact, some subsequence
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of (V xn)n∈N would converge in the BV-norm to zero. But this is impossible because
for n ∈ N we have

var
[0,1]

V xn =

ˆ 1

0

∣

∣sin(2πnt)
∣

∣ dt =
2n
∑

i=1

ˆ i

2n

i−1

2n

∣

∣sin(2πnt)
∣

∣ dt = 2n

ˆ 1

2n

0

sin(2πnt) dt =
2

π
.

Thus, V as an operator from L1[0, 1] into BV [0, 1] cannot be compact.

In the same paper [42], Vulich also studied linear operators which are continuous
when different notion of convergence (that is, the so-called K-convergence) is consid-
ered in the target space (for the notion of K-normed spaces and related topics see, for
example, [41, 30]). In particular, in a similar fashion to Theorem 3, he characterized
the class of all such operators acting between L1[0, 1] and BV [0, 1] (see [42, Theo-
rem 4]). However, instead of the condition (H6), this time Vulich used the following
one:

(H7) there is a constant M > 0 such that for any finite partition 0 = t0 < t1 <
· · · < tn = 1 of the interval [0, 1] and any number ε > 0 we have

sup

∣

∣

∣

∣

(L)

ˆ b

a

k(0, s) ds

∣

∣

∣

∣

+
n

∑

i=1

sup

∣

∣

∣

∣

(L)

ˆ b

a

[k(ti, s)− k(ti−1, s)] ds

∣

∣

∣

∣

≤ Mε,

where the suprema are taken over the collection of all the intervals [a, b] ⊆ [0, 1]
with length not exceeding ε.

Now, we will compare (H6) and (H7); of course, to avoid any doubts whether the
integrals appearing in those conditions exist and are finite, we will assume that all
the kernels involved satisfy our general hypothesis (H1) – cf. Remark 10.

Remark 13. It may come as a surprise that although (H7) closely resembles (H3)
(if we additionally take into account the definition of the Jordan variation), it is not
weaker than (H6); in fact, quite the opposite is true. To see this let us assume that
a kernel k : [0, 1] × [0, 1] → R satisfies (H1) and (H7). Take the constant M > 0 as
in (H7). If we fix an interval [c, d] ⊆ [0, 1] and apply (H7) with ε := d − c and an
arbitrary (but given) finite partition 0 = t0 < t1 < · · · < tn = 1 of the interval [0, 1],
then we get

∣

∣

∣

∣

(L)

ˆ d

c

k(0, s) ds

∣

∣

∣

∣

+
n

∑

i=1

∣

∣

∣

∣

(L)

ˆ d

c

[k(ti, s)− k(ti−1, s)] ds

∣

∣

∣

∣

≤ M |c− d|.

This, as the partition 0 = t0 < t1 < · · · < tn = 1 was arbitrary, implies that
∣

∣

∣

∣

(L)

ˆ d

c

k(0, s) ds

∣

∣

∣

∣

+ var
t∈[0,1]

(

(L)

ˆ d

c

k(t, s) ds

)

≤ M |c− d|.

In other words, k satisfies (H6). In particular, (H7) is strictly stronger than (H3)
(cf. Remark 12).

The fact that (H6) is weaker than (H7) may be less surprising, when we realize
that the class of linear operators which are continuous when the K-convergence is
considered in the target space is contained in the class of (norm-to-norm) continuous
linear operators (see, for example, [42, p. 277]). To see that (H6) is strictly weaker
than (H7) it suffices to consider the following example.

Example 3. It is easy to check that the weakly singular kernel k : [0, 1]×[0, 1] →
R given by the formula (6) with f(t) = 1 satisfies (H6). (Of course, k satisfies
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also (H1).) However, if for an arbitrary number M > 0 we choose n ∈ N so that
n > M and set ti :=

i
n

for i = 0, . . . , n, then we have

sup
|a−b|≤ 1

n

∣

∣

∣

∣

(L)

ˆ b

a

k(0, s) ds

∣

∣

∣

∣

+
n

∑

i=1

sup
|a−b|≤ 1

n

∣

∣

∣

∣

(L)

ˆ b

a

[k(ti, s)− k(ti−1, s)] ds

∣

∣

∣

∣

≥
n

∑

i=1

∣

∣

∣

∣

(L)

ˆ ti

ti−1

[k(ti, s)− k(ti−1, s)] ds

∣

∣

∣

∣

=

n
∑

i=1

|ti − ti−1| = 1 >
1

n
M.

This shows that k does not satisfy (H7).

5.4. Gelfand’s conditions. Commenting his theorem, Vulich observed that a
similar result to Theorem 3 was obtained earlier by Gelfand (see [42, the footnote 7
on p. 279]). Indeed, on page 278 in [19], inside a reasoning concerning other things,
Gelfand wrote that any continuous linear operator acting between L1[0, 1] and the
space of functions of bounded variation is an integral operator K given by (1) with
k satisfying the following condition

(H8) ess sups∈[0,1] vart∈[0,1] k(t, s) < +∞.

As regards the regularity of k, Gelfand states only that “k(t, s) is measurable” without
indicating whether he thinks about joint measurability or measurability with respect
to a certain variable. Note that for a given bounded kernel k : [0, 1]×[0, 1] → R which
is Lebesgue measurable on the square [0, 1]× [0, 1], the function s 7→ vart∈[0,1] k(t, s)
(although well-defined and finite at each point) may fail to be Lebesgue measurable
on [0, 1]. To see this it suffices to consider a kernel given by k(t, s) = χ{0}×A(t, s),
where A is a subset of [0, 1] which is not Lebesgue measurable, since then for each
s ∈ [0, 1] we have vart∈[0,1] k(t, s) = χA(s).

Another problem with the condition (H8), putting aside the measurability issue,
is that it does not guarantee the Lebesgue integrability (not to mention the essential
boundedness) of the function s 7→ k(t, s) on the interval [0, 1]; here, t ∈ [0, 1] is fixed.
Thus, the integral appearing in the definition of the operator K may make no sense.
Indeed, if k : [0, 1]× [0, 1] → R is given by the formula

k(t, s) =

{

s−1, if (t, s) ∈ [0, 1]× (0, 1],

0, if (t, s) ∈ [0, 1]× {0},

then for each s ∈ [0, 1] we have vart∈[0,1] k(t, s) = 0, and so k satisfies (H8). But, if
we fix t ∈ [0, 1], we obtain the function s 7→ k(t, s) which is not Lebesgue integrable
on [0, 1].

Moreover, Gelfand refers to the space of functions of bounded variation as the
“conjugate” (dual) to the space of continuous functions, whereas it is known that the
dual to (C[0, 1], ‖·‖∞) may be identified not with the whole space BV [0, 1], but rather
with its proper subspace consisting of those functions which are right-continuous on
[0, 1) and which at t = 0 take the value 0 (see, for example, [3, Theorem 4.31]). This
raises some doubts, and we have to admit that, unfortunately, we were not able to
fully understand Gelfand’s exposition.

Now, let us try to compare (H8) with our condition (H3) and other conditions
mentioned in this section, adding, whenever it is needed, additional regularity re-
quirements on the kernel k.

Remark 14. Assuming that the function s 7→ vart∈[0,1] k(t, s) is Lebesgue mea-
surable on [0, 1], it is easy to see that any kernel k : [0, 1]× [0, 1] → R satisfying (H8)
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also satisfies (H4). Moreover, if k, additionally, satisfies the general hypothesis (H1),
then it is straightforward to check that from (H8) it follows that for any a, b ∈ [0, 1]
we have

var
t∈[0,1]

(

(L)

ˆ b

a

k(t, s) ds

)

≤ M |a− b|

with M := ess sups∈[0,1] vart∈[0,1] k(t, s). In particular, under the above regularity
assumptions (H8) implies (H3).

This also shows that if we assume that all the vertical sections s 7→ k(t, s), where
t ∈ [0, 1], and the function s 7→ vart∈[0,1] k(t, s) are Lebesgue measurable on [0, 1],
and that k(0, s) = 0 for a.e. s ∈ [0, 1], then (H8) implies (H1) and (H6) (cf. [11,
Remark 7]).

As evidenced by the following example, there are some kernels k which sat-
isfy (H6) but do not satisfy (H8), even if we assume that k(0, s) = 0 for each s ∈ [0, 1]
and that the functions s 7→ k(t, s), where t ∈ [0, 1], and s 7→ vart∈[0,1] k(t, s) are
Lebesgue measurable on [0, 1].

Example 4. For any fixed n ∈ N and l ∈ {0, . . . , 2n − 1} let us set

Bn
l :=

{(

t, t− 2−(2n+1)l
)

∈ R
2
∣

∣ t ∈
(

2−(n+1) + 2−(2n+1)l, 2−n
)}

,

Cn
l :=

{(

t, t+ 2−(2n+1)l
)

∈ R
2
∣

∣ t ∈
(

2−(n+1), 2−n − 2−(2n+1)l
)}

,

and A :=
⋃∞

n=1

⋃2n−1
l=0 (Bn

l ∪ Cn
l ). Moreover, let the kernel k : [0, 1] × [0, 1] → R be

given by the formula k(t, s) = χA(t, s).
Since for a fixed t ∈ [0, 1] the function s 7→ k(t, s) is a.e. zero on [0, 1], it

is easily seen that k satisfies the conditions (H6). It is also not difficult to check
that the function s 7→ vart∈[0,1] k(t, s) is Lebesgue measurable on [0, 1], but k does
not satisfy (H8). Indeed, from the definition of the set A, it follows that for a.e.
s ∈ (2−(n+1), 2−n) we have vart∈[0,1] k(t, s) = 2n+1 for every n ∈ N. And so,
ess sups∈[0,1] vart∈[0,1] k(t, s) = +∞.

In [19], Gelfand proved also two results characterizing the general form of a
continuous and compact linear operator T acting from an arbitrary Banach space X
into the subspace of BV [0, 1] consisting of all functions which vanish at t = 0 (see [19,
Section II.9]). Namely, he showed that such operators can be described by certain
abstract functions of bounded variation; from the proofs of the results it follows
that if T is the given operator, then as the corresponding function one can take the
function from [0, 1] into the dual space of X, that is X∗, given by t 7→ et ◦T ; here, et
are the evaluation functionals on BV [0, 1]. Although interesting, these results seem
of limited applicability due to their generality.

It is worth pointing out here that we have already used an idea similar to that
used by Gelfand. In Remark 3 we translated the assumptions (H1) and (H3) into
the (strong) continuity of the mapping F : [0, 1] → BV [0, 1] which to each ξ ∈ [0, 1]

assigns the BV-function t 7→ (L)
´ ξ

0
k(t, s) ds, and used it to prove the compactness

of the linear integral operator K. Likewise, we can translate the conditions (H1)
and (H2) as well as (H5) and (H6) into, respectively, boundedness and Lipschitz
continuity of the map F . For instance, the map associated to the Volterra operator
is given by F (ξ)(t) = min{ξ, t}. Note also that, in contrast to Gelfand’s approach,
we do not need to deal with functions taking values in the dual.

5.5. Diagram. Finally, for readers’ convenience, we summarize the relationships
between various conditions appearing in this paper. We will write “(A) =⇒ (B)” to
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indicate that the condition (A) is strictly stronger than the condition (B). Talking
about the condition (H8) we also need some regularity assumptions on the functions
s 7→ k(t, s) and s 7→ vart∈[0,1] k(t, s); we will denote briefly this fact by writing (R).
Furthermore, we silently assume that the condition (H1) is always satisfied, that is,
instead of writing e.g. (H1)+(H3), we simply write (H3).

(H8) + (R) (H4) (H3) (H2)

(H6)

(H7)

Figure 1. The diagram illustrating the relationships between various conditions imposed on
the kernel k of the integral operator K.
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