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Abstract. We provide a quantitative lower bound to the Cheeger constant of a set Ω in
both the Euclidean and the Gaussian settings in terms of suitable asymmetry indexes. We provide
examples which show that these quantitative estimates are sharp.

1. Introduction

In the past years inequalities of geometric-functional type have been widely
studied in the literature, a—far from complete—list is [21, 24, 26, 28] (isoperi-
metric inequalities), [19, 44] (anisotropic Wulff inequalities), [1, 2, 16] (Gaussian
inequalities), [23, 30, 32] (Riesz inequalities), [13, 14, 15, 27, 45] (Sobolev inequal-
ities), [6, 22, 29] (Faber–Krahn inequalities, see also [5] for an account on other
quantitative spectral inequalities).

In this paper we are interested in providing quantitative estimates on the Cheeger
constant both in the Euclidean and in the Gaussian setting. Given any open set Ω,
of finite, resp. Euclidean or Gaussian, measure, the constant is defined as, resp.,

(1.1) h(Ω) := inf

{
P (E)

|E|

}
, hγ(Ω) := inf

{
Pγ(E)

γ(E)

}
,

where the infima are taken among subsets E ⊂ Ω of positive, resp. Euclidean or
Gaussian, measure. In (1.1), we denote by P (·) and Pγ(·), resp., the distributional
Euclidean and Gaussian perimeter, while by |·| and γ(·), resp., the standard Lebesgue
and Gaussian measure.

Sets attaining the above infima are known to exist and are called Cheeger sets,
see for instance [38, 46] for the Euclidean case, and [11] for the Gaussian case (more
general settings have been explored, see for instance [7, 43, 48]). The task of com-
puting the constant and determining the shape of Cheeger sets is usually referred to
as the Cheeger problem. The constant first appeared in [12] in a Riemannian setting
as a mean to bound from below the first Dirichlet eigenvalue of the Laplace–Beltrami
operator. Through the coarea formula it can be proven that the Euclidean constant
h(Ω) provides a lower bound to the first Dirichlet eigenvalue of the Laplace operator,
and analogously the Gaussian constant hγ(Ω) to the first Dirichlet eigenvalue of the
Ornstein–Uhlenbeck operator (i.e., −∆(·) + 〈x,∇(·)〉).

Since then, the Euclidean problem has been widely studied and it has appeared
in many different contexts, such as capillarity problems [31, 41], spectral properties
of the p-Laplacian [35], and landslide modeling [33] to name a few. The interested
reader is referred to the surveys [38, 46] and the references therein. The Gaussian
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counterpart was studied in relation to the prescribed mean curvature problem [11]
and to image processing [10].

It is of interest to provide estimates on the constants as there are no available
formulas to directly compute them, but for very few classes of sets Ω limited to the
Euclidean 2-dimensional setting, see [36, 39, 40, 42, 49]. In higher dimensions, some
very special cases are treated in [3, 8, 17, 37]. To give an upper bound to h(Ω)
(resp., hγ(Ω)) it is enough to compute the ratio P (E)/|E| (resp., Pγ(E)/γ(E)) for
any competitor E, while establishing lower bounds exploits the relevant isoperimetric
inequalities. Indeed, first, rough estimates on the constants are provided by

(1.2) h(Ω) ≥ h(BΩ), hγ(Ω) ≥ hγ(HΩ),

where by BΩ we denote the ball centered at the origin s.t. |Ω| = |BΩ|, and by HΩ

any halfspace s.t. γ(Ω) = γ(HΩ).
The isoperimetric inequalities have been proven in quantitative forms by estab-

lishing bounds through asymmetry indexes measuring the distance (in some suitable
sense) of Ω from the isoperimetric set with the same measure. Then, it is natural
to wonder if any improvement to (1.2) can be attained by exploiting these stronger
inequalities and get lower bounds of the form

(1.3)
h(Ω)− h(BΩ)

h(BΩ)
≥ c(n)ι(Ω)

in the Euclidean case, and

(1.4) hγ(Ω)− hγ(HΩ) ≥ c(γ(Ω))ιγ(Ω)

in the Gaussian case, where ι(Ω) and ιγ(Ω) are some suitable asymmetry indexes.
These inequalities give an improved lower bound on the Cheeger constant for sets
that are near the corresponding isoperimetric set.

We remark that there are two main differences in the Euclidean (1.3) and the
Gaussian (1.4) inequalities that we expect to prove. First, in the Euclidean case,
the quantitative estimate is renormalized, while in the Gaussian it is not. This is so
because the respective quantitative isoperimetric estimates are renormalized in the
former setting and not in the latter. Second, the constant c in the Euclidean case
depends only on the dimension n, while in the Gaussian only on the measure of Ω.
Again, this is a known feature of the quantitative isoperimetric inequalities in the
two different settings.

A first result in this direction has been proven in the Euclidean case in [29]
with ι(Ω) = α3(Ω), where α is known as the Fraenkel asymmetry index. This was
later refined in [20], with the exponent 2 in place of 3, i.e., ι(Ω) = α2(Ω), and this
exponent is known to be sharp, i.e., no such inequality can hold with a smaller power
of α. Our first main result, Theorem 2.1, states that in the Euclidean case a stronger
quantitative inequality holds, where the index is given by the Riesz asymmetry index.
To the best of our knowledge, there are no previous results in the Gaussian case. In
Theorem 3.1 we prove a sharp quantitative inequality of type (1.4) in terms of the
Gaussian Fraenkel asymmetry. Then we consider a different index in terms of the
barycenter, which was introduced in [1, 18], and prove a sharp quantitative inequality
in terms of this in Theorem 3.2. Rather surprisingly the optimal dependence on the
asymmetry in Theorem 3.2 is different than in the quantitative Gaussian isoperimetric
inequality of [1] and it has a logarithmic dependence on the barycenter index as in [18].
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The paper is organized into two independent sections. In Section 2 we study the
Euclidean case (1.3) and in Section 3 the Gaussian one (1.4). Each section is self-
contained and begins with relevant definitions, related isoperimetric inequalities and
statements of the results. The proof of the theorems follows. Finally, each section
is complemented with an example that shows that the quantitative inequalities are
sharp.

2. Estimates in the Euclidean setting

In the Euclidean setting there are three quantitative isoperimetric inequalities
available, in terms of the following three indexes:

α(Ω) := min
y∈Rn

{
|Ω∆(BΩ + y)|

|Ω|

}
,(2.1)

ζ(Ω) :=

ˆ
BΩ

dx
|x|
− max

y∈Rn

ˆ
Ω

dx
|x− y|

,(2.2)

β(Ω) := min
y∈Rn

{(
1

2P (BΩ)

ˆ
∂∗Ω

|νΩ(x)− νBΩ+y(πy,Ω(x))|2 dHn−1(x)

) 1
2

}
,(2.3)

where πy,Ω(x) is the projection of Rn \ {y} on the boundary of BΩ + y, i.e.,

πy,Ω(x) := y + r
x− y
|x− y|

, ∀x 6= y,

being r the radius of BΩ. Indeed, one has that there exists a constant c = c(n)
depending only on the dimension (which changes from line to line) such that

P (Ω)− P (BΩ)

P (BΩ)
≥ c α2(Ω),(2.4)

P (Ω)− P (BΩ)

P (BΩ)
≥ c ζ(Ω),(2.5)

P (Ω)− P (BΩ)

P (BΩ)
≥ c β2(Ω).(2.6)

Inequality (2.4) was proven in [21, 28], while inequalities1 (2.5) and (2.6) in [26],
and the exponents are known to be sharp. The interested reader is referred to the
beautiful survey [25]. Inequalities (2.5) and (2.6) are subsequent refinements of (2.4),
in the sense that the indexes β and ζ are better than α, i.e., one has

β2(Ω) & ζ(Ω) & α2(Ω)

for any set of finite perimeter Ω.
Inequality (2.4) has been successfully used to give a quantitative estimate on

the Cheeger constant in [20] in terms of the Fraenkel asymmetry α, defined above
in (2.1). It is then natural to wonder whether the inequalities (2.5) and (2.6) have an
analogous counterpart in terms of the Cheeger constant. Our first main result states
that this is indeed true for the index ζ.

1We remark that inequality (2.5) is not explicitly stated, but it is contained in the proof of [26,
Proposition 1.2].
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Theorem 2.1. Let Ω be an open, bounded set in Rn. There exists a dimensional
constant c = c(n) such that

(2.7)
h(Ω)− h(BΩ)

h(BΩ)
≥ c ζ(Ω),

where ζ(·) is defined in (2.2).

We remark that (2.7) is sharp, and this follows because (2.5) is sharp. In Sec-
tion 2.2 we give an example that shows that a quantitative inequality analogous
to (2.7) does not hold with the index β2 in place of the index ζ. We remark that the
index ζ is used, e.g., in [34] to prove the minimality of the ball in Gamow’s liquid
drop model for small masses.

We also remark that a similar analysis can be carried over when considering the
m-Cheeger sets studied in [47] wherein the ratio defining h(Ω) one considers suitable
powers m of the volume rather than the power 1.

2.1. Proof of Theorem 2.1. First, thanks to the scaling property of the
Euclidean Cheeger constant, i.e., h(λΩ) = λ−1h(Ω) for λ > 0, it is enough to prove
the inequality for Ω s.t. |Ω| = ωn, i.e., BΩ is the unit ball.

Second, notice that

(2.8)
ˆ
BΩ

dx
|x|

= nωn

ˆ 1

0

ρn−1

ρ
dρ =

P (BΩ)

n− 1
,

thus ζ(Ω) ≤ n(n− 1)−1ωn. Therefore, the inequality immediately follows for sets Ω
s.t. h(Ω) ≥ 2h(BΩ), by choosing c(n) ≤ (2ωn)−1.

Hence, let us consider Ω with volume ωn s.t. h(Ω) < 2h(BΩ), and denote by E a
Cheeger set of Ω. We begin by estimating ζ(Ω) in terms of ζ(E). Up to translating
E (and therefore Ω) we may assume that E is “centered”

ζ(E) =

ˆ
BE

dx
|x|
−
ˆ
E

dx
|x|
,

i.e., the maximum in (2.2) is attained at the origin y = 0. By (2.8), adding and
removing (n − 1)−1P (BE), using the positivity of the integrands and the fact that
E ⊂ Ω to estimate −maxy

´
Ω
|x− y|−1dx, we have

(2.9) ζ(Ω) =
P (BΩ)

n− 1
− max

y∈Rn

ˆ
Ω

dx
|x− y|

≤ P (BΩ)− P (BE)

n− 1
+ ζ(E).

We aim to bound both terms on the RHS through the renormalized difference of
the Cheeger constants (h(Ω) − h(BΩ))h(BΩ)−1, up to some dimensional constant
c = c(n). This would conclude the proof.

To estimate the first term on the RHS of (2.9), we exploit the isoperimetric
inequality to deduce

h(Ω) =
P (E)

|E|
≥ P (BE)

|BE|
= h(BE) =

(
|Ω|
|E|

) 1
n

h(BΩ),

where the last equality follows from the scaling properties of h(·). By employing
equality P (B) = nω

1
n
n |B|

n−1
n valid for any ball B, the above inequality, and recalling
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that |Ω| = ωn, we obtain

P (BΩ)− P (BE)

n− 1
=

c(n)

n− 1
|Ω|

n−1
n

(
1−

(
|E|
|Ω|

)n−1
n

)

≤ c(n)

n− 1

h(Ω)n−1 − h(BΩ)n−1

h(Ω)n−1
,

where the constant c changes from line to line. As ta − sa ≤ ata−1(t − s) whenever
a ≥ 1, and s ∈ (0, t], and recalling that h(Ω) ≥ h(BΩ) we finally get

(2.10)
P (BΩ)− P (BE)

n− 1
≤ c(n)

h(Ω)− h(BΩ)

h(Ω)
≤ c(n)

h(Ω)− h(BΩ)

h(BΩ)
.

We are left with providing an estimate to ζ(E). In order to do so, recall that
|Ω| = |BΩ| = ωn, and h(BΩ) = n. Thus, the following chain of equalities holds

|BΩ|−
1
n
h(Ω)− h(BΩ)

h(BΩ)
=

1

n|BΩ|
1
n

P (E)

|E|
− |BΩ|−

1
n

=
P (E)

n|BΩ|
1
n |E|n−1

n

|E|−
1
n − |BΩ|−

1
n

=
P (E)− P (BE)

P (BE)
|E|−

1
n +

(
|E|−

1
n − |BΩ|−

1
n

)
≥ P (E)− P (BE)

P (BE)
|E|−

1
n ,

where the last inequality follows from E ⊂ Ω. Therefore by using (2.5) and the above
inequality we get

(2.11) ζ(E) ≤ c(n)
P (E)− P (BE)

P (BE)
≤ c(n)

h(Ω)− h(BΩ)

h(BΩ)

(
|E|
|BΩ|

) 1
n

.

As |E| ≤ |BΩ|, combining (2.9) with (2.10) and (2.11) yields the claim.

2.2. Failure of the inequality with the index β2. In this section, we show
that there is no constant c = c(n) such that inequality

(2.12)
h(Ω)− h(BΩ)

h(BΩ)
≥ c β2(Ω)

holds true, by building a suitable family of sets. Let us fix ε << 1 and consider the
family of bounded sets {Ωj}j∈N, where the boundary of Ωj is given by the closed,
simple polar curve

fj(θ) =

(
1 +

ε2

2

)− 1
2

(1 + ε sin(2jθ)), θ ∈ [0, 2π],

some of which are depicted in Figure 1. The volume of Ωj is

|Ωj| =
1

2

ˆ 2π

0

f 2
j (θ) dθ

=
1

2

(
1 +

ε2

2

)−1 ˆ 2π

0

1 + 2ε sin(2jθ) + ε2 sin2(2jθ) dθ

=
1

2

(
1 +

ε2

2

)−1

(2π + ε2π) = π.
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(a) j = 5. (b) j = 10. (c) j = 15.

Figure 1. The set Ωj , for different values of j, with the choice ε = 10−1. The dashed line
represents the unit ball.

The perimeter of Ωj can be easily estimated from below as

P (Ωj) =

ˆ 2π

0

√
f 2
j (θ) + (f ′j(θ))

2 dθ

=

(
1 +

ε2

2

)− 1
2
ˆ 2π

0

√
(1 + ε sin(2jθ))2 + (2jε cos(2jθ))2 dθ

≥ 2jε

(
1 +

ε2

2

)− 1
2
ˆ 2π

0

| cos(2jθ)| dθ = 8jε

(
1 +

ε2

2

)− 1
2

.

As we let j →∞, we see that P (Ωj)→∞. Thus, all the sets Ωj have the volume of
the unit ball B1, while their perimeter diverges.

Moreover, the sets Ωj contain the ball Bminθ fj(θ), where such a radius is readily
computed to be

min
θ
fj(θ) =

(
1 +

ε2

2

)− 1
2

(1− ε).

Therefore h(Bminθ fj(θ)) provides an upper bound to h(Ωj) and h(B1) = 2 a lower
bound, i.e.,

2

1− ε

(
1 +

ε2

2

) 1
2

≥ h(Ωj) ≥ 2.

Note that, by recalling the definition (2.3) of β, we may write β2(Ω) as

P (BΩ)β2(Ω) =
1

2
min
y∈Rn

ˆ
∂∗Ω

2− 2νΩ(x) · νBΩ(y)(πy,Ω(x)) dHn−1(x)

= P (Ω)− max
y∈Rn

ˆ
∂∗Ω

νΩ(x) · x− y
|x− y|

dHn−1(x)

= P (Ω)− (n− 1) max
y∈Rn

ˆ
Ω

dx
|x− y|

= P (Ω)− P (BΩ) + (n− 1)ζ(Ω).

Thus, the inequality (2.12) cannot hold for all j for any choice of c(n), as h(Ωj) is
uniformly bounded from above and the oscillation index

β2(Ωj) ≥ (P (Ωj)− P (B1)) · P (B1)−1

diverges as j → +∞.
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Remark 2.2. We may construct easier examples, if we do not require the com-
peting sets to be starshaped. Consider now the family of bounded sets {Ωj}j∈N
with

Ωj := B1− 1
j
∪ A1,1+ε(j),

where A1,1+ε(j) is the annulus centered at the origin with inner radius 1 and outer
radius 1+ε(j), with ε(j) such that |Ωj| = |B1|, for all j. One of these sets is depicted
in Figure 2a. It is immediate to check that h(Ωj) → h(B1), while at the same time
β2(Ωj) ≥ 2. Thus the LHS of (2.12) goes to zero, while the RHS is uniformly strictly
greater than zero. Notice that the sets of this family can be easily modified to ensure
that they are all connected, see Figure 2b.

(a) The non-connected set. (b) The connected set.

Figure 2. The grayed-out sets represent one of the Ωj introduced in Remark 2.2, and its
connected, symmetric counterpart.

3. Estimates in the Gaussian setting

Given a set of locally finite perimeter E ⊂ Rn, we define its Gaussian perimeter
and volume to be

Pγ(E) :=
1

(2π)
n−1

2

ˆ
∂∗E

e−
|x|2

2 dHn−1(x), γ(E) :=
1

(2π)
n
2

ˆ
E

e−
|x|2

2 dx.

Given any direction ω ∈ Sn−1 and any real number s ∈ R we denote by Hs,ω the
halfspace {x ∈ Rn : x · ω < s }. We denote by φ the function

φ(s) :=
1√
2π

ˆ s

−∞
e−

t2

2 dt,

and have that for any direction ω ∈ Sn−1 it holds

Pγ(Hs,ω) = e−
s2

2 , γ(Hs,ω) = φ(s).

If the direction ω is not relevant, we shall drop it and write Hs as a shorthand for
any halfspace of measure φ(s). Moreover, given any set E, we denote by HE any
halfspace such that γ(E) = γ(HE). If the direction is relevant we denote it by HE,ω.
The Gaussian isoperimetric inequality states that

(3.1) Pγ(E) ≥ Pγ(HE),

with equality if and only if E is a halfspace, see for instance [4, 9, 50]. Analogously
to the Euclidean case, quantitative versions of (3.1) have been proven, namely there
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exists a positive constant c = c(γ(E)) depending only on the measure of E (which
changes from line to line) such that

Pγ(E)− Pγ(HE) ≥ c α2
γ(E),(3.2)

Pγ(E)− Pγ(HE) ≥ c βγ(E),(3.3)

where the indexes αγ and βγ are given by

αγ(E) := min
ω∈Sn−1

|E∆HE,ω|,(3.4)

βγ(E) := min
ω∈Sn−1

|b(HE,ω)− b(E)|,(3.5)

where b(E) is the non-renormalized barycenter of E, i.e.,

b(E) :=
1

(2π)
n
2

ˆ
E

xe−
|x|2

2 dx.

It is easy to see that |b(E)| is maximized by the halfspace HE, i.e., |b(E)| ≤ |b(HE)|,
and s 7→ |b(Hs)| attains its maximum at s = 0 with |b(H0)| = (2π)−

1
2 . Moreover

we note that βγ(E) ≤ 1 for every set E. For an account of these facts, we refer the
reader to [1], where also the inequalities (3.2) and (3.3) are proven (see also [16, 18]).
As in the Euclidean case the index βγ is stronger than αγ, in the sense that

βγ(E) & α2
γ(E)

for every measurable set E ⊂ Rn.
The two following theorems are the main results of this section and they are

proven respectively in Section 3.2 and Section 3.3.

Theorem 3.1. Let Ω be an open set in Rn. There exists a constant c = c(γ(Ω))
such that

(3.6) hγ(Ω)− hγ(HΩ) ≥ c α2
γ(Ω),

where αγ(·) is defined in (3.4).

Theorem 3.2. Let Ω be an open set in Rn. There exists a constant c = c(γ(Ω))
such that

(3.7) hγ(Ω)− hγ(HΩ) ≥ c
βγ(Ω)

1 +
√
| log(βγ(Ω))|

,

where βγ(·) is defined in (3.5).

We remark that neither inequality (3.7) implies inequality (3.6), nor is inequal-
ity (3.6) stronger than inequality (3.7). Finally, we show in Section 3.4 by means of
an example that the dependence on the asymmetry in (3.7) is optimal (see also the
result in [18]).

3.1. Preliminary lemmas. In this section, we prove some lemmas regard-
ing properties of one-dimensional functions, which are useful in the proofs of Theo-
rems 3.1 and 3.2. We recall the definition of the complementary error function erfc(·)
and some lower and upper bounds to it, which we will use later. Given x > 0, we set

erfc(x) :=
2√
π

ˆ +∞

x

et
2

dt.

For x >> 1 one has

(3.8)
e−x

2

√
π

(
1

x
− 1

x3

)
≤ erfc(x) ≤ e−x

2

√
π

(
1

x

)
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as one can easily infer by using the asymptotic expansion of the complementary error
function.

Lemma 3.3. Let ϕ : R→ (0,∞) be the function defined as

ϕ(s) :=
Pγ(Hs)

γ(Hs)
.

Then, ϕ′(s) < 0 for all s ∈ R, and lims→−∞ ϕ(s) = +∞.

Proof. The first part of the claim is equivalent to show that the function f(s) =√
2π(ϕ(s))−1 satisfies f ′(s) > 0 for all s ∈ R. Using the definition of the Gaussian

perimeter and volume, we may equivalently write

f(s) =
√

2π e
s2

2 φ(s).

As
√

2π φ′(s) = e−
s2

2 , one readily computes the first derivative of f

(3.9) f ′(s) = 1 + sf(s) = 1 + se
s2

2

√
2πφ(s),

which in particular is continuous. Trivially, f ′(s) ≥ 1 for s ≥ 0. Thus we are left to
check that f ′(s) > 0, for values s < 0.

By integration by parts we have

√
2πφ(s) =

ˆ s

−∞

(
−1

t

)
(−te−

t2

2 ) dt = −e
− s

2

2

s
−
ˆ s

−∞

1

t2
e−

t2

2 dt,

which plugged in (3.9) yields

f ′(s) = −se
s2

2

ˆ s

−∞

1

t2
e−

t2

2 dt.

It is immediate that, for any fixed s < 0, this is positive. Hence, we have the first
part of the claim.

To check the second part, we use the upper bound on erfc given in (3.8). For
s << −1, we have

1√
2π
ϕ(s) =

e−
s2

2´ s
−∞ e

− t2
2 dt

=
e−

s2

2´ +∞
|s| e−

t2

2 dt
=

e−
s2

2√
π
2

erfc
(
|s|√

2

) ≥ |s|,
which completes the proof. �

For the sake of completeness, we remark two consequences of Lemma 3.3. First,
Gaussian Cheeger sets exist. Second, the Cheeger set of any given halfspace Hs is the
halfspace itself. Indeed, when proving existence one easily sees that any minimizing
sequence {Ek}k is bounded in BVγ(Rn) and hence, up to a subsequence, it converges
to some set E. By the lower semicontinuity of Pγ(·), in order to show that this limit
set is a minimizer one only needs to check that γ(E) > 0. The previous lemma can
be used to show that minimizing sequences are such that γ(Ek) does not converge
to 0, as the ratio Pγ(Ek)γ(Ek)

−1 would otherwise be unbounded. Regarding the
minimality of Hs, the Gaussian isoperimetric inequality ensures that for any fixed
volume the halfspace is the perimeter minimizer, while the lemma ensures that any
halfspace Hσ strictly contained in Hs has ratio Pγ(Hσ)γ(Hσ)−1 bigger than that of
Hs.
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Lemma 3.4. Let Φ : [0, 1]→ [0, 1] be the function

(3.10) Φ(ρ) =
ρ

1 +
√
| log(ρ)|

,

defined by continuity at ρ = 0 as Φ(0) = 0. Then, Φ is increasing, with

(3.11) Φ(ρ) ≤ ρ

and

(3.12) Φ

(
1

4
ρ

)
≥ 1

4(1 +
√

log(4))
Φ(ρ).

Proof. We begin by showing that Φ is increasing. We have

Φ′(ρ) =
1

1 +
√
| log(ρ)|

− sgn(log(ρ))

2
√
| log(ρ)|(1 +

√
| log(ρ)|)2

.

Since ρ ∈ [0, 1], we immediately get Φ′(ρ) ≥ 0 as sgn(log(ρ)) ≤ 0. Also the bound
(3.11) is trivial.

We are left with (3.12). To this aim we write

Φ(ρ/4) =
ρ/4

1 +
√
| log(ρ/4)|

=
1

4
Φ(ρ)

1 +
√
| log(ρ)|

1 +
√
| log(ρ/4)|

.

The claim follows as

g(ρ) :=
1 +

√
| log(ρ)|

1 +
√
| log(ρ/4)|

attains its minimum over the interval [0, 1] at ρ = 1. Indeed, one can check that g(ρ)
is decreasing in [0, 1]. �

Thanks to the monotonicity property stated in the above lemma, we can now
show that we can control from above Φ(|b(E)|) with the mass of the set itself γ(E),
up to some multiplicative, universal constant.

Lemma 3.5. There is a constant C such that for any set E ⊂ Rn it holds

Φ(|b(E)|) ≤ Cγ(E).

Proof. First recall that for any set E it holds |b(E)| ≤ |b(HE)|. Therefore, by
the monotonicity of Φ we have

Φ(|b(E)|) ≤ Φ(|b(HE)|).

Hence, to prove the claim it suffices to show the validity of the inequality for halfs-
paces. Second, as Φ(|b(E)|) ≤ 1, it is enough to prove the inequality for small values
of γ(HE), and thus of |b(HE)|.

We denote by sE := φ−1(γ(HE)). To conclude we need to prove the inequality

Φ(|b(HE)|) ≤ Cγ(HE),

for values sE < 0 such that |sE| >> 1. First, notice that

γ(HE) =
1√
2π

ˆ sE

−∞
e−

t2

2 dt, |b(HE)| = 1√
2π
e−

s2E
2 .
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On the one hand, for all s we have

Φ(|b(Hs)|) = Φ

(
1√
2π
e−

s2

2

)
=

e−
s2

2

√
2π

(
1 +

√∣∣∣log((2π)−
1
2 e−

s2

2 )
∣∣∣)

=
e−

s2

2

√
2π

(
1 +

√
1
2

log(2π) + |s|2
2

) ≤ e−
s2

2

√
2π
(

1 + |s|√
2

) .(3.13)

On the other hand, for s < 0 such that |s| >> 1, using the asymptotic behavior of
erfc given in (3.8), we have

γ(Hs) = φ(s) =
1√
2π

ˆ s

−∞
e−

t2

2 dt =
1√
2π

ˆ +∞

|s|
e−

t2

2 dt

=
1√
2π

√
π

2
erfc

(
|s|√

2

)
≥ e−

|s|2
2

√
2π

(
1

|s|
− 2

|s|3

)
.

(3.14)

Using (3.13) and (3.14) the claim boils down to check that there exists a constant
C > 0 such that the inequality

C

(
1 +
|s|√

2

)
≥ |s|3

|s|2 − 2
,

holds for values |s| >> 1. This is obviously true for C ≥
√

2. �

3.2. Proof of Theorem 3.1. Let E ⊂ Ω be a Cheeger set of Ω. Then

(3.15) hγ(Ω)− hγ(HΩ) =
Pγ(E)− Pγ(HE)

γ(E)
+

(
Pγ(HE)

γ(E)
− Pγ(HΩ)

γ(Ω)

)
.

Let us first show that we may assume that

(3.16) ε ≤ γ(E) ≤ 1− ε,
for ε > 0 which depends on γ(Ω). The upper bound in (3.16) follows simply from
E ⊂ Ω and thus γ(E) ≤ γ(Ω) ≤ 1− ε1. Here ε1 = 1− γ(Ω) > 0 as we may obviously
assume that Ω 6= Rn. For the lower bound, we first notice that αγ(Ω) ≤ 2γ(Ω), and
thus (3.6) immediately follows if hγ(Ω)−hγ(HΩ) ≥ 2, by choosing c(γ(Ω)) ≤ γ(Ω)−1.
Hence, we may assume hγ(Ω) − hγ(HΩ) < 2. Let us set sΩ := φ−1(γ(Ω)) and
sE := φ−1(γ(E)). Clearly, sE < sΩ. Then, we have

ϕ(sE)− ϕ(sΩ) =
Pγ(HE)

γ(E)
− Pγ(HΩ)

γ(Ω)
= hγ(Ω)− hγ(HΩ) < 2.

The behavior of ϕ(s) → ∞ as s → −∞ given in Lemma 3.3 implies that γ(E) >
ε2 = ε2(γ(Ω)). Setting ε := min{ε1, ε2} we obtain (3.16). In particular, there exists
R = R(γ(Ω)) such that −R ≤ sE ≤ sΩ ≤ R.

By the quantitative isoperimetric inequality (3.2) we have

(3.17)
Pγ(E)− Pγ(HE)

γ(E)
≥ 1

γ(E)
c(sE)α2

γ(E),

where c(sE) = 1
κ
(1 + s2

E)−1e
s2E
2 with κ > 0 a universal constant, as can be seen

in [1]. As sE ∈ [−R,R] we may replace γ(E)−1c(sE) with a constant c = c(R), thus
ultimately with c1 = c1(γ(Ω)).
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On the other hand, Lemma 3.3 coupled with the fact that (φ−1)′ > 0 and two
subsequent applications of the Mean Value Theorem imply

Pγ(HE)

γ(E)
− Pγ(HΩ)

γ(Ω)
= −ϕ′(ξ)(sΩ − sE) ≥ c̃2(sΩ − sE)

≥ c̃2(φ−1)′(ξ̂)(γ(Ω)− γ(E)) ≥ c2(γ(Ω)− γ(E)),

(3.18)

where the two constants can be chosen as

c̃2 = min
[−R,R]

{−ϕ′(s)} and c2 = c̃2 min
[ε,1−ε]

{(φ−1)′(ρ)},

and thus they ultimately depend only on γ(Ω). Combining the inequalities (3.15), (3.17)
and (3.18) yields

hγ(Ω)− hγ(HΩ) ≥ c1α
2
γ(E) + c2(γ(Ω)− γ(E))

≥ 1

5
min{c1, c2}(αγ(E) + γ(Ω)− γ(E))2

≥ c (γ(Ω))(αγ(E) + γ(Ω)− γ(E))2,(3.19)

where we used that γ(Ω)− γ(E) ≤ 1 and αγ(E) ≤ 2.
We now setHE to be the halfspace with the same measure as E such that αγ(E) =

γ(E∆HE), and HΩ to be the halfspace with the same measure as Ω containing HE.
Then, we have

αγ(E) = γ(E∆HE) ≥ γ(E \HE) = γ(E)− γ(E ∩HE).

Using the inequality above, that E ⊂ Ω, thatHE ⊂ HΩ and the equality 2γ(Ω\HΩ) =
γ(Ω∆HΩ) we get the following estimate

(αγ(E) + γ(Ω)− γ(E))2 ≥ (γ(Ω)− γ(E ∩HE))2

≥ (γ(Ω)− γ(Ω ∩HE))2 = γ(Ω \HE)2

≥ γ(Ω \HΩ)2 =
1

4
γ(Ω∆HΩ)2 ≥ 1

4
α2
γ(Ω).(3.20)

Inequality (3.19) paired with (3.20) finally yields the claim.

3.3. Proof of Theorem 3.2. Recall that βγ(Ω) ≤ 1, and recall the definition
of Φ(ρ) given in (3.10). Thus, we aim to show

hγ(Ω)− hγ(HΩ) ≥ cΦ(βγ(Ω)).

We begin by noticing that

βγ(Ω) = |b(HΩ)− b(Ω)| ≤ 4|b(HΩ)|.
Hence, by the properties of the function Φ established in Lemma 3.4, together with
Lemma 3.5, we have

Φ(βγ(Ω)) ≤ Cγ(Ω).

Thus, as in the proof of Theorem 3.1 we may assume without loss of generality that
hγ(Ω)−hγ(HΩ) < C, since otherwise the claim follows as before. Then, we may argue
again as in the proof of Theorem 3.1 and we may assume without loss of generality

ε ≤ γ(E) ≤ 1− ε,
for ε > 0 which depends only on γ(Ω), because otherwise the claim immediately
follows. Then, we may argue again as in the proof of Theorem 3.1 and obtain
inequality (3.18). In place of using the quantitative isoperimetric inequality (3.2)
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and obtaining (3.17) we use the strong quantitative isoperimetric inequality (3.3)
and get

(3.21)
Pγ(E)− Pγ(HE)

γ(E)
≥ 1

γ(E)
c(sE)βγ(E),

now with c(sE) = 1
κ
(1 + s2

E)−1 (see again [1]), and thus ultimately a constant c1 =
c1(γ(Ω)).

Combining (3.15) with (3.21) and (3.18) we deduce

(3.22) hγ(Ω)− hγ(HΩ) ≥ c1βγ(E) + c2 (γ(Ω)− γ(E)).

We fix HE to be the halfspace such that βγ(E) = |b(HE)− b(E)|, and we let HΩ be
the halfspace with the same measure of Ω such that HE ⊂ HΩ. By splitting HΩ into
HE and HΩ \ HE, adding and removing b(E), and using the triangle inequality, we
get

βγ(Ω) ≤ |b(HΩ)− b(Ω)| = |b(HE)− b(E) + b(HΩ \HE) + b(E)− b(Ω)|
≤ βγ(E) + |b(HΩ \HE)|+ |b(E)− b(Ω)|
= βγ(E) + |b(HΩ \HE)|+ |b(Ω \ E)|
≤ 2 max{βγ(E), |b(HΩ \HE)|+ |b(Ω \ E)|}.

Thus we have either

(3.23) βγ(Ω) ≤ 2βγ(E),

or

(3.24) βγ(Ω) ≤ 2
(
|b(HΩ \HE)|+ |b(Ω \ E)|

)
.

If (3.23) holds true, we obtain the result by (3.11), (3.23) and (3.22). If (3.24)
holds true, we have that

1

4
βγ(Ω) ≤ max{|b(HΩ \HE)|, |b(Ω \ E)|}.

By the monotonicity of Φ and its property (3.12), it follows

Φ(βγ(Ω)) ≤ 4(1 +
√

log(4)) max{Φ(|b(HΩ \HE)|),Φ(|b(Ω \ E)|)}.
As the sets HΩ \HE and Ω \E have the same Gaussian measure, and as E ⊂ Ω, by
Lemma 3.5 we finally get

Φ(βγ(Ω)) ≤ C(γ(Ω \ E)) = C(γ(Ω)− γ(E)),

which coupled with (3.22) allows us to conclude.

3.4. The sharpness of the inequality with the index βγ. In this section, we
show that the dependence on the asymmetry in Theorem 3.2 is sharp. Let T >> 1,
and let us define the family of one-dimensional sets {ΩT}T as

ΩT := (−∞,−1) ∪ (T,+∞).

It is easy to notice, that for T > 1 the Cheeger set of Ω is given by the halfline
(−∞,−1). The halfline of same volume of Ω is

HΩT = (−∞,−1 + ε(T )),

where ε(T ) is such that

(3.25)
ˆ +∞

T

e−
t2

2 dt =

ˆ −1+ε(T )

−1

e−
t2

2 dt,
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and obviously ε(T ) → 0, as T → +∞. For the convenience of the reader, ΩT

is depicted in Figure 3a, while the corresponding halfline HΩT in Figure 3b. By
recalling the definition of the function ϕ in Lemma 3.3, we have by the Mean Value
Theorem

hγ(Ω)− hγ(HΩ) =
Pγ((−∞,−1))

γ((−∞,−1))
− Pγ((−∞,−1 + ε(T )))

γ((−∞,−1 + ε(T )))
= −ϕ′(ξ)ε(T ),

for some ξ ∈ (−1,−1 + ε(T )). Hence, we immediately obtain the upper bound

(3.26) hγ(Ω)− hγ(HΩ) ≤ C ε(T ),

by choosing T >> 1 in such a way that ε(T ) < 1 and C = min[−1,0]{−ϕ′(x)}
independent of ε. We now aim to bound βγ(Ω) from below and show that

(3.27)
βγ(Ω)

1 +
√
| log(βγ(Ω))|

≥ c ε(T ).

This inequality and inequality (3.26) immediately show that Theorem 3.2 is sharp.
Let us prove inequality (3.27).

ΩT −1 T

(a) The one-dimensional set ΩT .

HΩT −1

ε(T )

(b) The halfline HΩT .

Figure 3. The set ΩT and the corresponding halfline HΩT
.

By definition of βγ(Ω), we have

(3.28) βγ(Ω) = |b(HΩ)− b(Ω)| = 1√
2π

(
e−

(ε(T )−1)2

2 − e−
1
2 + e−

T2

2

)
.

We now use (3.25) to bound this quantity from below as follows. On the one hand,
for the LHS of (3.25), one has

ˆ +∞

T

e−
t2

2 dt =
√

2

ˆ +∞

T√
2

e−x
2

dx =

√
π

2
erfc

(
T√
2

)
≤ 1

T
e−

T2

2 ,

where we used the asymptotic behavior of erfc given in (3.8). On the other hand, for
the RHS of (3.25), one has

ˆ −1+ε(T )

−1

e−
t2

2 dt ≥
ˆ −1+ε(T )

−1

−te−
t2

2 dt = e−
t2

2

∣∣∣−1+ε(T )

−1
= e−

(ε(T )−1)2

2 − e−
1
2 .

Combining these two inequalities, we get

(3.29) e−
T2

2 ≥ T

(
e−

(ε(T )−1)2

2 − e−
1
2

)
.
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Thus by (3.28) and (3.29) we get

(3.30) βγ(Ω) ≥ 1√
2π

(1 + T )

(
e−

(ε(T )−1)2

2 − e−
1
2

)
≥ c (1 + T ) ε(T ).

By using again the asymptotic behavior of erfc given in (3.8) we may estimate
the LHS of (3.25) as ˆ +∞

T

e−
t2

2 dt ≥ 1

2T
e−

T2

2 ,

and we simply estimate the RHS of (3.25) asˆ −1+ε(T )

−1

e−
t2

2 dt ≤ 2

ˆ −1+ε(T )

−1

−te−
t2

2 dt = 2

(
e−

(ε(T )−1)2

2 − e−
1
2

)
for T >> 1. Hence, we deduce by (3.25)

e−
T2

2 ≤ 4T

(
e−

(ε(T )−1)2

2 − e−
1
2

)
≤ c T ε(T )

for T >> 1. Combining this last inequality with inequality (3.30) yields

(3.31) βγ(Ω) ≥ c(1 + T )ε(T ) ≥ cTε(T ) ≥ c e−
T2

2 ≥ e−T
2

,

for T big enough. Recalling that βγ(Ω) < 1 for T >> 1 by (3.31) we get√
| log(βγ(Ω))| ≤ T,

for T big enough. This and inequality (3.30) imply the inequality (3.27).
Counterexamples in higher dimensions can be constructed in the same way. No-

tice that in higher dimensions, one can as well provide P-connected counterexamples,
by adding a suitably thin tube connecting the two halfspaces defining ΩT .
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