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Abstract. The aim of this paper is to provide a self-contained proof of a general case of the

coarea inequality, also known as the Eilenberg inequality. The result is known, but we are not

aware of any place that a proof would be written with all details. The known proof is based on a

difficult result of Davies. Our proof is elementary and does not use Davies’ theorem. Instead we use

an elegant argument that we learned from Nazarov through MathOverflow. We also obtain some

generalizations of the coarea inequality.

1. Introduction

The aim of this paper is to provide an elementary and self-contained proof of
the following result which is known under the name of the coarea inequality or the
Eilenberg inequality.

Theorem 1.1. Let X and Y be arbitrary metric spaces, 0 ≤ t ≤ s < ∞ (any)
real numbers and E ⊂ X any subset. Then, for any Lipschitz map f : X → Y we
have

(1.1)

ˆ ∗

Y

Hs−t
(
f−1(y) ∩ E

)
dHt(y) ≤ (Lip f)t

ωs−tωt

ωs

Hs(E).

Moreover, if X is boundedly compact, i.e., bounded and closed sets inX are compact,
E is Hs-measurable, and Hs(E) <∞, then the function

(1.2) y 7→ Hs−t
(
f−1(y) ∩ E

)

is Ht-measurable and therefore, the upper integral can be replaced with the usual
integral.

HereHα stands for the α-dimensional Hausdorff measure and
´ ∗
g dµ is the upper

integral which does not require measurability of the integrand.

Remark 1.2. In general, we cannot expect measurability of the function (1.2)
as the following simple example shows: Let V ⊂ R be a non-measurable set. Let
X = V , Y = R and f : X → Y , f(x) = x. Then for s = t = 1, and E = X, the
function (1.2) is the characteristic function of V and therefore is not measurable.
It was communicated to us by Mattila [23] that (1.2) is measurable with respect to
the sigma-algebra generated by analytic sets if X and Y are Polish spaces and E is
analytic. This is a consequence of the work of Dellacherie [6], see Remark 7.8 in [24].
However, we did not verify this statement.
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Proving measurability of (1.2) under the given assumptions is not difficult, see
Section 7, and the main difficulty rests in proving inequality (1.1). Thus in the
discussion below we will focus on (1.1) only.

The inequality was first proved by Eilenberg [7] in 1938 in the case when t = 1,
Y = R and f(·) = d(·, xo)→ R is the distance to a point on a metric space X. Then
it was generalized in [8] to the case of t = 1, Y = R and f : X → R any Lipschitz
function.

It seems however, that a related argument was used by Szpilrajn1 [29] in the proof
that if Hn+1(X) = 0, then the topological dimension of X is at most n. Szpilrajn’s
proof is reproduced in [16, Theorem 7.3] and [14, Theorem 8.15]. Szpilrajn mentions
that his argument is based on Nöbeling’s proof of a weaker result that the topological
dimension is bounded from above by the Hausdorff dimension of a metric space
[26] (Nöbeling’s paper is reproduced in [25]). The reader may find a translation
of Nöbeling’s paper in MathOverflow [22], and it is clear that his argument was
closely related to Eilenberg’s inequality for the distance function. From reading
Szpilrajn’s paper, it is also clear that there was a strong collaboration between him
and Eilenberg.

Remark 1.3. Most of the proofs that the reader may find in the literature [3,
Theorem 13.3.1], [19, Lemma 5.2.4], [24, Theorem 7.7], apply to the case of Lipschitz
mappings f : X → R

m and t = m, and the proofs do not differ much from that in
[8]. Since the proofs use the fact that for a subset A ⊂ Y = R

m, the isodiamteric
inequality holds, that is Hm(A) ≤ ωm(diamA)m/2m, there is no obvious way how
such proofs could be generalized to other metric spaces Y .

Remark 1.4. Regarding coarea inequality for mappings into metric spaces one
should mention an interesting paper by Malý [20]. The result given in [1, Propo-
sition 3.1.5] covers the general case but, as confirmed by the authors, the proof is
incorrect.

Proving the result in a more general case was a remarkable achievement of Federer
[10], see also [11, Theorem 2.10.25]. However, he could prove Theorem 1.1 only under
additional assumptions that

(a) The integrand Hs−t(f−1(y)∩E) is positive (only) on a set of σ-finite measure
Ht; or

(b) The space Y is boundedly compact, meaning that bounded and closed sets are
compact.

His strategy was as follows. He first proved an inequality more or less equivalent to
(see Lemma 3.10 and Remark 3.12 below),

(1.3)

ˆ •

Y

Hs−t
δ

(
f−1(y) ∩ E

)
dHt ≤ (Lip f)t

ωs−tωt

ωs
Hs(E),

where the left-hand side is the weighted integral (see Definition 3.1). Federer [11,
2.10.24] used however, different notation (see Remark 3.5).

This inequality follows from a straightforward covering argument. In fact the
proof is very similar to the classical proof due to Eilenberg, the one the reader can
find in [3, 19, 24], see Remark 1.3.

1He changed his name to Marczewski while hiding from Nazi persecution.
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The coarea inequality then follows from the following theorem—which is of inde-
pendent interest—and a simple monotone convergence theorem for upper integrals
as δ → 0+.

Theorem 1.5. Let Y be an arbitrary metric space. For t ∈ [0,∞), and any
g : Y → [0,∞] we have

ˆ ∗

Y

g(y) dHt(y) =

ˆ •

Y

g(y) dHt.

Federer [11, 2.10.24] proved this result under the restrictive assumption that one
of the following two conditions is satisfied: (a’) The function g is positive on a set of
σ-finite measure Ht; or (b’) the space Y is boundedly compact. Therefore he could
only prove Theorem 1.1 under the assumptions (a) or (b) listed above.

While the inequality
ˆ ∗

Y

g(y) dHt(y) ≥

ˆ •

Y

g(y) dHt(y)

is easy to prove in the general case (see (6.1)), the problem is to prove the opposite
inequality (Federer proved it when (a’) or (b’) holds true). In the general case,
Federer [11, p. 187] stated the following:

The general problem whether or not the preceding inequality can always be re-
placed by the corresponding equation is unsolved.

The problem was answered in the positive by Davies [4, p. 236]:

Note added 8 September 1969. H. Federer tells me that this work answers a
question he raised in Geometric measure theory (Berlin, 1969) [...]

There is no explicit proof of Theorem 1.5 in the work of Davies, but the main
result of Davies [4, Theorem 8, Example 1], provides a missing step in generalizing
Federer’s proof. In fact it is the celebrated Increasing Sets Lemma [4, Theorem 8]
that was needed to complete Federer’s proof:

Theorem 1.6. Suppose (X, d) is an arbitrary metric space, t ∈ [0,∞), and
δ > 0. Then for any increasing sequence of subsets A1 ⊂ A2 ⊂ A3 ⊂ · · · ,

Ht
δ

(⋃

i

Ai

)

= lim
i→∞
Ht

δ(Ai) .

With Theorem 1.5 being true for an arbitrary metric space Y , Federer’s proof of
Theorem 1.1 applies to the case of arbitrary metric spaces X and Y .

From what we could dig out from the literature, it would be fair to call Theo-
rem 1.1 the Nöbeling–Szpilrajn–Eilenberg–Federer–Davies inequality.

Surprisingly, it wasn’t until 2009 when Reichel [27] in his PhD thesis, re-wrote a
complete proof of Theorem 1.1 in its full generality, by following the original proof
of Federer while making use of Davies’ result. Reichel’s thesis seems to be the only
place with a complete proof of Theorem 1.1, except that Reichel did not include the
proof of Davies’ theorem.

Davies’ theorem [4, Theorem 8] (Theorem 1.6 above) is very difficult and its proof
makes use of Ramsey’s theorem, ordinal numbers and non-principal ultrafilters.

In the paper we present a new and elementary proof of Theorem 1.5 (reformulated
below as Theorem 3.15) that completely avoids the use of Davies’ result. It is based on
a beautiful argument that we learned from Nazarov [21]. Then we prove Theorem 1.1
including all necessary details.
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Most of the older applications of Theorem 1.1 are in the case of Lipschitz map-
pings f : X → R

m and t = m. However, in a recent development of analysis on
metric spaces, the general version of Theorem 1.1 plays an increasingly important
role. It is a fundamental result and it deserves to have a proof that is self-contained
and easy to read. Our proof of how to conclude Theorem 1.1 from Theorem 1.5, fol-
lows Federer’s argument, but we believe is much easier to read than Federer’s proof.
In writing this proof we also used a presentation of Federer’s proof given in [27].

In fact we prove more general versions of Theorem 1.1 in Section 7: Theorem 7.1
and Theorem 7.16. As explained in Remark 7.19 these are substantial improvements
of Theorem 1.1. In Section 7.2 we show an application of Theorem 7.1 to the (n,m)-
mapping content introduced in [2, 5].

The paper is structured as follows. Section 2 contains basic material from measure
theory needed in the rest of the paper. This material is standard, but some of the
results, although contained in Federer’s book, seem to be not very well known. The
reader might want to skip Section 2, go directly to Section 3 and return to Section 2
whenever necessary.

Section 3 defines the weighted integrals and weighted measures and proves Lem-
ma 3.10 which is a version of Theorem 1.1 with weighted integral in place of the
upper integral. This section also has statements of the two main results regarding
weighted integral: Theorem 3.13 and Theorem 3.15 (i.e., Theorem 1.5).

Section 4 is focused on Theorem 4.1 and Corollary 4.4 which are of independent
interest. These are general results that are essentially combinatorial and are not
limited to the specific setting of our problem. They play a central role in the proof
of Theorem 3.13.

In Section 5 we prove Theorem 3.13. The proof is very short only because of the
use of powerful Corollary 4.4.

In Section 6 we prove Theorem 3.15. Section 7 contains the proof of Theorem 1.1
and its generalization Theorem 7.1. We end with applications to the mapping densi-
ties, introduced in [13], and to the (n,m)-mapping content [2, 5]. Theorem 7.16 can
be viewed as yet another coarea inequality, although only under finer assumptions
on the metric spaces.

1.1. Notation. Open and closed balls in a metric space (X, d) will be denoted
by B(x, r) = {y : d(x, y) < r} and B̄(x, r) = {y : d(x, y) ≤ r}, respectively. Closure
of a set E will be denoted by Ē; as a warning, note that in general closed ball might
be strictly larger than the closure of the open ball. Symbol B will always be used to
denote a ball, open or closed. If B = B(x, r) is a ball, σB = B(x, σr), σ > 0, will
denote a dilated ball (the same notation is used for closed balls).

The characteristic function of a set E will be denoted by χE . A metric space
is boundedly compact if bounded and closed sets are compact. A map f : X →
Y between metric spaces is called Lipschitz if there exists an L ≥ 0 such that
dY (f(x), f(y)) ≤ LdX(x, y) for all x and y in X. The smallest such L, denoted
Lip f , is the Lipschitz constant of f .

The integral average will be denoted by the barred integral:

ˆ

E

f dµ =
1

µ(E)

ˆ

E

f dµ.

Hausdorff measure will be denoted by Hs. It is normalized so that on R
n the measure

Hn coincides with the Lebesgue measure, see Section 2.3 for more details.
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For A ⊂ X, diamA = sup{d(x, y) : x, y ∈ A} and

ζs(A) =
ωs

2s
(diamA)s, where ωs =

πs/2

Γ( s
2
+ 1)

.

Note that ωn is the volume of the unit ball in R
n so ζn(Bn(0, r)) = Hn(Bn(0, r)).

Note also that ζ0(A) = 1 if A 6= ∅ and ζ0(∅) = 0.
For δ ∈ (0,∞], a covering E ⊂

⋃∞
i=1Ai by bounded sets satisfying diamAi ≤ δ

for all i ∈ N, is called a δ-covering of E. An open (closed) δ-covering is one where
every Ai is open (closed).

Acknowledgement. We would like to express our deepest gratitude to Fedor
Nazarov for his kindness in providing us with an elementary proof of inequality
(3.7), through MathOverflow [21]. We would also like to thank Mikhail Korobkov
for discussions on topics related to Definition 3.6. Finally, the authors would like to
thank the MathOverflow community for providing the reference to Nöbeling’s paper
[22].

2. Preliminaries

2.1. Upper integral. Throughout Section 2.1, (X, µ) is a measure space.

Definition 2.1. For a function f : X → [0,∞] defined µ-a.e. on X, the upper
integral is defined by

ˆ ∗

X

f dµ = inf

ˆ

X

φ dµ,

where the infimum is taken over all µ-measurable functions φ satisfying 0 ≤ f(x) ≤
φ(x) for µ-a.e. x ∈ X.

We do not require f to be measurable. Clearly, for measurable functions the
upper integral coincides with the Lebesgue one. Note also that

(2.1) If

ˆ ∗

X

f dµ = 0, then f = 0, µ-almost everywhere and hence f is measurable.

Lemma 2.2. Let fn : X → [0,∞] be a monotone sequence of (not necessarily
measurable) functions, i.e. 0 ≤ f1(x) ≤ f2(x) ≤ . . . for µ-a.e. x ∈ X. If f(x) :=
limn→∞ fn(x) for µ-a.e. x ∈ X, then

(2.2) lim
n→∞

ˆ ∗

X

fn dµ =

ˆ ∗

X

f dµ.

Proof. Throughout the proof, inequalities between functions are assumed to hold
µ-a.e. Clearly the limit on the left hand side of (2.2) exists and

(2.3) lim
n→∞

ˆ ∗

X

fn dµ ≤

ˆ ∗

X

f dµ.

Choose measurable functions φn such that 0 ≤ fn ≤ φn and
ˆ

X

φn dµ ≤

ˆ ∗

X

fn dµ+ 2−n.

This and Fatou’s lemma yield
ˆ ∗

X

f dµ =

ˆ ∗

X

lim
n→∞

fn dµ ≤

ˆ

X

lim inf
n→∞

φn dµ ≤ lim inf
n→∞

ˆ

X

φn dµ ≤ lim
n→∞

ˆ ∗

X

fn dµ,

which together with (2.3) proves (2.2). �
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Definition 2.3. We say φ : X → [0,∞] is a step function if it is µ-measurable
and attains at most countably many values (we allow infinite values). That is, φ is
a step function if there exist disjoint µ-measurable subsets Ai ⊂ X and 0 < ai ≤ ∞
such that

(2.4) φ(x) =
∞∑

i=1

aiχAi
(x).

Lemma 2.4. Let f : X → [0,∞] be any function. Then
ˆ ∗

X

f dµ = inf

ˆ

X

φ dµ,

where the infimum is over all step functions φ satisfying 0 ≤ f(x) ≤ φ(x) for all
x ∈ X.

Proof. Since the claim is true when
´ ∗

X
f dµ =∞, we can assume that

´ ∗

X
f dµ <

∞. We can also assume that f is measurable since the general case will easily follow
from the definition of the upper integral. For i ∈ Z and 1 < λ <∞ define

A∞ = {x : f(x) = +∞}, and Aλ
i = {x : λi ≤ f(x) < λi+1}.

Then

f ≤ φλ ≤ λf, where φλ =∞ · χA∞ +
∑

i∈Z

λi+1χAλ
i

and
ˆ

X

f dµ ≤

ˆ

X

φλ dµ ≤ λ

ˆ

X

f dµ→

ˆ

X

f dµ as λ→ 1+

complete the proof. �

2.2. Covering lemma. A familiar 5r-covering lemma, known also as a Vitali
type covering lemma, asserts that from any family F of balls with bounded radii
in a metric space, we can select a subfamily F ′ of pairwise disjoint balls such that
balls in F ′ dilated 5 times, cover all balls in F , see e.g. [28, Theorem 3.3]. A close
inspection of the proof reveals that we do not really use the fact that this is a family
of balls since the proof is based on simple estimates for diameters. Therefore, the
lemma holds true for any family of uniformly bounded sets, provided we give a proper
meaning of being dilated 5 times. This gives (cf. [11, Section 2.8])

Lemma 2.5. Let F be a family of bounded sets in a metric space such that
sup{diamF : F ∈ F} < ∞. Then, there is a subfamily F ′ ⊂ F of pairwise disjoint
sets such that

⋃

F∈F

F ⊂
⋃

F ′∈F ′

ÆF ′,

where

ÆF ′ =
⋃

{F ∈ F : F ∩ F ′ 6= ∅, diamF ≤ 2 diamF ′}.

Moreover, if F ∈ F , then there is F ′ ∈ F ′ such that F ∩ F ′ 6= ∅ and F ⊂ ÆF ′.

Remark 2.6. That is ÆF ′ is the union of F ′ and all sets that intersect it and
have relative small diameter. Clearly diamÆF ′ ≤ 5 diamF ′.

Proof. Let sup{diamF : F ∈ F} = R <∞ and let

Fj =

{

F ∈ F :
R

2j
< diamF ≤

R

2j−1

}

.
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So,
⋃∞

j=1Fj includes all of F except possibly for some singletons—sets of diameter
zero.

We define F ′
1 ⊂ F1 to be a maximal family of pairwise disjoint sets in F1. Suppose

that the families F ′
1, . . . ,F

′
j−1 have already been defined. Then we define F ′

j to be a
maximal family of pairwise disjoint sets in

{F ∈ Fj : F ∩ F
′ = ∅ for all F ′ ∈ F ′

1 ∪ · · · ∪ F
′
j−1}.

Set F ′ =
⋃∞

j=1F
′
j. Every set F ∈ Fj intersects with a set F ′ ∈

⋃j
i=1F

′
i ; it follows

that diamF ≤ 2 diamF ′ and hence F ⊂ ÆF ′.
If there are any singletons F = {x} ∈ F such that x /∈

⋃

F ′∈F ′ F ′, then add F
to the collection F ′. The updated F ′ will remain disjointed and now it satisfies the
claim of the lemma. �

Definition 2.7. Let F be a family of sets in a metric space X. We say that the
family F is a fine covering of a set A ⊂ X if for every x ∈ A and every ε > 0, there
is F ∈ F such that x ∈ F ⊂ B(x, ε).

Corollary 2.8. If F is a family of closed sets that forms a fine covering of
A ⊂ X, sup{diamF : F ∈ F} < ∞, and F ′ is as in Lemma 2.5, then for any finite
collection of sets F ′

1, . . . , F
′
N ∈ F

′ we have

(2.5) A ⊂
N⋃

j=1

F ′
j ∪

⋃

F ′∈F ′\{F ′
1
,...,F ′

N
}

ÆF ′

Proof. If x ∈ A \
⋃N

j=1 F
′
j , since the sets F ′

j are closed, a ball B(x, ε) is disjoint

with the sets F ′
j . If x ∈ F ⊂ B(x, ε), F ∈ F , then there is F ′ ∈ F ′ such that

F ∩F ′ 6= ∅ and x ∈ F ⊂ ÆF ′. Since F ⊂ B(x, ε) and B(x, ε)∩F ′
j = ∅, F ′ 6= F ′

j and
hence F ′ is one of the sets on the right hand side of (2.5). �

2.3. Hausdorff measures. Let (X, d) be a metric space. Fix an 0 ≤ s < ∞.
For a subset E of X and a δ ∈ (0,∞], the Hausdorff contents Hs

δ and H s
δ are defined

by

Hs
δ(E) = inf

∞∑

i=1

ζs(Ai), and H
s
δ (E) = inf

∞∑

i=1

ζs(Ui),

where the infima are taken, respectively, over all countable coverings E ⊂
⋃∞

i=1Ai

by bounded sets with diamAi ≤ δ for all i ∈ N, and over all countable coverings
E ⊂

⋃∞
i=1 Ui by open sets with diamUi ≤ δ for all i ∈ N, in other words, over all

δ-coverings and over all open δ-coverings. If no such covering(s) exists, we set the
corresponding content equal to +∞.

Note that we can always assume that the sets Ai are closed since taking the
closure of a set does not increase its diameter. Note also that for any 0 < ε < δ <∞

Hs
δ(E) ≤H

s
δ (E) ≤ H

s
δ−ε(E),

because any (δ−ε)-covering can be enlarged to an open δ-covering with an arbitrarily
small increase in diameters of the sets.

The functions δ 7→ Hs
δ(E) and δ 7→H

s
δ (E) are non-increasing, hence for 0 ≤ s <

∞

Hs(E) := lim
δ→0+

Hs
δ(E) = sup

δ>0
Hs

δ(E) = lim
δ→0+

H
s
δ (E) = sup

δ>0
H

s
δ (E) ,

is well-defined. This is the s-dimensional Hausdorff measure on X.



972 Behnam Esmayli and Piotr Hajłasz

Note that H0 is the counting measure, i.e. H0(E) equals the number of elements
of E.

The Hausdorff measure is an outer measure defined on all subsets of X and all
Borel sets are Hs-measurable.

Remark 2.9. If n ∈ N, then ωn equals the volume of the unit ball in R
n. With

this choice of the normalizing coefficient, Hn = Hn
∞ = Ln in R

n, where Ln is the
outer Lebesgue measure, see [28, Theorem 2.6]. However, we will not use this fact in
what follows.

The next result proves that the Hausdorff measure is Borel-regular.

Lemma 2.10. For s ∈ [0,∞) and every E ⊂ X there is a decreasing sequence

of open sets V1 ⊃ V2 ⊃ . . . ⊃ E such that E ⊂ Ẽ :=
⋂∞

i=1 Vi and Hs(E) = Hs(Ẽ).

Proof. If Hs(E) = ∞ then we can take Vi = X, for all i ∈ N. So, assume
Hs(E) <∞. For each i ∈ N there is a 1/i-covering E ⊂

⋃∞
j=1Uij := Ui by open sets,

such that
∞∑

j=1

ζs(Uij) ≤H
s
1/i(E) +

1

i
so H

s
1/i(Ui) ≤ H

s(E) +
1

i
.

Let Vi =
⋂i

k=1Uk, then Ẽ =
⋂∞

i=1 Ui =
⋂∞

i=1 Vi has the required properties. �

As an immediate consequence we get

Lemma 2.11. If 0 ≤ s <∞, Hs(X) <∞ and E ⊂ X is any set, then

(2.6) Hs(E) = inf{Hs(U) : U ⊃ E, U is open}.

The next result is slightly less obvious

Lemma 2.12. Let E ⊂ X be anyHs-measurable set, 0 ≤ s <∞. IfHs(E) <∞
then

Hs(E) = sup{Hs(C) : C ⊂ E, C is closed}.

Proof. It is enough to prove that for any ε > 0 there exists an Fσ-set contained
in E with Hs-measure larger than Hs(E)− ε.

Fix ε > 0. Let Ẽ =
⋂∞

i=1 Vi, H
s(Ẽ) = Hs(E) be the Gδ set from Lemma 2.10.

Since E is measurable and has finite measure, Hs(Ẽ \E) = 0. Each of the open sets
Vi is a union of an increasing sequence of closed sets. Since E is contained in that
union, there is a closed set Fi ⊂ Vi such that Hs(E \Fi) < ε/2i and hence the closed

set F =
⋂∞

i=1 Fi ⊂
⋂∞

i=1 Vi = Ẽ satisfies

Hs(E \ F ) = Hs
( ∞⋃

i=1

(E \ Fi)
)

< ε.

Since Hs(F \E) ≤ Hs(Ẽ \E) = 0, by Lemma 2.10, there exits a Gδ-set G such that
F \ E ⊂ G and Hs(G) = 0. Now F \G is an Fσ-set contained in E and

Hs(F \G) = Hs(F ) ≥ Hs(E)−Hs(E \ F ) > Hs(E)− ε. �

Lemma 2.13. If s ∈ [0,∞) and A1 ⊂ A2 ⊂ . . . is an increasing sequence of (not
necessarily measurable) sets, then

(2.7) Hs
( ∞⋃

i=1

Ai

)

= lim
i→∞
Hs(Ai).
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Proof. It suffices to prove that the right hand side of (2.7) is greater than or

equal to the left hand side; the opposite inequality is obvious. Let Âi be a Borel
set such that Ai ⊂ Âi, and Hs(Ai) = H

s(Âi). Let Ãi =
⋂∞

j=i Âi. Then Ãi is Borel,

Ai ⊂ Ãi and Hs(Ai) = H
s(Ãi). Since Ã1 ⊂ Ã2 ⊂ . . . are measurable, we have

Hs
( ∞⋃

i=1

Ai

)

≤ Hs
( ∞⋃

i=1

Ãi

)

= lim
i→∞
Hs(Ãi) = lim

i→∞
Hs(Ai). �

If a set F is bounded, then Hs
∞(F ) ≤ ζs(F ) is an obvious estimate. However,

in general we may expect that Hs(F ) is much larger than ζs(F ). Indeed, sets with
small diameters may have arbitrarily large Hausdorff measure. There is no need to
convince the reader that life would be much easier if we could estimate Hs(F ) in
terms of the diameter, say Hs(F ) ≤ (1 + ε)ζs(F ) for some small ε. The next result
shows that in fact, in spaces of finite measure, at almost all locations and all small
scales this estimate is true.

Lemma 2.14. Let 0 ≤ s < ∞ and ε > 0. If Hs(X) < ∞, then there is a set
E ⊂ X of measure zero, Hs(E) = 0, such that

∀ x ∈ X \ E ∃ δx > 0 ∀ F ⊂ X
(
x ∈ F ⊂ B̄(x, δx) ⇒ Hs(F ) ≤ (1 + ε)ζs(F )

)
.

(2.8)

Remark 2.15. We do not assume measurability of the sets F .

Proof. The claim is obvious for s = 0, so assume s > 0. Since ζs(F ) = ζs(F̄ ), it
suffices to prove (2.8) for closed sets F . Let E ⊂ X be the set of all points x ∈ X
such that for every j ∈ N, there is a closed set Fx,j satisfying

x ∈ Fx,j ⊂ B̄(x, 1/j) and Hs(Fx,j) > (1 + ε)ζs(Fx,j).

Clearly, with this definition of E, (2.8) is true and it remains to show thatHs(E) = 0.
Suppose to the contrary Hs(E) > 0. According to Lemma 2.11, there is an open set
U such that E ⊂ U and Hs(U) < Hs(E)(1 + ε/4). Given δ > 0, the family

F = {Fx,j : Fx,j ⊂ U, j ≥ 10/δ, x ∈ E}

is a fine covering of E by closed sets. Note that Fx,j ⊂ B̄(x, 1/j), diamFx,j ≤ 2/j ≤
δ/5. Lemma 2.5 yields F ′ ⊂ F such that

E ⊂
⋃

F ′∈F ′

ÆF ′,

and the closed sets F ′ ∈ F ′ are pairwise disjoint. Since Hs(X) <∞, only countably
many of them may have positive measure and the sum of measures is finite so there
is a finite collections of sets F ′

1, . . . , F
′
N ∈ F

′ such that

∑

F ′∈F ′\{F ′
1
,...,F ′

N
}

Hs(F ′) < 5−sHs(E)
ε

4
.

According to Corollary 2.8,

E ⊂
N⋃

j=1

F ′
j ∪

⋃

F ′∈F ′\{F ′
1
,...,F ′

N
}

ÆF ′.
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Since for each of the sets F ′ ∈ F ′ we have, F ′ ⊂ U , diamÆF ′ ≤ 5 diamF ′ ≤ δ,

Hs
δ(E) ≤

N∑

j=1

ζs(F ′
j) +

∑

F ′∈F ′\{F ′
1
,...,F ′

N
}

ζs(ÆF ′)

≤

N∑

j=1

ζs(F ′
j) +

∑

F ′∈F ′\{F ′
1
,...,F ′

N
}

5sζs(F ′)

≤
1

1 + ε





N∑

j=1

Hs(F ′
j) +

∑

F ′∈F ′\{F ′
1
,...,F ′

N
}

5sHs(F ′)





≤
1

1 + ε

(

Hs(U) +Hs(E)
ε

4

)

≤ Hs(E)
1 + ε/2

1 + ε
.

The estimate is independent of δ so letting δ → 0+ we get

Hs(E) ≤ Hs(E)
1 + ε/2

1 + ε
< Hs(E)

which is a clear contradiction. �

3. Weighted integral and weighted Haudorff measure

Throughout this section (X, d) will be a metric space and functions f : X →
[0,∞] will not necessarily be measurable.

Definition 3.1. For a function f : X → [0,∞], a weighted covering of f is a
countable collection {(ai, Ai)}i∈N of pairs of bounded sets Ai ⊂ X and numbers
ai ∈ [0,∞] such that

(3.1) f(x) ≤
∑

i

aiχAi
(x) for all x ∈ X.

If in addition diamAi ≤ δ, δ ∈ (0,+∞], for all i ∈ N, we say that {(ai, Ai)}i∈N is a
weighted δ-covering of f . If f = χE we call {(ai, Ai)}i∈N a weighted (δ-)covering of
E.

Let δ ∈ (0,+∞], and s ∈ [0,∞). The weighted integral of f is defined by

(3.2)

ˆ •

X

f dHs
δ := inf

∞∑

i=1

aiζ
s(Ai),

where the infimum is taken over all weighted δ-coverings of f , and
ˆ •

X

f dHs = lim
δ→0+

ˆ •

X

f dHs
δ.

Note that the limit exists since the integral (3.2) is non-increasing in δ.
If no δ-cover of f exists, we set the weighted integral of f to be +∞.

Remark 3.2. Since the diameter of a set and of its closure are equal, we may
assume that the sets Ai are closed.

Definition 3.3. The weighted Hausdorff content and the weighted Hausdorff
measure of a set E ⊂ X are respectively defined by

λsδ(E) =

ˆ •

X

χE dH
s
δ and λs(E) = lim

δ→0+
λsδ(E) =

ˆ •

X

χE dH
s.
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In other words λsδ(E) = inf
∑∞

i=1 aiζ
s(Ai), where the infimum is over all collections

{(ai, Ai)}i∈N such that
∑
aiχAi

(x) ≥ 1 for all x ∈ E, and diamAi ≤ δ, for all i ∈ N.

Remark 3.4. Note that while in the definition of a step function we assumed
that the sets Ai were disjoint, the sets Ai here are not required to be disjoint. A
step function uniquely determines the sets Ai and numbers ai, but the same function
on the right hand side of (3.1) can be represented in several different ways. It is
important that the infimum in (3.2) is taken over all collections {(ai, Ai)} and not
only over those corresponding to step functions.

Remark 3.5. It seems that Federer [11, 2.10.24] was the first to define weighted
integrals. He denoted them by λδ(f) but did not use any terms to refer to them.
The first systematic study of weighted measures was done by Kelly [17, 18] under
the name of method III measures, although he is using the name weighted covering.
The name weighted Hausdorff measures was introduced by Howroyd [15], see also
[24, Chapter 8]. The term weighted integral and the notation

´ •

X
f dHs

δ appears in
[27].

3.1. Coarea inequality for weighted integrals. To provide motivation for
the notion of the weighted integral, we will prove (1.3). In fact we will prove a slightly
more general inequality that applies to any uniformly continuous map between metric
spaces. The point is that the notion of weighted integral is designed to make the proof
very easy.

Definition 3.6. For an arbitrary map f : X → Y between metric spaces, s, t ∈
[0,∞), δ ∈ (0,∞], and any E ⊂ X we define

Φs,t
δ (f, E) := inf

∞∑

i=1

ζs(f(Ai))ζ
t(Ai),

where the infimum is taken over all δ-coverings {Ai}
∞
i=1 of E. Obviously, δ 7→ Φs,t

δ is
non-increasing, allowing the definition

Φs,t(f, E) := lim
δ→0+

Φs,t
δ (f, E).

Remark 3.7. This definition is motivated by a similar definition in [12, Appen-
dix A] and also by the definition of the mapping content introduced in [2, 5], see
Definition 7.20.

The proofs of the next two easy results are left to the reader.

Lemma 3.8. For any δ ∈ (0,∞], s, t ∈ [0,∞), E, F ⊂ X, and f : X → Y we
have

Φs,t
δ (f, E ∪ F ) ≤ Φs,t

δ (f, E) + Φs,t
δ (f, F ) so Φs,t(f, E ∪ F ) ≤ Φs,t(f, E) + Φs,t(f, F ).

Lemma 3.9. If f : X → Y is Lipschitz continuous and E ⊂ X, s, t ∈ [0,∞),
and δ ∈ (0,∞], then

Φs,t
δ (f, E) ≤ (Lip f)s

ωsωt

ωs+t

Hs+t
δ (E) so Φs,t(f, E) ≤ (Lip f)s

ωsωt

ωs+t

Hs+t(E).

The next version of the coarea inequality easily follows from the definition of the
weighted integral and is a building block of the proof of the main coarea inequality,
Theorem 7.1.
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Lemma 3.10. If f : X → Y is a uniformly continuous map between metric
spaces, 0 ≤ t ≤ s <∞ and E ⊂ X, then

(3.3) lim
δ→0+

ˆ •

Y

Hs−t
δ (f−1(y) ∩ E) dHt(y) ≤ Φt,s−t(f, E).

Remark 3.11. At this point it is not entirely clear that we can pass to the
limit under the sign of the integral as δ → 0+, since we do not a priori have the
monotone convergence theorem for weighted integrals. In fact such a result is true
since according to Theorem 3.15, the weighted integral equals the upper integral, but
Theorem 3.15 is difficult.

Remark 3.12. Lemma 3.10 and Lemma 3.9 yield that if in addition f is Lips-
chitz continuous, then

lim
δ→0+

ˆ •

Y

Hs−t
δ (f−1(y) ∩ E) dHt(y) ≤ Φt,s−t(f, E) ≤ (Lip f)t

ωs−tωt

ωs
Hs(E).

Therefore Theorem 1.1 is a consequence of the easy Lemma 3.10 and the deep The-
orem 1.5 (reformulated below as Theorem 3.15).

Proof of Lemma 3.10. Assume that Φt,s−t(f, E) <∞, as otherwise the inequality
is obvious. Fix δo ∈ (0,∞]. Given ε > 0 and 0 < δ ≤ δo, let {Ai}

∞
i=1 be a δ-covering

of E such that

(3.4)
∞∑

i=1

ζ t(f(Ai))ζ
s−t(Ai) < Φt,s−t

δ (f, E) + ε.

Since the sets {Ai : y ∈ f(Ai)} form a δ-covering of f−1(y) ∩ E, we have

(3.5) Hs−t
δo

(f−1(y) ∩ E) ≤
∞∑

i=1

aiχFi
(y), where ai = ζs−t(Ai) and Fi = f(Ai).

Since the mapping f is uniformly continuous,

η(δ) = sup
A⊂X

diamA≤δ

diam f(A)→ 0 as δ → 0+.

According to (3.5), {(ai, Fi)}
∞
i=1 forms a weighted η(δ)-covering of the function y 7→

Hs−t
δo

(f−1(y) ∩ E) and the definition of the weighted integral yields
ˆ •

Y

Hs−t
δo

(f−1(y) ∩ E) dHt
η(δ)(y) ≤

∞∑

i=1

aiζ
t(Fi) < Φt,s−t

δ (f, E) + ε,

where the last inequality is nothing else, but inequality (3.4). Letting δ → 0+ first
and then ε→ 0+ proves

ˆ •

Y

Hs−t
δo

(f−1(y) ∩ E) dHt(y) ≤ Φt,s−t(f, E).

Since, δo was arbitrary, (3.3) follows. �

The strategy to prove the coarea inequality, Theorem 7.1 (generalizarion of The-
orem 1.1), from Lemma 3.10 is to apply Theorem 3.15 below to replace the weighted
integral in inequality (3.3) with the upper integral and then apply the monotone
convergence theorem, Lemma 2.2. So, it is clear that the heart of the proof lies in
proving Theorem 3.15, and this is the focus of the Sections 4, 5, and 6. Here is where
we deviate from literature significantly and provide a new proof that avoids Davies’
result, Theorem 1.6.
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3.2. Fundamental properties of weighted integrals. Fundamental prop-
erties of the weighted Hausdorff measures and the weighted integrals are stated in
Theorem 3.13 and Theorem 3.15 which is a reformulation of Theorem 1.5 in a nota-
tion consistent with that of Theorem 3.13.

Theorem 3.13. Let X be a metric space and s ∈ [0,∞). Then for any E ⊂ X,

(3.6) λs(E) = Hs(E).

Moreover, if δ ∈ (0,∞], then

(3.7) (8 · 6s)−1Hs
6δ(E) ≤ λsδ(E) ≤ H

s
δ(E).

Remark 3.14. Passing to the limit in (3.7) as δ → 0+, yields (8 · 6s)−1Hs(E) ≤
λs(E) ≤ Hs(E) which is weaker than (3.6) so (3.6) is somewhat surprising.

Theorem 3.13 will play a crucial role in the proof of

Theorem 3.15. LetX be a metric space. For s ∈ [0,∞), and any f : X → [0,∞]
we have

(3.8)

ˆ •

X

f dHs =

ˆ ∗

X

f dHs.

Remark 3.16. Inequality (3.7) is stated implicitly in [11, 2.10.24], as a step
in the proof of Theorem 3.15 (under assumptions (a’) or (b’)) and the general case
follows from the theorem of Davies [4], see [15, 17, 18].

4. Weighted covering theorem

The proof of inequality (3.7) is based on the following weighted covering result
that we learned from Nazarov through MathOverflow [21]. The result is interesting
on its own and we believe it will have applications beyond those given in the paper.

Theorem 4.1. Let E be a bounded and non-empty subset of a metric space. If
0 ≤ bi < ∞, i = 1, 2, . . . , N , are fixed numbers and {(ai, Bi)}

N
i=1 is a finite weighted

covering of E by (either all open or all closed) balls, i.e.,

(4.1) χE ≤

N∑

i=1

aiχBi
, ai ≥ 0,

then there is a subfamily of pairwise disjoint balls {Bij}
k
j=1 such that

E ⊂

k⋃

j=1

3Bij and

k∑

j=1

bij ≤ 2

N∑

i=1

aibi.

Remark 4.2. Later, we will apply Theorem 4.1 with bi = ζs(Bi).

Proof. We will prove the result using induction with respect toN . More precisely,
we will prove that for every N ∈ N, the statement is true for any set E that is
bounded and non-empty and any weighted covering of it with N balls.

It is important to prove the statement for all sets E. Proving it for a fixed set E
would not work, since the induction hypothesis will be applied to sets different than
E. Namely, it will be applied to subsets of E.

If N = 1, the claim is obvious, because we have one ball B1 and a1 ≥ 1. Suppose
N ≥ 2 and the claim is true if the number of balls is less than or equal to N − 1, we
will prove it for N balls.
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Let {(ai, Bi)}
N
i=1 be a weighted covering of E satisfying (4.1). For α = (α1, . . . , αN),

let

W =
{

α : αi ≥ 0,

N∑

i=1

αiχBi
≥ χE

}

, Wc =
{

α : 1 ≥ αi ≥ 0,

N∑

i=1

αiχBi
≥ χE

}

.

Let ψ(α) =
∑N

i=1 αibi. If α ∈ W , then

α ∧ 1 = (min{α1, 1}, . . . ,min{αN , 1}) ∈ Wc and ψ(α ∧ 1) ≤ ψ(α)

so infW ψ = infWc
ψ. Since Wc is compact and non-empty, there is α ∈ Wc such that

ψ(α) = infWc
ψ = infW ψ. In particular,

(4.2)
N∑

i=1

αibi ≤
N∑

i=1

aibi.

If there is io such that αio = 0, we are done. Indeed,

χE ≤
∑

1≤i≤N
i6=io

αiχBi

is a weighted covering of E by N − 1 balls so according to the induction hypothesis,
there is a subfamily of pairwise disjoint balls {Bij}

k
j=1 such that

E ⊂

k⋃

j=1

3Bij ,

k∑

j=1

bij ≤ 2
∑

1≤i≤N
i6=io

αibi = 2

N∑

i=1

αibi ≤ 2

N∑

i=1

aibi.

Therefore, we may assume that αi > 0 for all i ∈ {1, . . . , N}.

Lemma 4.3. If α ∈ Wc is a minimizer of ψ and αi > 0 for all i, then for any
i1 ∈ {1, . . . , N}, we have

∑

{i : Bi∩Bi1
6=∅}

αibi ≥
bi1
2
.

Proof. Since the sum on the left hand side includes αi1bi1 , the claim is obvious
if αi1 ≥ 1/2. Therefore, we may assume that 0 < αi1 < 1/2. Let 0 < h < αi1 and
define

α̃i =







αi if Bi ∩ Bi1 = ∅,

αi(1 + 2h) if Bi ∩ Bi1 6= ∅, i 6= i1,

αi − h if i = i1.

We claim that

(4.3) (α̃1, . . . , α̃N) ∈ W, i.e.,
N∑

i=1

α̃iχBi
≥ χE .

If x 6∈ Bi1 , then α̃i1χBi1
(x) = αi1χBi1

(x) = 0. Since α̃i ≥ αi for all i 6= i1, we have

(4.4)

N∑

i=1

α̃iχBi
(x) ≥

N∑

i=1

αiχBi
(x) ≥ χE(x).

If x 6∈ E, then χE(x) = 0 and there is nothing to prove.
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If x ∈ E ∩Bi1 , then

1 = χE(x) ≤
N∑

i=1

αiχBi
(x) = αi1 +

∑

{i: i 6=i1, x∈Bi∩Bi1
}

αi,

and hence ∑

{i: i 6=i1, x∈Bi∩Bi1
}

αi ≥ 1− αi1 .

Therefore,

N∑

i=1

α̃iχBi
(x) = (αi1 − h) +

∑

{i: i 6=i1, x∈Bi∩Bi1
}

αi(1 + 2h)

≥ (αi1 − h) + (1 + 2h)(1− αi1) = 1 + h(1− 2αi1) > 1 = χE(x),

where the last inequality is a consequence of 0 < αi1 < 1/2. This completes the proof
of (4.3).

Since ψ attains minimum at α, we have

(4.5)

N∑

i=1

αibi ≤

N∑

i=1

α̃ibi.

Since αi = α̃i if Bi ∩ Bi1 = ∅, (4.5) yields

αi1bi1 +
∑

{i : i 6=i1, Bi∩Bi1
6=∅}

αibi ≤ (αi1 − h)bi1 +
∑

{i : i 6=i1, Bi∩Bi1
6=∅}

αi(1 + 2h)bi,

and hence
hbi1 ≤ 2h

∑

{i : i 6=i1, Bi∩Bi1
6=∅}

αibi

which finishes the proof of Lemma 4.3. �

Now we can complete the proof of the theorem. Let Bi1 be a ball with the largest
diameter and let

I = {i : Bi ∩ Bi1 6= ∅} and Ic = {i : Bi ∩ Bi1 = ∅}.

We have
⋃

i∈I

Bi ⊂ 3Bi1 and
∑

i∈I

αibi ≥
bi1
2
.

The inclusion is a consequence of the triangle inequality and the fact that diamBi1 ≥
diamBi for i ∈ I, while the inequality follows from Lemma 4.3.

If E \ 3Bi1 = ∅, then (4.2) yields

E ⊂ 3Bi1 and bi1 ≤ 2
∑

i∈I

αibi ≤ 2

N∑

i=1

αibi ≤ 2

N∑

i=1

aibi,

and the theorem follows.
Therefore, we may assume that E \ 3Bi1 6= ∅. Since the balls Bi, i ∈ I have

empty intersection with E \ 3Bi1 ,
∑

i∈Ic

αiχBi
≥ χE\3Bi1

and hence {(αi, Bi)}i∈Ic is a weighted covering of E \ 3Bi1 and the number of balls
in that covering is less than or equal to N − 1 (we removed at least one ball: Bi1).
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According to the induction hypothesis, we can select pairwise disjoint balls {Bij}
k
j=2,

ij ∈ I
c such that

E \ 3Bi1 ⊂

k⋃

j=2

3Bij and

k∑

j=2

bij ≤ 2
∑

i∈Ic

αibi.

Therefore,

E ⊂ 3Bi1 ∪

k⋃

j=2

3Bij =

k⋃

j=1

3Bij

(note that Bi1 ∩Bij = ∅, for j ≥ 2 so the balls {Bij}
k
j=1 are pairwise disjoint) and

k∑

j=1

bij = bi1 +

k∑

j=2

bij ≤ 2
∑

i∈I

αibi + 2
∑

i∈Ic

αibi = 2

N∑

i=1

αibi ≤

N∑

i=1

aibi.

The proof is complete. �

Corollary 4.4. Let E be a non-empty subset of a metric space, {bi}
∞
i=1, a se-

quence of non-negative numbers, and {(ai, Bi)}
∞
i=1, a weighted covering of E by (all

open or all closed) balls, i.e.,

χE ≤
∞∑

i=1

aiχBi
, ai ≥ 0.

Then there is a subfamily of balls {Bij}
∞
j=1 such that

E ⊂

∞⋃

j=1

3Bij and

∞∑

j=1

bij ≤ 8

∞∑

i=1

aibi.

Remark 4.5. Differently than in Theorem 4.1, we do not assume that the balls
{Bij}

∞
j=1 are pairwise disjoint.

Proof. If
∑∞

i=1 aibi = +∞, the claim is obvious. Therefore, we may assume that
M :=

∑∞
i=1 aibi <∞. We divide the series into finite blocks such that

∞∑

i=1

aibi =
∞∑

k=0









Nk+1∑

i=Nk+1

aibi

︸ ︷︷ ︸

≤4−kM









, 0 = N0 < N1 < N2 < . . .

Let

Ek =

{

x ∈ E :

Nk+1∑

i=Nk+1

2k+1aiχBi
(x) ≥ 1

}

.

Observe that E =
⋃∞

k=0Ek. Indeed, if x ∈ E, then

∞∑

k=0

(
Nk+1∑

i=Nk+1

aiχBi
(x)

)

=
∞∑

i=1

aiχBi
(x) ≥ χE(x) = 1 =

∞∑

k=0

2−(k+1).

Therefore, there is k such that

Nk+1∑

i=Nk+1

aiχBi
(x) ≥ 2−(k+1), so x ∈ Ek.
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By the definition of Ek, the family {(2k+1ai, Bi)}
Nk+1

i=Nk+1 is a finite weighted covering

of Ek. According to Theorem 4.1, we can select pairwise disjoint balls {B
(k)
ij
}ℓkj=1 from

{Bi}
Nk+1

i=Nk+1 so that

Ek ⊂

ℓk⋃

j=1

3B
(k)
ij

and

ℓk∑

j=1

b
(k)
ij
≤ 2

Nk+1∑

i=Nk+1

2k+1aibi < 4 · 2−kM.

To be more precise, we select this family of balls only if Ek 6= ∅. If Ek = ∅, we
select empty family of balls.

If we relabel balls as

{B
(k)
ij

: k ∈ N ∪ {0}, 1 ≤ j ≤ ℓk} := {Bij}
∞
j=1,

then

E =

∞⋃

k=0

Ek ⊂

∞⋃

k=0

ℓk⋃

j=1

3B
(k)
ij

=

∞⋃

j=1

3Bij ,

and
∞∑

j=1

bij =

∞∑

k=0

ℓk∑

j=1

b
(k)
ij
≤

∞∑

k=0

4 · 2−kM = 8M = 8

∞∑

i=1

aibi. �

5. Proof of Theorem 3.13

First we will prove (3.7). Note that the inequality λsδ(E) ≤ H
s
δ(E) is obvious and

follows upon taking weighted coverings with coefficients ai = 1 so it remains to prove
that Hs

6δ(E) ≤ 8 · 6sλsδ(E).
Let {(ai, Ai)}

∞
i=1 be a weighted δ-covering of E,

χE ≤
∞∑

i=1

aiχAi
, ai ≥ 0, diamAi ≤ δ.

Each of the sets Ai is contained in a closed ball Bi of radius diamAi. Hence

diam(3Bi) ≤ 6 diamAi ≤ 6δ so ζs(3Bi) ≤ 6sζs(Ai).

Since {(ai, Bi)}
∞
i=1 is also a weighted cover of E, Corollary 4.4 with bi = ζs(Ai) yields

a subfamily {Bij}
∞
j=1 of balls such that

E ⊂

∞⋃

j=1

3Bij and

∞∑

j=1

ζs(Aij) ≤ 8

∞∑

i=1

aiζ
s(Ai).

Therefore,

Hs
6δ(E) ≤

∞∑

j=1

ζs(3Bij ) ≤ 6s
∞∑

j=1

ζs(Aij ) ≤ 8 · 6s
∞∑

i=1

aiζ
s(Ai)

and taking the infimum over all weighted δ-coverings {(ai, Ai)}
∞
i=1 of E proves that

Hs
6δ(E) ≤ 8 · 6sλsδ(E) and completes the proof of (3.7).

Passing to the limit in (3.7) as δ → 0+ yields

(8 · 6s)−1Hs(E) ≤ λs(E) ≤ Hs(E).

This proves (3.6) when Hs(E) =∞. Therefore, it remains to prove

(5.1) Hs(E) ≤ λs(E) assuming that Hs(E) <∞.

Let Ẽ be a Borel set such that E ⊂ Ẽ and Hs(Ẽ) = Hs(E).
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Fix ε > 0. For each j ∈ N, let Wj be the set of points x ∈ Ẽ such that

x ∈ F ⊂ B̄(x, 1/j) =⇒ Hs(Ẽ ∩ F ) ≤ (1 + ε)ζs(F ).

Note that W1 ⊂ W2 ⊂ . . . and Lemma 2.14 applied to Ẽ regarded as a metric space
yields (because Hs(Ẽ) <∞)

Hs
(

Ẽ \

∞⋃

j=1

Wj

)

= 0.

Therefore, Lemma 2.13 implies

Hs(E) ≤ Hs

(

E ∩

∞⋃

j=1

Wj

)

+Hs

(

E \

∞⋃

j=1

Wj

)

︸ ︷︷ ︸

0

= lim
j→∞
Hs(E ∩Wj).

It remains to show that

(5.2) Hs(E ∩Wj) ≤ (1 + ε)(λs1/j(E) + ε)

as passing to the limit as j →∞ and then as ε→ 0+ will imply (5.1).
Fix j ∈ N. Let {(ak, Ak)}

∞
k=1 be a weighted 1/j-covering of E by closed sets such

that

(5.3)
∞∑

k=1

akζ
s(Ak) ≤ λs1/j(E) + ε.

Let I = {k : Wj ∩ Ak 6= ∅}. We have

χE∩Wj
≤
∑

k∈I

akχẼ∩Ak
.

Let

Z =
{

x :
∑

k∈I

akχẼ∩Ak
(x) ≥ 1

}

.

The set Z is Borel, E ∩Wj ⊂ Z, and

χZ ≤
∑

k∈I

akχẼ∩Ak
.

Integrating this inequality with respect to Hs yields

Hs(E ∩Wj) ≤ H
s(Z) ≤

∑

k∈I

akH
s(Ẽ ∩ Ak).

If k ∈ I, then there is x ∈ Wj ∩Ak and hence

x ∈ Ak ⊂ B̄(x, 1/j) so Hs(Ẽ ∩ Ak) ≤ (1 + ε)ζs(Ak)

by the definition of the set Wj. Therefore,

Hs(E ∩Wj) ≤ (1 + ε)
∑

k∈I

akζ
s(Ak) ≤ (1 + ε)(λs1/j(E) + ε),

where the last inequality follows from (5.3). This proves (5.2) and completes the
proof of the theorem. �



The coarea inequality 983

6. Proof of Theorem 3.15

We first prove the following easier inequality

(6.1)

ˆ •

X

f dHs ≤

ˆ ∗

X

f dHs.

To this end it suffices to prove that for any δ > 0

(6.2)

ˆ •

X

f dHs
δ ≤

ˆ ∗

X

f dHs,

as (6.1) will follow upon passing to the limit as δ → 0+. Assume that the right-hand
side of (6.2) is finite. Given ε > 0, it follows from Lemma 2.4 that there is a step
function

f ≤

∞∑

i=1

aiχAi
, ai > 0

such that
∞∑

i=1

aiH
s
δ(Ai) ≤

∞∑

i=1

aiH
s(Ai) ≤

ˆ ∗

X

f dHs +
ε

2
.

For each i, there is a δ-covering Ai ⊂
⋃∞

j=1Aij , satisfying

∞∑

j=1

ζs(Aij) < H
s
δ(Ai) +

ε

2i+1ai
.

Then with aij = ai,

f ≤
∞∑

i=1

aiχAi
≤

∞∑

i=1

ai

(
∞∑

j=1

χAij

)

=
∞∑

i,j=1

aijχAij

so {(aij , Aij)}
∞
i,j=1 is a weighted δ-covering of f and hence

ˆ •

X

f dHs
δ ≤

∞∑

i,j=1

aijζ
s(Aij) =

∞∑

i=1

ai

(
∞∑

j=1

ζs(Aij)

)

<

∞∑

i=1

ai

(

Hs
δ(Ai) +

ε

2i+1ai

)

=

∞∑

i=1

aiH
s
δ(Ai) +

ε

2
≤

ˆ ∗

X

f dHs + ε.

Since ε > 0 was chosen arbitrarily, (6.2) and hence (6.1) follow.
Now we must prove the reverse inequality

(6.3)

ˆ ∗

X

f dHs ≤

ˆ •

X

f dHs.

Clearly, it is important to consider the set A = {x ∈ X : f(x) > 0}, where the
function f is positive. We will split the proof into three cases. We shall also assume
that the right-hand side in (6.3) is finite.

Case 1. Hs(A) < ∞. This case is similar to the proof of (3.6). Let ε > 0 be

given. According to Theorem 2.10, there is a Borel set Ã such that A ⊂ Ã and
Hs(A) = Hs(Ã). Applying Lemma 2.14 to Ã regarded as a metric space, we have
that there is a set E ⊂ Ã, Hs(E) = 0, such that

∀ x ∈ Ã \E ∃ δx > 0 ∀ F ⊂ X (x ∈ F ⊂ B̄(x, δx) ⇒ Hs(Ã ∩ F ) ≤ (1 + ε)ζs(F )).
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Let Wj ⊂ Ã be the set of points x ∈ Ã such that

(6.4) x ∈ F ⊂ B̄(x, 1/j) =⇒ Hs(Ã ∩ F ) ≤ (1 + ε)ζs(F ).

Clearly, W1 ⊂ W2 ⊂ . . . and

Ã = E ∪

∞⋃

j=1

Wj , Hs(E) = 0.

It suffices to prove that for each j, we have

(6.5)

ˆ ∗

X

fχWj
dHs ≤ (1 + ε)

(
ˆ •

X

f dHs
1/j + ε

)

,

because, (6.3) will follow from Lemma 2.2 upon passing to the limit, first as j →∞,
and then as ε→ 0+.

According to the definition of the weighted integral and Remark 3.2, for each j
there is a weighted 1/j-covering

f(x) ≤

∞∑

k=1

akχAjk
(x), Ajk-closed, diamAjk ≤

1

j

such that
∞∑

k=1

akζ
s(Ajk) ≤

ˆ •

X

f dHs
1/j + ε.

Let I = {k : Wj ∩ Ajk 6= ∅}. We have

fχWj
≤
∑

k∈I

akχÃ∩Ajk

and measurability of the right hand side yields
ˆ ∗

X

fχWj
dHs ≤

∑

k∈I

akH
s(Ã ∩ Ajk) ≤ ♥.

If k ∈ I, and x ∈ Wj ∩ Ajk, then x ∈ Ajk ⊂ B̄(x, 1/j) so (6.4) yields

♥ ≤ (1 + ε)
∑

k∈I

akζ
s(Ajk) ≤ (1 + ε)

(ˆ •

X

f dHs
1/j + ε

)

.

This completes the proof of (6.5).

Case 2. A =
⋃∞

i=1Ai, where Hs(Ai) < ∞. By replacing Ai with
⋃

1≤j≤iAj ,

we can assume further that A1 ⊂ A2 ⊂ . . . Since Hs({x : (fχAi
)(x) > 0}) < ∞,

inequality (6.3) follows from Case 1 applied to fχAi
and from Lemma 2.2:

ˆ ∗

X

f dHs
i→∞

←−−−

ˆ ∗

X

fχAi
dHs ≤

ˆ •

X

fχAi
dHs ≤

ˆ •

X

f dHs.

Case 3. The measure Hs of the set A is not σ-finite. In order to prove inequality
(6.3), it suffices to show that

(6.6)

ˆ •

X

f dHs =∞ .
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To prove this, we will use Theorem 3.13. Since the Hs measure of the set {f > 0} is
not σ-finite, there is t > 0 such that Hs({f ≥ t}) =∞. Therefore, for every M > 0,
there is δ > 0 such that

Hs
6δ({x ∈ X : f(x) ≥ t}) > M

so Theorem 3.13 yields (C = 8 · 6s):
ˆ •

X

f dHs ≥

ˆ •

X

tχ{f≥t} dH
s
δ = tλsδ({f ≥ t}) ≥ C−1tHs

6δ({f ≥ t}) ≥ C−1tM,

and (6.6) follows. The proof of Theorem 3.15 (and hence that of Theorem 1.5) is
complete.

7. Generalized coarea inequality

The next result is a generalization of Theorem 1.1 and it is motivated by the
results in [2, 5, 12]. Recall that Φs,t was defined in Definition 3.6.

Theorem 7.1. If f : X → Y is a uniformly continuous map between metric
spaces, 0 ≤ t ≤ s <∞ and E ⊂ X, then

ˆ ∗

Y

Hs−t(f−1(y) ∩ E) dHt(y) ≤ Φt,s−t(f, E).

Proof. It follows immediately from Lemma 3.10, Theorem 3.15 and Lemma 2.2.
�

Proof of Theorem 1.1. Theorem 7.1 and Lemma 3.9 imply inequality (1.1) and
it remains to show measurability of the function (1.2) under the assumptions that X
is boundedly compact, E is Hs-measurable and Hs(E) <∞.

This fact is standard, but for the sake of completeness we will provide a short
proof. Since bounded and closed sets are compact, Lemma 2.12 implies existence of
a decomposition

E = N ∪
∞⋃

i=1

Ki, Hs(N) = 0, K1 ⊂ K2 ⊂ . . . compact sets.

It follows from (1.1) that Hs−t(f−1(y) ∩ N) = 0 for Ht-almost every y ∈ Y so for
almost all y ∈ Y we have

Hs−t(f−1(y) ∩ E) = Hs−t
(

f−1(y) ∩

∞⋃

i=1

Ki

)

= lim
i→∞
Hs−t(f−1(y) ∩Ki).

Therefore it remains to show measurability of the function y 7→ Hs−t(f−1(y) ∩K),
where K ⊂ X is a compact set. To this end it suffices to prove measurability of the
sets

Yu = {y ∈ Y : Hs−t(f−1(y) ∩K) ≤ u}, u ∈ R.

If u < 0, Yu = ∅ so we may assume that u ≥ 0.
Recall that in Section 2.3 the content H

s−t
δ was defined with open sets. Since it

defines the standard Hausdorff measure, we have

Yu =
∞⋂

j=1

{

y ∈ Y : H
s−t
1/j (f−1(y) ∩K) < u+

1

j

}

so it suffices to show that the sets of the form

V = {y ∈ Y : H
s−t
δ (f−1(y) ∩K) < v}
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are open (for v and δ positive values). To this end it suffices to show that if y ∈ V
and yk → y, then yk ∈ V for sufficiently large k. For y ∈ V fix an open covering

f−1(y) ∩K ⊂
∞⋃

j=1

Uj, diamUj < δ,
∞∑

j=1

ζs−t(Uj) < v.

Using a standard compactness argument, it follows that there exists a k0 such that
f−1(yk) ∩K ⊂

⋃∞
j=1Uj for k ≥ ko and hence H

s−t
δ (f−1(yk) ∩K) < v, proving that

yk ∈ V for k ≥ ko. �

7.1. The lower density and doubling spaces. Throughout Section 7.1, X
and Y will denote metric spaces. In this section we will improve Theorem 7.1 under
the assumption that the Hausdorff measure on X is doubling. The main result of
this section, Theorem 7.16, is closely related to the coarea formula, see Corollary 7.18
and Remark 7.19.

Definition 7.2. For an arbitrary map f : E → Y , E ⊂ X, s ∈ (0,∞), t ∈ [0,∞)
and δ ∈ (0,∞] we define

H̃s,t
δ (f, E) = inf

∞∑

i=1

Hs
∞(f(Ai))ζ

t(Ai),

where the infimum is taken over all δ-coverings {Ai}
∞
i=1 of E. If no such covering

exists then H̃s,t
δ (f, E) =∞.

The following elementary observation will be useful.

Lemma 7.3. For any map f : E → Y , E ⊂ X, s ∈ (0,∞), t ∈ [0,∞) and
δ ∈ (0,∞] we have

Φs,t
δ (f, E) = H̃s,t

δ (f, E).

Proof. Since Hs
∞(f(Ai)) ≤ ζs(f(Ai)), the inequality H̃s,t

δ ≤ Φs,t
δ is obvious.

Therefore, it remains to prove that Φs,t
δ (f, E) ≤ H̃s,t

δ (f, E) and we can assume that

H̃s,t
δ (f, E) <∞.

Given ε > 0, let {Ai}
∞
i=1 be a δ-covering of E such that

∞∑

i=1

ζ t(Ai)H
s
∞(f(Ai)) < H̃

s,t
δ (f, E) +

ε

2
.

For each i ∈ N, let {Cij}
∞
j=1 be a covering of f(Ai) such that

∞∑

j=1

ζs(Cij) < H
s
∞(f(Ai)) +

ε

2i+1(ζ t(Ai) + 1)
.

Let Aij = Ai ∩ f
−1(Cij). Then

Φs,t
δ (f, E) ≤

∞∑

i,j=1

ζ t(Aij)ζ
s(f(Aij)) ≤

∞∑

i=1

ζ t(Ai)

(
∞∑

j=1

ζs(Cij)

)

≤

∞∑

i=1

ζ t(Ai)H
s
∞(f(Ai)) +

ε

2
< H̃s,t

δ (f, E) + ε

and the result follows. �
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Definition 7.4. Let X and Y be metric spaces, E ⊂ X any subset, and s > 0.
For any mapping f : E → Y , we define the lower s-density of f as

Θs
∗(f, E, x) = lim inf

r→0+

Hs
∞(f(B(x, r) ∩ E))

ωsrs
.

Remark 7.5. It is a routine exercise to show that we can replace open balls by
closed balls in the definition of the lower density, i.e.,

Θs
∗(f, E, x) = lim inf

r→0+

Hs
∞(f(B̄(x, r) ∩ E))

ωsrs
.

Remark 7.6. Note that if f is Lipschitz, then Θs
∗(f, E, x) ≤ (Lip f)s.

Remark 7.7. In the case whenX = R
n+m, s = n, and Y is any metric space, the

lower (and upper) n-density of f was introduced in [13] and it played an important
role in the implicit function theorem for Lipschitz mappings into metric spaces.

Definition 7.8. We say that a Borel measure µ onX is doubling if 0 < µ(B(x, r))
< ∞ for all x ∈ X and r > 0, and if there is a constant C > 0 such that
µ(B(x, 2r)) ≤ Cµ(B(x, r)) for all x ∈ X and r > 0.

The next definition provides a particularly important instance of a doubling mea-
sure.

Definition 7.9. We say that the Hausdorff measure Hs, s > 0, on X is Ahlfors
regular, if there are constants CA, CB > 0 such that CAr

s ≤ Hs(B(x, r)) ≤ CBr
s for

all x ∈ X and all r < diamX.

Definition 7.10. We say that a metric space is metric doubling if there is M > 0
such that every ball B can be covered by no more than M balls of half the radius.

Note that if a metric space is metric doubling, then bounded sets are totally
bounded. Recall that a metric space is compact if and only it it is complete and
totally bounded. Therefore we have:

Lemma 7.11. If X is metric doubling and complete, then X is boundedly com-
pact.

The following lemma is an easy exercise.

Lemma 7.12. If µ is a doubling measure on X, then X is metric doubling.

Indeed, there cannot be too many points in B whose mutual distances are greater
than or equal to r/2, where r is the radius of B.

The next result is the Vitali covering theorem for doubling measures, see [14,
Theorem 1.6]

Lemma 7.13. Let µ be a doubling measure on a metric space X and let E ⊂ X.
If F is a family of closed balls centered at E such that for every x ∈ E

inf{r > 0: B(x, r) ∈ F} = 0,

then there is a countable subfamily {B1, B2, . . .} ⊂ F of pairwise disjoint balls such
that

µ

(

E \

∞⋃

i=1

Bi

)

= 0.

The next result is the Lebesgue differentiation theorem for doubling measures.
It is a consequence of Lemma 7.13, see [14, Theorem 1.8].
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Lemma 7.14. If g is a locally integrable function on a metric space with a
doubling measure µ, then

(7.1) lim
r→0

ˆ

B(x,r)

g dµ = g(x) for µ-almost all x ∈ X.

Lemma 7.15. Suppose the metric space X is metric doubling and E ⊂ X is
bounded. If s, t ∈ [0,∞), and f : E → Y is a mapping, then Φs,t(f, E) = 0 if and
only if Φs,t

∞ (f, E) = 0.

Proof. Since Φs,t
∞ ≤ Φs,t, one implication is obvious and it remains to show that

if Φs,t
∞ (f, E) = 0, then for any δ > 0 we have Φs,t

δ (f, E) = 0. Since E is bounded and
X is metric doubling, E can be split into a finite number of pieces, say N(δ) many,
each of diameter less than δ.

Given ε > 0, let E ⊂
⋃∞

i=1Ai be a covering such that

∞∑

i=1

ζs(f(Ai))ζ
t(Ai) <

ε

N(δ)
.

By replacing Ai with E ∩ Ai we can further assume that Ai ⊂ E. Each of the sets

Ai is a union of N(δ) sets {Aij}
N(δ)
j=1 , each of diameter less that δ. Therefore,

Φs,t
δ (f, E) ≤

∞∑

i=1

N(δ)
∑

j=1

ζs(f(Aij))ζ
t(Aij) ≤ N(δ)

∞∑

i=1

ζs(f(Ai))ζ
t(Ai) < ε. �

Theorem 7.16. Suppose 0 < t ≤ s <∞, the measure Hs is Ahlfors regular on
a complete metric space X, E ⊂ X is closed, and f : E → Y is Lipschitz. Then

(7.2)

ˆ ∗

Y

Hs−t(f−1(y) ∩ E) dHt(y) ≤
ωs−tωt

CA

ˆ

E

Θt
∗(f, E, x) dH

s(x) .

where CA is the constant from Definition 7.9.

Remark 7.17. The assumption that X is complete guarantees that X is bound-
edly compact (Lemma 7.11). Since E is closed, B̄(x, r)∩E is compact. We need this
assumption to prove measurability of Θt

∗(f, E, ·). We do not know if the theorem is
true for any Hs-measurable set E, and without assuming that X is complete.

Proof. We can assume that E is bounded, because the general case will follow
from the inequality applied to E∩B̄(xo, R) upon passing to the limit as R→∞. Note
that in order to pass to the limit on the left hand side, we need to use Lemma 2.2.

The density function Θt
∗(f, E, ·) is measurable. To see this it suffices to prove that

the function hr(x) = H
s
∞(f(B̄(x, r) ∩ E)) (see Remark 7.5) is Borel and this is true

since the function is upper-semicontinuous meaning that lim supy→x hr(y) ≤ hr(x).

Indeed, under our assumptions, the set B̄(x, r) ∩ E and its image are compact. We
can approximate Hs

∞(f(B̄(x, r)∩E)) using an open covering {Ui}
∞
i=1. If y is close to

x, then f(B̄(y, r) ∩ E) ⊂
⋃∞

i=1Ui and we can use the same open covering {Ui}
∞
i=1 to

get the upper estimate for the content Hs
∞(f(B̄(y, r) ∩ E)).

Since Hs(E) < ∞ (E is bounded and Hs is Ahlfors regular), in view of Re-
mark 7.6, the right hand side of (7.2) is finite.

According to Theorem 7.1, it suffices to prove that

(7.3) Φt,s−t(f, E) ≤
ωs−tωt

CA

ˆ

E

Θt
∗(f, E, x) dH

s(x).
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Let N be the set of points x ∈ E for which (7.1) does not hold with g = Θt
∗(f, E, ·)χE.

Since Hs(N) = 0, Lemma 3.9 yields that Φt,s−t(f,N) = 0 and hence by Lemma 3.8,

(7.4) Φt,s−t(f, E) = Φt,s−t(f, E \N).

Given ε > 0 and δ > 0, for each x ∈ E \ N , there is a sequence rx,i → 0+,
Bx,i = B̄(x, rx,i) such that

Ht
∞(f(E ∩Bx,i))

ωtrtx,i
≤ Θt

∗(f, E, x) +
ε

2
≤

ˆ

B(x,rx,i)

Θt
∗(f, E, z)χE(z) dH

s(z) + ε.

Lemma 7.13 applied to the family {Bx,i : x ∈ E\N, rx,i < δ/2} gives pairwise disjoint
balls Bi with diameters less than δ such that

Hs

(

E \

∞⋃

i=1

Bi

)

= Hs

(

(E \N) \

∞⋃

i=1

Bi

)

= 0.

Using a similar argument as in the proof of (7.4), one can easily show that

Φt,s−t
δ (f, E) = Φt,s−t

δ

(

f, E ∩
∞⋃

i=1

Bi

)

.

Therefore, Lemma 7.3 yields

Φt,s−t
δ (f, E) = Φt,s−t

δ

(

f, E ∩
∞⋃

i=1

Bi

)

= H̃t,s−t
δ

(

f, E ∩
∞⋃

i=1

Bi

)

≤

∞∑

i=1

ζs−t(E ∩ Bi)H
t
∞(f(E ∩ Bi))

≤

∞∑

i=1

ωs−t

2s−t
(2ri)

s−tωtr
t
i

(̂

B(xi,ri)

Θt
∗(f, E, z)χE(z) dH

s(z) + ε

)

≤
ωs−tωt

CA

(
ˆ

E

Θt
∗(f, E, z) dH

s(z) + ε

)

and the result follows by letting δ → 0+ and then ε→ 0+. �

It was proved in [13, Proposition 5.2] that if f : E → R
m is a Lipschitz continuous

map defined on a measurable set E ⊂ R
n, n ≥ m, then Θm

∗ (f, E, x) = |Jmf |(x),
where

|Jmf |(x) =
√

det(Df)(Df)T is the Jacobian.

This and the above result gives:

Corollary 7.18. If f : E → R
m is a Lipschitz map defined on a measurable set

E ⊂ R
n, n ≥ m, then
ˆ

Rm

Hn−m(f−1(y) ∩ E) dHm(y) ≤
ωn−mωm

ωn

ˆ

E

|Jmf |(x) dHn(x).

Remark 7.19. The celebrated coarea formula [9, Theorem 3.10], [11, Theo-
rem 3.2.11], states that under the above assumptions

ˆ

Rm

Hn−m(f−1(y) ∩ E) dHm(y) =

ˆ

E

|Jmf |(x) dHn(x).
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Since we obtained the Corollary 7.18 as a consequence of rather general results
valid in metric spaces, it is not surprising that the result is not as sharp as the coarea
formula. On the other hand a localized version of Theorem 1.1 would suggest a much
weaker inequality with |Df |m instead of |Jmf | since |Df | can be regarded as a local
Lipschitz constant of f . This shows that Theorem 7.16 and hence also Theorem 7.1
are substantial improvements of the coarea inequality.

7.2. Mapping content. In the context of quantitative decomposition of Lips-
chitz mappings into metric spaces Azzam and Schul [2] defined the (n,m)-mapping
content. This notion was further investigated by David and Schul [5] (see also [13]).

Definition 7.20. Let Q0 = [0, 1]n+m be the unit cube and X an arbitrary metric
space. For a Lipschitz map f : Q0 → X the (n,m)-mapping content of a set E ⊂ Q0

is

Hn,m
∞ (f, E) = inf

∑

i

Hn
∞(f(Qi))ζ

m(Qi),

where the infimum is over all coverings of E by closed dyadic cubes with pairwise
disjoint interiors.

Remark 7.21. In fact their definition differs from ours by a constant factor
depending on n and m only.

It follows directly from the definitions and from Lemma 7.3 that

(7.5) Φn,m
∞ (f, E) = H̃n,m

∞ (f, E) ≤ Hn,m
∞ (f, E)

and David and Schul [5, Question 1.15] stated an open problem:

Is it true that Hn,m
∞ (f, E) ≤ C(n,m)H̃n,m(f, E)?

As an application of Theorem 7.1 we obtain:

Corollary 7.22. Suppose f : Q0 = [0, 1]n+m → X is a Lipschitz mapping into a
metric space and E ⊂ Q0. If Hn,m

∞ (f, E) = 0 then Hm(f−1(x) ∩ E) = 0 for Hn-a.e.
x ∈ X.

Proof. It follows from (7.5) and from Lemma 7.15 that Φn,m(f, E) = 0 and hence
Theorem 7.1 yields that

ˆ ∗

X

Hm(f−1(x) ∩ E) dHn(x) = 0

and the result follows from (2.1). �
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