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Abstract. In this paper, we study the quasisymmetric embeddability of weak tangents of

metric spaces. We first show that quasisymmetric embeddability is hereditary, i.e., if X can be

quasisymmetrically embedded into Y , then every weak tangent of X can be quasisymmetrically

embedded into some weak tangent of Y , given that X is proper and doubling. However, the converse

is not true in general; we will illustrate this with several counterexamples. In special situations, we

are able to show that the embeddability of weak tangents implies global or local embeddability of

the ambient space. Finally, we apply our results to Gromov hyperbolic groups and visual spheres

of expanding Thurston maps.

1. Introduction

The Gromov–Hausdorff distance gives a precise meaning to how close or far
apart two arbitrary (compact) metric spaces are. The definition that is widely used
nowadays can be traced back to Gromov in [Gr81a] and [Gr81b]. More precisely, the
Gromov–Hausdorff distance of two compact metric spaces is the infimum Hausdorff
distance of their isometric images in the same space. Intuitively, it measures how far
the two compact metric spaces are from being isometric.

The weak tangents of a metric space are analogous to the tangent planes of a
surface. Let X be a metric space and p ∈ X. “Blowing up” X near p generates
a sequence of dilations, which provides a better and better illustration of the local
behavior near p. A weak tangent at p is the limit (if it exists) of such a sequence,
where the limit is in the (pointed) Gromov–Hausdorff sense. Gromov’s compactness
theorem shows that a subconvergent metric space always exists, given some conditions
on the ambient space. See Propositions 2.4 and 2.6.

A natural question raised regarding weak tangents is: Is there any analytical
or geometrical relation between the ambient space and its weak tangents? There
are some answers to this question. One remarkable achievement in answering this
question is the Cheeger–Colding theory. The Cheeger–Colding theory investigates
the analytical and geometrical properties of the weak tangents of complete connected
manifolds with lower bounded Ricci curvatures. See [CC97],[CC00a] and [CC00b] for
more details. The Cheeger–Colding theory is widely used in many important works,
including the proof of Thurston’s geometrization conjecture and the proof of the
existence of Kähler–Einstein metrics on Fano manifolds. Weak tangents also play a
role in studying Poincaré inequalities on metric spaces, see [Ch99] and [CK15] for
examples. In [BKM99] and [BM13], metric fractals are studied together with weak
tangents.
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A homeomorphism f : X → Y is η-quasisymmetric, where η : [0,∞) → [0,∞) is
a homeomorphism, if

dY (f(x), f(y))

dY (f(x), f(z))
≤ η

(
dX(x, y)

dX(x, z)

)

for all x, y, z ∈ X with x 6= z. A quasisymmetry is a generalization of a bi-Lipschitz
map, and it preserves the approximate shape and the relative size. A metric space is
proper if the closure of every ball is compact. A metric space is doubling if every ball
can be covered by a uniform finite number of balls with half radius. See Section 2
for more information.

In this paper, we study the quasisymmetric embeddability of weak tangents of
metric spaces. We denote by WTp(X) the collections of all weak tangents at p of
X. We are interested in how the quasisymmetric embeddability of the ambient space
relates to that of its weak tangents.

Theorem 1.1. Let X, Y be proper, doubling metric spaces and f : (X, p, dX) →
(Y, q, dY ) be an η-quasisymmetric map. For any weak tangent TpX ∈ WTp(X), there
exists a weak tangent TqY ∈ WTq(Y ) such that TpX is η-quasisymmetric equivalent
to TqY .

Theorem 1.1 shows that quasisymmetric embeddability is hereditary. Roughly
speaking, any quasisymmetric embedding between two metric spaces induces qua-
sisymmetric embeddings between their weak tangents. However, the converse impli-
cation is not true in general. See Section 4 for several counterexamples.

A metric space X is self-quasisymmetric if for any point p and any number
r > 0 there exists a neighborhood of p with diameter less than r that is uniformly
quasisymmetric to X, and quasi-self-symmetric if the neighborhoods above are uni-
formly quasisymmetric to some subsets of X with bounded sizes. See Section 5 for
more details. In special situations, we are able to prove the following two partial
converse implications:

Theorem 1.2. Let X be a proper, doubling, η-self-quasisymmetric space and p
be a point in X. If every weak tangent of p is θ-quasisymmetrically embedded into
Y , then X is ϑ-quasisymmetrically embedded into Y , where ϑ depends only on η and
θ.

Theorem 1.2 shows that self-quasisymmetric metric spaces satisfy a global con-
verse implication. We can further strengthen Theorem 1.2 by adding more conditions.
See Propositions 5.2 and the remark following it.

The following local embedding theorem gives another type of converse implica-
tion:

Theorem 1.3. Let X be a compact, proper, doubling, η-quasi-self-symmetric
space, p be a point in X and TpX be a weak tangent in WTp(X). If TpX is θ-
quasisymmetrically embedded into Y, then there exists a ball B(q, r) in X such that
B(q, r) is ϑ-quasisymmetrically embedded into Y , where ϑ depends only on η and θ.
If X is uniformly perfect, r depends only on X and η.

Theorem 1.3 shows that quasi-self-symmetric spaces satisfy a local converse im-
plication. Theorem 1.3 is a special case of Theorem 5.3, which induces several appli-
cations.

A Kleinian group Γ is a discrete subgroup of isometries of a hyperbolic space and
the limit set of Γ is the set of accumulation points of the orbit Γp of any element p in
the hyperbolic space. A Schottky set is a compact subset of S2 whose complement
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is a union of at least three round open disks whose closures are disjoint. See Section
6 for more details.

The first application is a rigidity theorem for Kleinian groups whose limit sets
are Schottky sets.

Theorem 1.4. Suppose that Γ and Γ̃ are Kleinian groups whose limit sets S
and S̃ are Schottky sets, respectively. We assume that Γ acts on S and Γ̃ acts on
S̃ as uniform convergence groups. Let p, p̃ be points in S and S̃, respectively. If
there exist a weak tangent TpS at p of S, a weak tangent Tp̃S̃ at p̃ of S̃ and a

quasisymmetry f : (TpS, p∞) → (Tp̃S̃, p̃∞) such that f(p∞) = p̃∞, then there exists a

Möbius transformation mapping S to S̃.

In simple words, Theorem 1.4 shows that a pointed quasisymmetric equivalence
between any two weak tangents of the above spaces implies an equivalence of Möbius
transformations between the ambient spaces. Theorem 1.4 generalizes Theorem 1.1
in [Me14] to the situation of weak tangents.

An expanding Thurston map f : S2 → S2 is a postcritically-finite branched cov-
ering map on a topological sphere with deg(f) ≥ 2 where f locally expands S2. A
visual metric ρ is a specific metric on S2 generated by f such that f locally expands
(S2, ρ) in a uniform way. We call (S2, ρ) a visual sphere of f . See Section 7 for a
precise and rigorous definition.

The other application is about the visual spheres of expanding Thurston maps:

Theorem 1.5. Let (S2, ρ) be a visual sphere of an expanding Thurston map
f : S2 → S2 that does not have periodic critical points. The following statements are
equivalent:

(1) (S2, ρ) is a quasi-sphere.
(2) Every weak tangent of (S2, ρ) is quasisymmetric to R

2.
(3) There exists a weak tangent of (S2, ρ) that is quasisymmetric to R

2.
(4) There exists an open subset U ⊂ S2 such that (U, ρ) is quasisymmetrically

embedded into R
2.

Theorem 1.5 illustrates a complete characterization of when visual spheres of
expanding Thurston maps are quasi-spheres. Wu also proved it in [Wu19] with ideas
from dynamics. Here we give an alternate proof with the ideas generated in Section 5
of this paper. Lemma 2.2 is essential in the proof of Theorem 1.5 and it may evoke
independent interests for other problems.

The paper is organized as follows. In Section 2 we give basic definitions and
properties of Gromov–Hausdorff distance and weak tangents. In Section 3 we prove
Theorem 1.1 and show some results inspired by this theorem. However, the converse is
not true in general and we illustrate several counterexamples in Section 4. Section 5 is
devoted to proving Theorem 1.2 and Theorem 1.3 and thus showing that in specific
situations the embeddability of weak tangents implies the embeddability(or local
embeddability) of the ambient space. In Section 6 we study Gromov hyperbolic spaces
and groups and prove Theorem 1.4. In the last section, Section 7, we investigate
expanding Thurston maps and visual spheres and prove Theorem 1.5.

Acknowledgments. The author wants to thank Sergiy Merenkov and Jeremy
Tyson for their helpful advice. He is grateful to Ilya Kapovich for suggesting appli-
cations on hyperbolic groups and for an idea used in Section 6. He thanks Mario
Bonk and Angela Wu for explaining visual spheres of expanding Thurston maps.
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2. Preliminaries

2.1. Notations and preliminaries. Let (X, dX) be a metric space. We denote
by

B(x, r) = {x′ ∈ X : dX(x, x
′) < r} and B(x, r) = {x′ ∈ X : dX(x, x

′) ≤ r}

the open and closed balls centered at a with radius r, respectively. Furthermore, we
denote by

∂B(x, r) = B(x, r) \B(x, r) = {x′ ∈ X : dX(x, x
′) = r}

the metric boundary of B(x, r). Notice that ∂B(x, r) is not the same as the topolog-
ical boundary of B(x, r).

If X ′ is a subset of X, we denote by

Nr(X
′) = {x ∈ X : ∃ x′ ∈ X ′ such that dX(x, x′) < r}

the r-neighborhood of X ′ for any r > 0.
We denote by S

n,Dn,Hn the n-dimensional unit sphere, unit ball and hyperbolic
space, respectively. Specifically, we denote by | · | the standard metric in Euclidean
spaces.

A homeomorphism f : X → Y is (metrically) H-quasiconformal for some 1 ≤
H <∞ if

lim sup
r→0

sup{dY (f(x), f(y)) : dX(x, y) ≤ r}

inf {dY (f(x), f(y)) : dX(x, y) ≥ r}
≤ H

for ∀x ∈ X. A map is quasiconformal if it is H-quasiconformal for some H .
A homeomorphism f : X → Y is η-quasisymmetric, where η : [0,∞) → [0,∞) is

a homeomorphism, if
dY (f(x), f(y))

dY (f(x), f(z))
≤ η

(
dX(x, y)

dX(x, z)

)

for all x, y, z ∈ X with x 6= z. The map f is called quasisymmetric if it is η-
quasisymmetric for some distortion function η.

It is clear that every quasisymmetry is quasiconformal.
Here are some useful properties of quasisymmetric maps, which will be used

repeatedly in the paper. Readers may refer to Proposition 10.6 and 10.8 of [He01]
for a proof.

Proposition 2.1. Suppose f : X → Y and g : Y → Z are η and θ-quasisymmetric
mappings, respectively.

(1) The composition g ◦ f : X → Z is an θ ◦ η-quasisymmetric map.
(2) The inverse f−1 : Y → X is an η′-quasisymmetric map, where η′(t) = 1/η−1

(
1
t

)
.

(3) If A and B are bounded subsets of X and A ⊂ B, then

1

2η
(

diam(B)
diam(A)

) ≤
diam(f(A))

diam(f(B))
≤ η

(
2diam(A)

diam(B)

)
.

A metric space is called proper if the closure of every ball is compact.
A metric space is called doubling if there exists a universal constant C ≥ 1 such

that every subset of diameter d can be covered by at most C subsets of diameter at
most d/2. Notice that a space is doubling implies that it is separable.

A metric space X is called uniformly perfect if there exists a universal constant
C ≥ 1 such that for each x ∈ X and for each r > 0, B(x, r) \B(x, r/C) is nonempty
whenever X \ B(x, r) is nonempty. Uniform perfectness forbids isolated islands in
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a uniform manner. In other words, a metric space is uniformly perfect if for every
empty metric annulus in the space, the ratio between the outer and inner radii is
bounded from above.

A metric space is equipped with the intrinsic metric if the distance between any
two points equals the infimum length of all the paths joining them. A metric space
whose metric is intrinsic is called a length space. A geodesic in a length space is a
curve which is locally a distance minimizer(i.e., a shortest path).

We prove the following lemma in order to “glue” quasisymmetries.

Lemma 2.2. Let (X, dX),(Y, dY ) be two bounded length spaces and f : X → Y
be a homeomorphism. LetX = X1∪X2 whereX1 andX2 are closed subsets ofX such
that X1∩X2 is connected, diam(X1∩X2) 6= 0 and f |X1

, f |X2
are η-quasisymmetries,

then f is an η1-quasisymmetry where η1 depends on η, diam(X1), diam(X2) and
diam(X1 ∩X2).

Proof. We denote by

λ :=
1

6
min

{
diam(X1 ∩X2)

diam(X1)
,
diam(X1 ∩X2)

diam(X2)
,
diam(f(X1 ∩X2))

diam(f(X1))
,
diam(f(X1 ∩X2))

diam(f(X2))

}
.

Let x, y, z be distinct points in X, then it is sufficient to prove that

dY (f(x), f(y))

dY (f(x), f(z))
≤ η1

(
dX(x, y)

dX(x, z)

)
.

We split the proof into three situations.
Let x, z ∈ X1 and y ∈ X2. Since X is a length space, X = X1 ∪X2 and X1, X2

are closed, there exists a point w ∈ X1∩X2 such that dX(x, y) = dX(x, w)+dX(w, y).
If dY (f(x), f(w)) ≥ λ · dY (f(x), f(y)), then

dY (f(x), f(y))

dY (f(x), f(z))
≤

1

λ

dY (f(x), f(w))

dY (f(x), f(z))
≤

1

λ
η

(
dX(x, w)

dX(x, z)

)
≤

1

λ
η

(
dX(x, y)

dX(x, z)

)
.

If dY (f(x), f(w)) < λ · dY (f(x), f(y)), we choose a point v on X1 ∩ X2 such
that dY (f(y), f(w)) ≥ dY (f(v), f(w)) ≥ 3λdY (f(y), f(w)). Notice that such a point
exists due to the connectedness of X1 ∩X2 and the definition of λ.

Since dY (f(x), f(w)) < λ · dY (f(x), f(y)), we have (1 − λ)dY (f(x), f(y)) ≤
dY (f(y), f(w)). Then

dY (f(x), f(y))

dY (f(x), f(z))
≤

1

1− λ

dY (f(y), f(w))

dY (f(x), f(z))
≤

1

3λ(1− λ)

dY (f(v), f(w))

dY (f(x), f(z))
.

Since dY (f(x), f(w)) < λ·dY (f(x), f(y)) and dY (f(v), f(w)) ≥ 3λdY (f(y), f(w)),
we have dY (f(v), f(w)) ≥ 3λdY (f(y), f(w)) ≥ 3λ (dY (f(x), f(y))− dY (f(x), f(w)))
≥ 3dY (f(x), f(w))−3λdY (f(x), f(w)) = (3−3λ)dY (f(x), f(w)). Then dY (f(x), f(v))
≥ dY (f(v), f(w))− dY (f(x), f(w)) ≥ dY (f(v), f(w))− 1/(3− 3λ) · dY (f(v), f(w)) ≥
1/2dY (f(v), f(w)), and

dY (f(x), f(y))

dY (f(x), f(z))
≤

2

3λ(1− λ)

dY (f(x), f(v))

dY (f(x), f(z))
≤

2

3λ(1− λ)
η

(
dX(x, v)

dX(x, z)

)

≤
2

3λ(1− λ)
η

(
dX(x, w) + dX(w, v)

dX(x, z)

)
.

Since
dY (f(y), f(w))

dY (f(v), f(w))
≤ η

(
dX(y, w)

dX(v, w)

)
,
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we have dX(v, w) ≤ 1/η−1(1) · dX(y, w). We denote by C := max{1, 1/η−1(1)}.
Thus

dY (f(x), f(y))

dY (f(x), f(z))
≤

2

3λ(1− λ)
η

(
dX(x, w) + dX(w, v)

dX(x, z)

)

≤
2

3λ(1− λ)
η

(
C
dX(x, w) + dX(y, w)

dX(x, z)

)

=
2

3λ(1− λ)
η

(
C
dX(x, y)

dX(x, z)

)
.

Let x, y ∈ X1 and z ∈ X2. Similarly, there exists a point w′ ∈ X1 ∩X2 such that
dY (f(x), f(z)) = dY (f(x), f(w

′)) + dY (f(w
′), f(z)). We also split the proof into two

cases: dX(x, w′) ≥ λ · dX(x, z) or not. The proof of this situation is essentially the
same as above.

If dX(x, w′) ≥ λ · dX(x, z), then

dX(x, y)

dX(x, z)
≥ λ

dX(x, y)

dX(x, w′)
≥ λη−1

(
dY (f(x), f(y))

dY (f(x), f(w′))

)
≥ λη−1

(
dY (f(x), f(y))

dY (f(x), f(z))

)
.

If dX(x, w′) < λ · dX(x, z), we choose a point v′ on X1∩X2 such that dX(z, w′) ≥
dX(v

′, w′) ≥ 3λ · dX(z, w
′). Notice that such a point exists due to the connectedness

of X1 ∩X2 and the definition of λ. Then
dX(x, y)

dX(x, z)
≥ (1− λ) ·

dX(x, y)

dX(z, w′)
≥ (3λ− 3λ2) ·

dX(x, y)

dX(v′, w′)
.

Since dX(x, v′) ≥ dX(v
′, w′) − dX(x, w

′) ≥ dX(v
′, w′) − 1/(3 − 3λ) · dX(v

′, w′) ≥
1/2dX(v

′, w′). Then

dX(x, y)

dX(x, z)
≥

3λ− 3λ2

2

dX(x, y)

dX(x, v′)
≥

3λ− 3λ2

2
η−1

(
dY (f(x), f(y))

dY (f(x), f(v′))

)

≥
3λ− 3λ2

2
η−1

(
dY (f(x), f(y))

dY (f(x), f(w′)) + dY (f(w′), f(v′))

)
.

Since
dY (f(v

′), f(w′))

dY (f(z), f(w′))
≤ η

(
dX(v

′, w′)

dX(z, w′)

)
,

dY (f(v
′), f(w′)) ≤ η(1) · dY (f(z), f(w

′)). We denote by C ′ := max{1, η(1)}.
Thus

dX(x, y)

dX(x, z)
≥

3λ− 3λ2

2
η−1

(
dY (f(x), f(y))

dY (f(x), f(w′)) + dY (f(w′), f(v′))

)

≥
3λ− 3λ2

2
η−1

(
1

C ′
dY (f(x), f(y))

dY (f(x), f(w′)) + dY (f(z), f(w′))

)

=
3λ− 3λ2

2
η−1

(
1

C ′
dY (f(x), f(y))

dY (f(x), f(z))

)
.

We denote by η1(t) := C ′η
(

2
3λ(1−λ) t

)
, so it is the distortion function in this

situation.
Let x ∈ X1 and y, z ∈ X2. The proof of this situation relies on the above

results and it is verbatim the same. Similarly, let w ∈ X1 ∩ X2 where dX(x, y) =
dX(x, w) + dX(w, y) and v ∈ X1 ∩ X2 where dY (f(y), f(w)) ≥ dY (f(v), f(w)) ≥
3λdY (f(y), f(w)).
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If dY (f(x), f(w)) ≥ λ · dY (f(x), f(y)), then

dY (f(x), f(y))

dY (f(x), f(z))
≤

1

λ

dY (f(x), f(w))

dY (f(x), f(z))
≤

1

λ
η1

(
dX(x, w)

dX(x, z)

)
≤

1

λ
η1

(
dX(x, y)

dX(x, z)

)

where η1 is the distortion function in the second situation.
If dY (f(x), f(w)) < λ · dY (f(x), f(y)), then

dY (f(x), f(y))

dY (f(x), f(z))
≤

2

3λ(1− λ)

dY (f(x), f(v))

dY (f(x), f(z))
≤

2

3λ(1− λ)
η1

(
dX(x, v)

dX(x, z)

)

≤
2

3λ(1− λ)
η1

(
dX(x, w) + dX(w, v)

dX(x, z)

)
.

Thus
dY (f(x), f(y))

dY (f(x), f(z))
≤

1

3λ(1− λ)
η1

(
max{1, 1/η−1(1)} ·

dX(x, y)

dX(x, z)

)
. �

Remark. Since a quasisymmetry can be extended to the completion of its do-
main (Proposition 10.11 in [He01]), our restriction of X1 and X2 to be closed can be
weakened.

Remark. If X1 andX2 forms an open cover of a compact space X, Theorem 2.23
in [TV80] has completely solved this situation.

Remark. Lemma 2.2 is also valid in more generality. For example, X and Y
are not length spaces but quasi-geodesic spaces(i.e., every two point is connected
by a path whose length is comparable to the distance of these two points), or X is
covered by subsets of any finite number satisfying some extra conditions in addition
to Lemma 2.2.

2.2. Gromov–Hausdorff distance and weak tangents of metric spaces.

Recall that the Hausdorff distance between two subsets X and Y in the same ambient
space, denoted by dH(X, Y ), is defined by

(1) dH(X, Y ) := inf{r > 0: X ⊂ Nr(Y ) and Y ⊂ Nr(X)}.

The Gromov–Hausdorff distance dGH(X, Y ) of two metric spaces X and Y (they
do not need to be in the same space), is defined by

(2) dGH(X, Y ) := inf
f,g

{dH(f(X), g(Y ))}.

where f : X → Z and g : Y → Z are isometric embeddings into some metric space
Z.

A sequence of compact metric spaces {Xn}
∞
n=1 converges in the Gromov–Hausdorff

sense to a compact metric space X if dGH(Xn, X) → 0 as n → ∞. We denote it by
Xn

GH
−−→ X. Notice that the limit space is unique up to isometries. If Xn and X are

in the same ambient space, then dH(Xn, X) → 0 implies Xn
GH
−−→ X.

A map f : X → Y is called an ǫ-isometry if

dist(f) := sup{|dX(x1, x2)− dY (f(x1), f(x2))| : x1, x2 ∈ X} ≤ ǫ

and
dH(f(X), Y ) ≤ ǫ.

The following propositions play an important role in Gromov–Hausdorff conver-
gence. See Section 7.3 and 7.4 of [BBI01] for a reference.

Proposition 2.3. Let X and Y be two metric spaces and ǫ > 0.
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(1) If dGH(X, Y ) < ǫ, then there exists a 2ǫ-isometry from X to Y .
(2) If there exists an ǫ-isometry from X to Y , then dGH(X, Y ) < 2ǫ.

Proposition 2.4. (Precompactness) Let X be a collection of compact, uniformly
bounded and doubling metric spaces. If the doubling constant of every element in
X is uniformly bounded, then any sequence of elements of X contains a convergent
subsequence in the Gromov–Hausdorff sense.

A pointed metric space is a triple (X, p, dX) where (X, dX) is a metric space with
a base point p ∈ (X, dX). The pointed Gromov–Hausdorff convergence is an analog
of Gromov–Hausdorff convergence appropriate for non-compact spaces. A sequence
of pointed metric spaces {(Xn, pn, dn)} converges in the pointed Gromov–Hausdorff
sense to a complete metric space (X, p, dX) if for every r > 0 and ǫ > 0 there exists
a n0 ∈ N such that for every n > n0 there exists a map f : B(pn, r) → X such that
the following hold:

(1) f(pn) = p;
(2) dist(f) < ǫ;
(3) B(p, r − ǫ) ⊂ Nǫ(f(B(pn, r))).

We also denote this type of convergence by (Xn, pn, dn)
GH
−−→ (X, p, dX). Readers can

verify that there is no difference between open and closed balls in the definition.
Intuitively, the ball B(pn, r) in Xn lies within the Gromov–Hausdorff distance of
order ǫ from a subset of X between the ball of radii r − ǫ and r + ǫ centered at p.
We call a map which is an ǫ-isometry and keeps the base point a pointed ǫ-isometry.

Figure 1. An illustration of pointed Gromov–Hausdorff convergence.

The definition of pointed Gromov–Hausdorff convergence varies in different sour-
ces. We choose the one which balances intuition and generality. If X is a length
space, then our definition of Gromov–Hausdorff convergence implies the following
one: B(pn, r)

GH
−−→ B(p, r) for every r > 0. Notice that we have abused notation

slightly here. Although B(pn, r) may not be compact; however, we can still show that
dGH(B(pn, r), B(p, r)) → 0. The next result is about the pointed Gromov–Hausdorff
limit of length spaces. Readers may see Section 8.1 of [BBI01] for a reference.

Theorem 2.5. Let (Xn, pn)
GH
−−→ (X, p) where Xn are length spaces and X is

complete. Then X is a length space.

Readers can find more information in Chapter 7 and 8 of [BBI01].
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We denote by f : (X, p, dX) → (Y, q, dY ) a map between two pointed metric spaces
which fixes the base points. Namely, f is a map between (X, dX) and (Y, dY ) and
f(p) = q.

Let (Xn, pn, dn) and (Yn, qn, ln) be sequences of pointed metric spaces that con-
verge in the pointed Gromov–Hausdorff sense to (X, p, d) and (Y, q, l), respectively.
Let fn be a sequence of mappings given by fn : (Xn, pn, dn) → (Yn, qn, ln) for each
n ∈ N and let f : (X, p, d) → (Y, q, l). We say fn converges to f if there exist pointed
ǫn-isometries

ϕn : (X, p) → (Xn, pn) and ψn : (Yn, qn) → (Y, q)

such that the following holds:

lim
n→∞

ψn ◦ fn ◦ ϕ
n(x) = f(x)

for any x ∈ X and ǫn → 0 as n→ ∞. Naturally, we have f(p) = q.
Let (X, dX) be a metric space and p be a point in X. We call a pointed metric

space a weak tangent of X at p if it is the pointed Gromov–Hausdorff limit of a
sequence of spaces {(X, pn, dX/λn)} where λn → 0 and pn → p in X. We denote by
(TpX, p∞, gp) the above weak tangent. A specific case of the weak tangents is when
pn = p for all n, and we call such a weak tangent a proper weak tangent at p.

We denote by WTp(X) and WT (X) the collections of all weak tangents at p of
X and all weak tangents of X, respectively. Similarly, we denote by PWTp(X) and
PWT (X) the collections of all proper weak tangents at p of X and all proper weak
tangents of X, respectively.

A natural question is whether there exists at least one weak tangent at every
point. The answer is given in the following proposition, which is Theorem 8.1.10 in
[BBI01].

Proposition 2.6. Let X be a collection of pointed metric spaces. Suppose that
for every r > 0 there exists a constant C depending on r such that for every (X, p) ∈
X, the ball B(p, r) is C-doubling. Then any sequence of elements of X contains a
convergent subsequence in the pointed Gromov–Hausdorff sense.

Proposition 2.6 shows that there exist at least one weak tangent at every point
of a doubling metric space. Proposition 2.6 is analogous to Proposition 2.4. Roughly
speaking, it requires the property of uniformly local doubling to induce precompact-
ness.

3. Quasisymmetric embeddability is hereditary

In this section we first prove Theorem 1.1, then establish the following result: If
X is quasisymmetrically embedded into a normed vector space, then every element
in WT (X) is quasisymmetrically embedded into the same space, given that X is
proper and doubling.

The proof of Theorem 1.1 is mainly finished by next Lemma. See Lemma 2.4.7
in [KL04].

Lemma 3.1. (Keith, Laakso) Let (Xn, pn, dn) and (Yn, qn, ln) be sequences of
proper pointed metric spaces that converge in the pointed Gromov–Hausdorff sense
to (X, p, d) and (Y, q, l), respectively. Let fn : (Xn, pn) → (Yn, qn) be an η-quasisym-
metric map for each n ∈ N, where η is fixed. If there exist a C ≥ 1 and a sequence
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{xn}, where each xn ∈ Xn, such that

(3)
1

C
≤ dn(pn, xn) ≤ C and

1

C
≤ ln(qn, fn(xn)) ≤ C

for every n ∈ N. Then, after passing to a subsequence, we have {fn} converges to
some η-quasisymmetric map f between X and Y and f(p) = q.

The proof is based on the equicontinuity of quasisymmetric maps and the Arzelá–
Ascoli theorem. For the sake of completeness, we will illustrate a concise proof of the
above lemma. Notice that our definitions of pointed Gromov–Hausdorff convergence
and weak tangent are not the same as that in [KL04]; however, the idea is still the
same. We first introduce two definitions.

A family of mappings fn : (Xn, pn, dn) → (Yn, qn, ln) are equicontinuous on bounded
subsets if for any R > 0, and for any ǫ > 0, there exists a δ > 0 such that

ln(fn(x), fn(x
′)) < ǫ whenever x, x′ ∈ B(pn, R) and dn(x, x

′) < δ.

A family of mappings fn : (Xn, pn, dn) → (Yn, qn, ln) are uniformly bounded on bounded
sets if for any R > 0,

sup
n

sup
x,x′∈B(pn,R)

ln(fn(x), fn(x
′)) <∞.

Proof of Lemma 3.1. {fn} are equicontinuous on bounded subsets due to in-
equalities (3) in Lemma 3.1, and the proof is analogous to Proposition 10.26 in [He01].
Similarly, inequalities (3) in Lemma 3.1 imply that {fn} are uniformly bounded on
bounded sets.

We first assume that X and Y are closed and bounded; thus it can be directly
verified that Xn and Yn should be uniformly bounded. Let’s consider the following
diagram:

Xn

fn // Yn

ψn

��
X

f
//

ϕn

OO

Y.

In this diagram, ϕn and ψn are pointed 1
n
-isometries from X to Xn and Yn to Y ,

respectively. We will construct a function f such that the above diagram commutes
when n→ ∞.

Since X is proper, it is compact and separable; thus we can select a dense count-
able subset E of X. For any x1 ∈ E, the sequence ψn ◦ fn ◦ ϕn(x1) is bounded since
fn is uniformly bounded on bounded sets. Y is a proper space; thus there exists a
subsequence ni such that ψni

◦ fni
◦ ϕni(x1) converges to a point y1 in Y . We define

f(x1) := y1. By Cantor’s diagonal argument, there exists a subsequence {nj} such
that we are able to define a function f on E where

f(x) := lim
j→∞

ψnj
◦ fnj

◦ ϕnj(x)

for any x ∈ E. Combining this with the equicontinuity on bounded subsets, we
can follow a proof analogous to the Arzelá–Ascoli theorem to define a function
f : (X, p, d) → (Y, q, l) as the limit of {fnj

}. Furthermore, f is a homeomorphism.
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It requires some basic tricks of pointed ǫ-isometries (see Proposition 2.3) to show
that f is a quasisymmetry. We still denote the subsequence {nj} as {n} for con-
venience here. Roughly speaking, for any x, y, z ∈ X, there exists a 1/n-isometry
ϕn : X → Xn where the distance between any two points of x, y, z is much larger
than 1/n. Similarly, we can also choose a ψn′ such that the distance between any two
points of fn ◦ ϕn(x), fn ◦ ϕn(y), fn ◦ ϕn(z) is much larger than 1/n′. Finally, passing
x, y, z through ψn′ ◦fn ◦ϕ

n and letting n, n′ → ∞ will show the three point condition
of quasisymmetries. We leave the details to the readers.

If X and Y are unbounded, we select bounded exhaustions {Un} and {Vn} of
X and Y (namely, a sequence of bounded subsets of the ambient space whose union
equals to the whole space), respectively, such that each Un is η-quasisymmetric equiv-
alent to Vn. Applying Cantor’s diagonal argument again, we finish the proof by taking
a sub-limit. �

Proof of Theorem 1.1. Since X is doubling, we assume that {(X, pn, dX/λn)}
converges to TpX and qn := f(pn). We split the proof into two situations: either X
is uniformly perfect or not.

If X is uniformly perfect, then there exists a constant C ≥ 1 and a sequence of
xn ∈ X such that

(4)
λn
C

≤ dX(pn, xn) ≤ λn.

Let ωn = dY (qn, f(xn)). Thus we define fn : (X, pn, dX/λn) → (Y, qn, dY /ωn) by
fn(x) := f(x). Notice that ωn 6= 0, ωn → 0 as n → ∞ and fn are still η-
quasisymmetric.

An application of Lemma 3.1 on {fn} with the following inequalities

(5)
1

C
≤
dX
λn

(pn, xn) ≤ 1 and
dY
ωn

(qn, fn(xn)) = 1

finishes the proof.
If X is not uniformly perfect, we split the proof into two cases.
Case 1. Notice that {pn} and {λn} are fixed. If inequality (4) is true for some

sequence {xn} and some constant C ≥ 1, then the above argument finishes the proof.
Case 2. If not, every sequence of xn ∈ X should satisfy

(1) dX(pn, xn)/λn → 0 when dX(pn, xn)/λn is uniformly bounded from above.
(2) dX(pn, xn)/λn → ∞ when dX(pn, xn)/λn is uniformly bounded from below.

For any sequence {an} where each an ∈ B(pn, λn), we have that dX(pn, an)/λn < 1
for every n. Thus dX(pn, an)/λn → 0. For any sequence {bn} where each bn ∈
X \B(pn, λn), we have that dX(pn, bn)/λn > 1 for every n. Thus dX(pn, bn)/λn → ∞.
∂B(pn, λn) should be empty when n is sufficiently large, otherwise inequality (4) is
true for some {xn} and some C ≥ 1.

Thus (X, pn, dX/λn) is inside the complement of a metric annulus B(pn, Rn) \

B(pn, rn) where lim
n→∞

Rn = ∞ and lim
n→∞

rn = 0. It means that (X, pn, dX/λn)
GH
−−→ {p}.

If we restrict X and Y to bounded subsets that contain of pn and qn, respectively.
It will not affect the weak tangents and a chosen of ωn by λn and Proposition 2.1
will lead to (Y, qn, dY /ωn)

GH
−−→ {q}. �

Remark. Lemma 3.1 and Theorem 1.1 are still valid in some other situations.
Namely, they are also valid for maps that are isometric (ln(fn(x), fn(y)) = dn(x, y)),
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r-similar (ln(fn(x), fn(y)) = r ·dn(x, y)), and L-bi-Lipschitz (1/L·dn(x, y) ≤ ln(fn(x),
fn(y)) ≤ L · dn(x, y)). The proofs are verbatim the same.

We state the following generalized lemma without proof which will be repeatedly
used in later contents:

Lemma 3.2. Let (Xn, pn, dn) and (Yn, qn, ln) be sequences of proper pointed
metric spaces that converge in the pointed Gromov–Hausdorff sense to (X, p, d) and
(Y, q, l), respectively. Let fn : (Xn, pn) → (Yn, qn) be an isometric/r-similar/L-bi-
Lipschitz/η-quasisymmetric map for each n ∈ N. Suppose there exist a C ≥ 1 and
a sequence {xn}, where each xn ∈ Xn, such that

(6)
1

C
≤ dn(pn, xn) ≤ C and

1

C
≤ ln(qn, f(xn)) ≤ C

for every n ∈ N. Then, after passing to a subsequence, {fn} converges to some
isometric/r-similar/L-bi-Lipschitz/η-quasisymmetric map f between X and Y and
f(p) = q.

We are interested in a metric space which quasisymmetrically admits all weak
tangents of its subsets, i.e., a metric space X with the property that every weak
tangent of every Y ⊂ X can be uniformly quasisymmetrically embedded into X.
We call such a space quasisymmetric-tangent-self-embeddable. The following lemma
proves that a finite dimensional normed vector space admits this property.

Lemma 3.3. Let Y be a subset of a finite dimensional normed vector space
(X, d). Then every weak tangent of Y is (isometrically) a subset of X.

Proof. Since X is finite dimensional, it is doubling and proper. In fact, doubling
and proper are equivalent to finite dimension here. Let TpY be a weak tangent of Y
and (Y, pn, d/λn)

GH
−−→ (TpY, p∞, gp). Let

λnY = {x ∈ X : there exists a y ∈ Y such that x− pn = λn(y − pn)}

be a linear dilation of Y at the point pn. Thus (λnY, pn, d) is isometric to (Y, p, d/λn)
for any λn.

We claim that there exists a subsequence {λni
} and a Yp ⊂ X such that for

every r > 0, B(pni
, r) ∩ λni

Y converges in the Hausdorff sense to B(p, r) ∩ Yp.
The proof is analogous to Proposition 2.6. This is achieved by Theorem 7.3.8 in
[BBI01] and Cantor’s diagonal argument. Thus (λni

Y, pni
, d)

GH
−−→ (Yp, p, d). Since

(Y, p, d/λni
)
GH
−−→ (TpY, p∞, gp), we finish the proof by applying the isometric version

of Lemma 3.2. �

The following corollary follows Theorem 1.1 and Lemma 3.3.

Corollary 3.4. Let X be a proper, doubling metric space and V be a finite
dimensional normed vector space. If X can be η-quasisymmetrically embedded into
V , then any weak tangent of any subset of X can be η-quasisymmetrically embedded
into V .

Corollary 3.4 is still valid if we substitute the normed vector space with a quasi-
symmetric-tangent-self-embeddable space(with a little revision). However, we know
very few examples of these spaces. Finite dimensional normed vector spaces are one
example, and it is plausible that any quasi-self-symmetric space(see section 5) with
a suitable “extension” to infinity will be another.
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4. Counterexamples

In this section, we will illustrate several counterexamples to show that the con-
verse of Theorem 1.1 is not true.

4.1. Slit Sierpiński carpets. Let R = (a1, b1) × (a2, b2) ⊂ R
2 be a rectangle

and let s = {x} × [c2, d2] ⊂ R be a slit in R, where l(s) = diam(s) = d2 − c2 is
the length of s. R\

⋃m
i=1 si, where si’s are mutually disjoint slits in R, is called a slit

domain.
We say that ∆ ⊂ [0, 1]2 is a dyadic square of generation n if there exist i, j ∈

{0, 1, 2, . . . , 2n − 1} such that

∆ =

[
i

2n
,
i+ 1

2n

]
×

[
j

2n
,
j + 1

2n

]
.

The sidelength of a dyadic square ∆ will be denote by l(∆).
Given an infinite sequence r = {ri}

∞
i=0 such that ri ∈ (0, 1), we define a slit

domain

Sn(r) := [0, 1]2\




n⋃

i=0

2i⋃

j=1

sij


 ,

where
(1) sij ⊂ ∆ij , where ∆ij is a dyadic square of generation i.
(2) The center of sij coincides with the center of ∆ij .
(3) l(sij1) = l(sij2) = ri ·

1
2i

for j1, j2 ∈ {1, . . . , 2i}.

Figure 2. Slit domains with respect to (1
2
, 1

2
, 1

2
, 1
2
) and ( 1

10
, 2

5
, 1

8
, 1

2
).

We equip Sn(r) with the intrinsic metric and denote by Sn(r) the completion of
Sn(r). One should be aware that the boundary of every slit is a topological circle
after the completion.

For every m,n ∈ N∪{0} with m ≤ n there exists a natural 1-Lipschitz projection

πm,n : Sn → Sm

obtained by identifying the points on the slits of Sn that correspond to the same
point of Sm.

As a topological space, the dyadic slit Sierpiński carpet corresponding to r is
defined as the inverse limit of the system (Sn, πm,n), and is denoted by Sr. More
explicitly,

Sr = {(p0, p1, . . .) : pi ∈ Si and pi = πi,i+1(pi+1)} .(7)

In the following content, we just use the notation S when there is no ambiguity.
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The diameter of each Sn is clearly bounded by 2. If x = (x0, x1, . . .) and y =
(y0, y1, . . .) are points in S , we define a distance between them by

dS (x, y) = lim
n→∞

dSn
(xn, yn)

Since every πm,n is 1-Lipschitz, (dSn
(pn, qn)) is a non-decreasing bounded sequence,

and thus dS (p, q) exists and defines a metric on S . It can be directly verified that
dS is a length metric on S .

(S , dS ) is a metric Sierpiński carpet, i.e., a metric space which is homeomorphic
to the standard Sierpiński carpet. When we mention a slit in S , we mean the
boundary component of S which corresponds to a slit in the slit domain. For more
information, readers may see [HL19] for a reference.

The dyadic slit carpets were first studied in [Me10], in which Merenkov investi-
gated the carpet with respect to {ri}

∞
i=0 where ri = 1/2 for any i.

The following theorem from [HL19] classifies the planar quasisymmetric embed-
dability of dyadic slit carpets.

Theorem 4.1. (Hakobyan, Li) There exists a quasisymmetric embedding of
S (r) into R

2 if and only if r = {ri}
∞
i=0 ∈ ℓ2.

We call a dyadic slit carpet S (r) harmonic if {ri} /∈ ℓ2 and ri → 0 as i → ∞.
For example, a dyadic slit carpet with respect to r = { 1√

i
} is harmonic. Theorem 4.1

implies that there exists no quasisymmetric embedding from a harmonic slit carpet
into R

2.

Proposition 4.2. Any weak tangent of a harmonic S is either the closed one
quarter plane Q, the closed half plane H , R2 or T , where T is the completion of
R

2 \ (0,∞) equipped with the intrinsic metric.

Proof. The proof of Proposition 4.2 is rather intuitive. A metric carpet S is
porous at a point p if there exists a constant C > 1 depending on p such that for any
0 < r < diam(X), there exists a boundary component Λ of S in B(p, r) such that

1

C
<

diam(Λ)

r
< C.

Our proof is based on the idea that if S is harmonic, then S is not porous at
any point. In simple words, for any p ∈ S and any 0 < r < diam(X), the diameter
of any slit inside B(p, r) will decrease to 0 as “blowing up” the carpet near p; thus
“erase” all the slits inside B(p∞, r).

We should first be aware that all the weak tangents of S are length spaces by
Theorem 2.5. Let p be a point that is not on the boundary of S . We define π
to be the natural projection from S to [0, 1]2 i.e., π project any point on the slit
carpet to the corresponding point on the unit square. For any r > 0, λ > 0, let
fn := 1/λ · π|B(p,λr). Thus it is an embedding into R

2 and satisfies
(1) f(p) = p;
(2) dist(f) < ǫ for some ǫ depends on the length of the slits in B(p, r);
(3) B(p, r − ǫ) ⊂ Nǫ(f(B(p, r))).

Since the slit carpet is harmonic, the length of the slits in B(p, r) and ǫ goes to 0 as
λ→ 0 . Thus by definition any proper weak tangent at p is R

2.
We follow the same idea to construct pointed ǫ-isometries, then it provides the

following cases of proper weak tangents:
(1) Any proper weak tangent at a corner point of S is Q.
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(2) Any proper weak tangent at a non-corner point on the outer boundary(largest
boundary) of S is H .

(3) Any proper weak tangent at an endpoint of a slit is T .
(4) Any proper weak tangent at a point on a slit which is not the endpoint is H .
(5) Any proper weak tangent at a non-boundary point is R

2.

In next step, we will show that all the weak tangents of S should be {Q,H,R2, T}.
Suppose that there exists {pn} s.t. pn → p and (S , pn,

dS

λn
) converges to a weak tan-

gent TpS . If n is sufficiently large, (S , pn,
dS

λn
) is ǫ-close to one of {Q,H,R2, T}

in the pointed Gromov–Hausdorff sense where ǫ only depends on S and λn and
{Q,H,R2, T} are all distinct in this sense. Thus (S , pn,

dS

λn
) should converge to one

of them which finishes the proof. �

Corollary 4.3. There exists a metric Sierpiński carpet which is not quasisym-
metrically embedded into R

2 but every weak tangent is uniformly bi-Lipschitzly
embedded into R

2.

Proof. Let’s take a harmonic dyadic slit carpet and what is left to show is the
embeddability of T . We define a function Φ: T → H , which identifies the points by
halfing the argument, and by showing it is a bi-Lipschitz map we finish the proof.
More precisely, we define

Φ: T −→ H, reiθ 7→ rei
θ
2

for r ≥ 0 and θ ∈ (0, π). However, we do require that Φ(reiπ) 6= Φ(rei0) for r 6= 0.
Notice that ∂T is a real line, thus we can define ∂T = R1 ∪ R2 where both R1 and
R2 represent [0,+∞) under the natural projection of T to R

2. We extend Φ to its
boundary in a continuous and symmetric way.

Let (r, θ) be a point that is represented in polar coordinate in T , then the Jacobian
matrix of Φ at (r, θ) is (

1 0
0 1

2

)
.

It is clear that Φ is locally L-bi-Lipschitz at every point in T \ ∂T for some L ≥ 1.
We will prove that Φ is bi-Lipschitz on T \ ∂T in next step.

Let x, y ∈ T \ ∂T and γ be the geodesic connecting x and y. Let x1, . . . , xn+1

be points on γ such that Φ is bi-Lipschitz on {xi, xi+1} for any 1 ≤ i ≤ n. For
convenience, we take x = x1, y = xn+1. Thus

|Φ(x)− Φ(y)| ≤
n∑

i=1

|Φ(xi+1)− Φ(xi)| ≤
n∑

i=1

LdT (xi, xi+1) = LdT (x, y)

Similarly, we also have dT (x, y) ≤ L|Φ(x)− Φ(y)|.
Extending x, y to R1 ∪R2 with continuity finishes the proof. �

Let S = {si}
∞
i=0 be the collection of all slits in S (r). We denote by Pi the

metric space generated by identically gluing three sides of two identical squares with
sidelength l(si). In this way, Pi looks like a “square pillow” with an “open mouth”.
We define Ŝ (r) as

(8) Ŝ (r) := S (r)
⊔

G

{Pi}
∞
i=0,
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where G = {gi} is a sequence of gluing functions. Each gi in G identically glues the
slit si with ∂Pi, the topological boundary of Pi.

Figure 3. “Square pillow” Pi, gluing function gi and slit si.

Ŝ is homeomorphic to D and we equip it with intrinsic metric d
Ŝ

. In the original
study of Ŝ in [HL19], a more technical metric is equipped on Ŝ ; however it appears
that these two metrics are bi-Lipschitz equivalent, which will not affect our following
results. See details of this part in Section 8 of [HL19]

Similarly, we call Ŝ harmonic if the corresponding S is harmonic. Notice that
S can be bi-Lipschitzly embedded into Ŝ by Section 8 of [HL19], thus any har-
monic Ŝ can not be quasisymmetrically embedded into R

2, otherwise S can be
quasisymmetrically embedded into R

2.
To study the weak tangents of Ŝ , we introduce several new spaces. Recall that

Q = {(x, y) ∈ R
2 : x ≥ 0, y ≥ 0} and we define

D = Q
⊔

d

Q.

where D is a length space and d glues ∂Q with ∂Q identically. Similarly,

L = T
⊔

l

H

where l glues ∂T with ∂H isometrically. Notice that both ∂H and ∂T are R, so we
can glue their boundaries by isometry. We also equip L with the intrinsic metric.

Proposition 4.4. Any weak tangent of a harmonic Ŝ is bi-Lipschitz equivalent
to one of the following spaces: Q, H , R2, D or L.

Proof. The proof of Proposition 4.4 follows the same idea of the proof of Propo-
sition 4.2. We just sketch the proof. Following the idea illustrated in Proposition 4.2
to construct pointed ǫ-isometries at each point, then it provides the following cases
of proper weak tangents:

(1) Any proper weak tangent at a corner point of Ŝ is Q.
(2) Any proper weak tangent at a non-corner point on the outer boundary of Ŝ

is H .
(3) Any proper weak tangent at an endpoint of a slit is L.
(4) Any proper weak tangent at a point on a slit which is not the endpoint is R2.
(5) Any proper weak tangent at a corner point of Pi which is not on a slit is D.
(6) Any proper weak tangent at other points of Pi is R

2.
(7) Any proper weak tangent at a non-boundary point which is not on Pi is R2.

We claim that all the weak tangents of Ŝ should be {Q,H,R2, D, L}. This
still comes from the exhaustion of the local behavior of every point on Ŝ and
{Q,H,R2, D, L} are all distinct in the pointed Gromov–Hausdorff sense. �
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Recall that a quasi-plane or a quasi-sphere is a metric space which is quasisym-
metric to R

2 or S2, respectively.

Corollary 4.5. Let X be a topological plane or a topological sphere. There
exist a metric on X such that X is not a quasi-plane or a quasi-sphere, respectively,
but every weak tangent of X is quasisymmetric to R

2.

Proof. Let Ŝ be harmonic. If we replace every dyadic unit square in R
2 by Ŝ

and equip it with the intrinsic metric, we have the desired metric plane. Similarly, if
we glue two copies of Ŝ isometrically by their outer boundaries and equip it with the
intrinsic metric, we have the desired metric sphere. Thus in order to finish the proof
of Corollary 4.5, it remains to show that L and D are quasisymmetric to R

2. Revise
the function Φ in Corollary 4.3 and follow the same idea to finish the proof. �

Remark. In Section 5 of [Wu19], Wu constructed a metric δ on R, which is
inspired by the ideas of Rickman’s rug and the “flat” snowflake curves, such that

Xn =
(
R×R

n−1,
√
δ2 + | · |2

)

is not quasisymmetric to R
n, but every weak tangent of Xn is isometric to R

n for
n ≥ 2.

5. Self-quasisymmetricity and quasi-self-symmetricity

In this section we investigate the converse implication. The goal of this section
is to explore the consequences when the weak tangents of a metric space X are
uniformly quasisymmetrically embedded into a metric space Y .

An appropriate space in this section should illustrate analogous structures be-
tween the local and the global scale; thus inspiring the following definition.

Let X be a metric space and p be a point in X. X is η-self-quasisymmetric
at p if there exists a rp > 0 such that for any 0 < r < rp, there exists a subset
U ⊂ B(p, r) such that U is η-quasisymmetric to X. The number rp is called the
self-quasisymmetry scale of p.

We say X is homogeneously self-quasisymmetric at p if there exists a Cp > 0
such that for any 0 < r < rp, there exists a subset U as above satisfying r/Cp ≤
diam(U) ≤ Cp · r and p ∈ U . If X is self-quasisymmetric at a set of points, we say it
is uniformly homogeneous if X is homogeneous at these points and the homogeneous
constant Cp and the self-quasisymmetry scale rp are uniformly bounded.

Notice that at any point of a self-similar space, it is homogeneously self-quasi-
symmetric. See Section 5 of [Hu81] for the definition of self-similarity. Our intuition
tells us that self-similar spaces should be a target for a converse implication. In fact,
we can show it works in more generality.

Theorem 5.1. Let X be a proper, doubling metric space and p be a point
in X. Assume that there exists a sequence of points {pn} such that X is η-self-
quasisymmetric at pn for every n and pn → p in X. Then there exists a weak tangent
TpX ∈ WTp(X) such that X is η′-quasisymmetrically embedded into TpX, where
η′(t) = 1/η−1

(
1
t

)
.

Proof. By definition, we can select a sequence of balls B(pn, rn) such that Un ⊂
B(pn, rn), rn → 0, and there exists a sequence of η-quasisymmetric maps

fn : (Un, qn,
dX
λn

) → (X, p, dX).
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where qn := f−1
n (p) and λn := diam(Un). It can be verified that dX(qn, pn) → 0, thus

qn → p in X. Notice that Un may not be open or unique.
Without loss of generality, assume that λn > 0 for all n ∈ N and λn → 0;

otherwise, X is a singleton. We may assume that, by Proposition 2.6, (X, qn, dXλn )
GH
−−→

(TpX, p∞, gp) after passing {λn} to a suitable subsequence, where TpX is a weak
tangent at p . Similarly, (Un, qn,

dX
λn
)

GH
−−→ (Up, p∞, gp) after passing to a suitable

subsequence again. It can be directly verified by the isometric version of Lemma 3.2
that Up is a subset of TpX.

(Un, qn,
dX
λn
)

fn //

GH

��
��

(X, p, dX)

GH

��

(Up, p∞, gp)
f

// (X, p, dX).

It is trivial to see that (X, p, dX)
GH
−−→ (X, p, dX). Here X is the completion of X

since every pointed Gromov–Hausdorff limit is complete. In the following proof, we
will show that fn subconverges to an η-quasisymmetry.

We claim that there exists a sequence of points xn ∈ Un such that Lemma 3.1
holds for {fn}. Take a point x1 in U1 such that dX(q1, x1)/λ1 = C for some con-
stant C > 0. We denote by xn := f−1

n ◦ f1(x1). Since f−1
n ◦ f1 : (U1, q1, dX/λ1) →

(Un, qn, dX/λn) is an η1-quasisymmetry where η1 depends only on η, by Proposition
2.1, we have

(9)
dX(qn, xn)

diam(Un)
≥

1

2η1

(
diam(U1)
dX(q1,x1)

) =
1

2η1 (1/C)
.

Thus

(10)
1

2η1 (1/C)
≤
dX
λn

(qn, xn) ≤ 1 and dX (fn(qn), fn(xn)) = dX (p, f1(x1)) .

Since (Un, qn, dX/λn)
GH
−−→ (Up, p∞, gp) and (X, p, dX)

GH
−−→ (X, p, dX), applying

Lemma 3.1 to {fn} induces an η-quasisymmetry between Up and X. This finishes
the proof. �

Theorem 1.2 is a direct corollary of Theorem 5.1. We can further strengthen
Theorem 5.1 if we add more conditions.

Proposition 5.2. Let X be a proper, doubling metric space and p be a point
in X. Assume that there exists an open neighborhood V of p such that X is uni-
formly homogeneously η-self-quasisymmetric at a dense subset of V , then X is η′-
quasisymmetrically embedded into every weak tangent in WTp(X), where η′(t) =
1/η−1

(
1
t

)
.

Proof. Let (X, pn, dX/λn)
GH
−−→ (TpX, p∞, gp). Without loss of generality, we

assume that λn is smaller than the self-quasisymmetry scale and B(pn, λn) ⊂ V for
all n ∈ N. There exists a sequence of subsets {Un} as in the proof of Theorem 5.1
such that Un ⊂ B(p′n, λn/2) ⊂ B(pn, λn), diam(Un) is comparable to λn and p′n ∈ Un.
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Here p′n is a point at which X is η-self-quasisymmetric such that p′n is sufficiently
close to pn.

Without loss of generality, we assume that pn ∈ Un; otherwise, we can con-
struct a Un in the following way: Take a sequence of points {p′nj

} at which X is
η-self-quasisymmetric such that {p′nj

} converges to pn. Then the corresponding Unj

converges in the pointed Hausdorff sense to a subset Un after passing to a suitable
subsequence. Thus Un is η-quasisymmetric to X. Since p′nj

∈ Unj
and Un is closed,

we have pn ∈ Un. See Lemma 3.3 for a similar proof.
Following the above construction, we may assume that for every n ∈ N, there

exists an η-quasisymmetry fn : (Un, dX/λn) → (X, dX). Notice that

(Un, pn,
dX
λn

)
GH
−−→ (Up, p∞, gp) ⊂ (TpX, p∞, gp)

after passing {λn} to a suitable subsequence. Since X is complete, there exists a
sequence of base points {qn} ⊂ X where qn := fn(pn) such that (X, qn, dX)

GH
−−→

(X, q, dX) for some q ∈ X after passing to a suitable subsequence again. Following
the same idea of the proof of Theorem 5.1 and applying Lemma 3.1 on {fn} finish
the proof. �

Remark. If we consider PWTp(X) instead of WTp(X), the above result can be
even more strengthened. Assume that X is homogeneously η-self-quasisymmetric at
p, then X is η′-quasisymmetrically embedded into every weak tangent in PWTp(X),
where η′(t) = 1/η−1

(
1
t

)
.

Self-quasisymmetricity is a rather restrictive property on metric spaces. The
following definition is more practical and could be applied in many other fields.

X is a quasi-self-symmetric space if, roughly speaking, almost every small piece
of X can be uniformly quasisymmetrically mapped back into X with a bounded size.
Let X be a metric space and p be a point in X. X is quasi-self-symmetric at p if there
exist rp > 0, Lp ≥ 1 such that for any 0 < r < rp, there exists an η-quasisymmetric
map f maps B(p, r) into X where

(11)
1

Lp
≤ diam(f(B(p, r))) ≤ Lp.

We call rp the quasi-self-symmetric scale and Lp the distortion bound of p. Notice
that they may not be unique.

We say a nonempty metric space X is η-quasi-self-symmetric if there exists a
dense subset Xqss of X such that X is η-quasi-self-symmetric at every point of Xqss

and the quasi-self-symmetric scales, the distortion bounds of these points are uni-
formly bounded. Thus we can define r0 = supp∈Xqss

rp as the quasi-self-symmetric
scale of X and L0 = supp∈Xqss

Lp as the distortion bound of X.
We say a nonempty metric space X is weakly η-quasi-self-symmetric if there

exists a dense subset Xqss of X such that X is η-quasi-self-symmetric at every point
in Xqss and only the distortion bounds of these points are uniformly bounded.

In the following theorem, we show that quasi-self-symmetricity induces a converse
implication, but not in the global sense.

Theorem 5.3. Let X be a compact, proper, doubling, η-quasi-self-symmetric
space, p be a point in X and TpX be a weak tangent in WTp(X). Then there exists a
ball B(q, r) in X and an η′-quasisymmetric embedding f : B(q, r) → TpX such that
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f(q) = p∞ and η′(t) = 1/η−1
(
1
t

)
. If X is uniformly perfect, r depends only on X and

η.

Proof. Let’s assume that (X, pn, dX/λn)
GH
−−→ (TpX, p∞, gp). The proof of this

theorem is analogous to the proof of Theorem 1.1 and Theorem 5.1. We split it into
two situations: either X is uniformly perfect or not.

Let X be a uniformly perfect metric space. Without loss of generality, assume
that λn < r0 for all n ∈ N. Here r0 is the quasi-self-symmetric scale of X. Since
X is uniformly perfect, there exists a point xn ∈ B(pn, λn) and a constant C ≤ 1
depending only on X such that

(12) C ≤
1

λn
dX(pn, xn) ≤ 1

for any n ∈ N. Let {p′n} be a sequence of points at which X is η-quasi-self-symmetric
and dX(p′n, pn) < C/2 · λn. The reason we select p′n is that X may not be quasi-self-
symmetric at pn but pn can be approximated by such a point.

(
B(p′n, λn), pn,

dX
λn

)
GH
−−→ (Bp, p∞, gp)

after passing {λn} to a suitable subsequence, where Bp is a subset of TpX due to
Lemma 3.2. Notice that diam(B(p′n, λn))/λn maybe less than 2 because there may not
exist any point near ∂B(p′n, λn). Since dX(pn, xn) ≥ C ·λn and dX(p′n, pn) < C/2 ·λn,
we have that C/2 ≤ diam(B(p′n, λn))/λn ≤ 2

Since X is compact and quasisymmetries extend to the completions (Proposi-
tion 10.11 in [He01]), there exists a sequence of η-quasisymmetric maps fn : (B(p′n,
λn), pn, dX/λn) → (Un, qn, dX) such that 1/L0 ≤ diam(Un) ≤ L0, where qn := fn(pn),
Un ⊂ X and L0 is the distortion bound of X.

Since X and {Un} are compact, Un converges in the Hausdorff sense to a compact
set Uq ⊂ X after passing {Un} to a suitable subsequence. Readers may see Theo-
rem 7.3.8 in [BBI01] for a reference. Furthermore, we may assume that qn → q ∈ Uq
after passing to a suitable subsequence again. Notice that (pointed) Hausdorff con-
vergence implies (pointed) Gromov–Hausdorff convergence. It can be directly verified
that (Un, qn, dX)

GH
−−→ (Uq, q, dX).

Thus we have an η-quasisymmetry fn :
(
B(p′n, λn), pn,

dX
λn

)
→ (Un, qn, dX) for

every n ∈ N, where
(
B(p′n, λn), pn,

dX
λn

)
GH
−−→ (Bp, p∞, gp)

and
(Un, qn, dX)

GH
−−→ (Uq, q, dX).

It remains to show that fn subconverges to an η-quasisymmetry.
(
B(p′n, λn), pn,

dX
λn

)
fn //

GH

��
��

(Un, qn, dX)

GH

��
(Bp, p∞, gp)

f
// (Uq, q, dX).
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Since
C ≤

1

λn
dX(pn, xn) ≤ 1,

it follows Proposition 2.1 that

1

2η
(
2
C

) ≤
1

2η
(

diam(B(p′n,λn))
dX(pn,xn)

) ≤
dX(qn, fn(xn))

diam(Un)
≤ η

(
2dX(pn, xn)

diam(B(p′n, λn))

)
≤ η

(
4

C

)
.

Thus

(13)
1

2η
(
2
C

)
L0

≤ dX(qn, fn(xn)) ≤ η

(
4

C

)
L0.

Apply Lemma 3.1 to fn, we have that {fn} subconverges to an η-quasisymmetric
map f ′ : (Bp, p∞) → (Uq, q). Since Bp ⊂ TpX, Uq is η′-quasisymmetrically embedded
into TpX. Furthermore, if r < 1/(2η

(
2
C

)
L0), anyB(q, r) can be η′-quasisymmetrically

embedded into TpX, where this constant only depends on X and η.
If X is not uniformly perfect, the proof is analogous to the second part of the

proof of Theorem 1.1.
Case 1. If inequality (12) is true for some C ≤ 1 and {xn}, then we follows the

above proof to get inequalities (13). Applying Lemma 3.1 to fn finish the proof.
Case 2. If not, then Bp is a singleton, which is trivial. �

Theorem 1.3 is a direct corollary of Theorem 5.3. We can also further strengthen
Theorem 5.3 by adding more conditions.

Remark. One way to strengthen Theorem 5.3 is to restrict quasi-self-symmet-
ricity to local neighborhood. Assume that there exists an open neighborhood U of
p such that X is η-quasi-self-symmetric at a dense subset of U where the quasi-self-
symmetric scales and the distortion bounds of these points are uniformly bounded.
Then for any TpX ∈ WTp(X), there exists a ball B(q, r) in X and an η′-quasisym-
metric embedding f : B(q, r) → TpX such that f(q) = p∞ and η′(t) = 1/η−1

(
1
t

)
. If

X is uniformly perfect, r depends only on X and η.
Another way is to study the proper weak tangents. Assume that there exists

a sequence of points {pn} such that X is η-quasi-self-symmetric at pn for every n
and pn → p in X. Furthermore, the quasi-self-symmetric scales and the distortion
bounds of {pn} are uniformly bounded. Then for any TpX ∈ PWTp(X), there exists
a ball B(q, r) in X and an η′-quasisymmetric embedding f : B(q, r) → TpX such that
f(q) = p∞ and η′(t) = 1/η−1

(
1
t

)
. If X is uniformly perfect, r depends only on X and

η.

The following theorem generalizes Theorem 5.3 to weakly quasi-self-symmetric
spaces. It shows that the restriction on the quasi-self-symmetric scale can be weak-
ened.

Theorem 5.4. Let X be a compact, proper, doubling, weakly η-quasi-self-
symmetric space, p be a point in X and TpX be a weak tangent in WTp(X). Assume
that there exists a neighborhood of p and a constant C depending on p such that any
point p′, at which X is η-quasi-self-symmetric, in this neighborhood should satisfy

rp′ ≥ C · dX(p, p
′)

where rp′ is the quasi-self-symmetric scale of p′. Then there exists a ball B(q, r) in
X and an η1-quasisymmetric embedding f : B(q, r) → TpX such that f(q) = p∞ and
η1 depends only on η and X. If X is uniformly perfect, r depends only on X and η.
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Proof. The proof is analogous to the proof of Theorem 5.3. The main difference
here is that we need to select a suitable sequence of points at which X is quasi-self-
symmetric.

We first assume that X is uniformly perfect. Let (X, pn,
dX
λn
)
GH
−−→ (TpX, p∞, gp).

We select {p′n} in the following way:

(1) If dX(pn, p) ≥ (1+C)λn, let p′n be a point at whichX is η-quasi-self-symmetric
and C1λn ≤ dX(pn, p

′
n) ≤ Cλn where C1 is a constant comes from the uniform

perfectness of X.
(2) If dX(pn, p) < (1+C)λn, let p′n be a point at which X is η-quasi-self-symmetric

and (2 + C)λn ≤ dX(pn, p
′
n) ≤ C2λn, where C2 is a constant comes from the

uniform perfectness of X.

Thus rp′n ≥ C · dX(p, p
′
n) ≥ Cλn for any n ∈ N.

Let B(p, r0) be a ball inside the neighborhood stated in the theorem. Without
loss of generality, assume that Cλn < r0/2, C1λn < r0/2 and dX(pn, p) < r0/2 for all
n ∈ N. We denote by Bn := B(p′n, Cλn) ∪ {pn}. Thus

(
Bn, pn,

dX
λn

)
GH
−−→ (Bp, p∞, gp)

after passing {λn} to a suitable subsequence and (Bp, p∞, gp) ⊂ TpX by the isometric
version of Lemma 3.2. Furthermore, B(p′n, Cλn) is η-quasisymmetric to U ′

n, where
U ′
n ⊂ X, 1/L0 ≤ diam(U ′

n) ≤ L0 and L0 is the distortion bound of X.
We claim that for every n ∈ N there exists a point qn ∈ X and some constant L

depending only on X such that dX(qn, x′) > L for every x′ ∈ U ′
n . Such a qn exists if

L0 < diam(X). If not, we adjust B(p′n, Cλn) to a smaller ball, thus getting a smaller
U ′
n under the same quasisymmetry. After adding qn as a base point of U ′

n if needed,
we denote by

Un :=

{
U ′
n if pn ∈ B(p′n, Cλn);

U ′
n ∪ qn if pn /∈ B(p′n, Cλn).

Let fn be the quasisymmetry that maps B(p′n, Cλn) to Un. Then we extend fn
to Bn by defining qn := fn(pn) when pn /∈ B(p′n, Cλn). Notice that there is no
need to extend fn when pn ∈ B(p′n, Cλn). We will prove that fn : Bn → Un is a
quasisymmetry in next step.

It is clear that if p′n is defined in case (1), then pn ∈ B(p′n, Cλn) and Bn is η-
quasisymmetric to Un. Now let’s consider when p′n is defined in case (2). In this
case, pn /∈ B(p′n, Cλn) and fn is extended to pn. Moreover, we have the following
inequalities:

2λn ≤ dX(pn, x) ≤ (C + C2)λn, ∀x ∈ B(p′n, Cλn),

L ≤ dX(qn, x
′) ≤ diam(X), ∀x′ ∈ U ′

n,

2C1λn ≤ diam(B(p′n, Cλn)) ≤ 2Cλn.

Let x, y be any two points in B(p′n, Cλn), then

1

2η
(

diam(B(p′n,Cλn))
dX(x,y)

) ≤
dX(f(x), f(y))

diam(U ′
n)

≤ η

(
2dX(x, y)

diam(B(p′n, Cλn))

)
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by Proposition 2.1. Thus
1

L0

1

2η
(

2Cλn
dX(x,y)

) ≤ dX(f(x), f(y)) ≤ L0η

(
dX(x, y)

C1λn

)

and
1

L0diam(X)

1

2η
(
C · dX(x,pn)

dX(x,y)

) ≤
dX(f(x), f(y))

dX(f(x), qn)
≤
L0

L
η

(
C + C2

C1

·
dX(x, y)

dX(x, pn)

)
.

It shows that (Bn, pn) is quasisymmetric to (Un, qn) for every n ∈ N.
Assume that Un converges in the pointed Hausdorff sense to Uq after passing to a

suitable subsequence. Notice that from the definition of {p′n}, we have that for every
n ∈ N,

C1 ≤
1

λn
dX(pn, p

′
n) ≤ C2.

It follows Proposition 2.1 that
1

2η
(
C+C2

C1

) ≤
1

2η
(

diam(Bn)
dX(pn,p′n)

) ≤
dX(qn, fn(p

′
n))

diam(Un)
≤ η

(
2dX(pn, p

′
n)

diam(Bn)

)
≤ η

(
C2

C1

)
.

Thus
1

2η
(
C+C2

C1

)
L0

≤ dX(qn, fn(p
′
n)) ≤ η

(
C2

C1

)
diam(X).

Applying Lemma 3.1 to fn, then we have that Bp is η1-quasisymmetric to Uq
where η1 depends only on η and X. Since Bp ⊂ TpX, Uq is η1-quasisymmetrically
embedded into TpX. Furthermore, if r < 1/(2η(C+C2

C1
)L0), any B(q, r) can be η1-

quasisymmetrically embedded into TpX, where this constant only depends on X and
η.

If X is not uniformly perfect, we follow the same idea in the proof of Theorem 5.3
and finish the proof. �

6. Gromov hyperbolic spaces and groups

6.1. Preliminaries. A length space (X, d) is called δ-hyperbolic (where δ ≥ 0)
if for any triangle with geodesic sides in X, each side of the triangle is contained in
the δ-neighborhood of the union of two other sides. Recall that the Cayley graph
Γ(G, S) of a finitely generated group G with respect to a symmetric finite generating
set S is a graph whose vertex are elements of G and g1, g2 ∈ G is connected if and
only if g1g−1

2 ∈ S. A finitely generated group G is called hyperbolic if there exists
a symmetric finite generating set S for G and a δ ≥ 0 such that the Cayley graph
Γ(G, S) of G with respect to S is δ-hyperbolic. A group G equipped with the word
metric with respect to S is equivalent to its Cayley graph Γ(G, S) equipped with the
intrinsic metric(where each edge has length 1). See [BH99], [BBI01] and [KB02] for
a reference of Gromov hyperbolic spaces and groups.

Let (X, d) be a metric space and x, y, p ∈ X. The Gromov product of x, y with
respect to p is defined by

(x, y)p =
1

2
(d(x, p) + d(y, p)− d(x, y)) .

In hyperbolic metric spaces, Gromov product measures how long two geodesics travel
close together. More precisely, if x, y, p are three distinct points in a δ-hyperbolic
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space X, then the initial segments of length (x, y)p of any two geodesics connecting
x, p and y, p are 2δ-close in Hausdorff distance.

Let (X, d) be a proper δ-hyperbolic metric space and p be a chosen base point of
X. We define the boundary at infinity of X by

∂∞X := {[r] : r : [0,∞) → X is a geodesic ray, r(0) = p},

where two geodesic rays r1, r2 are equivalent if dH(r1, r2) <∞.
Equivalently, we also have

∂∞X := {[{xn}] : {xn}
∞
n=1 is a sequence converging to infinity in X},

where {xn} converges to infinity if lim inf i,j→∞(xi, xj)p = ∞, and {xn}, {yn} are
equivalent if lim inf i,j→∞(xi, yj)p = ∞. It can be directly verified that the definitions
do not depend on the base point.

We extend the Gromov product to X ∪ ∂∞X by

(x, y)p := sup lim inf
i,j→∞

(xi, yj)p

where the supremum is taken over all sequences {xi} and {yj} in X such that x =
[{xi}] and y = [{yi}]. When x ∈ X, x = [{xi}] means that limi→∞ xi = x.

The following are some useful properties in studying the boundaries at infinity
of hyperbolic spaces. See Remarks 3.17 in Chapter III.H of [BH99].

Proposition 6.1. Let X be a δ-hyperbolic space and p be a chosen base point.

(1) For any x, y, z ∈ X ∪ ∂∞X, we have

(14) (x, y)p ≥ min{(x, z)p, (y, z)p} − 2δ.

(2) For any x, y ∈ ∂∞X with x = [{xi}] and y = [{yi}], we have

(15) (x, y)p − 2δ ≤ lim inf
i,j→∞

(xi, yj)p ≤ (x, y)p.

There is a natural topology on ∂∞X, where the basis of this topology is the
collection of

V (x, ε) := {y ∈ ∂∞X : ∃ gedeosic rays r, r′ starting at p such that

[r] = x, [r′] = y and lim inf
t→∞

(r(t), r′(t))p > ε}

for every x ∈ X and ε > 0.
Equivalently, we also have

V (x, ε) := {y ∈ ∂∞X : ∃ sequences {xn}, {yn} such that

[{xn}] = x, [{yn}] = y and lim inf
i,j→∞

(xi, yj)p > ε}

for every x ∈ X and ε > 0. Moreover, ∂∞X is compact with this topology.
We say a metric da on ∂∞X is a visual metric with respect to the base point p

and the visual parameter a > 1 if there is C1, C2 > 0 such that the following holds:
(1) The metric da induces the natural topology on ∂∞X;
(2) For any two distinct points x, y ∈ ∂∞X,

(16) C1a
−(x,y)p ≤ da(x, y) ≤ C2a

−(x,y)p .

We say two metric spaces X and Y are quasi-isometric if there exists a map
f : X → Y and C1 ≥ 1, C2 ≥ 0 such that
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(1) For any two points x1, x2 ∈ X,

(17)
1

C1
dX(x1, x2)− C2 ≤ dY (f(x1), f(x2)) ≤ C1dX(x1, x2) + C2.

(2) For any y ∈ Y , there exists a x ∈ X such that dY (f(x), y) ≤ C2.
The following propositions illustrate several important properties of visual met-

rics.

Proposition 6.2. Let X be a proper δ-hyperbolic space, then

(1) There exists an a0 > 1 such that for any base point p ∈ X and any a ∈ (1, a0),
the boundary ∂∞X admits a visual metric da with respect to p and a.

(2) Suppose d′ and d′′ are visual metrics on ∂∞X with respect to the same visual
parameter a and the base points p′ and p′′, respectively. Then d′ and d′′ are
bi-Lipschitz equivalent.

(3) Suppose d′ and d′′ are visual metrics on ∂∞X with respect to the visual
parameters a′ and a′′ and the base points p′and p′′, respectively. Then d′ and
d′′ are Hölder equivalent.

Proposition 6.3. Let X and Y be proper hyperbolic spaces and f : X → Y
be a quasi-isometry, then f induces a quasisymmetry f̂ : ∂∞X → ∂∞Y , where the
boundaries at infinity are equipped with visual metrics.

We define the boundary at infinity of a hyperbolic group G by ∂∞G := ∂∞Γ(G, S).
A group G acts on a length space X geometrically if G acts on X as an isometry,
i.e., every g ∈ G acts on X as an isometry, cocompactly, i.e., X/G is compact, and
properly discontinuously, i.e., for any compact K ⊂ X the set {g ∈ G : gK ∩K = ∅}
is finite. For example, a finitely generated group G acts on Γ(G, S) geometrically
for any symmetric finite generating set S. The following theorem studies geometric
actions. Readers may refer to Proposition 8.19 in Part I, Chapter 8 of [BH99] for a
proof.

Theorem 6.4. (Švarc–Milnor) Let G be a group acting geometrically on a length
space X. Then the group G is finitely generated, the space X is proper and for any
symmetric finite generating set S of G, there exists a quasi-isometry between Γ(G, S)
and X.

Notice that every element g of a hyperbolic group G induces a quasisymmetry
ĝ : ∂∞G→ ∂∞G.

6.2. Metric structure of boundaries at infinity of Gromov hyperbolic

groups. Let G be a Gromov hyperbolic group. The metric structure of ∂∞G is an
interesting object to study. For example, ∂∞G is Ahlfors Q-regular for some Q > 0;
thus ∂∞G is doubling. See Section 15 of [KB02] for a reference.

A metric space X is called H-quasi-self-similar if there exist r0 > 0, H ≥ 1 such
that given any ball B with radius r < r0, there exists a H-bi-Lipschitz map fB which
maps B into X such that

(18)
1

H

r0
r
dX(x, y) ≤ dX(fB(x), fB(y)) ≤ H

r0
r
dX(x, y)

for all x, y ∈ B. In fact, it is a special case of quasi-self-symmetric.
The following theorem shows that ∂∞G is quasi-self-similar.

Theorem 6.5. Let G be a hyperbolic group and ∂∞G be its boundary at infinity.
Then (∂∞G, d) is quasi-self-similar for any visual metric d on ∂∞G.
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Proof. Without loss of generality, we assume that in this proof the visual metric
on ∂∞G is with respect to 1 ∈ G; otherwise, applying part (2) of Proposition 6.2
induces the desired result.

We first prove the theorem when G is a free group G := F (a1, . . . , ar).
Let x, y be reduced words(i.e., the simplest representation in the generators)

on G ∪ ∂∞G, and let the Gromov product of them with respect to the identity
element 1 be (x, y)1 := t. If given the representations of x, y, the maximal common
initial segment of x, y is the maximal common part, starting from initial, of their
representations. Thus t is the number of the maximal common initial segment of
x, y.

For any visual metric d on ∂∞G, there exist C1, C2 > 0, a > 1 such that

C1 · a
−(x,y)1 ≤ d(x, y) ≤ C2 · a

−(x,y)1

for every x, y ∈ ∂∞G. Notice that a ∈ (1,∞) since the Cayley graph of G is a tree.
Let p be a point in ∂∞G. We think of p as a semi-infinite(bounded in one

direction) reduced word in F (a1, . . . , ar). For any integer m ≥ 0, we denote by

U(p,m) := {q ∈ ∂∞G : (p, q)1 > m}.

This is well defined since every element in ∂∞G has a unique semi-infinite reduced
word.

Take any p ∈ ∂∞G and any integer m ≥ 1. Let w ∈ F (a1, . . . , ar) be the element
given by the initial segment of p of length m and let g = w−1.

Let x, y ∈ U(p,m). Then, viewed as semi-infinite reduced word in G, both x and
y have w as their initial segment of length m, so x = wx′ and y = wy′ where x′, y′

are semi-infinite reduced words and thus elements of ∂∞G.
We have gx = w−1wx′ = x′ and gy = w−1wy′ = y′. Let v be the maximal

common initial segment of x′, y′, then wv is the maximal common initial segment of
x, y. Let |v| denotes the length of v under the word metric. Since G is a free group,
the Cayley graph of G is a tree and we have (x′, y′)1 = |v| and (x, y)1 = |v|+m.

Hence
C1 ·

1

a|v|
≤ d(gx, gy) = d(x′, y′) ≤ C2 ·

1

a|v|

and
C1 ·

1

a|v|+m
≤ d(x, y) ≤ C2 ·

1

a|v|+m
.

Thus
C1

C2

amd(x, y) ≤ d(gx, gy) ≤
C2

C1

amd(x, y).

Notice that

B(p, C1 · a
−m) ⊂ {q ∈ ∂∞G : (p, q)1 > m} = U(p,m).

Let B(p, r) be a ball and C1 · a
−(l+1) ≤ r ≤ C1 · a

−l, then

C2
1

aC2

1

r
d(x, y) ≤

C1

C2
ald(x, y) ≤ d(gx, gy) ≤

C2

C1
ald(x, y) ≤ C2

1

r
d(x, y)

for any x, y ∈ B(p, r). So ∂∞G is quasi-self-similar.
If G is an arbitrary hyperbolic group, the argument is similar. Let Γ(G, S) be a

Cayley graph of G and d be any visual metric on ∂∞G with respect to the base point
1 and the visual parameter a. We assume that Γ(G, S) is δ-hyperbolic. There exist
C1, C2 > 0 such that for any x, y ∈ ∂∞G,

C1 · a
−(x,y)1 ≤ d(x, y) ≤ C2 · a

−(x,y)1 .
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For any m ≥ 0 and p ∈ ∂∞G, we define

U(p,m) := {q ∈ ∂∞G : ∃ geodesic rays r, r′ starting at 1 such that

[r] = p, [r′] = q and lim inf
t→∞

(r(t), r′(t))1 > m+ 2δ}.

Notice that U(p,m) is a neighborhood of p in ∂∞G (in fact, it is a basic neigh-
borhood in the original definition of the topology on ∂∞G).

Take any p ∈ ∂∞G and any integer m ≥ 1. Let rp be a geodesic ray representing
p and w ∈ G be the element given by the initial segment of rp of length m. Let
g := w−1.

Let x, y ∈ U(p,m). We may assume that, by Proposition 6.1, there exist two
geodesic rays rx and ry representing x and y in U(p,m), respectively, such that

lim inf
t→∞

(rx(t), rp(t))1 ≥ m and lim inf
t→∞

(ry(t), rp(t))1 ≥ m.

Thus (x, p)1 ≥ m and (y, p)1 ≥ m.
Let dG denotes the word metric on G with respect to S. Then

(rx(t), ry(t))1 − (grx(t), gry(t))1

=
1

2
(dG(rx(t), 1)− dG(grx(t), 1) + dG(gry(t), 1)− dG(ry(t), 1)) .

for every t.
Let t be sufficiently large, i.e., dG(rx(t), 1) ≥ m and dG(ry(t), 1) ≥ m. Notice

that, by the definition of Gromov product, the initial segments of length m of rx
and rp are 2δ-close in Hausdorff distance. Then there exists a number t′ such that
dG(rx(t

′), 1) ≤ m and dG(rx(t
′), w) ≤ 2δ. Thus, by analyzing the geodesic triangles,

for sufficiently large t we have

dG(rx(t), 1)− dG(grx(t), 1) = dG(rx(t), 1)− dG(rx(t), w) ≤ m

and

dG(rx(t), 1)− dG(grx(t), 1) = dG(rx(t), 1)− dG(rx(t), w)

= dG(rx(t), rx(t
′))− dG(rx(t), w) + dG(rx(t

′), 1)

≥ m− 4δ.

Figure 4. Geodesic triangles that involve 1, w, r′(t) and r(t).

Similarly, for sufficiently large t we also have

(19) m− 4δ ≤ dG(ry(t), 1)− dG(gry(t), 1) = dG(ry(t), 1)− dG(ry(t), w) ≤ m.

This finally shows that

(20) m− 4δ ≤ (rx(t), ry(t))1 − (grx(t), gry(t))1 ≤ m
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for sufficiently large t.
By Proposition 6.1, we have that

(21) |(x, y)1 − lim inf
t→∞

(rx(t), ry(t))1| ≤ 2δ.

Similarly, grx, gry are two geodesic rays representing gx and gy on ∂∞G, respec-
tively. Thus

(22) |(gx, gy)1 − lim inf
t→∞

(grx(t), gry(t))1| ≤ 2δ.

Combining inequalities (20) with (21) and (22), we have

m− 8δ ≤ (x, y)1 − (gx, gy)1 ≤ m+ 4δ.

Namely, (x, y)1 equals m+ (gx, gy)1 up to an additive error of 8δ.
Hence

d(gx, gy) ≤ C2 · a
−(gx,gy)1 ≤ C2 · a

m+4δa−(x,y)1 ≤
C2

C1

· am+4δd(x, y),

and
d(gx, gy) ≥ C1 · a

−(gx,gy)1 ≥ C1 · a
m−8δa−(x,y)1 ≥

C1

C2
· am−8δd(x, y).

Thus
C1

C2

· am−8δd(x, y) ≤ d(gx, gy) ≤
C2

C1

· am+4δd(x, y).

Notice that

B(p, C1 · a
−(m+4δ)) ⊂ {q ∈ ∂∞G : (p, q)1 ≥ m+ 4δ} ⊂ U(p,m).

Let B(p, r) be a ball and C1 · a
−(l+4δ+1) ≤ r ≤ C1 · a

−(l+4δ), then there exists a f such
that

C2
1

a1+12δC2

1

r
d(x, y) ≤

C1

C2

· al−8δd(x, y) ≤ d(fx, fy) ≤
C2

C1

· al+4δd(x, y) ≤ C2
1

r
d(x, y)

for any x, y ∈ B(p, r). So ∂∞G is quasi-self-similar. Thus finishes the proof. �

Remark. Let H be a finite index subgroup of G. Then H is hyperbolic if and
only if G is hyperbolic and in this case ∂∞H = ∂∞G. A group G is virtually free
if there exists a finite index subgroup of G which is free. The boundary at infinity
of a virtually free group is not only quasi-self-similar, but also admit a stronger
structure. Let H be the free subgroup of G and we denote by d(x, y) = 2−(x,y)1 for
any x, y ∈ ∂∞H . It can be directly verified that d is a visual metric since the Cayley
graph of H is a tree. Given a point p ∈ ∂∞H , we denote by w the element given
by the initial segment of p of length 1 and let g := w−1. It follows the proof of
Theorem 6.5 that d(gx, gy) = 2d(x, y) for any x, y ∈ B(p, 1/2).

Let X be a proper hyperbolic metric space and p be a chosen base point. Let G
be a group acting on X by isometries. We say Λ(G) is the limit set of G on X if

Λ(G) := {[{gnp}] ∈ ∂∞X : ∃ gn ∈ G such that

{gnp}
∞
n=1 is a sequence converging to infinity in X}.

This definition is still independent of the base point. One can also define the conical
limit set Λc(G) as the collection of points q ∈ Λ(G) which are approximated by
a sequence from the orbit Gp such that this sequence is contained in a bounded
neighborhood of some geodesic ray r with [r] = q. In this situation, we also get a
corresponding translation action of G on Λc(G).
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In next step, we are trying to generalize Theorem 6.5 to the conical limit set.
However, the idea in Theorem 6.5 meets obstacles when dealing with the conical limit
set. We transfer to a new method: Expanding cover.

A sequence of maps fi : Ui → Y is called an expanding cover of X if there exists
a constant Li > 1 such that

dX(fi(x1), fi(x2)) ≥ Li · dX(x1, x2)

for any x1, x2 ∈ Ui and
⋃
i Ui = X. If there exists a “controlled” expanding cover

on a metric spaces, then it is quasi-self-similarity. The following theorem follows the
same idea of the distortion lemma on p.42 of [Su82]. For the sake of completeness,
we outline a proof of it.

Theorem 6.6. Let X be a compact metric space and {Ui}
N
i=1 be a finite open

cover of X. If for each i, there exists fi : Ui → X, Li > 1, αi ≥ 1, and Ci > 0 such
that

(1) dX(fi(x), fi(y)) ≥ Li · dX(x, y);

(2) dX(fi(x),fi(y))
dX(x,y)

− dX(fi(z),fi(w))
dX(z,w)

≤ Ci · diam({x, y, z, w})αi;

for every x, y, z, w ∈ Ui, then X is quasi-self-similar.

Proof. Let r0 be the Lebesgue number of {Ui}Ni=1, i.e., a number that any subset
of X with diameter less than it is contained in one of Ui. For any B(x, r) with
r < r0, B(x, r) should be a subset of one of {Ui}Ni=1. Applying the corresponding
fi to B(x, r) maps it to a larger image. Iterating this action until we get an image
whose diameter is no smaller than r0.

Suppose that B(x, r) = Bi1 ⊂ Ui1 , and after iterating j times we expand Bi1 to
Bij ⊂ Uij . We assume that Bin is the first one whose diameter is larger than r0. It
is sufficient to prove that there exists a constant H > 1 independent of n such that

dX(xn, yn)

dX(x1, y1)
≤ H ·

dX(x
′
n, y

′
n)

dX(x
′
1, y

′
1)

where x1, y1, x′1, y
′
1 ∈ Bi1 and xj , yj, x

′
j, y

′
j are the corresponding images of them in

Bij , j = 1, . . . , n. Since if we let dX(x′1, y
′
1) ≥ r/2, then

dX(xn, yn)

dX(x1, y1)
≤ H ·

dX(x
′
n, y

′
n)

dX(x′1, y
′
1)

≤ 2H
diam(X)

r0

r0
r

Moreover, if we let dX(xn, yn) ≥ r0/2, then

dX(x
′
n, y

′
n)

dX(x′1, y
′
1)

≥
1

H

dX(xn, yn)

dX(x1, y1)
≥

1

2H

r0
r
.

We denote by Dj := diam({xj , yj, x
′
j , y

′
j}).

By conditions (1) and (2), we have
(
dX(fi(x),fi(y))

dX(x, y)
−
dX(fi(z),fi(w))

dX(z, w)

)
/

(
dX(fi(z),fi(w))

dX(z, w)

)
≤
Ci
Li

·diam({x, y, z, w})αi,

which implies

dX(fi(x), fi(y))

dX(x, y)
/
dX(fi(z), fi(w))

dX(z, w)
≤ 1 +

Ci
Li

· diam({x, y, z, w})αi

≤ eλ·diam({x,y,z,w})
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for any x, y, z, w ∈ Ui and for any i. Here λ is a constant which depends on {Li}, {αi}
and {Ci}.

log

(
dX(xn, yn)

dX(x1, y1)
/
dX(x

′
n, y

′
n)

dX(x′1, y
′
1)

)
=

n−1∑

j=1

log

((
dX(xj+1, yj+1)

dX(xj , yj)

)
/

(
dX(x

′
j+1, y

′
j+1)

dX(x′j, y
′
j)

))

≤
n−1∑

j=1

log
(
eλDj

)
≤ λ

n−1∑

j=1

Dj.

Let L = mini{Li}, then Dj ≤ diam(Bij ) ≤ diam(Bij+1
)/L and diam(Bin) ≤

diam(X). Thus {Dj} is bounded by a geometric series and we finish the proof. �

We claim that there exists an expanding cover on the conical limit set.

Corollary 6.7. Let (X, dX) be a proper hyperbolic metric space, G be a finitely
generated group acting on X by isometries and Λc(G) be the conical limit set of G
on X. Then there exists an expanding cover of Λc(G) for any visual metric on ∂∞X.

Proof. The proof of Corollary 6.7 is in the same idea as the proof of Theorem 6.5.
We fix a base point p. Taking any q ∈ Λc(G) and denote by [qn] := q where

{qn} ∈ Gp. Since q ∈ Λc(G), we may assume that there exists a geodesic ray γq such
that γq(0) = p, [γq] = q and the distance between qn and γq is bounded by H . Let
qi be an element in {qn} such that m ≥ dX(qi, p) ≥ m− 1 for some integer m where
m > H + 8δ. We denote by

U(q,m) := {x ∈ Λc(G) : ∃ some sequence {qn}, {xn} such that

[{qn}] = q, [{xn}] = x and lim inf
i,j→∞

(qi, xj)p ≥ m+ 2δ}.

Let w ∈ G be the element given by qi := wp and we denote by g := w−1.
Let x, y ∈ U(q,m). We may assume that there exist two geodesic rays rx and ry

representing x and y in U(p,m), respectively, such that

lim inf
t→∞

(rx(t), rq(t))p ≥ m and lim inf
t→∞

(ry(t), rq(t))p ≥ m.

Thus (x, p)p ≥ m and (y, p)p ≥ m.
Then

(rx(t), ry(t))p − (grx(t), gry(t))p

=
1

2
(dX(rx(t), p)− dX(grx(t), p) + dX(gry(t), p)− dX(ry(t), p)) .

for every t.
Let t be sufficiently large, i.e., dX(rx(t), p) ≥ m + 1 and dX(ry(t), p) ≥ m + 1.

Notice that, by the definition of Gromov product, the initial segments of length m
of rx and rp are 2δ-close in Hausdorff distance. Then there exists a number t′ such
that dG(rx(t′), p) ≤ m and the distance between rx(t

′) and rq is less or equal than
2δ. Thus, by analyzing the geodesic triangles, for sufficiently large t we have

dX(rx(t), p)− dX(grx(t), p) = dX(rx(t), p)− dX(rx(t), qi)

= dX(rx(t), rx(t
′))− dX(rx(t), qi) + dX(rx(t

′), p)

≥ m−H − 4δ.
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Figure 5. Geodesic triangles that involve p, qi, r′(t) and r(t).

Similarly, for sufficiently large t we also have

dX(ry(t), p)− dX(gry(t), p) ≥ m−H − 4δ.

This finally shows that

(rx(t), ry(t))p − (grx(t), gry(t))p ≥ m−H − 4δ

for sufficiently large t.
Thus

(x, y)p − (gx, gy)p ≥ m−H − 8δ.

and there exists a constant C > 1 depends only on Λc(X) such that

d(gx, gy) ≥ C · am−H−8δd(x, y).

Then we finish the proof. �

To “control” the above expanding cover, it requires more structure than just
hyperbolicity. We introduce some new notions now.

We denote by M2
k the 2-dimensional complete, simply connected, Riemannian

manifold of constant sectional curvature K ∈ R. It is unique up to isometry. We
denote by Dk the diameter of M2

k . Readers may refer to Part I, Chapter 2 of [BH99]
for more details.

Let ∆ be a geodesic triangle in a length space X, i.e., a triangle with geodesic
segments as its sides. ∆ is called satisfying CAT(k) inequality if the following holds:
Suppose x, y, z ∈ X is the vertice of ∆ and let p, q be points on the sides connecting
x, y and y, z, respectively. Let x′, y′, z′ ∈ M2

k such that d(x, y) = d(x′, y′), d(y, z) =
d(y′, z′) and d(x, z) = d(x′, z′). If p′, q′ be any points on the geodesic segments
connecting x′, y′ and y′, z′, respectively, such that d(x, p) = d(x′, p′) and d(x, q) =
d(x′, q′), then d(p, q) ≤ d(p′, q′).

A length space X is called CAT(k) if every geodesic triangle with diameter less
than 2Dk satisfies the CAT(k) inequality when k > 0 and every geodesic triangle
satisfies the CAT(k) inequality when k ≤ 0.

Notice that any CAT(k) space with k < 0 is also hyperbolic.
In [Bo96], Bourdon shows that if X is a proper CAT(−b2) space, then for each

number a ∈ (1, eb] and each p ∈ X, the formula dp(ξ, ξ′) := a−(ξ,ξ′)p defines a metric
on ∂∞X.

Let x, y ∈ X, ξ ∈ ∂∞X and γ be a geodesic ray representing ξ. We denote by
the Busemann function

Bξ(x) := lim
t→∞

(dX(x, γ(t))− t)
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and
Bξ(x, y) := Bξ(x)− Bξ(y) = lim

t→∞
(dX(x, γ(t))− dX(y, γ(t))) .

Notice that these definitions are independent of the choice of γ.
The following two results are selected from [Bo93] , which give a “conformal”

structure on the limit set. Readers may refer to Proposition 2.6.1 and Corollary 2.6.3
in [Bo93] for more details.

Lemma 6.8. (Bourdon) Let X be a proper CAT(k) space with k < 0, p be the
chosen base point, g ∈ Isom(X) and ξ, ξ′ be any two points on ∂∞X. There exists a
visual metric d, where a is the visual parameter of d, on ∂∞X, such that

d(gξ, gξ′)

d(ξ, ξ′)
= a

1

2(Bξ(p,g
−1p)+Bξ′ (p,g

−1p)).

Lemma 6.9. (Bourdon) Let X be a proper hyperbolic space and p be the chosen
base point. Let d be any visual metric defined on ∂∞X, then for any x, y in X the
function on (∂∞X, d), defined by:

ξ −→ Bξ(x, y)

is Lipschitz.

Remark. The original results in [Bo93] are proved for a specifically chosen visual
metric on the boundary at infinity of CAT(−1) spaces; however, we can generalize
it to CAT(k) spaces with k < 0 but still follow the same proof. The main reason is
that for each number a ∈ (1, eb] and each p ∈ X, dp(ξ, ξ′) := a−(ξ,ξ′)p defines a metric
on ∂∞X.

Theorem 6.10. Let (X, dX) be a proper CAT(k) space with k < 0, p be a
chosen base point, G be a finitely generated group acting on X by isometries and
Λc(G) be the conical limit set of G on X. If Λc(G) is compact, then Λc(G) is quasi-
self-symmetric for any visual metric on ∂∞X.

Proof. Let d be the visual metric on ∂∞X defined in Lemma 6.8 and a is the
visual parameter. Since any two visual metrics are quasisymmetric by Proposition
6.2, it is sufficient to prove that (Λc(G), d) is quasi-self-similar. Let g and U(q,m)
be the notation defined in Corollary 6.7. It comes from Theorem 6.6 and Corollary
6.7 that we only need to prove the following result: There exists a constant C > 0
depends only on g and U(q,m) such that

d(gx, gx′)

d(x, x′)
−
d(gy, gy′)

d(y, y′)
≤ C · diam(x, x′, y, y′)

for any x, x′, y, y′ ∈ U(q,m).

d(gx, gx′)

d(x, x′)
−
d(gy, gy′)

d(y, y′)
= a

1

2(Bx(p,g−1p)+Bx′ (p,g
−1p)) − a

1

2(By(p,g−1p)+By′(p,g
−1p))

≤ C1

∣∣(Bx(p, g
−1p), Bx′(p, g

−1p)
)
−

(
By(p, g

−1p), By′(p, g
−1p)

)∣∣

≤ C1C2

√
d(x, y)2 + d(x′, y′)2 ≤ C · diam(x, x′, y, y′)

The first inequality comes from the mean value theorem for function f(x, y) = a
1

2
(x+y)

and a
1

2(Bx(p,g−1p)+Bx′ (p,g
−1p)) is uniformly bounded and the second inequality comes

from Lemma 6.9. �

In the rest of this section, we always assume that the boundary at infinity of a
hyperbolic space contains more than two points(i.e., non-elementary).
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If X is any compact metrizable space that has at least three points, we denote
the space of distinct triples of X by Σ3(X). Namely,

Σ3(X) = {(o, p, q) ∈ X3 : o 6= p, o 6= q, p 6= q}.

Assume that a group G acts on X by homeomorphisms. Such an action induces a
diagonal action of G on Σ3(X). If the action of G on Σ3(X) is properly discontinuous
and cocompact, we say G acts on X as a uniform convergence group.

Let G be a group acting on a proper hyperbolic metric space by isometries. If
G acts on Λ(G) as a uniform convergence group, then G is a hyperbolic group and
Λ(G) = Λc(G). Readers may see Section 5 of [KB02] for a reference.

Γ is a Kleinian group if Γ is a discrete subgroup of isometries of hyperbolic space
H
n, n ≥ 3. Let Hull(Λ(Γ)) ⊂ H

n denotes the convex hull of the limit set, i.e., the
smallest convex set containing all geodesics with both endpoints in Λ(Γ). Then Γ acts
convex cocompactly on H

n if Hull(Λ(Γ))/Γ is compact. If Γ is a convex cocompact
Kleinian group, then Γ acts on Λ(Γ) as a uniform convergence group.

Recall that H
n with its standard metric is a CAT(−1) space. Theorem 6.10

directly induces the next result.

Corollary 6.11. Let Γ be a Kleinian group that acts on Λ(Γ) as a uniform con-
vergence group. Then Λ(Γ), equipped with any visual metric, is quasi-self-symmetric.

Remark. Corollary 6.11 is a generalization of a classical result, i.e., Corollary
2.66 on [Ap00].

The following theorem from [Me14] illustrates a local rigidity result about the
limit sets of Kleinian groups which are Schottky sets.

Theorem 6.12. (Merenkov) Suppose that Γ and Γ̃ are Kleinian groups whose
limit sets S and S̃ are Schottky sets, respectively. We assume that Γ act on S and Γ̃
act on S̃ as uniform convergence groups. If f : A→ S is a quasiconformal embedding
defined on an open (in relative topology) connected subset A of S, then f has to be

the restriction of a Möbius transformation that takes S onto S̃.

Recall that a Schottky set is a compact subset of S
2 whose complement is a

union of at least three open round discs whose closures have empty intersection. The
original theorem in [Me14] requires that the Kleinian groups act on their limit sets
cocompactly on triples, but this is equivalent to that the group acting as a uniform
convergence group. See [GM87] for a reference. The original theorem also requires f
to be a quasiregular map, which is equivalent to a quasiconformal embedding.

Finally, we apply Thereon 5.3 and Corollary 6.11 to S and S̃ to induce a qua-
sisymmetry from an open neighborhood of S to an open neighborhood of S̃. Since
every quasisymmetry is quasiconformal, this finises the proof of Theorem 1.4 by
applying Theorem 6.12.

7. Visual spheres of expanding Thurston maps

An expanding Thurston map f : S2 → S2 is a branched covering map on a
topological sphere that locally expands S2. We investigate these maps in this section
and apply our results to visual spheres of expanding Thurston maps. The main
reference of this section is [BM17].

Let S2 be a topological sphere and f : S2 → S2 be a branched covering map
on S2 with deg(f) ≥ 2. A point p ∈ S2 is a critical point of f if f is not a local
homeomorphism near p. We denote by crit(f) the set of all critical points of f and
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fn the n-th iteration of f . The postcritical points of f are given by

post(f) :=
⋃

n≥1

{fn(p) : p ∈ crit(f)}.

We say f is a Thurston map if f : S2 → S2 is a branched covering map such that
deg(f) ≥ 2 and post(f) is finite.

Let f : S2 → S2 be a Thurston map and C be a Jordan curve in S2 with post(f) ⊂
C. We fix a base metric d on S2 that induces the given topology on S2. The Jordan
curve C divides S2 into two parts and each of them(including the boundary) is called
a 0-tile. The preimages of 0-tiles under fn divide S2 into what are called n-tiles. For
any n ∈ N we denote by mesh(f, n, C) the supremum of the diameters of all n-tiles.
A Thurston map f : S2 → S2 is expanding if there exists a Jordan curve C ⊂ S2

with post(f) ⊂ C such that limn→∞ mesh(f, n, C) = 0. Notice that it is a topological
property, i.e., it is independent of the choice of the base metric.

If x 6= y, we define

m(x, y) = max{n ∈ N∪{0} : ∃ non-disjoint n-tilesXand Y such that x ∈ X, y ∈ Y }.

If x = y, we define m(x, y) := ∞.
Let f : S2 → S2 be a Thurston map. A metric ρ on S2 is called a visual metric

for f if there exists a Jordan curve C in S2 with post(f) ⊂ C, a parameter Λ > 1 and
C1, C2 > 0 such that

(23) C1Λ
−m(x,y) ≤ ρ(x, y) ≤ C2Λ

−m(x,y)

for all x, y ∈ S2. Here we define Λ−∞ := 0. The number Λ is called the expansion
factor of the visual metric and C1, C2 are independent of x and y.

The following proposition illustrates some properties of the visual metrics on S2.
Readers may refer to Proposition 8.3, Theorem 16.3 and Theorem 18.1 of [BM17] for
more details.

Proposition 7.1. Let f : S2 → S2 be an expanding Thurston map, then

(1) Every visual metric induces the standard topology on S2.
(2) There exists a Λ0 > 1 such that for any Λ ∈ (1,Λ0), there exists a visual

metric on S2 with expansion factor Λ.
(3) Any two visual metrics are Hölder equivalent, and bi-Lipschitz equivalent if

they have the same expansion factor Λ.
(4) Let ρ be a visual metric for f . Then (S2, ρ) is doubling if and only if f has

no periodic critical points.
(5) A metric ρ is a visual metric for some iterate fn with n ∈ N if and only if it

is a visual metric for f .

A visual sphere of an expanding Thurston map can be identified with the bound-
ary at infinity of a certain Gromov hyperbolic space constructed from tiles. Readers
may refer to Chapter 10 of [BM17] for more information.

The following proposition focuses on a specific visual metric ρ0 constructed in
Theorem 16.3 of [BM17]. Readers may refer to Theorem 1.0.5 of [Wu19] for the
proof.

Proposition 7.2. Let f : S2 → S2 be an expanding Thurston map without
periodic critical points. Then there exists a visual metric ρ0 for f and C such that
the visual sphere (S2, ρ0) is quasi-self-similar.
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Remark. If C is invariant under f , i.e., fn(C) ⊂ C, then ρ0 defined in Proposi-
tion 7.2 is a quasi-geodesic metric. Readers may refer to Chapter 16 of [BM17] for
the construction.

We are prepared to prove Theorem 1.5 now. Notice that Wu also proved Theo-
rem 1.5 in [Wu19] with ideas from dynamics, here we give an alternative proof based
on tools generated in this paper.

Proof of Theorem 1.5. (1) =⇒ (2): S2 is doubling due to Proposition 7.1; thus
finishes the proof by Theorem 1.1.

(2) =⇒ (3): It is trivial.
(3) =⇒ (4): Notice that (S, ρ) is quasi-self-symmetric by Proposition 7.1 and

Proposition 7.2. Let TpS2 be the weak tangent that is quasisymmetric to R
2. Then

there exists a U ⊂ S2 which is quasisymmetrically embedded into TpX by Theo-
rem 5.3.

(4) =⇒ (1): Let ρ0 be the visual metric defined in Proposition 7.2 where ρ0 is con-
structed corresponding to f and C. Since any two visual metrics are quasisymmetric
equivalent by Proposition 7.2, it is sufficient to prove that (S, ρ0) is a quasi-sphere.
We may assume that C is invariant under fn for some sufficiently large n by Theorem
15.1 in [BM17]. Since ρ0 is also a visual metric for fn and C by Proposition 7.1, with-
out loss of generality, we assume that in the following content C is invariant under
f .

Let U1, U2 be the two 0-tiles of S2. Since f is expanding, there exist two simply-
connected closed subsets U ′

1, U
′
2 ∈ U and n ∈ N such that fn : U ′

1 → U1 and fn : U ′
2 →

U2 are homeomorphisms. Furthermore, they are also bi-Lipschitz by the definition
of visual metrics. Thus there exist two quasisymmetric embeddings f1 : U1 → R

2

and f2 : U2 → R
2. Notice that C is a quasi-circle by Theorem 15.3 in [BM17].

Thus, by post-composing quasisymmetries, we may assume that f1 : U1 → D and
f2 : U2 → D are two quasisymmetric maps. Here D is the closed unit disk. Since
f1 ◦ f

−1
2 is quasisymmetric on ∂D, post-composing f2 by a quasisymmetry again,

we may assume that f1|C = f2|C. The quasisymmetries being post-composed above
are constructed by Beurling–Ahlfors extension. Readers may refer to Section 5 of
[Bo11] for a reference. Notice that D is bi-Lipschitz to the closed half unit sphere
with intrinsic metric. By gluing f1 and f2 via identifying the boundary, we obtain a
homeomorphism f : S2 → S

2. Since S2 is a quasi-geodesic space and S is a length
space, Applying Lemma 2.2 and the Remarks following it finish the proof. �
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