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Abstract. We prove that for all s ∈ (0, d) and c ∈ (0, 1) there exists a self-similar set E ⊂ R
d

with Hausdorff dimension s such that Hs(E) = c|E|s. This answers a question raised by Zhiying

Wen [16].

1. Introduction

In this paper, we investigate Hausdorff measures of self-similar sets in Rd. Recall
that given a finite family of contracting similitudes Φ = {φi}ℓi=1 on Rd, there is a

unique non-empty compact set K ⊂ Rd satisfying K =
⋃ℓ

i=1 φi(K). We call Φ an
iterated function system (IFS) of similitudes and K the self-similar set generated
by Φ. Moreover, given a probability vector p = (p1, . . . , pℓ), i.e. all pi > 0 and
∑ℓ

i=1 pi = 1, there is a unique Borel probability measure ν supported on K satisfying

ν =
ℓ
∑

i=1

piν ◦ φ−1
i .

We call ν the self-similar measure generated by Φ and p. We refer the reader to [9, 7]
for the examples and detailed properties of self-similar sets and self-similar measures.

We say that Φ satisfies the strong separation condition (SSC) if φi(K)∩φj(K) = ∅
for all distinct i, j ∈ {1, . . . , ℓ}. Similarly, we say that Φ satisfies the open set

condition (OSC) if there exists a non-empty bounded open set V ⊂ Rd such that
φ1(V ), . . . , φℓ(V ) are disjoint subsets of V . Under the OSC, it is well-known that the
Hausdorff dimension of K, denoted by dimH K, equals the similarity dimension of Φ,
i.e. the positive number s satisfying

∑ℓ
i=1 r

s
i = 1, where ri ∈ (0, 1) is the contraction

ratio of φi, i = 1, . . . , ℓ. Also, the s-dimensional Hausdorff measure of K satisfies
that 0 < Hs(K) ≤ |K|s, here and afterwards for A ⊂ Rd, |A| stands for the diameter
of A. Moreover, it is known that

(1.1) Hs|K = Hs(K)µ,

where Hs|K stands for the restriction of the s-dimensional Hausdorff measure on K,
µ is the self-similar measure generated by Φ and the probability vector (rs1, . . . , r

s
ℓ).

We call µ the natural self-similar measure on K. See [9] for the proofs of the above
facts.

Nevertheless, given a self-similar set K ⊂ Rd satisfying the OSC with dimHK =
s, it is often challenging to determine the exact value of Hs(K). When d = 1, this
problem was first studied independently by Marion [11, 12] and Ayer and Strichartz
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[1]. They computed the exact value of Hs(K) under certain additional hypothesis.
Their method is based on the relation (1.1) and the convex density theorem for
Hausdorff measures (see [6, Theorem 2.3]). When d > 1 and s > 1 is not an integer,
despite numerous studies, not a single example is known for which the exact value
of Hs(K) is computed; see [2, 3, 4, 17] for related works. In this case, it is known
that Hs(K) < |K|s if the convex hull of K is a polytope (see [8, Corollary 1.6]). It
remains an open question whether Hs(K) < |K|s for any self-similar set K ⊂ Rd

with similarity dimension s > 1. Regarding of this problem, Zhiying Wen raised the
following question in [16].

Question 1.1. Let s > 1 and ǫ ∈ (0, 1). Does there exist a self-similar set K
with similarity dimension s such that Hs(K) > (1− ǫ)|K|s?1

In this paper, we give an affirmative answer to the above question by proving the
following.

Theorem 1.2. For every s ∈ (0, d) and c ∈ (0, 1), there exists a self-similar set
K ⊂ Rd so that its generating IFS satisfies the SSC, dimH K = s and Hs(K) = c|K|s.

Our strategy of the proof is as follows: given s ∈ (0, d) and ǫ ∈ (0, 1), we construct
a family of IFSs {Φt}t∈[0,1] with the corresponding self-similar sets {Kt}t∈[0,1] such
that: (1) for each t ∈ [0, 1], Φt satisfies the SSC, dimH Kt = s and |Kt| = 1; (2)
the mapping t 7→ Hs(Kt) is continuous; (3) Hs(K0) > 1 − ǫ; (4) Hs(K1) < ǫ. See
Proposition 2.2 for the details. A key part is the proof of (3), in which we apply the
isodiametric inequality (see Lemma 2.4). Then Theorem 1.2 follows from the above
result and a result in [13] about the continuity of Hausdorff measures of self-similar
sets satisfying the SSC with respect to the defining data of the IFSs.

2. Proof of Theorem 1.2

Our proof of Theorem 1.2 is based on the following result.

Lemma 2.1. [14] Let K ⊂ Rd be a self-similar set generated by an IFS Φ =
{φi}ℓi=1 which satisfies the SSC with dimHK = s. Let µ be the natural self-similar
measure on K. Set ∆ = mini 6=j dist(φi(K), φj(K)). Then we have

Hs(K)−1 = max

{

µ(U)

|U |s : U ⊂ Rd is compact and convex

}

(2.1)

= max

{

µ(U)

|U |s : U ⊂ Rd is compact and convex with |U | ≥ ∆

}

.(2.2)

In particular, the above maximums are both attained.

We remark that when d = 1, Lemma 2.1 was proved earlier in [11, 15, 1], where
it was used to compute Hausdorff measures of self-similar sets in R under certain
additional hypothesis. Moreover, Lemma 2.1 is not explicitly stated in [14], but
it can be easily deduced from the results of [14]. Indeed, it was proved in [14,

1It is known that for each s ∈ (0, 1], there exists a self-similar set K ⊂ R with similarity dimension
s such that Hs(K) = |K|s (see e.g. [11, 1]).
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Corollaries 1.5–1.6] that

Hs(K)−1 = sup

{

µ(U)

|U |s : U ⊂ Rd is open and convex

}

= sup

{

µ(U)

|U |s : U ⊂ Rd is open and convex with |U | ≥ ∆

}

.

Then Lemma 2.1 follows from the above equalities together with a standard com-
pactness argument.

Based on Lemma 2.1, we establish the following result, which is an essential part
in our proof of Theorem 1.2.

Proposition 2.2. For every s ∈ (0, d) and ǫ ∈ (0, 1), there exist r ∈ (0, 1),
ℓ ∈ N and a family of IFSs Φt = {φt,i(x) = rx + ai(t)}ℓi=1 (t ∈ [0, 1]) on Rd with
a1, . . . , aℓ : [0, 1] → Rd being continuous functions such that the following statements
hold:

(i) For each t ∈ [0, 1], Φt satisfies the SSC and its attractor, denoted as Kt, has
dimension s and diameter 1.

(ii) Hs(K0) > 1− ǫ and Hs(K1) < ǫ.

To prove Proposition 2.2, we first give an elementary lemma.

Lemma 2.3. Let 0 < s < d and ǫ > 0. Then there exists N > 0 such that for
all n ≥ N and all x ∈ [ 1

4n
, 1],

(

x+
√
d
n

)d

(

1−
√
d

2n

)d

xs

< 1 + ǫ.

Proof. Let y0 > 0 be large enough such that for all y ≥ y0,

(2.3)

(

1 +
√
d
y

)d

(

1−
√
d
y

)d
< 1 + ǫ.

Then take N > 0 large enough such that for all n ≥ N ,

(2.4)

(

1 + 4
√
d
)d

(

1−
√
d

2n

)d

(y0
n

)d−s

< 1 + ǫ.

Notice that such N exists since s < d. Let n ≥ N and x ∈ [ 1
4n
, 1]. If nx ≥ y0, then

2n > nx ≥ y0 and so by (2.3),

(

x+
√
d
n

)d

(

1−
√
d

2n

)d

xs

=

(

1 +
√
d

nx

)d

(

1−
√
d

2n

)d
xd−s ≤

(

1 +
√
d

nx

)d

(

1−
√
d

nx

)d
xd−s < 1 + ǫ.
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If nx < y0, then
(

x+
√
d
n

)d

(

1−
√
d

2n

)d

xs

≤

(

x+ 4
√
dx
)d

(

1−
√
d

2n

)d

xs

(since
1

n
≤ 4x)

=

(

1 + 4
√
d
)d

(

1−
√
d

2n

)d
xd−s

≤

(

1 + 4
√
d
)d

(

1−
√
d

2n

)d

(y0
n

)d−s

(since nx < y0)

< 1 + ǫ (by (2.4)).

This completes the proof of the lemma. �

Let Ld denote the d-dimensional Lebesgue measure on Rd. The following stan-
dard isodiametric inequality plays a key role in our proof of Proposition 2.2.

Lemma 2.4. [5, Theorem 2.4] For every Lebesgue measurable set A ⊂ Rd,

Ld(A) ≤ ωd2
−d|A|d,

where ωd denotes the Lebesgue measure of a unit ball in Rd.

For x = (x1, . . . , xd) ∈ Rd and δ > 0, let B(x, δ) be the closed ball in Rd centered

at x of radius δ, and let Q(x, δ) denote the cube
∏d

i=1[xi − δ, xi + δ]. For A ⊂ Rd,
let #A be the cardinality of A.

Proof of Proposition 2.2. Fix s ∈ (0, d) and ǫ ∈ (0, 1). We are going to construct
the self-similar sets Kt (t ∈ [0, 1]) in the ball B := B(0, 1/2). For this purpose, let
N be as in Lemma 2.3. Pick a positive integer n ≥ N so that

(2.5)
ωd

(

n−
√
d
2

)d

− 2

(8n+ 4)s
> ǫ−1.

Set F = B ∩ (Zd/(2n)). Let ℓ = #F and b1, . . . , bℓ be the different elements of F
with

b1 = (−1/2, 0, . . . , 0), b2 = (1/2, 0, . . . , 0).

Then by a simple volume argument (see e.g. [10, p. 17]),

(2.6) ℓ ≥ ωd

(

n−
√
d

2

)d

.

Let r = ℓ−1/s. Then by (2.5)–(2.6),

(2.7) (8n + 4)r = (8n+ 4)ℓ−1/s ≤ (8n+ 4)ω
−1/s
d

(

n−
√
d

2

)−d/s

< ǫ1/s < 1.

In particular, 8nr < 1.
For t ∈ [0, 1], let Φt = {φt,i(x) = rx+ ai(t)}ℓi=1, where

a1(t) = (1− r)b1, a2(t) = (1− r)b2, ai(t) = (1− r)(8nr)tbi for i ∈ {3, . . . , ℓ}.



A note on Hausdorff measures of self-similar sets in R
d

961

Let Kt be the attractor of Φt. Notice that a1, . . . , aℓ : [0, 1] → Rd are continuous
functions. Clearly, for each 1 ≤ i ≤ ℓ, the fixed point of φt,i is ai(t)/(1 − r). In
particular, b1, b2 are the fixed points of φt,1 and φt,2, respectively. Hence b1, b2 ∈ Kt.
Since 8nr < 1, it is not difficult to check that for each t ∈ [0, 1], φt,i(B) (i = 1, . . . , ℓ)
are pairwise disjoint and contained in B. This implies that Kt ⊂ B (see e.g. [7]) and
so |Kt| ≤ |B| = 1, and Φt satisfies the SSC with dimHKt = s. Since b1, b2 ∈ Kt,
|Kt| ≥ ‖b1 − b2‖ = 1. Hence |Kt| = 1. This proves the part (i) of the proposition. In
the following we prove that Hs(K0) > 1− ǫ and Hs(K1) < ǫ.

For t ∈ {0, 1}, let µt be the natural self-similar measure on Kt. That is, µt is the
unique Borel probability measure supported on Kt satisfying

(2.8) µt =

ℓ
∑

i=1

rsµt ◦ (φt,i)
−1.

We first show that Hs(K0) > 1 − ǫ. Recall that Φ0 = {φ0,i(x) = rx + (1 − r)bi}ℓi=1.
See Figure 1(a) for an illustration of the locations of b1, . . . , bℓ, which are the fixed
points of the elements of Φ0.

0 1
2

b1b2
x

y

(a) The bold dots are the elements of F and
also the fixed points of the similitudes in Φ0.

x

y

V

1
2

b1b2 0

(b) The bold dots are the fixed points of the
similitudes in Φ1.

Figure 1. Φ0 and Φ1, n = 3.

Since |K0| = 1 and 8nr < 1, we see that for i ∈ {1, . . . , ℓ}, φ0,i(K0) is contained
in the interior of Q(bi, 1/(4n)). In particular, Q(bi, 1/(4n)) ∩ φ0,j(K0) = ∅ for any
i, j ∈ {1, . . . , ℓ} with i 6= j. Hence by (2.8),

(2.9) µ0(Q(bi, 1/(4n))) = rs = ℓ−1, i = 1, . . . , ℓ.

By (2.2) there exists a compact convex set U ⊂ Rd such that

(2.10)
µ0(U)

|U |s = Hs(K0)
−1

with |U | ≥ mini 6=j dist(φ0,i(K0), φ0,j(K0)). Notice that for i ∈ {1, . . . , ℓ}, bi is the
fixed point of φ0,i and so bi ∈ φ0,i(K0). Hence for all i 6= j, since |φ0,i(K0)| =
|φ0,j(K0)| = r and 8nr < 1, we have by the triangle inequality,

dist(φ0,i(K0), φ0,j(K0)) ≥ ‖bi − bj‖ − 2r ≥ 1

2n
− 2r >

1

4n
.
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It follows that |U | ≥ 1
4n

. On the other hand, since K0 ⊂ B, we have µ0(U) =
µ0(U ∩B) and so

(2.11)
µ0(U)

|U |s ≤ µ0(U ∩ B)

|U ∩B|s .

However, since U ∩ B is compact and convex, by (2.1) and (2.10) we see that the
equality holds in (2.11). Therefore |U | = |U ∩ B|. Hence replacing U by U ∩ B if
necessary, we can assume that U ⊂ B and thus |U | ≤ 1. So we have

(2.12)
1

4n
≤ |U | ≤ 1.

Let m = #F , where F := {Q(b, 1/(4n)) : b ∈ F, Q(b, 1/(4n)) ∩ U 6= ∅}. Then
by (2.9) and (2.6),

(2.13) µ0(U) ≤ mℓ−1 ≤ mω−1
d

(

n−
√
d

2

)−d

.

On the other hand, notice that each cube in F is of diameter
√
d/(2n) and so it is

contained in the closed
√
d/(2n)-neighborhood of U , which we denote by V√

d/(2n)(U),
and the intersection of any two different cubes in F has zero Lebesgue measure. Hence
by a simple volume argument and the isodiametric inequality (see Lemma 2.4),

(2.14) m

(

1

2n

)d

≤ Ld
(

V√
d/(2n)(U)

)

≤ ωd2
−d

(

|U |+
√
d

n

)d

.

Now by (2.13)–(2.14) and Lemma 2.3 (in which we take |U | = x and recall (2.12)),

µ0(U)

|U |s ≤

(

|U |+
√
d
n

)d

(

1−
√
d

2n

)d

|U |s
< 1 + ǫ.

This combining with (2.10) yields that Hs(K0) > 1/(1 + ǫ) > 1− ǫ.
Finally, we show that Hs(K1) < ǫ. Recall that Φ1 consists of the similitudes

φ1,1(x) = rx + (1 − r)b1, φ1,2(x) = rx + (1 − r)b2 and φ1,k(x) = rx + (1 − r)8nrbk
for k ∈ {3, . . . , ℓ}. Let V = B(0, (4n + 1)r). Since (8n + 4)r < 1 (see (2.7)), it is
easily checked that φ1,1(K1), φ1,2(K1) are both disjoint from V , and φ1,k(K1) ⊂ V
for k ∈ {3, . . . , ℓ}. See Figure 1(b) for an illustration of V and the locations of the
fixed points of the elements of Φ1. Then by (2.5)–(2.6),

µ1(V )

|V |s =
1− 2rs

(8n + 2)srs
=

ℓ− 2

(8n+ 2)s
≥

ωd

(

n−
√
d
2

)d

− 2

(8n+ 2)s
> ǫ−1.

Hence Hs(K1) < ǫ by Lemma 2.1. This completes the proof of the proposition. �

With Proposition 2.2 in hand, we are ready to prove Theorem 1.2. The proof
is a direct consequence of Proposition 2.2 combined with a continuity result in [13]
about Hausdorff measures of self-similar sets generated by IFSs satisfying the SSC.

Proof of Theorem 1.2. Fix s ∈ (0, d) and c ∈ (0, 1). Let ǫ > 0 be so small that
ǫ < c < 1 − ǫ. Let Φt, Kt (t ∈ [0, 1]) be constructed as in Proposition 2.2. Since
a1, . . . , aℓ : [0, 1] → Rd are continuous functions, we easily see from [13, Theorem 1.2]
that the mapping t 7→ Hs(Kt) is continuous on [0, 1]. Since Hs(K0) > 1−ǫ, Hs(K1) <
ǫ and c ∈ (ǫ, 1− ǫ), the continuity of t 7→ Hs(Kt) implies that Hs(Kt0) = c for some
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t0 ∈ [0, 1]. Therefore, Hs(Kt0) = c|Kt0 |s as |Kt0 | = 1. Letting K = Kt0 we complete
the proof of Theorem 1.2. �
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