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Abstract. The dimension of the visible part of self-affine sets, that satisfy domination and a

projection condition, is being studied. The main result is that the Assouad dimension of the visible

part equals to 1 for all directions outside the set of limit directions of the cylinders of the self-affine

set. The result holds regardless of the overlap of the cylinders. The sharpness of the result is also

being discussed.

1. Introduction

For e ∈ S1, let ℓ(e) denote the half line starting from origin and propagating to
direction e. That is ℓ(e) = {te : t ≥ 0}. For a compact set E ⊂ R

2 the visible part
of E in direction e ∈ S1 is the set of points in x ∈ R

2 that satisfy

({x}+ ℓ(e)) ∩ E = {x}.

This set is denoted by ViseE. Let proje denote the orthogonal projection along the
direction e. (Note that Vise E may be different from Vis−e E, but projeE = proj−eE
always.) Consider the Hausdorff dimension of the visible part of a compact set E.
If dimH E < 1 then dimH proje E = dimH E for almost all e ∈ S1 by Marstrand’s
projection theorem [16]. Since Vise E ⊂ E and proje ViseE = proje E, it follows that
dimH ViseE = dimH E for almost all e ∈ S1. If dimH E ≥ 1, then still we have that
1 ≤ dimH Vise E for almost all e ∈ S1, but the upper bound dimH Vise E ≤ dimH E
should no longer be optimal for most e ∈ S1. The visibility conjecture states that
dimH ViseE = 1 for almost all e ∈ S1. Obviously one can not hope this to hold
for all directions, since a graph of a function can have dimension greater than 1 for
example. Further, an example of Davies and Fast [6] shows that dimH Vise(K) = 2
is possible for a dense Gδ set of directions. This is the furthest one can go, since
recently Orponen [20] showed that it is impossible to have dimH Vise(K) = 2 for set
of directions of positive measure. It is rather easy to see that the visibility conjecture
is false for the box counting dimension and thus for the Assouad dimension as well.
This follows, since a countable set equals to its visible part for almost all directions
and there exist compact countable sets with full box dimension. For example, one
can simply consider K = A× A, where A = {0} ∪ {(Sn)

−1}∞n=1 and Sn =
∑n

k=1 1/k.
For details, see Example 5.2.

The visibility conjecture has been confirmed in a few special cases: Järvenpää et
al. [8] proved the conjecture for quasi-circles, Arhosalo et al. [1] confirmed that for
fractal percolation the conjecture holds almost surely, and Falconer and Fraser [7]
showed that the conjecture holds for self-similar sets satisfying a projection condition
and the open set condition so that the open set can be chosen to be convex. In all
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these cases, the authors actually verified the conjecture for the box dimension and
for all directions e ∈ S1. See also the recent work of Järvenpää et al. [9].

One obvious variant of the problem is to consider the visible set from a given
point instead of a direction. O’Neil [18] showed that for compact connected subsets
of R2, the Hausdorff dimension of the visible part from a point x ∈ R

2 is strictly less
than the Hausdorff dimension of the original set, and it is uniformly bounded away
from 2, for almost all viewpoints x. An other related problem is to determine when
Vise E = E. Orponen [19] showed that if dimH E > 1, then the set of directions for
which Vise E = E has Hausdorff dimension at most 2− dimH E. On the other hand,
it follows from the main result of [22], that if dimB E < 1/2, then ViseE = E holds
outside a set of directions of box dimension 2 dimBE. For other related results, see
for example [5, 4, 23].

In this paper I study the visible parts of self-affine sets. Domination and projec-
tion condition are standing assumptions throughout the paper. Theorem 2.4 is the
main result and it says that the Assouad dimension of the visible part equals to 1 for
all directions outside the set of the limit directions given by the affine dynamics. This
theorem then has several corollaries. Corollary 4.3 says that for dominated self-affine
carpets the Assouad dimension of the visible part equals to 1 for all but two excep-
tional directions (that span the same line). Corollary 4.4 says that if the self-affine
system satisfies the strong cone separation, then the Assouad dimension of the visible
part equals to 1 for almost all directions. These results can be seen as rather strong,
considering how easily the Assouad dimension jumps up in different situations. For
example, it is well known that the fractal percolation has equal Hausdorff and box
dimension < 2 but full Assouad dimension, and Assouad dimension also tends to be
maximal in projections in a way that is impossible for Hausdorff or box dimension
[21]. Corollary 4.5 studies the case where the limit directions of the cylinders do not
overlap too much, and states that the Hausdorff dimension of the visible part equals
to 1 for all directions in this case.

Acknowledgement. I want to thank Balázs Bárány, Antti Käenmäki, and Tuomas
Orponen for inspiring discussions on the topics of this paper. I also wish to thank
the anonymous referee for the valuable comments on how to improve the quality of
this paper.

2. Preliminaries and statement of the main result

The purpose of this section is only to fix the setting of the paper and state the
main result. In the next sections, along the course of the proof, I give more insight
by explaining the geometry behind the assumptions and the result.

Throughout the paper, a direction means a unit vector e ∈ S1 and orientation is
an element of the projective space P

1, that is, the metric space of lines in R
2 that go

through origin, and where the distance is measured by the angle between the lines.
For a vector e ∈ R

2, let 〈e〉 = {te : t ∈ R} denote the corresponding element of the
projective space. It is sometimes more intuitive to think S1 as a set of angles instead
of unit vectors. This justifies the use of notations 〈θ〉 := {t(cos θ, sin θ) : t ∈ R},
projθ := proj(cos θ,sin θ), Visθ := Vis(cos θ,sin θ), and ℓ(θ) := ℓ((cos θ, sin θ)) for θ ∈ R.

Let A : R2 → R
2 be an invertible linear map, so that A(B(0, 1)) is not a ball.

Then A(B(0, 1)) is an ellipse whose semiaxes have different lengths. Let α1(A) be
the length of the longer one of the semiaxes and let α2(A) be the length of the
shorter one. Equivalently αk(A), k = 1, 2 are the square roots of the eigenvalues of
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ATA (ordered so that the larger is α1). Also, set ϑ1(A) ∈ P
1 to be the orientation

of the longer semiaxes of A(B(0, 1)). That is, ϑ1(A) = 〈Aη1(A)〉, where η1(A) is
the normalized eigenvector of ATA associated to the eigenvalue α1(A)

2. Likewise,
set ϑ2(A) = 〈Aη2(A)〉, where η2(A) is the normalized eigenvector corresponding to
α2(A)

2. It is a basic fact that ϑ1(A) ⊥ ϑ2(A) and η1(A) ⊥ η2(A).
Let {Ai}

κ
i=1 be a collection of contractive invertible linear maps, let {ci}

κ
i=1 be a

collection of vectors in R
2, and let ϕi(x) = Aix+ci, for all i ∈ {1, . . . , κ}. It standard

that there exists a unique compact set E satisfying

E =
κ
⋃

i=1

ϕi(E).

The set E is called self-affine.
Set Σ∗ =

⋃

k∈N{1, . . . , κ}
k and Σ = {1, . . . , κ}N. Write Σn for {1, . . . , κ}n even

though this is abusing the notation. Let |i| denote the length of the word i. That
is, |i| = n whenever i ∈ Σn and |i| = ∞, when i ∈ Σ. For i, j ∈ Σ, let i ∧ j

be the longest common beginning of i and j and define a distance function ̺ in Σ
by setting ̺(i, j) = 2−|i∧j|, with the interpretation 2−∞ = 0. This makes (Σ, ̺) a
compact metric space.

For quantities x and y, usually depending on i, the notation x . y means that
there is a constant C > 1, that may depend on the self-affine set E, so that x ≤ Cy.
Further, x ≈ y means that x . y and y . x.

For i = (i1, i2, . . . , in) ∈ Σ∗, let Ai = Ai1Ai2 . . . Ain and for the sake of brevity,
write αk(i) = αk(Ai) and ϑk(i) = ϑk(Ai) for k = 1, 2. Similarly, also write ϕi =
ϕi1 ◦ ϕi2 ◦ · · · ◦ ϕin . The line ϑ1(i) is called the orientation of the cylinder ϕi(E),
because the cylinder ϕi(E) is “close” to being a line segment that is parallel to the
line ϑ1(i), at least when |i| is large. This phenomena is examined in more detail in
Proposition 3.4. As usual, let π : Σ → E be the canonical projection defined by

{πi} =
∞
⋂

n=1

ϕi|n(E).

From time to time, the set ϕi|n(E) is also denoted by Ei|n. The system {Ai}
κ
i=1 is

called dominated, or said to satisfy dominated splitting, if there are constants τ > 1
and n0 ∈ N, so that α1(i) > τ |i|α2(i) for all i ∈ Σ∗, with |i| ≥ n0. Domination
ensures the existence of the limit orientation for all symbols i ∈ Σ. The next lemma
records this fact along with other useful properties of the limit orientations.

Lemma 2.1. Let E be a dominated self-affine set. Then

(1) ϑ1(i) = limn→∞ ϑ1(i|n) exists for all i ∈ Σ and the convergence is uniform.

(2) The map ϑ1 : Σ → P
1 is uniformly continuous.

(3) ϑ1(Σ) contains the accumulation points of the set {ϑ1(i) : i ∈ Σ∗}.
(4) Aiϑ1(j) = ϑ1(ij) for all i ∈ Σ∗ and j ∈ Σ.

Proof. The proof of (1) is a direct modification of [10, Lemma 2.1], where the
existence of the limit in question is showed for almost all i. The proof there works
for individual i ∈ Σ for which

lim inf
n→∞

−
1

n
log

α2(i|n)

α1(i|n)
> 0.
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In the setting of this paper, the domination implies the uniform bound log τ > 0 for
the above liminf. The uniform bound also implies that the convergence is uniform.
The part (2) follows from (1), and (3) follows from (2) and compactness of Σ.

To prove (4) it suffices to show that A−1
i ϑ1(ij|n) converges to ϑ1(j) as n → ∞,

since Ai is a diffeomorphism. Write

η1(ij|n) = tnη1(j|n) + snη2(j|n),

and for now let θk(j|n) ∈ S1 be a unit vector with 〈θk(j|n)〉 = ϑk(j|n) for k = 1, 2.
Then it follows from domination that

A−1
i ϑ1(ij|n) =

〈

A−1
i AiAj|nη1(ij|n)

〉

= 〈tnα1(jn)θ1(j|n) + snα2(jn)θ2(j|n)〉

=

〈

θ1(j|n) +
snα2(j|n)

tnα1(j|n)
θ2(j|n)

〉

→ ϑ1(j)

as long as tn stays bounded away from zero. To show that it does, recall that
|Aij|nη1(ij|n)| = maxv∈S1 |Aij|nv|. In particular,

|Aij|nη1(j|n)| ≤ |Aij|nη1(ij|n)|,

where the left hand side is at least α2(i)α1(j|n) and the right hand side is at most

α1(i)|tAj|nη1(j|n) + sAj|nη2(j|n)| ≤ α1(i)|tnα1(j|n) + snα2(j|n)|.

Thus the triangle inequality gives

α2(i)

α1(i)
≤ |tn|+ |sn|

α2(j|n)

α1(j|n)

and so the domination implies that |tn| ≥ 2−1α2(i)α1(i)
−1 for large n. �

In addition to domination, a crucial assumption in this paper is the following
projection condition.

Definition 2.2. An affine IFS {ϕi} (or the invariant set E) satisfies the pro-
jection condition if P

1 \ {ϑ1(j) : j ∈ Σ} 6= ∅ and if for all e ∈ S1 with 〈e〉 ∈
P

1 \ {ϑ1(j) : j ∈ Σ}, there is n0 so that proje ϕi(E) is a non-trivial interval for all
i ∈ Σn and n ≥ n0.

Remark 2.3. To check the projection condition in a specific case, it may be
useful to note that affinie mappings preserve lines and convex hulls. (The convex
hull of a set E is the smallest convex set containing E.) That is, if ℓ is a line in R

2

and K is the convex hull of E and A is an invertible affine map, then Aℓ is also a line
and AK is the convex hull of AE. Asking if proje ϕi(E) is an interval, is equivalent

to asking if projA
−1

i e(E) is an iterval. Further, projA
−1

i e(E) is an interval if and only
if every line ℓ of the form {y}+ 〈A−1

i e〉 that meets K also meets E.

As said, the purpose is to study the dimension of the visible part. I assume that
the reader is familiar with basic notions of dimension. The Hausdorff dimension is
denoted by dimH, the box dimension by dimB, and the Assouad dimension by dimA.
The definitions of Hausdorff and box dimension one can find from almost any text
book of fractal geometry or geometric measure theory (see for example [17]), and for
Assouad dimension one can check for example [14]. If the reader is not interested
in the Assouad dimension, then I just want to remark that the results are new also
for the Hausdorff dimension and that the versions with Assouad dimension are just
stronger since dimH K ≤ dimA K for all sets K.

The main result is the following theorem.
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Theorem 2.4. Let E be a self-affine set satisfying the projection condition and

the dominated splitting. Then dimH Vise(E) = dimA Vise(E) = 1 for all e ∈ S1 with

〈e〉 6∈ {ϑ1(i) : i ∈ Σ}.

The proof goes via weak tangents, defined as follows. Let Fn be a sequence of
compact sets in R

2. Say that Fn converges to a compact set F ⊂ R
2 in B(0, R), if

sup{dist (Fn, x) : x ∈ F ∩B(0, R)} → 0 as n → ∞

and

sup{dist (x, F ) : x ∈ Fn ∩ B(0, R)} → 0 as n → ∞.

For x ∈ R
2 and r > 0 we write Mx,r for the magnification function that shifts x to

origin and scales with factor r−1. That is

Mx,r(y) =
y − x

r
.

Let X ⊂ R
2 be compact. Then W ⊂ B(0, 1) is said to be a weak tangent of X, and

written W ∈ Tan(X), if Mxn,rn(X) converges to W in B(0, 1) for some sequences
(xn) ⊂ X and rn ց 0. It is typical to consider the weak tangents as subsets of the
unit ball (or the unit square), but this is just a convenient choice. One could as well
consider the convergence in B(0, R) for any fixed R > 0 or for all R > 0 to allow the
weak tangents to be unbounded as well.

Assuming Proposition 4.1, which deals with the dimension of the weak tangents
of the visible part, its proof of Theorem 2.4 is rather simple.

Proof of theorem 2.4. Consider e ∈ S1 with 〈e〉 6∈ {ϑ1(i) : i ∈ Σ}. By
the projection condition, it holds that proje Ei is an interval for some i ∈ Σ∗, so
dimH ViseE ≥ 1. Thus the task is to prove the upper bound. Proposition 4.1 says
that dimH W ≤ 1 for all weak tangents W of ViseE (the closure is needed since
the visible part is not necessarily closed). Recalling that the Assouad dimension of a
compact set equals to the maximum of the Hausdorff dimensions of its weak tangents
[11, Proposition 5.8], it then follows that dimH ViseE ≤ dimA Vise E ≤ dimH W ≤ 1,
were W is a weak tangent of Vise E with maximal Hausdorff dimension. �

Considering the proof of Proposition 4.1, it is obvious that if W is a weak tangent
of Vise E with Mxn,rnVis

e E → W in B(0, 1), then (by passing to a subsequence if
necessary) it also holds that (Mxn,rnE)∩B(0, 1) converges to a weak tangent, say T ,

of E. Of course W ⊂ T , but unfortunately, it is not generally true that W ⊂ Vise T
or W ⊃ Vise T . In particular, one can not just take the weak tangent T of E of
maximal dimension and expect it to have anything to do with the weak tangent of
Vise E of maximal dimension. See example 5.1. Instead, the strategy is to use the
structure of the self-affine set and the weak tangents obtained in Section 3 to show
that W ∩ Vise T can be covered by graphs of few well behaving functions and that
W \ Vise T can be covered by a countable collection of lines. The arguments about
visibility rely heavily on the projection condition.

The visibility conjecture asks if dimH Visθ(E) = 1 for almost all e ∈ S1. So, the
remaining step to confirm the conjecture in some special case, is to show that ϑ1(Σ)
is of measure zero (or technically, that the set e ∈ {〈e〉 ∈ ϑ1(Σ)} is of measure zero).
Theorem 4.4 deals with this in the case where the self-affine system also satisfies the
strong cone separation. In section 5, I give an example where the visible part has
large dimension in directions ϑ1(Σ), showing that Theorem 2.4 is sharp.
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3. Weak tangents of dominated self-affine sets

This section deals with the structure of the weak tangent sets of self-affine sets
satisfying the projection condition and dominated splitting. Recall that no separation
conditions are required. The structure of tangents of self-affine sets under separation
conditions has been studied in [2, 10, 15, 11] for example.

To study the local structure of self-affine sets it is convenient to approximate
the cylinders ϕi(E) by rectangles. The domination ensures that α2(i)/α1(i) → 0
uniformly as |i| → ∞. Therefore the approximation of ϕi(E) can be done with a
“very narrow” rectangle if |i| is large. This motivates the following definition.

Definition 3.1. For i ∈ Σ∗ define the approximating rectangle R(x, r, i) to be
the smallest closed rectangle that includes Mx,r(Ei) and has sides parallel to ϑ1(i)
and ϑ2(i). For any approximating rectangle R, the length of the sides parallel to ϑ1(i)
is denoted by h(R) and the length of the sides parallel to ϑ2(i) is denoted by v(R).
The orientation of cylinder Ei is also called the orientation of the approximating
rectangle R(x, r, i).

Lemma 3.2. Let E be a self-affine set satisfying the projection condition and

the dominated splitting. Let W be a weak tangent of E with Mxn,rn(E) → W in

B(0, 1) and let x ∈ W . Then there exists a sequence in ∈ Σ∗ of finite words and a

sequence Rn := Rn(xn, rn, in) of approximating rectangles so that hn := h(Rn) → ∞
and vn := v(Rn) → 0 and dist(Rn, x) → 0.

Proof. Since x ∈ W , there exists sequences (zn) ⊂ B(0, 1) and (in) ⊂ Σ∗ so that
zn ∈ Mxn,rn(Ein) and zn → x. Furthermore, in can be chosen so that α2(in) ≈ rn/n.
By setting Rn = R(xn, rn, in) it is obvious that dist(Rn, x) → 0. Note also that
α1(in) ≈ rnhn and α2(in) ≈ rnvn. By domination, there exist τ > 1, so that
α1(in) ≥ τnα2(in) for large n. Thus,

vn ≈ α2(in)/rn ≈ 1/n → 0

and
hn ≈ α1(in)/rn ≥ τnα2(in)/rn ≈ τn/n → ∞. �

After the previous lemma, it is intuitive that the weak tangent contains lines and
half lines pointing in different directions. Due to the obvious connection, it is natural
to call such sets Kakeya type sets.

Definition 3.3. Let X ⊂ R
2 and fix θx ∈ S1 for all x ∈ X. A set of the form

⋃

x∈X

{x}+ ℓ(θx)

is called a Kakeya type set. The collection {θx}x∈X is called the direction set of the
Kakeya type set.

Proposition 3.4. Let E be a self-affine set satisfying the projection condition

and the dominated splitting, and let W be a weak tangent of E. Then W = D ∩
B(0, 1), where D is a Kakeya type set with direction set Λ, that satisfies 〈θ〉 ∈ ϑ1(Σ)
for all θ ∈ Λ.

Proof. Let Mxn,rnE converge to W in B(0, 1) and fix x ∈ W . By Lemma 3.2,
there is a sequence Rn = R(xn, rn, in) of approximating rectangles with hn → ∞
and vn → 0 so that dist(x,Rn) → 0. Recall that Rn has orientation ϑ1(in). Since
hn → ∞, at least one of the shorter sides of Rn is outside B(0, 1). One can now fix a
direction that points to this side that is far away. To put this precise, choose a short
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side of Rn that does not meet B(0, 1) and extend this line segment to an infinite line
from both ends and call this line ξ for now (if there are two choices for the short side,
then it does not matter which one is chosen). Note also that ξ is perpendicular to
ϑ1(in). Then choose θn so that 〈θn〉 = ϑ1(in) and {x}+ tθn meets ξ for some t > 0.
By passing to a sub-sequence, one can also assume that θn converges to some θx ∈ S1

and by Lemma 2.1 part (3) it holds that 〈θx〉 ∈ ϑ1(Σ). By the projection condition
there is at least one e ∈ S1 \ ϑ1(Σ) so that proje ϕi(E) is an interval whenever |i| is
large. Further by compactness of ϑ1(Σ), the approximating rectangles Rn, with large
n, have orientation bounded away from 〈e〉. Thus, by the projection condition and
the choices made above, it is clear that

({x}+ ℓ(θx)) ∩B(0, 1) ⊂ W.

Trivially W ⊂
⋃

x∈W{x}. So, by taking union over all x ∈ W , it then follows that

(3.1) W =
⋃

x∈W

({x}+ ℓ(θy)) ∩ B(0, 1),

which is exactly what was claimed. �

Remark 3.5. For sure, the union in (3.1) is not optimal, meaning that it is
not necessary to take the union over all x ∈ W . In particular, if x ∈ W then also
zt = x+tℓ(θx) ∈ W for all small t > 0 at least. If ℓ(θzt) = ℓ(θx) then the union doesn’t
need to be over zt at all. Note however that even tough zt is on a line {x} + ℓ(θx)
it may be that ℓ(θzt) 6= ℓ(θx) due to overlap of cylinders in the original self-affine set
E.

4. Proofs of the main results

In this section I finish the proof of Theorem 2.4. As discussed earlier, all that
is left to do is to prove Proposition 4.1. After this it is time to focus on the Corol-
laries 4.3, 4.4, and 4.5, that deal with the size of the exceptional set of directions,
verifying the visibility conjecture in different special cases.

Proposition 4.1. Let E be a self-affine set satisfying the projection condition

and the dominated splitting and let e ∈ S1 so that 〈e〉 6∈ ϑ1(Σ). Then dimH W ≤ 1

for all W ∈ Tan(Vise(E)).

As mentioned earlier the strategy is to cover W with graphs of nice functions
and a collection of vertical lines. With this in mind, recall some basic facts. For
f : R → R, let G(f) denote the graph of f . That is, G(f) = {(x, y) ∈ R

2 : f(x) = y}.
A function f : R → R satisfying f(t) − f(s) ≤ L(t − s) for some L > 0 and for all
t ≥ s is called semi-decreasing. Also, f is said to be semi-increasing if −f is semi-
decreasing and f is called semi-monotone if it is semi-decreasing or semi-increasing.
The aim is to use graphs of semi-monotone functions for the coverings, so the first
thing to do is to check that their graphs are nice enough.

Lemma 4.2. Let f : R → R be semi-monotone. Then dimH G(f) = 1. Further

the set of discontinuity points of f is at most countable.

Proof. It is standard that the claim holds for monotone functions. By symmetry,
it is enough to show the semi-decreasing case. So, assume that f is semi-decreasing
and that the involved constant is L. Define ϕ : R → R by ϕ(t) = L · t and consider
g = f − ϕ. Since g is monotone and ϕ is Lipschitz, the second claim follows. Also,
dimH G(g) = 1 since g is monotone. On the other hand, G(g) = Ψ(G(f)), where
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Ψ: R2 → R
2 is defined by Ψ(x, y) = (x, y − ϕ(x)). Clearly 1 ≤ dimH G(f), since

proj−
π
2 G(f) = R. On the other hand, it is easy to see that Ψ is bi-Lipschitz, so

1 ≤ dimH G(f) = dimH Ψ(G(f)) = dimH G(g) = 1 �

Proof of Proposition 4.1. Fix a direction e as in the claim and let xn, rn be
sequences so that Mxn,rn(Vis

e(E)) → W in B(0, 1). After passing to subsequence if
necessary, it can also be assumed that Mxn,rn(E) converges to some weak tangent
T in B(0, 1). By Proposition 3.4, the weak tangent T is a Kakeya type set, so
let X ⊂ T and {θx}x∈X ⊂ S1, so that T =

⋃

x∈X({x} + ℓ(θx)). By assumption
±e 6= θx for all x ∈ X. Without loss of generality, assume that e = (0,−1). Let
β = min{|∢(θx,±π/2)|} and θ = π/2 − β. Compactness of ϑ1(Σ) ensures that β is
strictly positive. Still, without loss of generality, assume that dimH W = dimH W ∩
B(0, 2−1 cos θ), so it suffices to estimate the dimension of W ′ = W ∩ B(0, 2−1 cos θ).
Set γ := 2−1 cos θ. The reason of focusing on this smaller ball inside B(0, 1), is merely
a technicality and there is no need for the reader to worry about this too much. In a
nutshell, if ℓ is a line or half line that meets B(0, 1), then (proje ℓ) ∩ [−1, 1] may be
different from proje(ℓ∩B(0, 1)). The choice of γ ensures that if ℓ is a line or half line
included in the weak tangent, and it meets B(0, γ), then (proje ℓ)∩ [−γ, γ] equals to
[−γ, γ] ∩ proje(ℓ ∩B(0, 1)).

First divide T into three sets that each have nice enough geometry. Recall that
T consists of line segments, and only the lines that hit B(0, γ) are meaningful. If
L is a collection of lines and half lines so that

(
⋃

ℓ∈L ℓ
)

∩ B(0, 1) = T , and L′ ⊂ L
consists of those elements that meet B(0, γ), then set

LT = {ℓ ∈ L′ : ♯(ℓ ∩ ∂B(0, 1)) = 2},

LR = {ℓ ∈ L′ : ℓ = {x}+ ℓ(θx), with cos θx > 0, and |x| < 1},

LL = {ℓ ∈ L′ : ℓ = {x}+ ℓ(θx), with cos θx < 0, and |x| < 1}.

For the lines in LT there are two possibilities. According to Lemma 3.2, for ℓ ∈ LT ,
it may be that there exists a sequence of approximating rectangles Rn converging
to ℓ in B(0, 1). In this case set ℓ ∈ LTT . If this is not the case, then, since every
approximating rectangle can have at most one short side meeting B(0, 1), there are
two sequences of approximating rectangles, say Rn and Sn, so that Rn ∪ Sn → ℓ in
B(0, 1). (There might be many more that could be chosen, but it is enough to consider
these two.) Since a small neighborhood of the vertical orientation is excluded, it
makes sense to talk about left and right sides of these rectangles, referring to the
shorter sides that are most right and most left. Assume that the left side of Rn

does not meet B(0, 1) and the right side of Sn does not meet B(0, 1). By passing
to subsequences, one can assume that there are x, z ∈ ℓ so that Rn converges to
x + ℓ(θx) in B(0, 1), with cos θx < 0 and that Sn converges to z + ℓ(θz) in B(0, 1),
with cos θz > 0. In this case, set x+ ℓ(θx) ∈ TTL and z + ℓ(θz) ∈ TTR.

Finally, set

TT =
⋃

ℓ∈LTT

ℓ, TR =
⋃

ℓ∈LR∪LTR

ℓ, TL =
⋃

ℓ∈LL∪LTL

ℓ,

and T ′ = TT ∪TL∪TR. The closures are taken to ensure that Ti∩B(0, 1) is a compact
set for all i ∈ {T,R, L}. Obviously T ∩B(0, γ) = T ′ ∩B(0, γ). Note that despite the
closures, the sets Ti are still collections of lines, since the closure of any set of lines
in R

2 is still a set of lines in R
2. Most importantly, for each line in Ti, there still
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exists a sequence Rn of approximating rectangles with Rn → Ti, since they existed
for all lines of Li.

Now it is time to estimate dimH(Vis
e T ′). Trivially, Vise T ′ ⊂ Vise TT ∪Vise TL ∪

Vise T ′
R so it suffices to consider Vise Ti for i ∈ {T, L,R} separately. Of course, some

of the sets Ti may be empty, but at least one of them is nonempty since T ∩B(0, γ)
is nonempty.

Start with TR. Note that [−γ, γ] ∩ proje TR = [u, γ] =: IR for some u. Consider
the function fR : IR → R defined by f(x) = min{y : (x, y) ∈ TR}. Let Γ denote
the strip [−γ, γ] × R. Obviously G(fR) = Vise(TR ∩ Γ). Consider s, t ∈ IR, with
s < t. Since (s, f(s)) is on a line segment ℓ ∈ LR, with t ∈ [s, γ] ⊂ proje ℓ, it is clear
that f(t) − f(s) ≤ tan θ(t − s), so fR is semi-decreasing, and dimH G(fR) ≤ 1 by
Lemma 4.2.

Similarly, define fL : IL → R by setting f(x) = min{y : (x, y) ∈ TL}. Again,
G(fL) = Vise(TL ∩ Γ). Consider s, t ∈ IL, with s < t. Since (t, f(t)) is on a line
segment ℓ ∈ LL, with s ∈ [−γ, t] ⊂ proje ℓ, it is clear that f(t)−f(s) ≥ − tan θ(t−s).
Thus fL is semi-increasing, and dimH G(fL) ≤ 1 by Lemma 4.2.

Finally, define fT : [−γ, γ] → R by f(x) = min{y : (x, y) ∈ TT } and note that fT
is Lipschitz. All in all, the above considerations show that dimH W ′ ∩Vise T ′ ≤ 1.

Then it is time to estimate dimH(W
′\Vise T ′). The aim is to show that W ′\Vise T ′

can be covered by a countable collection of vertical line segments. More specifically,
by two collections of vertical lines that are parametrized by a) the discontinuity pints
of fi, b) the boundary points of Ii. Considering the first case, Lemma 4.2 showed
that a semi-monotone function can have only countably many points of discontinuity.
Hence, set

LD :=
⋃

i=L,R,T

⋃

{{s} ×R : fi is discontinuous at s}.

For the second case, let {ti}
6
i=1 be the endpoints of the intervals Ik, k = T,R, L, and

set

LB :=
⋃

i

{ti} ×R

The final step is to show that W ′\Vise T ′ ⊂ LD∪LB. If this is not the case, then there
exists a point ω = (ω1, ω2) ∈ W ′ \ (Vise T ′ ∪LD ∪LB). Since projeW ′ ⊂ IT ∪ IR ∪ IL
and ω is not visible, there exists x = (ω1, x2) ∈ Vise T ′ ∩ ℓ with x2 < w2 and ℓ ∈ Ti

for some i = T,R, L.
Assume first that i = T . Then, by the choices made above, there is a sequence Rn

of approximating rectangles, with side lengths hn → ∞ and vn → 0, converging to ℓ
in B(0, 1). Let ωn be a sequence so that ωn → ω and ωn ∈ Mxn,rn(Vis

eE). (Recall

that Mxn,rn(Vis
eE)∩B(0, 1) → W .) Let n be so large that dist(Rn, x) < (ωn

2 −x2)/2
and vn/ cos θ < (ωn

2 − x2)/2 for all large n. This is possible since in both inequalities
the left hand side converges to zero and (ωn

2 − x2) converges to (ω2 − x2) > 0.
Now, by the projection condition, there exists a point zn ∈ Rn ∩Mxn,rn(E) so that
zn ∈ {ωn}+ ℓ(−π/2) implying that ωn 6∈ Mxn,rn(Vis

e E), which is a contradiction.
Then assume that i = R. Assume also that ω1 ∈ int(IR) and that fR is continuous

at ω1, since otherwise ω is covered by LD or LB. Thus there exists z = (z1, z2) ∈
Vise TR with z1 < w1 and z2 = fR(z1) and z2 + |z1 − x1| tan θ < (ω2 − x2)/4. Again,
there is a sequence Rn of approximating rectangles and points zn ∈ Rn with zn → z.
Let ωn be a sequence so that wn → ω and ωn ∈ Mxn,rn(Vis

eE). When n is so large
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that

zn2 + |zn1 − x1| tan θ < x2 + (ω2 − x2)
3

8
,

vn cos(θ)
−1 < |ω2 − x2|/8,

ωn
2 − |ωn

1 − ω1| tan θ > ω2 − |ω2 − x2|/4,

(4.1)

the projection condition implies that {ωn}+ℓ(−π/2)∩Rn 6= ∅ for all large n implying
that ω 6∈ W ′. See Figure 1 for clarification. The case i = L is symmetric to the case
i = R.

ω

ωn

x
z

Rn

zn

Figure 1. This picture explains the formulas (4.1). When the approximating rectangle Rn is

narrow, and ω
n is near ω, and z

n is near z, the projection condition ensures that ω
n is not visible.

The conclusion now is that W ′ ⊂ G(fT ) ∪ G(fR) ∪ G(fL) ∪ LD ∪ LB and each
element in the union has Hausdorff dimension 1, so the proof is finished. �

Considering the visibility conjecture, there is still the question whether H1(ϑ1(Σ))
= 0. For dominated self-affine carpets, this is true. A self-affine set is called a carpet
if all Ai are diagonal matrixes. If a carpet is dominated, then ϑ1(Σ) is a singleton—it
is either the horizontal or the vertical orientation. Thus theorem 2.4 immediately
implies that the visibility conjecture holds in this class.

Corollary 4.3. Let E be a self-affine carpet satisfying the projection condition

and the dominated splitting. Then dimH Vise(E) = dimA Vise(E) = 1 holds for all

except possibly one e ∈ S1 and its opposite −e.

To verify the visibility conjecture in a more general setting, consider the self-affine
sets satisfying the “strong cone separation” introduced in [13]: assume that there is
a cone X ⊂ R

2 so that Ai(X) ⊂ int(X) and AT
i (X) ⊂ int(X), and for all i and that

(4.2) Ai(X) ∩ Aj(X) = ∅

for all i 6= j. As is intuitive, a cone is a union of set of lines through origin in
R

2 that have bounded angle from some fixed line. In what follows, the cone X is
understood as a subsets of R2 or P1 depending on the situation, and this should not
cause any confusion. So, equivalently, a cone is an interval in the projective space
P

1. As discussed in the proof of [13, Lemma 4.1] it follows that η1(Ai), ϑ1(Ai) ∈
X and η2(Ai), ϑ2(Ai) 6∈ X for all i ∈ Σ∗. Further, without loss of generality,
assume that η1(i) is uniformly separated from Xc for all i independently of the
length |i|. This follows simply by choosing X ′ to be the minimal cone that includes
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∪i(Ai(X) ∪ AT
i (X)) and then applying the previous deduction to the cones Ai(X

′).
(Note that the strong cone separation holds with the cone X ′ as well.)

Corollary 4.4. Let E be a self-affine satisfying the projection condition and

the strong cone separation. Then dimH Vise(E) = dimA Vise(E) = 1 for almost all

e ∈ S1.

Proof. The strong cone separation implies domination [3, Theorem B], so by
Theorem 2.4 it is enough to show that H1(ϑ1(Σ)) = 0. This would certainly follow
form dimA ϑ1(Σ) < 1 and this in turn follows if ϑ1(Σ) is porous. Recall that a subset
Y of some metric space is porous if there are constants r0, α > 0 so that for all y ∈ Y
and r < r0, there is x ∈ B(y, (1− α)r) so that B(x, αr)∩ Y = ∅. For the connection
between Assouad dimension and porosity, see for example [14].

Let X be the cone from (4.2). Since X is a union of lines through origin, it can
also be considered as a subset of the projective space. Recall that P

1 is a metric
space where the distance is measured by ∢(·, ·), the angle between the corresponding
lines in R

2 (which lies in the interval [0, π/2] as usual). An invertible linear mapping
A : R2 → R

2 can naturally be interpreted as a mapping on the projective space
as well since A(〈v〉) = 〈A(v)〉 by linearity. Thus the mappings {Ai}

κ
i=1 naturally

generate collections of nested compact sets inside X, since Ai(X) ⊂ X for all i. To
be more precise, I claim that setting Ei = Ai(X), the collection {Ei}i∈Σ∗ satisfies
the conditions

(M1) Ein ⊂ Ei|n−1
for all i ∈ Σ and n ∈ N,

(M2) diam(Ei|n) → 0 as n → ∞ for all i ∈ Σ.

Part (M1) is obviously true, but verifying part (M2) requires some work. If these
conditions hold, then the collection {Ei}i∈Σ∗ is called a Moran construction and
there is a unique compact set

Y =
⋃

i∈Σ

⋂

n∈N

Ei|n.

Further knowledge about Moran constructions is not needed, but the interested reader
can check for example [12]. For this particular example, the key point is that by
combining (M1), (M2), with Lemma 2.1 parts (3) and (4), and the fact that η1(Ai) ∈
X for all i ∈ Σ, it follows that Y equals to ϑ1(Σ).

Now, to see that also (M2) holds, fix i ∈ Σn, and a, b ∈ X. Further, fix unit
vectors tη1(i) + sη2(i) and uη1(i) + vη2(i) so that

a = 〈tη1(i) + sη2(i)〉 and b = 〈uη1(i) + vη2(i)〉.

It immediately follows that

Ai(a) = 〈Ai(tη1(i) + sη2(i))〉 = 〈tAiη1(i) + sAiη2(i)〉,

Ai(b) = 〈Ai(uη1(i) + vη2(i))〉 = 〈uAiη1(i) + vAiη2(i)〉.

Further, it is no restriction to assume that t and u are non-negative. Since 〈η2(i)〉 6∈
X, there exists δ > 0, so that t, u > δ and |s|, |v| < 1− δ. Moreover, δ can be chosen
to be independent of a, b, i and the level n, since 〈η2(i)〉 is uniformly separated from
X. Since δ > 0 is fixed, there exists M > 1 so that

(4.3) |γ − β| ≤ | tan γ − tanβ| ≤ M |γ − β|
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for angles γ, β ∈ [−π/2 + δ/2, π/2− δ/2] and Mδ ≥ π− δ. Therefore, it follows that
(4.4)

∢(Ai(a), Ai(b)) ≤
‖Aiη2(i)‖

‖Aiη1(i)‖

∣

∣

∣

s

t
−

v

u

∣

∣

∣
=

α2(i)

α1(i)

∣

∣

∣

s

t
−

v

u

∣

∣

∣
≤

α2(i)

α1(i)
Mπ ≤ τ−nMπ,

and τ−n → 0 as n → ∞, which proves (M2).
It now suffices to show that {Ei}i∈Σ∗ , satisfies the following bounded distortion

property: there are constants k0 ∈ N and D > 1 so that

d∗(i)

d∗(i)
≤ D

for all i ∈ Σk and k ≥ k0, where

d∗(i) = sup
a,b∈X

a 6=b

∢(Ai(a), Ai(b))

∢(a, b)
and d∗(i) = inf

a,b∈X

a 6=b

∢(Ai(a), Ai(b))

∢(a, b)

If the bounded distortion holds, then let I be a gap between two neighboring first level
cylinders Ai(X) and Aj(X). Note that I exists due to the strong cone separation.
Let r > 0 and θ ∈ Y . Let i be a finite word with Ai(Y ) ⊂ B(θ, r) but |Ai(Y )| & r.
Then, due to the separation of the cones, there is a gap G := Ai(I) ⊂ B(θ, r) and

|G|

r
&

d∗(i)|I|

|Ai(Y )|
≥

d∗(i)|I|

d∗(i)|Y |
≥ D−1 |I|

|Y |

which shows that Y is porous.
To show the bounded distortion property, fix i ∈ Σk, a, b ∈ Y . There is a small

annoying technicality that the angle between lines in X may be realized “outside”
X if the opening angle of X is larger than π/2. Therefore, let k0 be so large that
∢(Ai(x), Ai(y)) ≤ δ for all lines x, y ∈ X when |i| ≥ k0 and assume k ≥ k0.

As before, fix unit vectors tη1(i) + sη2(i) and uη1(i) + vη2(i) so that

a = 〈tη1(i) + sη2(i)〉 and b = 〈uη1(i) + vη2(i)〉.

where t and u are positive. Next, note that s
t
= ± tan∢(〈η1(i)〉, a) depending on if s

is positive or negative, and that a similar formula holds for v
u
. Combining this with

(4.3) gives

(4.5) ∢(Ai(a), Ai(b)) ≤
‖Aiη2(i)‖

‖Aiη1(i)‖

∣

∣

∣

s

t
−

v

u

∣

∣

∣
=

α2(i)

α1(i)

∣

∣

∣

s

t
−

v

u

∣

∣

∣
≤

α2(i)

α1(i)
M∢(a, b).

for lines a, b ∈ Y with ∢(a, b) ≤ δ. If ∢(a, b) > δ, then it could be that the angle is
realized outside X, and the last inequality in the above estimate may not hold. In
this case recalling the choice of M still gives

(4.6) ∢(Ai(a), Ai(b)) ≤
α2(i)

α1(i)

∣

∣

∣

s

t
−

v

u

∣

∣

∣
≤

α2(i)

α1(i)
M(π − δ) ≤

α2(i)

α1(i)
M2∢(a, b).

Since ∢(Ai(a), Ai(b)) ≤ δ by the choice of k0, the lower estimate can be treated as a
single case. Again, relying on (4.3) gives
(4.7)

∢(Ai(a), Ai(b)) ≥
1

M

‖Aiη2(i)‖

‖Aiη1(i)‖

∣

∣

∣

s

t
−

v

u

∣

∣

∣
=

1

M

α2(i)

α1(i)

∣

∣

∣

s

t
−

v

u

∣

∣

∣
≥

1

M

α2(i)

α1(i)
∢(a, b).

Combining (4.5), (4.6), and (4.7) gives

(4.8) M−1α2(i)

α1(i)
∢(a, b) ≤ ∢(Ai(a), Ai(b)) ≤

α2(i)

α1(i)
M2∢(a, b)
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and this proves the bounded distortion with the constants k0 and M3. �

If there are not too many cylinders pointing to the same direction then it is
possible to get rid of the exceptional directions, but this only works for Hausdorff
dimension, since the argument uses countable stability.

Corollary 4.5. Let E be a self-affine satisfying the projection condition and the

dominated splitting. Assume further that the sets {πi : ϑ1(i) = 〈e〉} have Hausdorff

dimension at most 1 for all e ∈ S1. Then dimH Vise(E) = 1 for all e ∈ S1.

Proof. Assume that ϑ1(i) = 〈e〉 for some i ∈ Σ, since otherwise the claim for e
follows from Theorem 2.4.

Divide the cylinders of E into different classes according to the angle that the
orientation of the cylinder has with 〈e〉. Set I(δ, k) = {i ∈ Σk : ∢(ϑ1(ij), 〈e〉) >
δ for all j ∈ Σ} and

(4.9) E(δ, k) =
⋃

i∈I(δ,k)

ϕi(E).

From Lemma 2.1, it follows that E =
⋃

k∈NE(k−1, k)∪Fe, where Fe = {πi : ϑ1(i) =
〈e〉}. It also follows that all the elements of the union are compact sets. The sets
E(k−1, k) are not exactly self-affine but each of them is a finite union of affine im-
ages of E. In particular, if i ∈ I(k−1, k), then 〈e〉 6∈ ϑ1(ij) for all j ∈ Σ and, by

Lemma 2.1, 〈A−1
i e〉 6∈ ϑ1(Σ). Thus Theorem 2.4 gives that dimH VisA

−1

i eE = 1. Re-

calling that, Vise ϕi(E) is an affine image of VisA
−1

i e E, and that Hausdorff dimension
is countably stable finishes the proof. �

5. Final remarks

This final section exhibits a few examples dealing with the sharpness of Theo-
rem 2.4.

Example 5.1. Consider fi : [0, 1]
2 → [0, 1]2 for i = 1, 2, 3 with f1(x, y) =

(3−1x, 2−1y), f2(x, y) = (3−1x, 2−1y) + (3−1, 2−1), and f3(x, y) = (3−1x, 2−1y) + (2 ·
3−1, 0). The associated self-affine set E is a Bedford–McMullen carpet, and it is well
known that

dimH E = log2
(

2log3 2 + 1log3 2
)

= log2
(

2log3 2 + 1
)

and
dimA E = log2 2 + log3 2 = 1 + log3 2,

see for example [15]. In particular, 1 < dimH E < dimA E. It is easy to see that the
system is dominated and that ϑ1(Σ) =

〈

π
2

〉

.
To verify the projection condition, fix e ∈ S1 with 〈e〉 6= 〈π

2
〉. Note that

A−1
i (x, y) = (3nx, 2ny) for all i ∈ Σn, so n0 ∈ N can be fixed so that the angle

between the x-axis and A−1
i (〈e〉) is small, say smaller than π/8, for all i ∈ Σn,

with n ≥ n0. By Remark 2.3, it is now enough to show that if ℓ is a line so that
∢(ℓ, 〈π〉) ≤ π/8, and ℓ∩K 6= ∅, where K is the convex hull of E, then also ℓ∩E 6= ∅.
So let ℓ be such a line. The projection of K to arbitrary direction is not an interval,
but since the angle between ℓ and x-axis is small, it is easy tho see that ℓ∩ϕi1(K) 6= ∅
for some i1 ∈ {1, 2, 3}. Since ϕ−1

i1
ℓ has even smaller angle with the x-axis, it follows

that ϕ−1
i1
ℓ ∩ K 6= ∅ implies ϕ−1

i1
ℓ ∩ ϕi2(K) 6= ∅ for some i2 ∈ {1, 2, 3}. Continuing

in this manner yields a word i = (i1, i2, . . .) ∈ Σ so that ℓ ∩ ϕi|n(K) for all n ∈ N.
Thus πi ∈ ℓ ∩ E, and so the projection condition holds.
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Since domination and projection condition are satisfied Theorem 2.4 gives that

1 = dimH Vise E = dimA ViseE

for all e 6= ±π
2
. However, it is also easy to see that, outside the tri-adic points on the

x-axis, there is no vertical alignment of points of E. Moreover, for each the tri-adic
point t ∈ [0, 1], there are at most two points, say x and y, of E with proj

π
2 x = t =

proj
π
2 y. Therefore, there exist a countable set H , so that H ∪ Vis±

π
2 E = E. Thus

1 < dimH E = dimH Vis±
π
2 E.

The weak tangent T of E that satisfies dimH T = dimA E is obviously C × [0, 1],
where C is the middle thirds Cantor set. However, Vis−

π
2 (T ) = C × {0} and so

dimH Vis−
π
2 T = log3 2. Therefore, if W is the weak tangent of Vis−

π
2 E that has

maximal dimension, then W 6= Vis−
π
2 T .

In general the visibility conjecture is false for the Assouad and box dimensions
as mentioned in the introduction. The following is a concrete counterexample.

Example 5.2. Let A = {0} ∪ {S−1
n }∞n=1, where Sn =

∑n

k=1 1/k. Consider firs
the box dimension of just A ⊂ R. For δ > 0, consired the index n for which
δn := (Sn)

−1 − (Sn+1)
−1 is closest to δ. Then, to cover A with intervals of length δ,

it is essentially enough cover all of [0, S−1
n ] and the rest can be neglected. Anyway,

at least N(δ) ≈ δ−1
n S−1

n intervals are needed. On the other hand,

δn = (Sn)
−1 − (Sn+1)

−1 =
(n+ 1)−1

SnSn+1
≈

1

nS2
n

and it is an exercise to show that Sn ≈ log n. Thus it follows that

lim
δ→0

logN(δ)

− log δ
= lim

n→∞

log(δ−1
n S−1

n )

log δ−1
n

= lim
n→∞

1−
logSn

log n+ 2 logSn

= 1,

which implies that dimB A = 1. If one considers K = A × A, essentially the same
calculation shows that dimB K = 2. Because K is countable, Vise(K) = K for almost
all directions, and thus dimB Vise(K) = 2 for almost all e ∈ S1. (For dimensions
d > 2, one can of course consider K = Ad, the d fold product of A.)
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