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Abstract. In the present article, we develop Fourier series for a family of classes of Romieu

type of ultradifferentiable functions and ultradistributions on the torus, usually known as Denjoy–

Carleman classes. In this setting, as applications, we extend the Greenfield–Wallach Theorem and,

through a conjugation, we characterize global hypoellipticity for a class of systems of real vector

fields of tube type.

1. Introduction

There has been a great development in the field of global analysis in the last
decades, especially for problems on the torus TN = RN/2πZN . An immense amount
of results concerning solvability and hypoellipticity for operators and systems (see
for instance [AJ, BCP, DGY, WC] and references therein) has been obtained in a
variety of frameworks.

Two of those frameworks that stand out are the spaces of real analytic and
Gevrey functions (see for example [AZ, Ber, Him, Tar] and references therein). In this
context, one of the most important tools is the characterization of ultradistributions
and functions via their Fourier series (see for instance [AP, BCCJ, BGS, CC, HP,
JKM, PZ]).

An important fact regarding Gevrey spaces is that they generalize the concept
of real analytic functions (recall that G1(TN) = Cω(TN)) and allow us to better
understand the gap between smooth and real analytic functions. Nevertheless, they
are not sufficient in that sense; In fact, it is possible to show that

Cω(TN) (
⋂

s>1

Gs(TN).

Furthermore there exist subspaces of C∞(TN ) whose elements are nowhere analytic
and satisfy the following condition:

x0 ∈ TN and Dαf(x0) = 0, ∀α ∈ NN
0 , ⇒ f ≡ 0,

a property that does not hold for any Gs(TN) with s > 1.
Those facts lead us to the study of Denjoy–Carleman classes; in few words, given

a sequence of positive numbers {mn}n∈N0
, we work with the space of the functions

f ∈ C∞(TN) such that

|Dαf(x)| ≤ C · h|α| ·m|α| · |α|!, ∀x ∈ TN , ∀α ∈ NN
0 ,

which provides a much wider range of classes of ultradifferentiable functions.
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Once we have highlighted the importance of Denjoy–Carleman classes and Fourier
analysis, the interest in the development of the latter’s techniques in the former’s
context naturally shows up. That is the principal goal of the present work.

In Section 2, we describe our classes of ultradiferentiable functions, starting with
the definition of weight sequences, which characterize the growth of functions and its
derivatives. Important examples are presented and we make a brief comparison with
the sequences defined by Komatsu in [K1].

Next we endow those classes with a inductive limit topology, which make them
DFS spaces and allows us to define the spaces of ultradistributions. In Section 4
we develop Fourier Series for functions and ultradistributions, characterizing both in
terms of the decay of their Fourier coefficients.

Finally, Section 5 is destined to the study of global hypoellipticity in the Denjoy–
Carleman setting. It is divided in three subsections: in the first one it is proved for
any class an extension of the Greenfield Theorem [Gr] for systems with constant
coefficients. Next we prove a version of the Greenfield–Wallach Theorem [GW] and
generalize a construction done in [GPY] which exhibits vector fields that “separate
classes” in terms of global hypoellipticity. In the last subsection, inspired in works like
[BCM], [BP] and [Hou], we characterize global hypoellipticity for a class of systems
of real vector fields of tube type through a conjugation to a system of constant
coefficients.

2. Denjoy–Carleman classes on torus

In this section we consider a class of weight sequences and give some examples.
We also prove conditions which they satisfy and how those properties have impact
on the related classes of functions.

Definition 2.1. A weight sequence is a sequence of positive real numbers M =
{mn}n∈N0

satisfying the following conditions:

1. m0 = m1 = 1; (initial conditions)
2. m2

n ≤ mn−1 ·mn+1, ∀n ∈ N; (logarithmic convexity)

3. sup
j,k

(
mj+k

mj ·mk

)1/(j+k)

≤ H , for some H > 1. (moderate growth)

Example 2.2. Given s ≥ 1, Gs = {(n!)s−1}n∈N0
is a weight sequence. In fact,

[
(n+ 1)! · (n− 1)!

(n!)2

]s−1

=

[
n + 1

n

]s−1

≥ 1 and

[
(j + k)!

j! · k!

]s−1

≤ (2s−1)j+k.

Example 2.3. Let σ > 0 and put ℓn = [log(n+ e− 1)]σ·n. Then

ℓn+1 · ℓn−1

ℓ2n
=

(
[log(n+ e)](n+1)

[log(n+ e− 1)]n
· [log(n+ e− 2)](n−1)

[log(n+ e− 1)]n

)σ
=

(
f(n)

f(n− 1)

)σ
,

if we set f : [1,+∞) → R; f(x) = [log(x+e)](x+1)

[log(x+e−1)]x
. By analyzing its derivative, we prove

that f is nondecreasing and hence logarithmic convexity holds up. Furthermore, given
j, k ∈ N we have

ℓj+k
ℓj · ℓk

=

[
log(j + k + e− 1)

log(j + e− 1)

]σj
·
[
log(j + k + e− 1)

log(k + e− 1)

]σk

≤
[
1 +

k

j + e− 1

]σj
·
[
1 +

j

k + e− 1

]σk
≤ eσ·(j+k),
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which proves moderate growth.

Example 2.4. Consider mn = [log (log(n+ ee − 1))]β·n, with β > 0. Analo-
gously to Example 2.3 we study the derivative of g : [1,+∞) → R;

g(x) =
[log (log(x+ ee))](x+1)

[log (log(x+ ee − 1))]x

to confirm logarithmic convexity. On the other hand,

mj+k

mj ·mk
=

[
log (log(j + k + ee − 1))

log (log(j + ee − 1))

]βj
·
[
log (log(j + k + ee − 1))

log (log(k + ee − 1))

]βk

≤
[
log(j + k + ee − 1)

log(j + ee − 1)

]βj
·
[
log(j + k + ee − 1)

log(k + ee − 1)

]βk

≤
[
1 +

k

j + ee − 1

]σj
·
[
1 +

j

k + ee − 1

]σk
≤ eσ·(j+k),

checking moderate growth.

Remark 2.5. Given L = {ℓk}k∈N0
and M = {mk}k∈N0

weight sequences, their
product given by K = {ℓk ·mk}k∈N0

is also a weight sequence.

Proposition 2.6. Let M = {mn}n∈N0
be a weight sequence. Then following

properties hold:

1. M is non-decreasing.

2. The sequence given by βn := (mn)
1
n , for n ≥ 1, is non-decreasing.

3. Let k, n ∈ N0 such that k ≤ n; then

mk ·mn−k ≤ mn.

4. For any k ∈ N there exists C{k} > 1 such that:

(2.1) sup
j≥1

(
mj+k

mj

) 1
j

≤ C{k}.

Proof. Let ωn = logmn; from the definition of weight sequence, we show by
induction that

ωj ≤
j

j + k
· ωj+k, ∀k ∈ N0, ∀j ∈ N,

which implies that
ωn
n

≤ ωn+1

n + 1
and ωj + ωk ≤ ωj+k,

proving 1, 2 and 3; on the other hand, since
(
mj+1

mj

)
≤ H2j, ∀j ∈ N0,

it follows that
(
mj+k

mj

)
=

(
mj+1

mj

)
· . . . ·

(
mj+k

mj+k−1

)
≤ H2[j+(j+1)+...+(j+k−1)] ≤ H2j·(k2+k), ∀j ≥ 1.

Thus 4 is proved by taking C{k} = H2(k2+k). �
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Remark 2.7. By applying Proposition 2.6 for the particular case where s = 2
in Example 2.2, we obtain for each k ∈ N the existence of B{k} such that

(2.2)

(
(j + k)!

j!

) 1
j

≤ B{k}.

Definition 2.8. Let M = {mn}n∈N0
be a weight sequence; we say that f ∈

C∞(TN) is ultradifferentiable of Romieu Class M if there exist constants C, h > 0
such that

|Dαf(x)| ≤ C · h|α| ·m|α| · |α|!, ∀α ∈ NN
0 , ∀x ∈ TN .

Definition 2.9. We denote the space of ultradifferentiable functions of Romieu
class M as EM (TN). EM (TN) is called the Denjoy–Carleman class on TN associated
to M .

Remark 2.10. Let us analyze the difference between our sequences and the ones
introduced by Komatsu in [K1]. In comparison, we haveMn = mn·n!; although initial
conditions do not exist in [K1], they are essentially imposed to facilitate computations
and are not a real obstruction for the theory.

Proceeding to logarithmic convexity, note that

Mn−1 ·Mn+1

M2
n

=
mn+1 ·mn−1 · (n− 1)! · (n+ 1)!

m2
n · (n!)2

=
mn+1 ·mn−1

m2
n

· n+ 1

n
.

Hence condition 2 in Definition 2.1 is slightly stronger than (M.1) established in [K1].
The reason for requiring it becomes evident in Proposition 2.6 and Lemma 5.10.

Finally, Property 3 in Definition 2.1 is named “stability under ultradifferentiable
operators” in [K1]. It implies the result stated in Lemma 4.17, which is crucial in
the proofs of Theorems 4.18, 5.2, 5.9 and 5.12. In the ultradifferentiable context,
it implies the associated function (Remark 4.6) is a weight function (see [BMM],
[BMT]), relating two different ways of defining ultradifferentiable functions.

It is not difficult to check that EM (TN) is a vector subspace of C∞(TN). More-
over, each statement proved in Proposition 2.6 has a direct consequence on the
classes associated. The fact that a weight sequence is non-decreasing (1) means
that Cω(TN) ⊂ EM (TN). It follows from 2 that EM (TN) is always closed for com-
position and inverse-closed (see [BM], [RudI]). As implications of 3 and 4, it is
possible to show that any class is a subalgebra of E(TN) and closed by differentiation
respectively.

Another important subject related to those spaces of ultradifferentiable functions,
the one which actually originated its study, is the existence of elements which are
flat at some point.

Definition 2.11. Let M be a weight sequence; we say that EM (TN) is quasi-
analytic if

f ∈ EM (TN), x0 ∈ TN
∣∣ Dαf(x0) = 0, ∀α ∈ NN

0 ⇒ f ≡ 0.

The characterization for quasianalyticity was first given partially by Denjoy
([Den]) and then completely by Carleman ([Car]). For more details, we recommend
[Hor], [RudII].

Theorem 2.12. EM (TN) is quasianalytic if and only if

+∞∑

j=0

mj

mj+1 · (j + 1)
= +∞.
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We now go back to the examples given previously. The classes associated to
the sequences set in Example 2.2 are the famous Gevrey classes, which are denoted
as Gs(TN). When s = 1, we obtain the class of real analytic functions, which is
quasianalytic. If s > 1, they are non-quasianalytic.

Example 2.3 is very important for comprehension of the gap between smooth
functions and real analytic functions, since the particular case where σ = 1 represents
the intersection of all inverse-closed non-quasianalytic classes [RudI]. Besides, it is
quasianalytic for 0 < σ ≤ 1 and non-quasianalytic for 1 < σ [Th]. Example 2.4 is
historically relevant, since the case where β = 1 was introduced by Denjoy in [Den]
as the first example of class of quasianalytic functions which are nowhere analytic.

Before the end of this section, we discuss about inclusion of classes and how this
subject is related to the asymptotic behavior of their associated sequences.

Definition 2.13. Let L ,M be weight sequences. We denote

(2.3) L � M ⇔ sup
k∈N0

(
ℓk
mk

) 1
k

< +∞.

Besides, we write L ≈ M when L � M and M � L .

It is possible to prove (see [Th]) that

(2.4) EL (TN) ⊂ EM (TN) ⇔ L � M .

In particular, EL (TN) = EM (TN) if and only if L ≈ M . This shows for instance that

r < s implies Gr(TN) ( Gs(TN) and Cω(TN) = EM (TN) ⇔ supj≥1 (mj)
1
j < +∞.

3. The topology of EM (TN) and its dual space

From now on M represents an arbitrary weight sequence fixed, since all the
results stated only rely on conditions established in Definition 2.1.

Definition 3.1. For any h > 0, we set

EM ,h(T
N) =

{
f ∈ EM (TN ); sup

α∈NN
0

[ ‖Dαf‖∞
h|α| ·m|α| · |α|!

]
<∞

}
.

Moreover, we denote for f ∈ EM ,h(T
N ),

‖f‖
M ,h := sup

α∈NN
0

[ ‖Dαf‖∞
h|α| ·m|α| · |α|!

]
.

If EM ,h(T
N) is equipped with ‖.‖

M ,h, which in that case is a norm, it becomes a
Banach space.

Proposition 3.2. Let h1, h2 ∈ R+, with h1 < h2; then EM ,h1(T
N) ⊂ EM ,h2(T

N)
and the inclusion EM ,h1(T

N) →֒ EM ,h2(T
N) is compact.

Proof. Since the inclusion is trivial, we only prove the compactness: let {fn}n∈N
be a bounded sequence in EM ,h1(T

N). Thus there exists C0 > 0 such that

|Dαfn(x)| ≤ C0 · h|α|1 ·m|α| · |α|!, ∀x ∈ TN , ∀α ∈ NN
0 , ∀n ∈ N,

and consequently for every k ∈ N0 we are able to find Ck > 0 such that
∑

|β|≤k
sup
x∈TN

|Dβfn(x)| ≤ Ck, ∀n ∈ N.
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By Arzelà–Ascoli Theorem there exists a subsequence {fnk
}k∈N converging to f

in C∞(TN). Besides, for any x ∈ TN , γ ∈ NN
0 ,

|Dγf(x)| = lim
k→+∞

|Dγfnk
(x)| ≤ C0 · h|γ|2 ·m|γ| · |γ|!,

which allows us to conclude that f ∈ EM ,h2(T
N). It remains to prove that fnk

→ f
in EM ,h2(T

N ).

Given ε > 0, we take p ∈ N such that

(
h1
h2

)p
≤ ε

2C0
and

C1 := max

{
1

hq2 ·mq · q!
; 0 ≤ q ≤ p

}
.

Due to the fact that fnk
→ f in C∞(TN), it is possible to find k1 ∈ N such that

sup
x∈TN

∣∣Dλfnk
(x)−Dλf(x)

∣∣ ≤ ε

C1
, |λ| ≤ p, k ≥ k1.

Let k ≥ k1; if |λ| ≤ p,

sup
x∈TN

[∣∣Dλfnk
(x)−Dλf(x)

∣∣
h
|λ|
2 ·m|λ| · |λ|!

]
≤ ε

C1
· C1 = ε.

When |λ| > p,

sup
x∈TN

[∣∣Dλfnk
(x)−Dλf(x)

∣∣
h
|λ|
2 ·m|λ| · |λ|!

]
≤ sup

x∈TN

[∣∣Dλfnk
(x)−Dλf(x)

∣∣
h
|λ|
1 ·m|λ| · |λ|!

]
·
(
h1
h2

)p

≤
[
‖fnk

‖
M ,h1

+ ‖f‖
M ,h1

]
· ε

2C0
≤ ε.

Therefore ‖fnk
− f‖

M ,h2
≤ ε for all k ≥ k1, which shows that fnk

→ f in EM ,h2(T
N).
�

Let {hn}n∈N be a strictly increasing sequence of positive real numbers such that
hn → +∞. It is not difficult to see that

EM (TN) =
⋃

n∈N
EM ,hn(T

N).

We endow EM (TN) with the inductive limit topology given by the family of EM ,hn(T
N).

That is,

EM (TN) = lim
−→
n∈N

EM ,hn(T
N).

It is possible to prove that such topology does not depend on the choice of {hn}n∈N.
Moreover, it follows from Proposition 3.2 that EM (TN) is an injective limit of a
compact sequence of locally convex spaces, also known in the literature as a DFS
space. For more details, we recommend [K2].

Now that we have established a topology for EM (TN ), it is possible introduce the
space of ultradistributions, which is absolutely fundamental for the theory of linear
partial differential equations.

Definition 3.3. We define D ′
M
(TN) as the topological dual space of EM (TN).

That is, the space of continuous linear functionals u : EM (TN) → C .

Theorem 3.4. Let u : EM (TN ) → C be a linear functional; the following condi-

tions are equivalent:
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1. u ∈ D ′
M
(TN).

2. For every ε > 0, there exists Cε > 0 such that

(3.1) |〈u, ϕ〉| ≤ Cε sup
α∈NN

0

(‖∂αϕ‖∞ · ε|α|
m|α| · |α|!

)
, ∀ϕ ∈ EM (TN).

3. If {ϕn}n∈N ⊂ EM (TN) converges to 0 in EM (TN), then 〈u, ϕn〉 → 0.

Proof. 1 ⇒ 2: If 2 does not hold, there exist ε0 > 0 and {ϕn}n∈N ⊂ EM (TN)
such that

|〈u, ϕn〉| > n · sup
α∈NN

0

(
‖∂αϕn‖∞ · ε|α|0

m|α| · |α|!

)
.

By putting ψn =
ϕn

|〈u, ϕn〉|
, we get that

1 > n · sup
α∈NN

0

(
‖∂αψn‖∞ · ε|α|0

m|α| · |α|!

)
⇒ sup

α∈NN
0

(
‖∂αψn‖∞ · ε|α|0

m|α| · |α|!

)
<

1

n
,

which implies that

|∂αψn(x)| ≤
(

1

ε0

)|α|
·m|α| · |α|!, ∀x ∈ TN , ∀α ∈ NN

0 .

Therefore {ψn}n∈N ⊂ EM ,1/ε0(T
N) and

|〈u, ψn〉| ≥ n ‖ψn‖M ,1/ε0
, ∀n ∈ N,

which shows that u
∣∣∣
EM,1/ε0

(TN )
is not continuous and hence u is not continuous.

2 ⇒ 3: Let {ϕn}n∈N ⊂ EM (TN) a sequence that converges to 0. By a property
of DFS spaces, there exists h > 0 such that (ϕn)n∈N ⊂ EM ,h(T

N) and (ϕn)n∈N → 0

in EM ,h(T
N). If we set ε =

1

h
, one can find C > 0 satisfying

|〈u, ϕn〉| ≤ C · sup
α∈NN

0

( ‖∂αϕn‖∞
h|α| ·m|α| · |α|!

)
≤ C · ‖ϕn‖M ,h .

Since ‖ϕn‖M ,h → 0, it follows that |〈u, ϕn〉| → 0.

3 ⇒ 1: If u /∈ D ′
M
(TN), there exists h > 0 such that u

∣∣
EM,h(TN )

is not continuous.

Thus for every j ∈ N we may obtain ϕj ∈ EM ,h(T
N) such that |〈u, ϕj〉| > j ‖ϕj‖M ,h .

Let ψj :=
ϕj

|〈u, ϕj〉|
; then

|〈u, ψj〉| = 1 and ‖ψj‖M ,h =
‖ϕj‖M ,h

|〈u, ϕj〉|
<

1

j
, ∀j ∈ N.

Thus {ψj}j∈N → 0 in EM (TN) whereas 〈u, ψj〉 6→ 0, which proves our claim by
contradiction. �

The notion of convergence here, analogously to other spaces of distributions, is
the pointwise convergence. That is,

Definition 3.5. Let {un}n∈N be a sequence in D ′
M
(TN ) and u ∈ D ′

M
(TN). We

say that un → u if
〈un, ϕ〉 → 〈u, ϕ〉, ∀ϕ ∈ EM (TN).

We also have the following completeness condition:
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Lemma 3.6. Let {un}n∈N be a sequence in D ′
M
(TN) such that 〈un, ϕ〉 is a

Cauchy sequence for every ϕ ∈ EM (TN ). Then there exists u ∈ D ′
M
(TN) such that

lim〈un, ϕ〉 = 〈u, ϕ〉, ∀ϕ ∈ EM (TN).

Proof. Set u : EM (TN) → C; 〈u, ϕ〉 = lim〈un, ϕ〉. We claim u is continuous; in
fact, let {ϕk}k∈N be a sequence in EM (TN) converging to 0. Then there exists h > 0
such that ϕk ∈ EM ,h(T

N) for every k ∈ N and ‖ϕk‖M ,h → 0.

For any ψ ∈ EM ,h(T
N), sequence 〈un, ψ〉 is bounded. Since un

∣∣
EM,h(TN )

is con-

tinuous for each n, it follows from Uniform Boundedness Principle the existence of
M > 0 such that

|〈un, ψ〉| ≤ M · ‖ψ‖
M ,h , ∀n ∈ N, ∀ψ ∈ EM ,h(T

N).

Given ε > 0, we choose k0 ∈ N such that

|〈un, ϕk〉| ≤
ε

2
, ∀n ∈ N, ∀k ≥ k0.

Because 〈u, ϕk〉 = lim
n
〈un, ϕk〉, for each k ≥ k0 we are able to find nk ∈ N satisfying

|〈u, ϕk〉 − 〈unk
, ϕk〉| ≤

ε

2
.

Therefore for every k ≥ k0, we have

|〈u, ϕk〉| ≤ |〈u, ϕk〉 − 〈unk
, ϕk〉|+ |〈unk

, ϕk〉| ≤ ε,

which proves our assertion, by Theorem 3.4. �

4. Fourier series for EM (TN) and D ′

M
(TN)

4.1. Fourier series. We begin the subsection setting Fourier coefficients for
elements of EM (TN) and showing that any ϕ ∈ EM (TN ) is completely described by
its Fourier Series.

Definition 4.1. Let ϕ ∈ EM (TN); for each ξ ∈ ZN we define its Fourier coeffi-
cient as:

ϕ̂(ξ) :=
1

(2π)N

ˆ

TN

e−ixξϕ(x) dx.

Theorem 4.2. For every ϕ ∈ EM (TN) we have

ϕ(x) =
∑

ξ∈ZN

ϕ̂(ξ) · eixξ, ∀x ∈ TN ,

with convergence in EM (TN). Furthermore, there exist constants C, δ > 0 such that

(4.1) |ϕ̂(ξ)| ≤ C · inf
n∈N0

(
mn · n!

δn · (1 + |ξ|)n
)
, ∀ξ ∈ ZN .

Proof. We start by proving (4.1); when ξ = 0 the estimate is obvious for δ = 1,
so we may consider ξ 6= 0. It is easy to see that |ϕ̂(ξ)| ≤ ‖ϕ‖∞; for any non-zero

α ∈ NN
0 , D̂αϕ(ξ) = ξα · ϕ̂(ξ). Hence there exist C1, h1 > 1 such that

|ξα| · |ϕ̂(ξ)| ≤ C1 · h|α|1 ·m|α| · |α|!.
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Since |ξ||α| ≤
∑

|β|=|α|

|α|!
β!

· |ξβ|, it follows that

|ξ||α| · |ϕ̂(ξ)| ≤ C1 · h|α|1 ·m|α| · |α|! ·
∑

|β|=|α|

|α|!
β!

≤ C1 · (h1 ·N)|α| ·m|α| · |α|!.
Because ξ 6= 0, we infer that

(1 + |ξ|)|α| · |ϕ̂(ξ)| ≤ C1 · (2 · h1 ·N)|α| ·m|α| · |α|!,

which proves the estimate if we take C = max {‖ϕ‖∞ , C1} and δ =
1

2 · h1 ·N
.

Proceeding to the proof of the first statement, note that since ϕ is smooth, the
convergence holds in C∞(TN ). For each k ∈ N, consider the partial sum

Skϕ(x) =
∑

|ξ|≤k
ϕ̂(ξ) · eiξx.

Observe that Sk is real analytic and consequently an element of EM (TN). Besides,
for any α ∈ NN

0

Dα(ϕ− Skϕ)(x) =
∑

|ξ|≥k+1

ϕ̂(ξ) · ξα · eiξx.

Thereafter it follows from (4.1) that for any x ∈ TN , α ∈ NN
0 ,

|Dα(ϕ− Skϕ)(x)| ≤ C

(
1

δ

)|α|+2N

m|α|+2N · (|α|+ 2N)!
∑

|ξ|≥k+1

(1 + |ξ|)−2N

≤ C

(
1

δ

)|α|+2N

(m|α| · C |α|
{2N}) · (|α|! ·B

|α|
{2N})

∑

|ξ|≥k+1

(1 + |ξ|)−2N

≤ C ′ · h′1
|α| ·m|α| · |α|!

by applying (2.1), (2.2) and setting

C ′ = C

(
1

δ

)2N ∑

ξ∈ZN

(1 + |ξ|)−2N , h′1 =

(
1

δ

)
B{2N}C{2N}.

Since h1 < h′1 and ϕ, (ϕ− Skϕ) belong to EM ,h′1
(TN), the same holds for every

Skϕ. In addition,

|Dα(ϕ− Skϕ)(x)| ≤



(
C

δ

)2N∑

|ξ|≥k+1

(1 + |ξ|)−2N


 (h′1)

|α| ·m|α| · |α|!, ∀x ∈ TN , ∀α ∈ NN
0 .

Thus lim
k→+∞

‖ϕ− Skϕ‖M ,h′1
= 0 and Skϕ→ ϕ in EM (TN). �

We now prove the converse of Theorem 4.2:

Theorem 4.3. Let {bξ}ξ∈ZN be a sequence in C and assume the existence of

C, δ > 0 satisfying

|bξ| ≤ C · inf
n∈N0

(
mn · n!

δn · (1 + |ξ|)n
)
, ∀ξ ∈ ZN .
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Then there exists ψ ∈ EM (TN) such that

ψ(x) =
∑

ξ∈ZN

bξ · eixξ,

with convergence in EM (TN). In addition, ψ̂(ξ) = bξ.

Proof. Let ψ : TN → C given by ψ(x) =
∑

ξ∈ZN

bξ · eixξ; it follows from hypothesis

that ψ is smooth, with its sequence of partial sums converging to ψ in C∞(TN). For
any α ∈ NN

0 ,

|Dαψ(x)| ≤
∑

ξ∈ZN

(1 + |ξ|)|α| · |bξ|

≤
∑

ξ∈ZN

(
C · m|α|+2N · (|α|+ 2N)!

δ|α|+2N

)
· 1

(1 + |ξ|)2N

≤


C

(
1

δ

)2N ∑

ξ∈ZN

1

(1 + |ξ|)2N



(
C{2N} ·B{2N}

δ

)|α|
·m|α| · |α|!,

which shows us that ψ ∈ EM (TN). By setting Sjψ(x) =
∑

|ξ|≤j
bξ · eixξ for each j ∈ N,

we obtain

|Dα(ψ − Sjψ)(x)| ≤ C ·
(
1

δ

)2N ∑

|ξ|≥j+1

1

(1 + |ξ|)2N
(
C{2N} · B{2N}

δ

)|α|
·m|α| · |α|!.

So lim
j→∞

‖ψ − Sjψ‖M ,h1
= 0 for h1 =

C{2N} · B{2N}
δ

, which implies that Sjψ → ψ in

EM (TN). �

Next we extend the concept of Fourier coefficient and prove versions of Theorems
4.2 and 4.3 for ultradistributions.

Definition 4.4. Let u ∈ D
′

M
(TN ); we define its Fourier Coefficient û(ξ) as

û(ξ) =
1

(2π)N
· 〈u, e−ixξ〉, ∀ξ ∈ ZN.

Theorem 4.5. Let u ∈ D ′
M
(TN); then for every ε > 0, there exists Cε > 0 such

that

|û(ξ)| ≤ Cε sup
n∈N0

(
εn · (1 + |ξ|)n

mn · n!

)
, ∀ξ ∈ ZN .

Proof. For every ε > 0, ξ ∈ ZN it follows from (3.1) the existence of Cε > 0
satisfying

|û(ξ)| ≤ Cε sup
x∈TN

α∈NN
0

( |∂αx (e−ixξ)| · ε|α|
m|α| · |α|!

)
,
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which implies that

|û(ξ)| ≤ Cε sup
α∈NN

0

(
(1 + |ξα|) · ε|α|
m|α| · |α|!

)
≤ Cε sup

α∈NN
0

(
(1 + |ξ|)|α| · ε|α|
m|α| · |α|!

)

= Cε sup
n∈N0

(
εn · (1 + |ξ|)n

mn · n!

)
,

as we intended to prove. �

Remark 4.6. Note that the functions infn∈N0

(
mn·n!
tn

)
and supn∈N0

(
tn

mn·n!
)

nat-
urally show up in Theorems 4.2, 4.3 and 4.5. There is actually a strong connection
between them.

In fact, for any t > 0 we have limn→+∞
(

tn

mn·n!
)
= 0. Since supn∈N0

(
tn

mn·n!
)
≥ 1,

it follows that supn∈N0

(
tn

mn·n!
)

is always assumed by some n0 and a similar argument

shows the same holds for infn∈N0

(
mn·n!
tn

)
. Therefore

[
sup
n∈N0

(
tn

mn · n!

)]−1

= inf
n∈N0

(
mn · n!
tn

)
.

For a full description of the properties of t 7→ supn∈N0

(
tn

mn·n!
)
, which is called asso-

ciated function, we recommend the section with similar title in [K1].

Remark 4.7. For the Gevrey case, Theorems 4.2 and 4.5 may be rewritten in
the following way: if u is a s-Gevrey ultradistribution, then

∀ε, ∃ Cε > 0; |û(ξ)| ≤ Cε · eε·|ξ|
1/s

, ∀ξ ∈ ZN .

In addition, if ϕ is a s-Gevrey function, then

∃ C, δ > 0; |ϕ̂(ξ)| ≤ C · e−δ·|ξ|1/s, ∀ξ ∈ ZN .

In fact, it is not difficult to show that chacterizations using supn∈N0

(
tn

n!s

)
and et

1/s

are equivalent.

After these two brief remarks, we turn back to the previous goal.

Theorem 4.8. Let {aξ}ξ∈ZN be a sequence of complex numbers satisfying the

following condition: for every ε > 0 there exists Cε > 0 such that

|aξ| ≤ Cε · sup
n∈N0

(
εn · (1 + |ξ|)n

mn · n!

)
, ∀ξ ∈ ZN .

Then u =
∑

ξ∈ZN

aξ · eixξ belongs to D ′
M
(TN) and û(ξ) = aξ.

Proof. Put sj(x) =
∑

|ξ|≤j
aξ · eixξ, for every j ∈ N. For any ϕ ∈ EM (TN), we claim

that

〈sj, ϕ〉 :=
ˆ

TN

∑

|ξ|≤j
aξ · eixξ · ϕ(x) dx =

∑

|ξ|≤j
aξ ·
ˆ

TN

eixξ · ϕ(x) dx

is a Cauchy sequence in C. In fact, by taking m, k ∈ N with m > k,

〈sm − sk, ϕ〉 = (2π)N
∑

k+1≤|ξ|≤m
aξ · ϕ̂(−ξ).
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By Theorem 4.2, there exist C1, δ > 0 such that

|ϕ̂(ξ)| ≤ C1 · inf
n∈N0

(
mn · n!

δn · (1 + |ξ|)n
)
, ∀ξ ∈ ZN .

Thus, for some ε > 0 which will be chosen later, we have

|〈sm − sk, ϕ〉| ≤ (2π)NC1Cε
∑

k+1≤|ξ|≤m
sup
n∈N0

(
εn · (1 + |ξ|)n

mn · n!

)
inf
n∈N0

(
mn · n!

δn(1 + |ξ|)n
)
.

On the other hand, it follows from (2.1), (2.2) and Remark 4.6 that

sup
n∈N0

(
εn · (1 + |ξ|)n

mn · n!

)
inf
n∈N0

(
mn · n!

δn(1 + |ξ|)n
)

=

(
εn0 · (1 + |ξ|)n0

mn0 · n0!

)
inf
n∈N0

(
mn · n!

δn(1 + |ξ|)n
)

≤
(
εn0 · (1 + |ξ|)n0

mn0 · n0!

)(
m(n0+2N) · (n0 + 2N)!

δn0+2N · (1 + |ξ|)n0+2N

)

≤ 1

δ2N
·
(
ε · B{2N} · C{2N}

δ

)n0

· 1

(1 + |ξ|)2N ,

for n0 depending on ξ and ε. However, if we choose ε = δ
C{2N}·B{2N}

, the dependence

on n0 disappears. Hence, if C2 =
(2π)N ·Cε·C1

δ2N
, we obtain

|〈sm − sk, ϕ〉| ≤ C2

∑

k+1≤|ξ|≤m

1

(1 + |ξ|)2N .

Since the series on the right-hand side converges, limk→∞ |〈sm − sk, ϕ〉| = 0,
which proves that 〈sj, ϕ〉 is a Cauchy sequence for every ϕ ∈ EM (TN ). By Lemma 3.6,
u :=

∑
ξ∈ZN aξ ·eixξ is an element of D ′

M
(TN) and it is immediate that û(ξ) = aξ. �

Theorem 4.9. Let u ∈ D ′
M
(TN). Then u =

∑
ξ∈ZN û(ξ) · eixξ, with convergence

in D ′
M
(TN).

Proof. By Theorems 4.5 and 4.8, ũ :=
∑

ξ∈ZN û(ξ) · eixξ satisfies conditions

stated. Thus it is sufficient to show that u = ũ. Given ϕ ∈ EM (TN), it follows
from Theorem 4.2 that ϕ(x) =

∑
ξ∈ZN ϕ̂(ξ) · eixξ. If we define once again Skϕ(x) =∑

|ξ|≤k ϕ̂(ξ) · eixξ, by using that Skϕ → ϕ in EM (TN) it is not difficult to check that

〈u, ϕ〉 = 〈ũ, ϕ〉. Therefore u = ũ, which ends the proof. �

By associating Theorems 4.3 and 4.9, we are able to characterize precisely when
u ∈ D ′

M
(TN) is actually an element of EM (TN) through its Fourier coefficients.

Corollary 4.10. Let u ∈ D ′
M
(TN); if one can find C, δ > 0 such that

|û(ξ)| ≤ C · inf
n∈N0

(
mn · n!

δn · (1 + |ξ|)n
)
, ∀ξ ∈ ZN ,

then u ∈ EM (TN).

Remark 4.11. The property of moderate growth (Definition 2.1) was not di-
rectly used for proofs in this subsection. Only the weaker condition (2.1), proved in
Proposition 2.6, was necessary. This fact suggests that those results remain valid for
even more general classes of ultradifferentiable functions.
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4.2. Partial Fourier series. Given R, S ∈ N such that R + S = N , we set
TN = TR

t ×TS
x . For any ϕ ∈ EM (TN) and t ∈ TR fixed, let

ϕt : T
S → C; ϕt(x) = ϕ(t, x).

Then ϕt ∈ EM (TS) and it follows from Theorem 4.2 that

(4.2) ϕ(t, x) = ϕt(x) =
∑

η∈ZS

ϕ̂(t, η) · eixη,

with convergence in EM (TS) and ϕ̂(t, η) =
1

(2π)S

ˆ

TS

ϕ(t, x) · e−ixηdx.

Theorem 4.12. Given ϕ ∈ EM (TN), there exists C, h, δ > 0 such that

(4.3)

|∂αt ϕ̂(t, η)| ≤ C ·h|α|·m|α|·|α|!· inf
p∈N0

(
mp · p!

δp · (1 + |η|)p
)
, ∀t ∈ TR, ∀α ∈ NR

0 , ∀η ∈ ZS.

Moreover, we have the identity (4.2) with convergence in EM (TN).

Proof. Since ∂αt ϕ̂(t, η) = ∂̂αt ϕ(t, η), we have ∂αt D̂
β
xϕ(t, η) = ηβ · ∂αt ϕ̂(t, η) and

|ηβ · ∂αt ϕ̂(t, η)| ≤ sup
(t,x)∈TN

∣∣∂αt Dβ
xϕ(t, x)

∣∣

≤ ‖ϕ‖
M ,h1

· h|α|+|β|
1 ·m|α|+|β| · (|α|+ |β|)!

≤ ‖ϕ‖
M ,h1

·
[
(2h1H)|α| ·m|α| · |α|!

]
·
[
(2h1H)|β| ·m|β| · |β|!

]
,

for some h1 > 0. Given η 6= 0 and p ∈ N0, take β ∈ NS
0 such that |β| = p and

|η|p ≤ Np/2|ηβ| . Then

(1 + |η|)p · |∂αt ϕ̂(t, η)| ≤ ‖ϕ‖
M ,h1

·
[
(2h1H)|α| ·m|α| · |α|!

]
·
[
(4h1H

√
N)p ·mp · p!

]
.

Therefore, by taking h = 2h1H , δ = 1
4h1H

√
N

and C = ‖ϕ‖
M ,h1

·
[
infp∈N0

(
mp·p!
δp

)]−1

,

we also include case η = 0 and prove (4.3).
Proceeding to the second statement, put Sjϕ(t, x) =

∑
|η|≤j ϕ̂(t, η) · eixη. For any

α1 ∈ NR
0 and α2 ∈ NS

0 , it follows from (2.1), (2.2) and (4.3) that

|∂α1
t ∂

α2
x (ϕ− Sjϕ) (t, x)|

≤
∑

|η|>j
C · h|α1| ·m|α1| · |α1|! · inf

p∈N0

(
mp · p!

δp · (1 + |η|)p
)
· (1 + |η|)|α2|

≤


 C

δ2S

∑

|η|>j

1

(1 + |η|)2S


h|α1|

(
B{2S}C{2S}

δ

)|α2|
m|α1|+|α2|(|α1|+ |α2|)!

≤


 C

δ2S

∑

|η|>j

1

(1 + |η|)2S


h

|α1|+|α2|
2 ·m|α1|+|α2| · (|α1|+ |α2|)!,

with h2 = max
{
h,

B{2S}·C{2S}

δ

}
. Therefore Sjϕ → ϕ in EM ,h2(T

N) and consequently

in EM (TN). �

Now we show the converse of Theorem 4.12.
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Theorem 4.13. Consider {ϕη}η∈ZS a sequence in EM (TR) and suppose the ex-

istence of C, h, δ > 0 such that

|∂αt ϕη(t)| ≤ C ·h|α| ·m|α| · |α|!· inf
p∈N0

(
mp · p!

δp · (1 + |η|)p
)
, ∀t ∈ TR, ∀α ∈ NR

0 , ∀η ∈ ZS.

Then ϕ : TN → C; ϕ(t, x) =
∑

η∈ZS ϕη(t) · eixη ∈ EM (TN), with convergence in the

same space.

Proof. It is immediate that ϕ is well defined. For any α1 ∈ NR
0 and α2 ∈ NS

0 , we
have

|∂α1
t ∂

α2
x ϕ(t, x)| ≤

∑

η∈ZS

|∂α1
t ϕη(t)| · (1 + |η|)|α2|

≤ C

δ2S
· h|α1|

(
B{2S} · C{2S}

δ

)|α2|
m|α1|+|α2| · (|α1|+ |α2|)!

∑

η∈ZS

1

(1 + |η|)2S

≤ C1 · h|α1|+|α2|
1 ·m|α1|+|α2| · (|α1|+ |α2|)!

by applying (2.1), (2.2), and setting C1 = C
δ2S

∑
η∈ZS

1
(1+|η|)2S , h1 =

h·B{2N}·C{2N}

δ
,

which shows that ϕ ∈ EM (TN). Convergence in EM (TN) is proved just like in
Theorem 4.12. �

We now aim to obtain versions of Theorems 4.12 and 4.13 for ultradistributions.
Although it is not possible to talk about fixing variables in this context, we can
proceed analogously by fixing test functions defined on some variables. Given u in
D ′

M
(TN) and ψ ∈ EM (TR), set

uψ : T
S → C, ϕ 7→ 〈u, ψ ⊗ ϕ〉,

where ψ ⊗ ϕ(t, x) = ψ(t) · ϕ(x).
Lemma 4.14. For every u ∈ DM (TN), ψ ∈ EM (TR), we have that uψ ∈

D ′
M
(TS).

Proof. Let {ϕn}n∈N be a sequence in EM (TS) converging to 0. Because u is
continuous, it is sufficient to show that ψ⊗ϕn → 0 in EM (TN). By our assumption,
one can find hS > 0 such that

ϕn ∈ EM ,hS(T
S), ∀n ∈ N; ‖ϕn‖M ,hS

→ 0.

On the other hand, there exists hR > 0 such that ψ ∈ EM ,hR(T
R). Hence

sup
(t,x)∈TN

∣∣∂αt ∂βx (ψ(t) · ϕ(x))
∣∣ ≤ sup

t∈TR

|∂αt ψ(t)| · sup
x∈TS

∣∣∂βxϕ(x)
∣∣

≤ ‖ψ‖
M ,hR

· h|α|R ·m|α| · |α|! · ‖ϕn‖M ,hS
· h|β|S ·m|β| · |β|!.

If we set h = max {hR, hS}, it follows from inequality above that

ψ ⊗ ϕn ∈ EM ,h(T
N), ∀n ∈ N, and ‖ψ ⊗ ϕn‖M ,h ≤ ‖ψ‖

M ,hR
‖ϕn‖M ,hS

→ 0,

as we intended to prove. �

As a consequence of Lemma 4.14 and Theorem 4.9, we can write uψ=
∑

η∈ZS ûψ(η)·
eixη, with ûψ(η) =

1
(2π)S

〈u, ψ(t)e−ixη〉 and convergence in D ′
M
(TN). For each η ∈ ZS,

we define the functional

〈û(t, η), ψ〉 = ûψ(η) =
1

(2π)S
〈u, ψ(t)e−ixη〉.
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It follows once again from Lemma (4.14) that û(t, η) ∈ D ′
M
(TR) for every η ∈ ZS .

Theorem 4.15. Let u ∈ DM (TN ). Then

u =
∑

η∈ZS

û(t, η) · eixη,

with convergence in D ′
M
(TN). Moreover, for every ε, h > 0 there exists Cε,h > 0 such

that

(4.4) |〈û(t, η), ψ〉| ≤ Cε,h·‖ψ‖M ,h· sup
p∈N0

(
εp · (1 + |η|)p

mp · p!

)
, ∀η ∈ ZS, ∀ψ ∈ EM ,h(T

R).

Proof. Fix λ(t, x) ∈ EM (TN); it follows from Theorem 4.12 that

〈u, λ〉 = lim
k→+∞

∑

|η|≤k
〈u, λ̂(t, η) · eixη〉

= lim
k→+∞

∑

|η|≤k
〈û(t, η),

ˆ

TS

λ(t, x) · eixηdx〉

= lim
k→+∞

∑

|η|≤k
〈û(t, η) · eixη, λ〉.

Next we proceed to the proof of (4.4). Given ε, h > 0; it follows from Theorem 3.4
the existence of Cε such that

|〈û(t, η), ψ〉| ≤ Cε
(2π)S

sup
(α,β)∈NN

0




sup
(t,x)∈TN

∣∣∂αt ∂βx (ψ(t) · e−ixη)
∣∣ · ε|α+β|

m|α+β| · (|α+ β|)!




≤ Cε
(2π)S

‖ψ‖
M ,h sup

(α,β)∈NN
0

(
h|α| · (1 + |η|)|β| · ε|α| · ε|β|

m|β| · |β|!

)
.

When ε ≤ 1

h
, we obtain

|〈û(t, η), ψ〉| ≤ Cε
(2π)S

‖ψ‖
M ,h sup

β∈NS
0

(
ε|β| · (1 + |η|)|β|

m|β| · |β|!

)

=
Cε

(2π)S
‖ψ‖

M ,h sup
p∈N0

(
εp · (1 + |η|)p

mp · p!

)
.

Otherwise,

|〈û(t, η), ψ〉| ≤ C1/h

(2π)S
‖ψ‖

M ,h sup
p∈N0

(
(1 + |η|)p
hp ·mp · p!

)

≤ C1/h

(2π)S
‖ψ‖

M ,h sup
p∈N0

(
εp · (1 + |η|)p

mp · p!

)
.

Therefore (4.4) holds by taking Ch,ε = max
{

Cε

(2π)S
,
C1/h

(2π)S

}
. �

Remark 4.16. The notation set is chosen to be analogous to the one applied
for ultradifferentiable functions; if u ∈ D ′

M
(TN), û(t, η) is not necessarily a function.

Before we exhibit the reciprocal of Theorem 4.15, it is necessary to state a result
which is a consequence of moderate growth condition and will be of great relevance
from now on.
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Lemma 4.17. [K1, Proposition 3.6] Let H be as in condition 3 of Definition 2.1;

then [
sup
n∈N0

(
ρn

mn · n!

)]2
≤ sup

n∈N0

(
ρn · (2H)n

mn · n!

)
, ∀ρ > 0.

Theorem 4.18. Consider {uη}η∈ZS a sequence in D ′
M
(TR) satisfying the follow-

ing condition: for every ε, h > 0, we can find Cε,h > 0 such that

|〈uη, ψ〉| ≤ Cε,h ‖ψ‖M ,h sup
p∈N0

(
εp · (1 + |η|)p

mp · p!

)
, ∀η ∈ ZS , ∀ψ ∈ EM ,h(T

R).

Then u :=
∑

η∈ZS

uη · eixη is an element of D ′
M
(TN).

Proof. Put sj =
∑

|η|≤j
uη · eixη; if λ(t, x) ∈ EM ,h(T

N), we have

〈sj, λ〉 =
∑

|η|≤j
〈uη · eixη, λ〉 =

∑

|η|≤j
〈uη,
ˆ

TS

λ(t, x) · eixηdx〉.

Hence, if k ∈ N it follows from hypothesis and Theorem 4.12 that

|〈sk+j − sj, λ〉| ≤ (2π)S
∑

j<|η|≤j+k

∣∣∣〈uη, λ̂(t,−η)〉
∣∣∣

≤ (2π)S
∑

j<|η|≤j+k
Cκ,2hH

∥∥∥λ̂(·,−η)
∥∥∥

M ,2hH
sup
p∈N0

(
κp · (1 + |η|)p

mp · p!

)

≤
∑

j<|η|≤j+k
C ′
κ,2hH inf

p∈N0

(
mp · p!

δp · (1 + |η|)p
)

sup
p∈N0

(
κp · (1 + |η|)p

mp · p!

)
,

with κ > 0 which has yet to be defined.

By taking κ =
1

2Hδ
, it follows from Lemma 4.17 that

|〈sk+j − sj, λ〉| ≤
∑

j<|η|≤j+k
C ′
κ,2hH inf

p∈N0

(
mp · p!

δp · (1 + |η|)p
)1/2

≤
∑

j<|η|≤j+k
C ′
κ,2hH

(
(m4N · 4N !)1/2

δ2N · (1 + |η|)2N
)

≤ C ′′
κ,2hH ·

∑

j<|η|≤j+k

1

(1 + |η|)2N .

Hence limj→∞ |〈sk+j − sj, λ〉| = 0, which shows that 〈sj, ϕ〉 is a Cauchy sequence for
every ϕ ∈ EM (TN). By Lemma 3.6, we conclude that limj sj = u ∈ DM (TN). �

5. Applications

5.1. Systems of constant coefficient operators. Generalizing real analytic
[Gr] and Gevrey [HP] cases, we show in this subsection that global hypoellipticity for
systems of constant coefficient operators is described by the assymptotic behavior of
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their symbols. Let P1(D), P2(D), · · · , Pk(D) be linear partial differential operators
with constant coefficients acting on TN and consider the system P given by

(5.1) Pju = fj , u ∈ D
′
M (TN), fj ∈ D

′
M (TN), j = 1, 2, . . . , k.

Definition 5.1. We say that P is globally M -hypoelliptic if

u ∈ D
′
M (TN), fj ∈ EM (TN) and Pj(D)u = fj , j = 1, 2, . . . , k ⇒ u ∈ EM (TN).

Theorem 5.2. A system in the form (5.1) is globally M -hypoelliptic if and only

if for every ε > 0, there exists Rε > 0 such that

(5.2) max
1≤j≤k

|Pj(ξ)| ≥ inf
n∈N0

(
mn · n!

εn · (1 + |ξ|)n
)
, ∀ξ ∈ ZN ; |ξ| ≥ Rε,

where Pj(ξ) denotes the symbol of Pj(D).

Proof. We start by proving the sufficiency: let u ∈ D ′
M
(TN ) such that

Pj(D)u = fj ∈ EM (TN), for j = 1, 2, . . . , k.

It follows from Theorem 4.2 the existence of C, δ > 0 satisfying

|f̂j(ξ)| ≤ C · inf
n∈N0

(
mn · n!

δn · (1 + |ξ|)n
)
, ∀ξ ∈ ZN , j = 1, 2, . . . , k.

By Theorem 4.9, u =
∑

ξ∈ZN û(ξ)eixξ. Put ε = δ
2H

; it follows from Lemma 4.17 and

(5.2) that

|û(ξ)| ≤ C inf
n∈N0

(
mn · n!

δn · (1 + |ξ|)n
)

sup
n∈N0

(
(δ/2H)n(1 + |ξ|)n

mn · n!

)

≤ C inf
n∈N0

(
mn · n!

εn(1 + |ξ|)n
)
, |ξ| ≥ Rδ/2H .

Thus by possibly increasing C we conclude that

|û(ξ)| ≤ C · inf
n∈N0

(
mn · n!

εn · (1 + |ξ|)n
)
, ∀ξ ∈ ZN ,

which allows us to infer (Corollary 4.10) that u ∈ EM (TN ).
On the other hand, if (5.2) does not hold there exist κ > 0 and {ξℓ}ℓ∈N in ZN

such that

max
1≤j≤k

|Pj(ξℓ)| < inf
n∈N0

(
mn · n!

κn · (1 + |ξℓ|)n
)

and |ξℓ| ≥ ℓ, ∀ℓ ∈ N.

Put u :=
∑

ℓ∈N
eix·ξℓ, which is an ultradistribution (Theorem 4.8), but not a smooth

function. Then fj := Pj(D)u =
∑

ℓ∈N
Pj(ξℓ) · eix·ξℓ and

|Pj(ξℓ)| ≤ max
1≤q≤k

|Pq(ξℓ)| < inf
n∈N0

(
mn · n!

κn · (1 + |ξℓ|)n
)
, ∀ℓ ∈ N, j = 1, 2, . . . , k.

It follows from Corollary 4.10 that fj ∈ EM (TN) for j = 1, 2, . . . , k, as we intended
to prove. �

Corollary 5.3. Suppose that P described in (5.1) is globally C∞-hypoelliptic.

Then it is also globally M -hypoelliptic.
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Proof. By Greenfield–Wallach’s condition ([GW]), global smooth hypoellipticity
of P implies the existence of L, ℓ, R > 0 such that

max
1≤j≤k

|Pj(ξ)| ≥
L

(1 + |ξ|)ℓ , |ξ| ≥ R.

Note that we may consider ℓ ∈ N. Given ε > 0, we take Rε = max
{
R,

mℓ+1·(ℓ+1)!

L·εℓ+1

}

and obtain

|ξ| ≥ Rε ⇒ max
1≤j≤k

|Pj(ξ)| ≥
L

(1 + |ξ|)ℓ =
L · (1 + |ξ|)
(1 + |ξ|)ℓ+1

≥ mℓ+1 · (ℓ+ 1)!

εℓ+1 · (1 + |ξ|)ℓ+1

≥ inf
n∈N0

(
mn · n!

εn · (1 + |ξ|)n
)
,

which ends our proof. �

Corollary 5.4. Let M and L be weight sequences such that EM (TN) ⊂ EL (TN).
If the system (5.1) is globally L -hypoelliptic, it is also globally M -hypoelliptic.

Proof. By (2.3) and (2.4), there exists C ≥ 1 such that

mk ≤ Ck · ℓk, ∀k ∈ N0.

By hypothesis, for any ε > 0 we are able to find Rε satisfying

max
1≤j≤k

|Pj(ξ)| ≥ inf
n∈N0

(
Cn · ℓn · n!
εn · (1 + |ξ|)n

)
≥ inf

n∈N0

(
mn · n!

εn · (1 + |ξ|)n
)
, ∀ξ ∈ ZN ; |ξ| ≥ Rε,

which proves our assertion. �

5.2. Greenfield–Wallach vector fields. Similarly to what was done in [Gr],
[GW] and [GPY], we may apply Theorem 5.2 to study global M -hypoellipticity for
the following vector field acting on T2:

(5.3) Pα =
∂

∂t
− α

∂

∂x
, α ∈ C.

If α is not a real number, Pα is elliptic and it follows from Corollary 5.3 that it is
globally M -hypoelliptic for any weight sequence M . Hence the interesting cases
occur when α ∈ R.

Definition 5.5. We say α ∈ R \ Q is M -exponential Liouville if there exists
ε > 0 such that inequality

|ξ − αη| < inf
n∈N0

(
mn · n!

εn · (1 + |η|)n
)
, (ξ, η) ∈ Z× Z,

has infinite solutions.

Proposition 5.6. Let α be a real number; then Pα is globally M -hypoelliptic

if and only if α is irrational and not M -exponential Liouville.

Proof. Since Pα(ξ, η) = −i (ξ − αη) for (ξ, η) ∈ Z×Z, when α ∈ Q it is possible
to obtain a sequence {ξm, ηm}m∈N such that Pα(ξm, ηm) = 0 for every m, which
implies that Pα is not globally M -hypoelliptic, by Theorem 5.2.

We proceed to the case where α is irrational; if α is not M -exponential Liouville,
for every ε > 0, one can find Rε > 0 such that

(5.4) |ξ − αη| ≥ inf
n∈N0

(
mn · n!

εn · (1 + |ξ|+ |η|)n
)
, |ξ|+ |η| ≥ Rε,
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proving that Pα is globally M -hypoelliptic (Theorem 5.2).
On the other hand, suppose Pα globally M -hypoelliptic; it follows from Theo-

rem 5.2 that the right-hand side in (5.4) holds. For any δ > 0, put ε = δ
(|α|+3)

; when

|ξ − αη| > 1, we have

|ξ − αη| > 1 ≥ inf
n∈N0

(
mn · n!

εn · (1 + |η|)n
)
.

Otherwise |ξ|− |α| · |η| ≤ 1 ⇒ |ξ| ≤ |α| · |η|+1. Hence when |ξ|+ |η| ≥ Rε, it follows
that

|ξ − αη| ≥ inf
n∈N0

(
mn · n!

(ε · (|α|+ 3))n · (|η|)n
)

≥ inf
n∈N0

(
mn · n!

δn · (1 + |η|)n
)
,

since we may consider η 6= 0, showing that α is not M -exponential Liouville. �

It was proved in Corollary 5.4 that if M , L are weight sequences, then
EM (TN) ⊂ EL (TN) and Pα is globally L -hypoelliptic, then Pα is also globally M -
hypoelliptic. On the other hand, it is demonstrated in [GPY] that for any 1 ≤ r < s
there exists α ∈ R \Q such that Pα is globally Gr-hypoelliptic, but it is not globally
Gs-hypoelliptic. Next we extend those results.

Definition 5.7. Let L = {ℓn}n∈N0
,M = {mn}n∈N0

be weight sequences. We
denote

M ≺ L ⇔ lim
k→+∞

(
mk

ℓk

)1/k

= 0.

By notation set in (2.3), when M ≺ L it implies that M � L and L � M .
We now prove a technical result related to the associated functions of L and M .

Lemma 5.8. If M ≺ L ,

lim
t→+∞

[
sup
p∈N0

(
tp

ℓp · p!

)
· inf
p∈N0

(
mp · p!
δp · tp

)]
= 0 for any δ > 0.

Proof. Given δ > 0, take H as in Definition 2.1 and q ∈ N satisfying 1
(2H)q

≤ δ.

By hypothesis, limk→+∞

(
ℓk
mk

)1/k
= +∞; thus there exists k0 ∈ N such that

(5.5)

(
ℓk
mk

)1/k

≥ (2H)q+1, ∀k ≥ k0.

Suppose that t ≥ ℓk0 · k0!. When s < k0 we have

(5.6)
tk0

ℓk0 · k0!
÷ ts

ℓs · s!
= tk0−s · ℓs · s!

ℓk0 · k0!
≥ [ℓk0 · k0!]k0−s−1 · ℓs · s! ≥ 1.

Hence, if t ≥ ℓk0 · k0! it follows from (5.5) and (5.6) that

(5.7) sup
p∈N0

(
tp

ℓp · p!

)
= sup

p≥k0

(
tp

ℓp · p!

)
≤ sup

p∈N0

(
tp

((2H)q+1)p ·mp · p!

)
.

By Lemma 4.17, we obtain

sup
p∈N0

(
tp

((2H)q+1)p ·mp · p!

)
≤
[
sup
p∈N0

(
tp

((2H)q)p ·mp · p!

)]1/2

≤
[
sup
p∈N0

(
δp · tp
mp · p!

)]1/2
.

(5.8)
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By associating (5.7) to (5.8), we deduce that

sup
p∈N0

(
tp

ℓp · p!

)
inf
p∈N0

(
mp · p!
δp · tp

)
≤
[
sup
p∈N0

(
δp · tp
mp · p!

)]1/2
inf
p∈N0

(
mp · p!
δp · tp

)

≤
√
2m2

δt
if t ≥ ℓk0 · k0!,

which proves the assertion. �

Theorem 5.9. Let L , M be weight sequences such that M ≺ L and Pα a

vector field as in (5.3).

1. When Pα is globally L -hypoelliptic, it is also globally M -hypoelliptic.

2. There exists β ∈ R \Q such that Pβ is globally M -hypoelliptic, but it is not

globally L -hypoelliptic.

Proof. The proof of 1 follows immediately from Corollary 5.4. In order to prove
2, we use [HW] as a reference for theory of continued fractions. We will exhibit
β = [a0, a1, . . . , an, . . .] in the interval (0, 1) satisfying the conditions required.

According to Theorem 149 im [HW], we introduce {pn}n∈N0
, {qn}n∈N0

as

p0 = 0, p1 = 1, pn = an · pn−1 + pn−2 (2 ≤ n).

q0 = 1, q1 = 0, qn = an · qn−1 + qn−2 (2 ≤ n).
(5.9)

We also denote (see Section 10.9) {a′n}n∈N0
as

a′n = [an, an+1, . . .], ∀n ∈ N0.

Next, we list some results in [HW]:

(i) (Theorems 155 and 156) For n > 3, qn+1 ≥ qn ≥ n. Thus lim
n→∞

qn = +∞.

(ii) (Theorem 168) For every n ∈ N0, ⌊a′n⌋ = an, where ⌊.⌋ is the floor function.
(iii) (Theorem 171) For every n ≥ 1, |pn−β · qn| = 1

a′n+1·qn+qn−1
. Hence |pn−β · qn|

is strictly decreasing and goes to 0 as n→ +∞.
(iv) (Theorem 182) Let p ∈ Z, q ∈ N such that gcd (p, q) = 1 and qk ≤ q < qk+1.

Then

|p− q · β| ≥ |pk − qk · β| > |pk+1 − qk+1 · β|.

Put a0 = 0 and assume aj set for 0 ≤ j ≤ n− 1. It follows from (5.9) that pj , qj
are well defined for j ≤ n− 1. Take then

an =





⌊
sup
r∈N0

(
(qn−1 + 1)r

ℓr · r!

)/
qn−1

⌋
, n 6= 2.

1, n = 2.

We claim that if β = [a0, a1, . . . , an, . . .], then Pβ is globally M -hypoelliptic. Let
p ∈ Z, q ∈ N such that gcd (p, q) = 1. By (i), there exists k0 ∈ N such that
qk0 ≤ q < qk0+1. From (iii) and (iv), we obtain:

(5.10) |p− q · β| ≥ |pk0 − qk0 · β| =
1

a′k0+1 · qk0 + qk0−1
.
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On the other hand, if q ≥ q5, we infer from (ii) and definition of {an}n∈N0
that

a′k0+1 · qk0 + qk0−1 =

⌊
sup
r∈N0

(
(qk0 + 1)r

ℓr · r!

)/
qk0

⌋
· qk0 + qk0−1

≤ 3 sup
r∈N0

(
(q + 1)r

ℓr · r!

)
.

Hence, it follows from (5.10) that

(5.11) |p− q · β| ≥ 1

3
inf
r∈N0

(
ℓr · r!

(q + 1)r

)
.

We now fix δ > 0; by Lemma 5.8 there exists s ∈ N, which we may consider
greater than q5, such that

(5.12) inf
r∈N0

(
mr · r!
δr · tr

)
≤ 1

3
· inf
r∈N0

(
ℓr · r!
tr

)
, t ≥ s.

By associating (5.11) to (5.12), we get

(5.13) |p− q · β| ≥ inf
r∈N0

(
mr · r!

δr · (1 + q)r

)
, ∀q ≥ s.

Suppose then that |p|+ |q| ≥ 2s. If q ≥ s, we apply (5.13). Otherwise,

|p− q · β| ≥ |p| − |q| ≥ (s+ 1)− (s− 1) = 2 > inf
r∈N0

(
mr · r!

δr · (1 + q)r

)
.

Therefore it follows from Proposition 5.6 that Pβ is globally M -hypoelliptic.
In order to check that Pβ is not globally L -hypoelliptic, we estimate |pk0 − qk0β|

from below:

a′k0+1 · qk0 + qk0−1 =

⌊
sup
r∈N0

(
(qk0 + 1)r

ℓr · r!

)/
qk0

⌋
· qk0 + qk0−1

> sup
r∈N0

(
(qk0 + 1)r

ℓr · r!

)
− qk0.(5.14)

With a very similar argument to the one applied in Lemma 5.8, one can prove that

lim
t→+∞

[
sup
r∈N0

(
tr

ℓr · r!

)
· 1/t

]
= +∞.

Thence it follows from (i) and (5.14) the existence of d ∈ N such that

(5.15) k0 ≥ d ⇒ a′k0+1 · qk0 + qk0−1 >
1

2
· sup
r∈N0

(
(qk0 + 1)r

ℓr · r!

)
.

By (iii) and (5.15), we obtain

(5.16) |pn − qn · β| < 2 inf
r∈N0

(
ℓr · r!

(1 + qn)r

)
, ∀n ≥ d.

It is not difficult to see that (5.16) implies β is L -exponential Liouville, as we in-
tended to prove. �

5.3. Global M -hypoellipticity for a class of systems of real vector fields.

Let N ∈ N and L be the system of N vector fields acting on the (N +1) dimensional
torus TN

t ×Tx given by

(5.17) Lj =
∂

∂tj
+ aj(t)

∂

∂x
, (j = 1, 2, . . . , N),
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where each aj is a real-valued element of EM (TN) and

(5.18)
∂aj

∂tk
=
∂ak

∂tj
, ∀j, k ∈ {1, 2, . . . , N} .

That is, the 1-form a =
∑N

j=1 a
jdtj is closed.

Given f ∈ EM (TN), consider

(5.19) fj0 =

ˆ 2π

0

f(0, . . . , 0, tj, 0, . . . , 0) dtj.

We prove in this subsection that L is globally M -hypoelliptic if and only if the same

holds for the system L̃ composed by the vector fields

(5.20) L̃j =
∂

∂tj
+ ajj0

∂

∂x
, (j = 1, 2, . . . , N),

with ajj0 as in (5.19). Since L̃ has constant coefficients, it follows from Theorem 5.2
that we have covered global M -hypoellipticity for L.

Set α(t) =
(
α1(t), . . . , αN(t)

)
, where

αj : TN → R; αj(t) = aj(t)− ajj0, for j = 1, 2, . . . , N.

Note that (5.18) still holds for α; furthermore, we have

αjj0 = 0, ∀j ∈ {1, 2, . . . , N} .
Therefore there exists EM (TN ;R) such that

(5.21)
∂A

∂tk
(t) = αk(t), k = 1, 2, . . . , N.

We now move on to describe an important inequality in this subsection. Before
that, we need a technical result related to weight sequences.

Lemma 5.10. [BM, Corollary 4.5] Let k1, . . . , kℓ ∈ Np \ {0} and δ1, . . . , δℓ in

Nn \ {0}, with ℓ, p, n ∈ N. Set β = k1 + . . .+ kℓ and γ = |k1|δ1 + . . .+ |kℓ|δℓ. Then

m|β| ·m|k1|
|δ1| . . . ·m

|kℓ|
|δℓ| ≤ m|γ|.

Proposition 5.11. Let A be as in (5.21); for every ε > 0, there exist Cε, hε > 0
such that

inf
p∈N0

(
mp · p!

εp · (1 + |η|)p
)
·
∣∣∂αt eiηA(t)

∣∣ ≤ Cε ·h|α|ε ·m|α| · |α|!, ∀t ∈ TN , ∀η ∈ Z, ∀α ∈ NN
0 .

Proof. It is immediate that A ∈ EM (TN); hence one can find C, h > 1 satisfying

|∂αt A(t)| ≤ C · h|α| ·m|α| · |α|!, ∀t ∈ TN , ∀α ∈ NN
0 .

In order to estimate the derivatives of eiηA(t) we need Faà di Bruno’s formula, which
will be applied following Proposition 4.3 of [BM]. If fη : R → R; fη(x) = eiηx, it
follows that

Dα
t

(
eiηA(t)

)

=
∑ α!

k1! · . . . · kℓ!
· f (k1+...+kℓ)

η (A(t)) ·
(
Dδ1
t A(t)

δ1!

)k1
· . . . ·

(
Dδℓ
t A(t)

δℓ!

)kℓ

,
(5.22)
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with the sum being taken over sets {δ1, . . . , δℓ} of ℓ distinct elements of NN \ {0}
and (k1, . . . , kℓ) in Nℓ, with ℓ = 1, 2, 3, . . . and such that

α =
ℓ∑

j=1

kjδj.

Next we estimate the absolute value of (5.22):
∣∣Dα

t

(
eiηA(t)

)∣∣

≤
∑ α!

k1! · . . . · kℓ!
|η|(k1+...+kℓ)

(
Ch|δ1|m|δ1||δ1|!

δ1!

)k1
· . . . ·

(
Ch|δℓ|m|δℓ||δℓ|!

δℓ!

)kℓ

≤
∑ α!

k1! · . . . · kℓ!
(C|η|)(k1+...+kℓ) · hk1|δ1|+...+kℓ|δℓ| ·mk1

|δ1|×

. . .×mkℓ
|δℓ| ·N

k1|δ1|+...+kℓ|δℓ|

≤ (Nh)|α| · |α|! ·
∑ 1

k1! · . . . · kℓ!
· [C(1 + |η|)](k1+...+kℓ) ·mk1

|δ1| · . . . ·m
kℓ
|δℓ|.

(5.23)

Let ε > 0 and (⋆) := inf
p∈N0

(
mp · p!

εp · (1 + |η|)p
) ∣∣∂αt eiηA(t)

∣∣ ; it follows from (5.23) and

Lemma 5.10 that

(⋆) ≤ (Nh)|α| · |α|! ·
∑ 1

k1! · . . . · kℓ!
· [C(1 + |η|)](k1+...+kℓ) ·mk1

|δ1|×

. . .×mkℓ
|δℓ| · inf

p∈N0

(
mp · p!

εp · (1 + |η|)p
)

≤ (Nh)|α||α|!
∑ 1

k1! · . . . · kℓ!
[C(1 + |η|)](k1+...+kℓ)mk1

|δ1|×

. . .×mkℓ
|δℓ| ·

m(k1+...+kℓ) (k1 + . . .+ kℓ)!

ε(k1+...+kℓ)(1 + |η|)(k1+...+kℓ)

≤ (Nh)|α||α|! ·
∑ (k1 + . . .+ kℓ)!

k1! · . . . · kℓ!

(
C

ε

)(k1+...+kℓ)

×

×
(
m(k1+...+kℓ) ·mk1

|δ1| · . . . ·m
kℓ
|δℓ|

)

≤ (Nh)|α| ·m|α| · |α|! ·
∑ (k1 + . . .+ kℓ)!

k1! · . . . · kℓ!

(
C

ε

)(k1+...+kℓ)

︸ ︷︷ ︸
(△)

.

(5.24)

As consequence of Lemma 4.8 of [BM], there exist M,λ > 0 depending on C and ε
such that

(△) ≤M · λ|α|.
Therefore it is sufficient to take Cε =M and hε = N · h · λ to finalize the proof. �

Theorem 5.12. Let T : D ′
M
(TN+1) → D ′

M
(TN+1) be the operator given by

T

(∑

η∈Z
û(t, η)eixη

)
=
∑

η∈Z
û(t, η)ei(A(t)+x)η .

Then T is an automorphism. Furthermore, the same holds for T
∣∣
EM (TN+1)

.
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Proof. We begin by verifying that T is well defined. By Theorem 4.18, given
ε, h > 0, one has to find Cε,h > 0 such that

∣∣〈û(t, η)eiηA(t), ϕ〉
∣∣ ≤ Cε,h ·‖ϕ‖M ,h · sup

n∈N0

(
εn · (1 + |η|)n

mn · n!

)
, ∀η ∈ Z, ∀ϕ ∈ EM ,h(T

N).

Fix ϕ ∈ EM ,h(T
N ); for δ > 0 that will be chosen later, we denote

(∗) = inf
p∈N0

(
mp · p!

δp · (1 + |η|)p
)
·
∣∣∂αt
(
eiηA(t) · ϕ(t)

)∣∣ .

It follows from Proposition 5.11 that

(∗) ≤
∑

β≤α

(
α

β

)(
Cδ · h|β|δ ·m|β| · |β|!

)
·
(
‖ϕ‖

M ,h · h|α|−|β| ·m|α|−|β| · (|α| − |β|)!
)

≤ Cδ · ‖ϕ‖M ,h · h
′|α|
δ ·m|α| · |α|!,

where h′δ = 2 ·max {hδ, h}. Hence

(5.25) inf
p∈N0

(
mp · p!

δp · (1 + |η|)p
)
·
∣∣∂αt
(
eiηA(t) · ϕ(t)

)∣∣ ≤ Cδ · ‖ϕ‖M ,h · h
′|α|
δ ·mα · α!.

On the other hand, by Theorem 3.4, for every ρ > 0 there exists Cρ > 0 such
that

|〈u, f〉| ≤ Cρ · sup
γ∈NN+1

0

(‖∂γf‖∞ · ρ|γ|
m|γ| · |γ|!

)
, ∀f ∈ EM (TN+1),

which implies that
∣∣〈û(t, η)eiηA(t), ϕ(t)〉

∣∣

≤ Cρ
2π

· sup
(γ1,γ2)∈NN

0 ×N0

(∥∥∂γ1t
(
eiηA(t)ϕ(t)

)∥∥
∞ · ‖∂γ2x (e−ixη)‖∞ · ρ|γ1|+|γ2|

m|γ1|+|γ2| · (|γ1|+ |γ2|)!

)

≤ Cρ
2π

· sup
(γ1,γ2)∈NN

0 ×N0

(∥∥∂γ1t
(
eiηA(t)ϕ(t)

)∥∥
∞ · (1 + |η|)|γ2| · ρ|γ1|+|γ2|

m|γ1|+|γ2| · (|γ1|+ |γ2|)!

)
.

(5.26)

Let (†) :=
∥∥∂γ1t

(
eiηA(t)ϕ(t)

)∥∥
∞ · (1 + |η|)|γ2| · ρ|γ1|+|γ2|; if δ = ε

2H
, it follows from

Lemma 4.17 and (5.25) that

(†) ≤
∥∥∂γ1t

(
eiA(t)ηϕ(t)

)∥∥
∞ · inf

p∈N0

(
mp · p!

δp · (1 + |η|)p
)2

· (1 + |η|)|γ2| · sup
n∈N0

(
εn · (1 + |η|)n

mn · n!

)
· ρ|γ1|+|γ2|

≤ Cδ · ‖ϕ‖M ,h · h
′|γ1|
δ ·m|γ1| · |γ1|! ·

(
m|γ2| · |γ2|! · (2H)|γ2|

ε|γ2|

)

· sup
n∈N0

(
εn · (1 + |η|)n

mn · n!

)
· ρ|γ1|+|γ2|

≤ Cδ · ‖ϕ‖M ,h ·
(
h′δ · 2H · ρ

ε

)|γ1|+|γ2|

·m|γ1|+|γ2| · (|γ1|+ |γ2|)! ·
(
sup
n∈N0

εn · (1 + |η|)n
mn · n!

)
,

(5.27)
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since we may suppose ε < 2H . By taking ρ = ε
h′δ·2H

and applying (5.26) and (5.27),

we obtain
∣∣〈û(t, η)eiηA(t), ϕ(t)〉

∣∣ ≤ Cρ
2π

· Cδ · ‖ϕ‖M ,h · sup
n∈N0

(
εn · (1 + |η|)n

mn · n!

)
.

Note that both ρ and δ depend only on ε, h and thus first part of the proof is complete.
Now let ψ ∈ EM (TN+1); by Theorem 4.12, there exist C, h, δ > 0 such that

|∂βt ψ̂(t, η)| ≤ C · h|β| ·m|β| · |β|! · inf
p∈N0

(
mp · p!

δp · (1 + |η|)p
)
, ∀t ∈ T, ∀β ∈ NN

0 ,

which implies that∣∣∣∂αt
(
ψ̂(t, η) · eiA(t)η

)∣∣∣

≤
∑

β≤α

(
α

β

)
C · h|β| ·m|β| · |β|! · inf

p∈N0

(
mp · p!

δp · (1 + |η|)p
)
·
∣∣∣∂α−βt (eiA(t)η)

∣∣∣
(5.28)

We apply once again Lemma 4.17 and (5.25):

inf
p∈N0

(
mp · p!

δp · (1 + |η|)p
) ∣∣∣∂α−βt (eiA(t)η)

∣∣∣

≤ C1 inf
p∈N0

(
(2H)p ·mp · p!
δp · (1 + |η|)p

)
· h|α|−|β|

1 ·m|α|−|β| · (|α| − |β|)!.
(5.29)

By associating (5.28) to (5.29), setting C2 = CC1 and h2 = 2max {h1, h}, we deduce
that

∣∣∣∂αt
(
ψ̂(t, η) · eiA(t)η

)∣∣∣ ≤ C2 · h|α|2 ·m|α| · |α|! · inf
p∈N0

(
(2H)p ·mp · p!
δp · (1 + |η|)p

)
.

Therefore T (ψ) ∈ EM (TN), by Theorem 4.12.
To see that T is an automorphism, it is easy to check that same properties proved

for T also hold up for T ′ : D ′
M
(TN+1) → D ′

M
(TN+1) given by

T ′

(∑

η∈Z
û(t, η)eixη

)
=
∑

η∈Z
û(t, η)ei(−A(t)+x)η.

Moreover, T ′ is the inverse of T . �

Theorem 5.13. The system of real vector fields L described in (5.17) is glob-

ally M -hypoelliptic if and only if the same is valid for the system with constant

coefficients L̃ defined in (5.20).

Proof. It follows immediately from Theorem 5.12 and the fact that L̃j = T ◦Lj ◦
T−1. �

Corollary 5.14. Let P be a system of N vector fields acting on TN
t ×Tx given

by

Pj =
∂

∂tj
+ bj(tj)

∂

∂x
, j = 1, 2, . . . , N,

where each bj ∈ EM (T;R). Then P is globally M -hypoelliptic if and only if the

same holds for P̃ , whose equations are

P̃j =
∂

∂tj
+ bj0

∂

∂x
, j = 1, 2, . . . , N,
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and bj0 =
1
2π

´ 2π

0
bj(tj) dtj.

Proof. It follows from the fact that the functions bj trivially satisfy (5.18). �
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