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Abstract. We provide three new examples of twisted Hilbert spaces by considering prop-
erties that are “close” to Hilbert. We denote them Z(J), Z(S?) and Z(T2). The first space is
asymptotically Hilbertian but not weak Hilbert. On the opposite side, Z(S?) and Z(72) are not
asymptotically Hilbertian. Moreover, the space Z(72) is a HAPpy space and the technique to prove
it gives a “twisted” version of a theorem of Johnson and Szankowski (Ann. of Math. 176:1987-2001,
2012). This is, we can construct a nontrivial twisted Hilbert space such that the isomorphism con-

stant from its n-dimensional subspaces to ¢35 grows to infinity as slowly as we wish when n — oo.

1. Introduction

Since its inception as a solution to the Palais problem [10], twisted Hilbert spaces,
i.e. Banach spaces X admitting a Hilbert subspace H so that the corresponding quo-
tient X /H is Hilbert, have been a fruitful place where to seek counterexamples. And
still now there are natural problems in the literature, as for example the ergodicity
problem [11], for which nontrivial twisted Hilbert spaces could be a solution. The
scarcity of a broad variety of twisted Hilbert spaces has been a problem in the area.
Indeed, for a long time, the only known examples were the Enflo-Lindenstrauss—
Pisier space (|10]) that we denote ¢2(&,,), and the Kalton-Peck space Z, ([18]). This
paper provides a few more examples, somehow continuing the work in [8, 27| and
[28].

To put the forthcoming results in perspective, let us recall that twisted Hilbert
spaces are “close” to Hilbert spaces in many senses: they are f{s-saturated, super-
reflexive and they have type 2 — ¢ and cotype 2 + ¢ for all £ > 0. However, there
are boundaries: Maurey’s extension theorem shows us that nontrivial twisted Hilbert
spaces cannot have type 2 or cotype 2 (cf. [20]); and a deep result of Kalton shows
that they cannot even have an unconditional basis [16]. Nevertheless, regarding
twisted Hilbert spaces with extremal properties, the second author constructed in
[27] a twisted Hilbert space Z(T?), where T2 denotes the 2-convexification of the
Tsirelson space T, that is a weak Hilbert space. This last space and the Kalton—Peck
space Z, emerge from the same scheme: Let X be a separable Banach space for which
complex interpolation yields a Hilbert space in the form (X, X*);/ = 5. Then, a
twisted Hilbert space Z(X) arises as the derivation of the previous formula. It is
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known as the derived space of the interpolation space at 1/2. In particular, we have
Z(ly) = Zy while Z(T?) is weak Hilbert.

In what follows, we will focus on derived spaces Z(X) sharing properties “close”
to Hilbert, showing that there is still room enough until the Hilbert barrier. Be-
yond weak Hilbert, notions of this type found in the literature are: asymptotically
Hilbertian (as. Hilbertian) spaces, spaces with the property (H), different forms of
E(n,m, K)-properties as introduced by Nielsen and Tomczak—Jaegermann [23| and
HAPpy spaces, a term coined by Johnson and Szankowski in [14].

In this context, our first example is an asymptotically Hilbertian space Z(7)
without the property (H). Hence, it is not a weak Hilbert space. For the specialist
it is perhaps not surprising that this is achieved with the right choice of p,, k, in
J = la(€kr). Our second example picks as X the 2-convexification §? of the Schreier
space S, see e.g. [7]. We show that Z(S?) is not asymptotically Hilbertian but its
natural basis has the E(n,n, K)-property (see Section 2 for the precise definitions)
while the basis of our first and third examples lack it. This third example is modelled
over T2 which is the Casazza—Nielsen symmetric version of T2, cf. [6]. The distance
of the n-dimensional subspaces of Z(72) to Hilbert grows very slowly to infinity.
This is in contrast with Z(S8?) that contains an isomorphic copy of Z, in spite of
the F(n,n, K)-property; a second turn of the screw will show that Z(S?) is not
isomorphic to a subspace of Zs.

As a by-product of our methods, we may give a “twisted” version of a result of
Johnson and Szankowski [14, Theorem 3.1], namely, given 1 < §,, — oo there is a
twisted Hilbert Z so that d,,(Z) < §,, where d,(Z) is the supremum over all the
n-dimensional subspaces E of Z of the isomorphism constant from £ to ¢3. This is a
way to construct nontrivial examples of HAPpy twisted Hilbert spaces. Previously,
the only known example of such kind was Z(7?), but this is weak Hilbert and thus
as. Hilbertian. However, the space Z constructed above as well as Z(T72) are not as.
Hilbertian.

Of course, the spaces Z(J), Z(8?) and Z(T?) are mutually non isomorphic and
are also not isomorphic to the known previous examples of twisted Hilbert spaces:
05(E,), Zo and Z(T?). In a broader sense, our examples are representatives of three
new (and very natural) categories of twisted Hilbert spaces.

The paper is organized as follows. The next section contains a short description
of the background needed. Sections 3,4,5 are devoted to describe each example
separately. We have included one last section with a picture that might help the
reader to organize our examples of twisted Hilbert spaces.

2. Background

We use standard notation for Banach spaces as provided in the book of Albiac
and Kalton [1]. We reserve the word space for Banach space, either finite or infinite
dimensional. In the finite dimensional setting we will very often write

dE = d(Ea g(ziimE)’

where d stands for the Banach—Mazur distance. In this sense, given a space X, we
also define

d,(X) = supdg,
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where the supremum runs over all n-dimensional subspaces E of X. Recall that for
a space X the number a, 5(X) is defined to be the least constant a such that

n n 1/2
> el <a (Z ||a:j||2) ,
j=1 =1

for all 1,...,2, € X and where the average is taken over all (¢;)7_; € {—1,1}".
The space X has type 2 if as(X) = sup,en @n2(X) < 0o. The cotype 2 constant
¢n2(X) is defined in a similar vein as the least constant ¢ such that

(Z||93j||2> <cE|Y e
j=1 Jj=1

for all zy,..., 2, € X and thus X has cotype 2 if co(X) := sup,en Cn2(X) < 0o. As
an example, let us recall that £, has type min{p, 2} and cotype max{p, 2}, see [22].
A remarkable fact due to Kwapieni [19] is that

dE S GQ(E) . CQ(E),

E

Y

which will be used throughout the paper.

2.1. Background on Hilbert-like properties. We will mainly consider five
notions related to a Hilbert space: Weak Hilbert spaces, as. Hilbertian, the property
(H), the E(n,n, K)-property and the HAPpy spaces.

We say X is a weak Hilbert space if there is 0 < 9y < 1 and a constant C' with
the following property: every finite dimensional subspace E of X contains a subspace
F C FE with dim F' > §y dim E such that dr < C and there is a projection P: X — F
with || P|| < C. The definition above is not the original one but is chosen out among
the many equivalent characterizations given by Pisier |24, Theorem 12.2.(iii)]. Recall
that 72 is the most classical example of a nontrivial weak Hilbert space and the
reader may find in [7] or [25] a comprehensive study.

Closely related to this is the notion of a space X that is as. Hilbertian, meaning
that there is C' > 0 such that for every n € N, there is a finite codimensional X, in
X so that every n-dimensional subspace E of X, satisfies dg < C.

Just in between, lies the notion of the property (H). We say that X has the
property (H) if for each A > 1 there is a K(\) such that for any n € N and any
A-unconditional normalized (basic) sequence (u;)j_; € X, we have

n
2
J=1

Using the characterizations of weak Hilbert spaces given by Pisier, it is easy to prove
that they have the property (H), see |25, Proposition 14.2.]. A bit more elaborated
is the proof that the property (H) implies as. Hilbertian, see [25, Theorem 14.4].
We have left almost at the end the E(n,n, K)-property. While the idea behind
this notion is simple, it requires two twists. Let X be a Banach space with a basis
(ej)32; and let K > 1 and m,n € N. First, we say that (e;)22, is (m, K)-euclidean,
if for every subset A C N with |A| < m, (e;)jea is K-equivalent to the unit vector

K\ < < K\

basis of 6‘;'. Then (e;)32, is said to have the E(n,m, K)-property if there is a set
I C N, with |I| = n, so that

{e;:j € N\I}
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is (m, K)-euclidean. A key result for us is that for any unconditional sequence (u;)32,

with the property (H) there is K > 0 such that (u;)}2, satisfies the E(n,n, K)-
property for every n € N. This can be found in the paper of Nielsen and Tomczak-
Jaegermann [23, Proposition 3.8|. A particular case of the F(n,m, K)-property is
the E;(n, m, K)-property, meaning that {e;: j > n + 1} is (m, K)-euclidean.
Finally, following Johnson and Szankowski [14], we say that a space X has the
hereditary approximation property (HAP) or is a HAPpy space if all the subspaces

of X have the approximation property.

2.2. Background on complex interpolation and twisted Hilbert spaces.
Let w denote the vector space of complex scalar sequences endowed with the pointwise
convergence. Let X be a space with an unconditional basis. An homogeneous map
Q: X — w is called a centralizer if there is a constant C' so that:

(1) 192(az) — afA(z)[|x < Cllallollzlx,  a € loo, 2 € X.

A typical way to obtain centralizers is through complex interpolation [4] and the
classic reference for interpolation is the book of Bergh and Lofstrom [3]. We only de-
scribe some basic facts. Let X, X; be a couple of spaces with a joint 1-unconditional
basis and natural inclusions into w. We shall consider the vector space Fu,(Xo, X1)
of all functions F': S — w, which are bounded and continuous on the strip

S={z:0<Rez <1},

and analytic on the open strip Sg = {z: 0 < Rez < 1}, and moreover, the functions
te€e R — F(j+1t) € X; with j = 0,1 are bounded and continuous functions. The
vector space Fo(Xp, X1) is a Banach space when is endowed with the norm

|Fll5. = max (sup VE () o, sup | F (1 + z't>||xl) .
teR teR

The interpolation space Xy := (Xo, X1)g consists of all z € w such that z = F(0) for
some F' € Fo(Xo, X1) endowed with the quotient norm

2]l xp = WEF] o0, x0) - £(0) = ]

We denote as usual dp: Foo (Xo, X1) — Xy the natural quotient map where 6 € (0, 1).
Fix now a constant p > 1 and thus for each x € Xy pick a map B(z) € Foo(Xo, X1)
with B(z)(0) = x and ||B(z)||~, < pl|z||s for which there is no loss of generality in
assuming that it is homogeneous. A centralizer {2: Xy — w comes defined as

Q(z) = 0yB(x).

Let us explain the connection between centralizers and twisted Hilbert spaces. Recall
that a short exact sequence is a diagram like

0 Y —— 7 15 X 0

where the morphisms are linear and continuous and such that the image of each
arrow is the kernel of the next one. This condition implies that Y is a subspace of
Z through j and thanks to the open mapping theorem we find that X is isomorphic
to Z/j(Y). We usually refer to Z as a twisted sum of Y and X and if Y =~ o = X
we simply say that Z is a twisted Hilbert space. The interpolation scheme described
before produces a natural twisted Hilbert Z(X) of (X, X*)1/, = {5 called the derived
space defined as the set of couples (z,y) € w X w for which the following norm

I, )l zx) = Wf{|[ Fl|: F(0) =y, F'(0) = =}
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is finite. Just as an explanation, the derived space is denoted by d(X, X*);/2 in the
survey of Kalton and Montgomery-Smith [17]. It will take an instant to the reader
to check (see the discussion in [17, p. 1159]) that we have a short exact sequence

0 > EQ ] Z(X) K > EQ 0,

where j(z) = (x,0) and ¢(z,y) = y. This twisted Hilbert admits a representation
in terms of a centralizer 2. The exact relationship is that the norm of Z(X) is
equivalent to the quasi-norm

(2) Gz, )l = Nz = Q)] + [yl

where (2 is, of course, a centralizer corresponding to (X, X*)/2 = {5, see [5, Propo-
sition 7.2.]. The perfect example where all these ideas crystallize is the Kalton—Peck
space which corresponds to Z(¢;) = Zs. It is well known that the centralizer comes

defined for a norm one vector z = Z;’il xje; as
(3) Ow) =Y a;jlogajle,
j=1

with the agreement that 0-log0 = 0. The map (3) is the so-called Kalton—-Peck map
[18] for which it is helpful to write Q(z) = z - log x with the obvious meaning.

Let us recall now a couple of results that will be useful for us. The first is that
Z(X) is isomorphic to its own dual [28, Lemma 1| while the second is the existence
of a natural basis in Z(X).

Proposition 1. Let (e;)32, be the canonical unconditional basis of (X, X*)1/, =
62 and set V2j—1 = (€j,0),’(}2j = (0, ej) fOI'j € N. Then

(i) the sequence (v;)32, is a basis for Z(X),
(ii) the sequence (vq;)52, is unconditional.

The first part is proved by adapting the proof of [18, Theorem 4.10] while the
second follows picking a € {—1,1}" in (1). At this stage, the reader may wonder
whether Z(X) is again Hilbert or not. The answer to this fair question is given by
the so-called Kalton uniqueness theorem [15, Theorem 7.6].

Kalton uniqueness theorem. Let (X, X*) and (Yp, Y1) be two couples of
spaces all of them with a joint unconditional basis (e;)52;. Assume that (X, X*);/, =
¢y with corresponding centralizer Q0x and (Yo, Y1)1/2 = ¢ with centralizer Q. If Qx
and €y are equivalent, then X and Y; have equivalent norms.

The interested reader will find out that [15, Theorem 7.6] has two parts: existence
and uniqueness. While the existence part contains a technical assumption on the
centralizer under discussion, the uniqueness part does not. This can be easily checked
in the first five lines of proof. Indeed, the proof only observes that the claim on the
centralizers is a claim on the indicator functions involved and then we may apply [15,
Proposition 4.5].

Kalton is claiming that the couples are determined by the corresponding deriva-
tion, up to the natural equivalent relation of centralizers which is that the difference
is bounded. This is, two centralizers 2x and €2y are equivalent if the difference
Qx — Qy is an (homogeneous) bounded map ¢, — w. In particular, a centralizer is
bounded if it is equivalent to zero. A direct consequence of this in our setting is the
formal answer to the previous question.
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Corollary 1. Let (X, X™*) be spaces with a joint unconditional basis so that
(X, X*)1/2 = ls. The following conditions are equivalent.

(1) The spaces X and {s have equivalent norms.
(2) The twisted-Hilbert Z(X) is isomorphic to (5.
(3) The space [vy;]32, is isomorphic to l.

Proof. (1) = (2) If the norm of X is equivalent to ¢, then so does the norm
of X*. Then, for each x € {5, the constant function B(z)(z) = x is a bounded
selection (where the bound depends only on the previous equivalence constants)
whose derivative is zero. Thus, since Qx = 0, a simple appeal to the formula (2)
finishes.

(2) = (3) Obvious.

(3) = (1) If [vy]52, is isomorphic to fo, then [vy;]22; must have type 2. In
particular, we have that there is C' > 0 so that

0o 00 1/2
(O,Zé‘jdj@j) < C (Z CL?) ,
Jj=1 j=1

for every (a;)52, € fo. Since the basis {(0,¢;)}32; is K-unconditional by Proposi-
tion 1(ii), we readily find from the estimate above that

0o 00 1/2
’ (O, Z CLij) S KC (Z CL?) y (aj)(;il c 62.
j=1 7=1

Using the expression (2), we deduce from above that

~ ~ 1/2
Qx <Z ajej) <(KC-1) (Z a?) ;o (a5)52, € 4y,
j=1 Jj=1

which is to say that 2y is bounded. This means, by definition, that {2y is equivalent
to the centralizer 0 that is represented by the couple (5, ¢5) as we argued in (1) =
(2). Kalton’s result enters now into the game and shows that the norms of X and ¢,
must be equivalent. O

E

There is a straight and elementary route to this corollary which avoids Kalton’s
uniqueness theorem. The proof replaces Kalton’s result by the method of critical
points which is a new and simple way to describe all centralizers. This method may
be found in the forthcoming paper [29].

3. An asymptotically Hilbertian not weak Hilbert space

Let us define for each n = 1, ... the numbers &, = 2"*! and

1 1 1 1 1
4 _—— —_— =" — = - — .
4) P 2 /no 2 ph

Let J = ly(€;r) and J* = Eg(fﬁg), so that

(T, T")1y2 = Lo,

see for example [3]. Let us recall that Z(J) denotes the induced twisted Hilbert
space.
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Theorem 1. The space Z(J) is asymptotically Hilbertian but fails the E(n,n,
K)-property. In particular, it fails the property (H) and it is not a weak Hilbert
space.

Proof. The spaces J and J* are non Hilbertian examples of as. Hilbertian. This
seems to be folklore but we have been unable to find a proof in the literature so we
sketch one for the sake of clarity.

Claim A. The space J is asymptotically Hilbertian.
To see that J is not Hilbert one just need to recall that

1

11
d(Chr 5y = kfr 2 = 2V UV o,

as n — 00; the same argument shows that J* is not Hilbert. To check that 7 is as.
Hilbertian observe that we have, for m > n?, the following set of estimates:

1 11

11 _
nnalt) < K < KETE S oy

where the first inequality follows, for example, from a simple inspection of the proof
of [22, 9.3. Example| and Kahane’s inequality [22, 9.2.]. Thus, we trivially find

(5) ap, 2 (B_pelyr), < 4.
Let us denote for simplicity 7,2 = ( ﬁznﬂgz) ,- In particular, it E C 7,2 with
dim £ < k,,, then
dp < ax(E) - e2(E) < 2V21 - agy, 2(Tp2) * Cop 2(Tn2)
< 8V2r - Chn2(Tn2) < 8V2r - ¢y,

for some absolute ¢y > 0 since J (and thus J,,2) has cotype 2. The first inequality is
the remarkable fact due to Kwapien [19] of the introduction while the second holds
true because of a result of Tomczak-Jaegermann [31, Theorem 2]. One last remark is

that 7,2 has codimension 25:_11 ko = 2(27° —2), so the case of J is done. A similar
argument works for J* interchanging the roles of type and cotype. Indeed, in this
last case, we have that

(6) g, 2 (@ﬁznzé’;g)z < ag,
for some absolute ay > 0 since J* has type 2.
Claim B. The twisted-Hilbert Z(7) is asymptotically Hilbertian.

We write as usual Z(J,2) the induced twisted Hilbert. Then, we may invoke [27,
Proposition 3| with the estimates (5) and (6) to conclude that

(7) ar, 2 (Z(In2)) < C,

for some absolute C' > 0. Let us recall that Z(7,2) is A-isomorphic to its dual,
for some constant A > 0 independent of n; a detailed proof may be found in |28,
Lemma 1]. Hence, it is easy to deduce that

(8) Chn 2 (£(Tn2)) < A-C,

by using an argument contained in [26, Proposition 3.2|. Therefore, if £ C Z(7,2)
denotes a subspace with dim E < k,,, then we have by (7) and (8)

dp < a3(E) - e2(B) < 2V27 - a2 (Z(T2)) - hoa (Z(Tr2))
< 2V2m - A-C2
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One last remark is that Z(7,2) is a subspace of Z(J) of codimension 2 - Z:j:_ll ky, =
22(27° — 92).
Claim C. If Z(J) satisfies the E(2",2", K)-property, then 2K > \/n.
Let us consider Z(¢k) for each n = 1,..., so that Z(J) = (5(Z(¢}")). Assume
Z(J) has the E(n,n, K)-property so that the unconditional sequence
U={(0,e) € Z(t;m): j=1,....kpsn=1,...}

also has, for some K > 0, the E(2",2" K)-property. Fix n and pick any set of
2"-vectors in U, say A. Observe that the number of vectors (0, ¢;) in each Z(€im) is
exactly k,, = 2-2™ for each m € N. So, no matter how we choose A, we still have
a disjoint set with A, say B, of 2" vectors of the type (0,¢;) in Z(¢k»). This set of
vectors must be, by definition of the £(2", 2", K)-property, K-equivalent to the basis
of EQB‘. Recall that the centralizer €2,, corresponding to Z (f;ﬁz) is of the form

Q, = (%—E)Qzﬁg”ﬁw,
pn pTL

where Q(x) = z-log x is the Kalton—Peck map for ||z|| = 1, cf. [17, p. 1160]. Therefore,
we find that the following must hold

o (50)

But on the other hand

Q, (Zq—)H = \2/—25-\/2710g\/27:2-\/ﬁ-\/2710g2,

jEB

(9) < (K -1) = (K —1)v2~.

D¢

jEB

(10)

where we have used that
1 1 1 1 1 1 2

= -+ = —,
Pn Dh Pa 2 2 P, Wn
provided by our choice in (4). If we plug (10) in (9) and simplify, we reach to
Vi 2log2 < K — 1,

so the claim is proved. O

4. A non asymptotically Hilbertian space with the E(n,n, K)-property

A natural precursor of the Tsirelson space T is the Schreier space & which is
defined as the completion of cyy, the vector space of finitely supported sequences,
under the following norm

l#lls = sup Y _ |,
AcA jeA
where A denotes the set of admissible subsets of IN; recall that a finite subset A =
{n1 < ... < ng} is admissible if k < ny. If we denote S§? the 2-convexification of S,
then we have that (82, (32)*)% and ¢, have equivalent norms by [9, Corollary 4.3].

Therefore, the derived space Z(S8?) is a twisted Hilbert space that somehow plays
the role of a natural precursor of Z(7?). In this sense, the basis of Z(S8?) undergoes
a property typically shared by weak Hilbert spaces with an unconditional basis: the
E(n,n, K)-property [23, Proposition 3.8.].
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Proposition 2. There is K > 0 such that the basis (v;);2, of Z(S*) has the
E(n,n, K)-property for all n € N.

Proof. Let us prove first that ‘there is K > 0 such that the subsequence (vy;)52,
has the F;(n,n, K)-property for every n € N’. Given y € ¢ with supp(y) € A, we

find
(11) max(||yl|sz, [|ylls2)<) = [|ylle.-

Therefore, given y € cgg as above, let us consider the constant function

B(y)(z) = y € Fuo(S*,(8%)).
We have by (11) that B(y) is a 1-bounded selection for y (see [17, p. 1159]) and
thus the centralizer Q(y) := 6}, B(y) must be zero. Therefore, for y € coo with
supp(y) € A, we have that

121 + Nyl = llyll-
The expression above shows that for any A € A, we have that (vq;);ea is equivalent

to the basis of 6‘;". This equivalence holds in the quasi-norm induced by €) that is
equivalent to the norm in Z(8?) (see |5, Proposition 7.2] for a detailed proof or also
the discussion in [17]). Therefore, we are clearly done. For the general case, given
n € N, pick a subset A C N —{2,...,2n} with |A] = n and then {v;};ca. Let
E={j:2j€ A}. If E =0, we have that any element of [v;];ca is of the form (z,0)
and the claim of the proposition is trivial. Otherwise, the set E is admissible and
thus, as before, Q(y) = 0 if supp(y) C E. If we pick (z,y) € [v;]jea, it follows that
supp(y) € F and thus

Gz, )| = llz = Q)| + llyll = ll=ll + llyll B

However, Z(8?) is not as. Hilbertian, so it is “far” in some sense from Z(7?) (see
the picture in Section 6). We need first a preparatory lemma.

Lemma 1. The twisted-Hilbert Z(S?) contains an isomorphic copy of Zs.

Proof. The blocks u,, = 22" Z n;,} 1 e;, with n € N, span an isometric copy of
co in 82, see |7, Proposition 0.7]. It is not hard to check that they span a copy of ¢;
in (§%)*. Indeed, since the support of each u, is an admissible set, we readily find
that ||u,/(s,)» = 1, and then

N
E Anln
n=1

where the last inequality holds picking the norm one vector x = u; + ... + uy.
Once this is achieved, it becomes trivial to check that given ()22, € cgo with
l(An)eey]le, = 1 and letting A = >~ | A u,, the map

N
— swp Zwun, >3 A
n=1

l=lls2<17;

(82)* (&%)

BA)(2) =Y Al M € Fio( 8%, (S7)7)

n=1

is well defined. It follows that B()) is a 1-bounded selection for A so that we find
01/sB(N) =Y Anlog A,

The centralizer above induces the quasi-norm in the Kalton-Peck space (see [18]),
thus [(un,0), (0,u,)]32, spans a copy of Zs. O
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We now prove our claim.
Proposition 3. The twisted-Hilbert Z(S?) is not asymptotically Hilbertian.

Proof. First let us observe that Z5 is not as. Hilbertian. Otherwise, the Orlicz
space )y spanned by (v9;)52, in Z» would be also as. Hilbertian: Obviously, if X is
finite codimensional in Z,, then X N ¢, is also finite codimensional in £;;. But it is
well known that as. Hilbertian spaces cannot have a symmetric basis unless they are
isomorphic to f5. Since ¢;; is not isomorphic to ¢5, otherwise ¢, would have type 2
which is impossible by the unconditionality of the basis of £,; since

3)

we are done. In particular, no space containing a copy of Z, is as. Hilbertian so that
Lemma 1 allows us to conclude. U

= V/nlogv/n,

We now show that Z(S?) is neither isomorphic to a subspace of the Kalton—Peck
space nor a subspace of the Enflo-Lindenstrauss—Pisier space ¢5(&,,) ( [10]). We need
to prove first the following lemma on the structure of Z(S?).

Lemma 2. There is K > 0 such that for every finite subset B C N, there is a
subset A C B with |A| > 27|B| for which (v;);ea is K-equivalent to €|2A‘.

Proof. Let E = {n: 2n € B} and assume first that |E| is even. Then, observe
that the last 27!|E| elements of E form an admissible set, namely E’. Thus for any
y € coo with supp(y) C E we have
(12) max({lyllsz; ylls2)-) = lylle,-

Let us show that the set A :={2n—1 € B} U{2n: n € E'} satisfies the claim of the
lemma. Given y € cgg as above we find as in Proposition 2

Q(y) =0,
and hence, given x € {5 and y € ¢y with supp(y) C E’, we have that

lz = Q)+ llyll = 1zl + [yl
The expression above shows that (v;);ec4 is equivalent, with uniform constant, to the
basis of €|2A‘. To finish observe that

Al=|{2n—1€ B}|+|{2n:n € E'}| > |{2n—1 € B} +27'|E| > 27| B],

and thus we are done. If |F| is odd, then the last (|F|+ 1)/2 elements are again an
admissible set and we argue as before. 0

We now close the loop opened in Lemma 1.

Proposition 4. Let ¢ be a Lipschitz map such that either lim; ., ¢'(t) = 0
monotonically or ¢(t) = ct for ¢ # 0. Then, the following holds:

(1) The space Z(S?) is not isomorphic to either a subspace or a quotient of Zy().
(2) The space Z(S8?) is not isomorphic to either a subspace or a quotient of l5(F,)
with dim F,, < oo for all n € N.

Proof. The claims for the quotient maps follows by simple duality, for (1) see |28,
Lemma 1]. The proof is similar to |27, Proposition 4| so we only sketch the argument.
It is enough to show that no subsequence of (vy;);2, in Z(S§?) is equivalent to ¢; or
the Orlicz space £y of Zy(¢) (see [18, Lemma 5.3.]). If (vay,)52; is equivalent to
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{9 then (egnj);?‘;l in S? is also equivalent to £y by an easy application of Kalton’s
uniqueness theorem [15, Theorem 7.6.], and thus we trivially find a copy of ¢; in §
that is impossible |7, Theorem 0.5|. Since the only symmetric basis satisfying Lemma
2 is {5, the case of /j; reduces to the previous one. O

The results of this section show that Z(8?) is not isomorphic to Z(J) or to the
previous examples of twisted Hilbert spaces: £5(&,), Zo and Z(T?). Also, the results
of Section 3 give that Z(J) is not isomorphic to Z(7?). If, in addition, we use the
fact that Z, is not as. Hilbertian (given in the proof of Proposition 3), then Z(7)
is also not isomorphic to Z,. It only remains to check that Z(J) is different from
l5(&,). This follows from our next proposition which needs a preparatory result.

Lemma 3. Let X denotes a space with a shrinking FDD, say (F,,)°,, and let

F' be an m-codimensional subspace of X. Given ¢ > 0, there is M = M(m,e) € N
so that F' contains an (1 + ¢)-isomorphic copy of [F, ]2 ,,.

Proof. For a given 6 > 0 (that will be fixed later), we may find in the unit sphere
of the m-dimensional space (X/F)* a finite d-net, say {y7}’_,, just by compactness.
Now, for each j < N, by the shrinking condition on the (F},)%,;, we may pick
m; € N so that
€
: oo < —
||y,] © Q‘[Fn]n:mj || — 4m’
where (): X — X/ F stands for the natural quotient map. Picking M = max;<x m;,
let us check that

(13) Q@I < 5llall, = € [Fu)i.

Indeed, pick x € [F,]22,, with ||z|| = 1. Then ||Qz| < 1 and we may choose
z* € (X/F)* also with [|z*|| = 1 so that |Q(z)|| = |z*(Q(x))|. For the choice z*
there is jo < N so that |[2* — 7 || < & by the very definition of §-net. Thus,

3

Q)] = 2*(Q))] = (2" =, Q@) + |y, (@) < 6+ .

If we choose 0 = 1=, we may take for granted that (13) is achieved.

We are going to use the estimate (13) for the bound of a projection of X onto
F'. The construction of the projection is standard. Pick an Auerbach basis in X/F,
say {z1,...,2m} with biorthogonal functionals {27, ..., 2} } so that z(z;) = J;; and
|2jll = ||z} || = 1 for j < m. For each z; pick z; € X so that Q(z;) = 2; and [|x;]| < 2

for all j < m. Therefore, the map
P: X — Ker@ = F,

given by the rule

is well defined since

Q <Z<z;,@<x>>xj) = > "(5.QM)z = Q)
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And it is bounded since

m

T — Z<Z}‘, Qx)); || < =l + Z (27, Q) ||

< [lell + Q) [[2m < (1 + 2m)|].
But let us observe that the estimate (13) gives for x € [F,]>2,, that
[1P(@)]] < (14 ),

I1P(z)]} =

and also

[P (@) = [Jz]} = 2m[|Q(x)[| = (1 — &)[|]
The previous two estimates show that P, when restricted to [F,]32,,, is an almost
isometry provided € > 0 is small enough. 0

A similar claim for spaces with a shrinking basis seems to be folklore but we
found no proof in the literature so we have included one for the sake of completeness.
Now, we may conclude our previous discussion and distinguish between ¢5(&,,) and
the asymptotically Hilbertian Z(J).

Proposition 5. The space (5(E,) is not asymptotically Hilbertian.

Proof. Let us recall a couple of useful facts on ¢5(&,). The first is that &, =
65‘2 ®y, ¢35 where f,, is a certain nonlinear function. The key is that such function
is defined recursively, so that given f,, we construct f,,. Using this fact and the
expression [10, (12), Lemma 1], one trivially finds that

(14) En C Enn

isometrically for every n € N. A second useful fact is that

(15) dg, > cy/logn,

for some absolute ¢ > 0. This follows trivially from [10, Corollary|. Let us sketch
now that ¢5(&,) is not as. Hilbertian. Let us fix the dimension n?+n and pick a finite
codimensional subspace F' of 5(&,) so that every (n?+n)-dimensional subspace of F'
is C-isomorphic to a Hilbert. By Lemma 3, since ¢5(&,) has clearly a shrinking FDD
given by (&,)7Z,, such F contains a 2-isomorphic tail of the FDD, say (&52,,)&;)-

So the same claim must also hold for this tail of the FDD but with constant 2C. It
is clear by (14) that one may find m > g(n) large enough so that

En C Em,
where let us recall that dim &, = n? + n. But using (15) we find that cy/logn <
dg, < 2C' which is absurd if n is large enough. O

5. A new HAPpy space

We construct now a nontrivial twisted-Hilbert which is a HAPpy space. The main
technical tool to show it is HAPpy is a result of Johnson and Szankowski claiming
that if d,,(X) grows to infinity slowly enough, of inverse Ackermann type, then X is
HAPpy, see [14, Theorem 2.1]. So let us introduce the inverse Ackermann function.
We must first familiarize ourselves with the hierarchy of rapidly growing functions.
We define

go(k) =k +1, and,
gns1 (k) = g (k) forn >0,
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where ¢ denotes the k-fold iterate of gy, i.e., g,(fﬂ)(k:) = gn(gg)(l{:)). It follows that

gl(]f) = 2]{7,
gg(k’) = k‘Qk,

while the map g3(k) corresponds to a stacked tower of height k. The inverse of the
Ackermann function is the inverse of the map

n = gn(n).
For simplicity we shall deal with the inverse of the map
n— gn(2),

which, as was pointed in [13], has the same asymptotic behaviour that of the inverse
Ackermann function. This is, we define this inverse a(n) to be the unique integer 4
so that
9:(2) < n < gir1(2).

The reader will find that any other variant of the inverse Ackermann function is the
same up to a bounded factor [2, Lemma B.1., Appendix B|. As an example of the
appearing of the hierarchy of rapidly growing functions in the literature we have the
following well known result |7].

Proposition 6. There is C' > 0 so that every g,(k)-dimensional subspace of
[t;]52), in T is C"-isomorphic to a Hilbert space.

In particular, we may describe the Banach—Mazur distance to a Hilbert space in
terms of the inverse Ackermann function.

Corollary 2. Forn € N large enough, every ga(n)+1(2)-dimensional (thus every
n-dimensional) subspace of T? is 2°9(®™)_isomorphic to a Hilbert space.

In this section we deal with the Casazza—Nielsen symmetric version of 72 that
we will denote by T2. The reader may fulfill all the details from the paper of Casazza
and Nielsen [6] where this space is denoted by S(7?2). To simplify things, we just use
two facts of this space. One aspect is that the natural basis of 72 is symmetric. The
second ingredient is that Casazza and Nielsen proved that d,(72) — oo more slowly
than any iteration of the logarithm |6, Proposition 3.9]. The proof indeed shows that
d,(T2) is of inverse Ackermann type as in the corollary above.

Proposition 7. For every finite dimensional subspace E of T? of large enough
dimension,

(]_6) dE S 20(a(dimE))‘

Proof. We only sketch it since the argument is the same as in |6, Proposition 3.9].
Let n = dim F and using a standard argument we may assume that we are on the span
of n" vectors with disjoint support. Then, arguing exactly as in [6, Proposition 3.9],
and using the corollary above with estimate 2°“™) for n-dimensional subspaces where
¢ > 0 is some fixed absolute constant, we infer that

dp < K . 2%
for some absolute K > 0. We only need to check that

a(n™) < a(n) + 2,
but this follows from

Gamnm)(2) < 1" < g5(n) < 93(Gam)+1(2)) < Gam)+1(Jam)+1(2)) = gam)+2(2),
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where we have assumed that 2 < «(n) in the fourth inequality. O

A similar estimate holds for (72)*. We may give a short argument (that will be

useful later) based on an idea of J ohnson [12].

Corollary 3. For every finite dimensional subspace E of (T2?)* of large enough
dimension,
(17) dp < QO(a(dimE)).

Proof. Fix such E and pick F in 72 that is 27 '-norming. This can be achieved
easily with dim /' < 54m¥E  see for example [22, Lemma, page 7]. Then the natural
duality pairing B : E x F' — K given by B(e, f) = e(f) provides a 2-isomorphic
embedding of F into F*. Therefore,

dp < 2dp« = 2dp <22

5dimE dim E
(57 F) < gera(dimE)

where in the last inequality we have argued as in the proof of Proposition 7 for dim F
large enough and in the previous inequality we have used the estimate guaranteed
by Proposition 7 for some ¢ > 0. O

The (5 basis dominates the basis in 772, therefore (72, (72)*)12 = {» by [9,
Corollary 4.3|. Let Z(T2) be, as usual, the induced twisted Hilbert space. Thus, we
are ready to prove the twisted analogue of the result of Casazza—Nielsen.

Proposition 8. For every finite dimensional subspace E of Z(T?) of large
enough dimension,

(18) dp < 20((dim E))
Proof. Let us observe the trivial bound a,2(X) < d,(X). Therefore, using the
estimates (16) and (17), we have, for some absolute ¢ > 0,
max{aa(7;), an2((T2))} < 200,
if n is large enough. We use now the estimate provided in |27, Proposition 3| to find
ana(Z(T2)) < ex - 20,

for some absolute ¢; > 0. If we let now E to be an n-dimensional subspace, then,
reasoning exactly as in Claim B of Proposition 1, we find:

dp < ay(E) - o(E) < 2V2m - ans (Z(T7)) - e (Z(T7))
<AV N a0 (Z(T2))? < 2v21 - A - 3220,

where A denotes the isomorphism constant between Z(72) and its dual [28, Lemma 1].
0J

Corollary 4. The spaces Zs, l5(E,) and Z(S?) are not isomorphic to a subspace
or a quotient of Z(T2).

To state our next corollary let us recall that Johnson and Szankowski proved that
if d,,(X) — oo slowly enough (of inverse Ackermann type) then X is HAPpy, see [14,
Theorem 2.1|. Therefore, it readily follows from the estimate (18) that

Corollary 5. The twisted-Hilbert Z(T2) is a HAPpy space.

Previously, the weak Hilbert Z(772) was the only nontrivial example of a twisted
Hilbert that is HAPpy. It only remains to separate the new guy Z(72) from the as.
Hilbertian gang.
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Proposition 9. The space Z(T2) is not asymptotically Hilbertian nor the basis
(vj)32, has the E(n,n, K)-property.

Proof. Let us assume that Z(72) is as. Hilbertian and let us reach a contradic-
tion. Since the basis of T2 and its dual are symmetric, there is no loss of generality
assuming that the corresponding centralizer €2 is symmetric. This means exactly that
there is C' > 0 such that for every permutation o of the natural numbers, we have
that

(19) | Ty 0 Q(x) — Qo T,(x)|| < C|lz||, z € coo,
where T,(3 07 anen) = Y 0" | Gne€y(n). Indeed, pick B a 2-bounded selector so that

!/

1B = ) and observe that the linearity of T, easily implies
TO' O 61/23 — 6:’[/2T0— o B.

Therefore,

T,00—-QoT, :51/2(TUOB—BOTJ).
The key point is that T, o B(z) — B o T,(z) € Kerdy/, so that we may apply the
compatibility criteria cf. [5, Theorem 4.1.], that is

161 /5(To © B(z) = B o Ty (x))|l2 < C||T5 0 B(z) — B o T, (2)| 7w

for some absolute C' > 0. It is trivial to get a good bound for B o T,,. Now, to
bound T, o B we must use that the operators T, are (uniformly) bounded when
acting on T2 and its dual since the basis are symmetric. We leave the easy details to
the reader. Just to mention, Kalton proved the very much difficult converse to this
claim, namely, if the centralizer is symmetric then we may assume that the spaces
representing such centralizer have a symmetric basis [15, Corollary 7.7].

It follows trivially from (19) that the basis (vy;)32, is symmetric. The only as.
Hilbertian with a symmetric basis is ¢y but if [122]-]]0-‘;1 ~ (5 then, once more, by
Kalton’s uniqueness theorem [15, Theorem 7.6.], we would find 72 ~ fy. A very
similar argument holds for the E(n,n, K)-property. O

Corollary 6. The following holds:

(1) Z(T2) is not isomorphic to a subspace or a quotient of Z(T?).
(2) Z(T2) is not isomorphic to a subspace or a quotient of Z(J).

5.1. The Johnson—Szankowski twisted Hilbert spaces. This subsection
deals with another theorem of Johnson and Szankowski [14, Theorem 3.1.]:

Theorem 2. Let 1 < §,, — co. There exists an Orlicz space {y; of type 2, non
isomorphic to o, so that d,,({y;) < 0, for every n € N.

The arguments given in Section 5 can be used to prove a “twisted analogue” of
this result. In particular, it is a way to produce HAPpy twisted Hilbert spaces.

Proposition 10. Let 1 < 9, — oo. There exists ng € N and a twisted Hilbert
space Z(JS), so that d,,(Z(JS)) < 6, for n > ng. Moreover, Z(JS) is not asymp-
totically Hilbertian.

Proof. The proof uses the same arguments given for Z(72). Let (5,)5%; be fixed
and pick (£,)0%, with 1 < &, — 00 so that

77 * (2 M €5n>2 S 57“

where 7 is a universal constant (to be discussed later) and n is large enough: For
example, define “e,,” to be the constant function 1/d,,/(4n) on each exponential jump.
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o

Consider now the Johnson-Szankowski space of Theorem 2 for the choice (g,)52,

say ps. Then, let us pick Z(JS) := Z({y). By construction
dn(lyr) < &y
and, using the argument of Corollary 3, we also have
Aa(Ci) <2 dsn(0ar) < 2+ 250,
Let us argue as in Proposition 8 to find
(20) do(Z(n)) <1+ (2-e50)%,
for some constant 1 which deserves a couple of remarks. It appears as a consequence

of two facts:

e The duality: the isomorphism constant of Z(X') with its dual does not depend
on X. A detailed proof is to be found in 28, Lemma 1| where it is shown that
it only depends on the constant appearing in (1) which in turn is bounded
by 4p; recall that Q = §] /QB where B is a p-bounded selector. Since we
may clearly assume without loss of generality that p = 2, the isomorphism
constant can be bounded independently of X.

e The type 2 constants: A close inspection of |27, Proposition 3| shows that if
we denote by

A, = max{a,2(X), an2(X")},
then we have that
an2(Z(X)) <dp- A,
And, as before, we may assume that p = 2.

Therefore, it follows from the comments above that there is such 1 (independent
of the space involved) so that (20) holds. Indeed, repeating the chain of estimates
provided for dg in Proposition 8 with this new, and much more precise, labelling of
the constants, we find for an n-dimensional subspace E of Z(X) that

dp <mn- Ai)
where 7 is independent of X. Thus, we have d,(Z(X)) < n- A2 and then also
d,(Z(X)) <n- Dy,
where
D,, = max{d,(X),dn(X")}.
Finally, using the technique of Corollary 3, we arrive to the easy-to-handle formula
do(Z(X)) < 41 - 520,

Hence, we are done with the first part. To finish we need to check that Z(¢;,) is not
as. Hilbertian but this is exactly as in Proposition 9. U

Corollary 7. Let 1 < 9, — oo. There exists ng € N and a ly-saturated space
X with a symmetric basis but failing type 2 so that d,(X) <, for n > ny.

Proof. Pick the twisted Hilbert Z of Proposition 10 for the choice (4,,)52, and
consider as X the closed span of (vy;)52;. O
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6. A pocket map for the hexagonal tree

The following picture may help to understand the relationship of the 6-known
types of twisted Hilbert spaces so far.

The basic idea is that every space is connected to another if they are similar
in some sense. For example, Z5(¢) is connected to ¢5(&,) since the distance of its
n-dimensional subspaces to Hilbert is extremal, roughly, of the order logn. Another
one is that Z(J) and ¢5(&,) are connected since both spaces are fo-sums of finite
dimensional spaces. The link of Z(J) and Z(7?) is that both of them are asymptot-
ically Hilbertian while this last and the Hilbert copy are both weak Hilbert spaces.
On the other hand, Z(7?) shares with Z(72) that both are HAPpy while it shares
with Z(8?) that both do satisfy the E(n,n, K)-property. To close the loop, Z(S?) is
connected to Z, since this last is a subspace of Z(8?). In a more elaborated language,
this connection may be stated as both twisted Hilbert spaces are admitting Z; as a
“twisted” spreading model, something that does not hold for the rest of the spaces of
the tree. These claims on spreading models may be found in the forthcoming paper
[30].

We have implemented the intuitive idea of the “size” of such similarity in terms
of the distance. In this sense, ¢, plays the role of the tree root, it is very close to
Z(T?) (both of them are weak Hilbert spaces) but as far as possible from Z» which
is, undoubtedly, the treetop.

E(n,n, K)

As. Hilbertian } ———————— HAPpy

Weak Hilbert

Remark 1. All our examples come from the complex interpolation method.
The spaces Zo, Z(T?), Z(J) and Z(T?) admit a version which is given by the real
interpolation method, so the constructions are not attached to one and only method
of interpolation. The interested reader may find this in [29].
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