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Abstract. We show that the a-fractional bilinear indicator/cube testing constant
1
BICT pa (0,w) = sup sup / TS (1E)w’ ,
F

Qerr B.FCQ \/[Q], Q1
defined for any a-fractional singular integral T on R” with 0 < o < n, is controlled by the classical

a -fractional Muckenhoupt constant AS (o,w), provided the product measure o x w is diagonally
reverse doubling (in particular if it is reverse doubling) with exponent exceeding 2 (n — ).

Moreover, this control is sharp within the class of diagonally reverse doubling product measures.
In fact, every product measure p X u, where p is an Ahlfors—David regular measure p with exponent
n — «, has diagonal exponent 2 (n — «) and satisfies AS (u, 1) < oo and BZCT 1o (p, 1) = 0o, which
has implications for the L? trace inequality of the fractional integral I* on domains with fractional
boundary.

When combined with the main results in arXiv:1906.05602, 1907.07571 and 1907.10734, the
above control of BZCT ra for @ > 0 yields a T'1 theorem for doubling weights with appropriate
diagonal reverse doubling, i.e. the norm inequality for T'® is controlled by cube testing constants
and the a-fractional one-tailed Muckenhoupt constants A$ (without any energy assumptions), and
also yields a corresponding cancellation condition theorem for the kernel of 7%, both of which hold
for arbitrary a-fractional Calderon—Zygmund operators T'¢.

We do not know if the analogous result for BZCT g (o,w) holds for the Hilbert transform H
in case o = 0, but we show that BZCT gay (0,w) is not controlled by the Muckenhoupt condition
A$§ (w, o) for the dyadic Hilbert transform H% and doubling weights o, w.

1. Introduction

We give precise statements of our main results in Subsection 1.4 below, but first
we recall the definitions of doubling, reverse doubling, Muckenhoupt conditions and
Poisson integrals; then the notion of weighted norm inequality for a standard singular
integral, and the associated testing conditions; and finally the bilinear indicator /cube
testing theorem from [Sall, [Sa2] and [Sa3].

1.1. Definitions. Denote by P" the collection of cubes in R™ having sides
parallel to the coordinate axes. A positive locally finite Borel measure y on R” is
said to satisfy the doubling condition if there is a pair of constants (3,7) € (0, 1)2,
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called doubling parameters, such that with |Q| L= (Q),
(1.1) 16Q, > v|Q|,, for all cubes @ € P,

and the reverse doubling condition if there is a pair of constants (3,7) € (0,1)?,
called reverse doubling parameters, such that

(1.2) 18Q[, <vIQ|,, for all cubes Q € P".

Note that the inequality in (1.2) has been reversed from that in the definition of the
doubling condition in (1.1).

A familiar equivalent reformulation of (1.1) is that there is a positive constant
Caoun, called the doubling constant, and a positive constant C, such that |2Q)| i <
Caow | Q| i for all cubes ) € P™. More important for us is yet another characterization
that follows by iterating (1.1): p is doubling if and only if there exists a positive

constant A4  called a doubling exponent, such that
tQ ou
sup | ‘” < % b, for all sufficiently large t < oo.
Qerr Q)

Similarly there is the analogous reformulation of (1.2): u is reverse doubling if and
only if there exists a positive constant 6", called a reverse doubling exponent, and a
positive constant C, such that

| SQ | GI'CV

— B <%
Ql,

A doubling exponent 920‘”0 of a doubling measure p is necessarily large, namely
«920“10 > n, and a reverse doubling exponent ¢/ of a reverse doubling measure p is
necessarily small, namely 07" < n, with Lebesgue measure satisfying the extreme
case 05 =n = 9§§“b. Indeed, with Qy ={a € N": 0 < a; < N — 1}, we have for k
large,

sup for all sufficiently small s > 0.

Qepr

31~m 3kQ‘ Z ‘3k+1 (Q+1(Q)« )}u < Z 3(k+1)g5m" 0+0(Q) a|u
aEQSk aEQSk
3°Q|,

which implies Ggo‘m > n. Similarly Hffv < n.
Finally it is well known that doubling implies reverse doubling. Indeed, assuming
t > 5 in the definition of Gg‘mb, we obtain for any cube @) in a dyadic grid D,

3Q\Ql, = > 1,
IeD:IC3Q\Q,L(I)=4(Q)

__pdoub n __pdoub
> > I > E -5,
I€D:I1C3Q\Q,4(1)=£(Q)

3”
— (0], - 130l, - B\ @, = (1- Tt sal,.

with a similar inequality for larger . The converse fails since in particular, reverse
doubling measures can vanish on open sets, see Example 7 below, while doubling
measures cannot.

Let o and w be locally finite positive Borel measures on R", and denote by P" the
collection of all cubes in R™ with sides parallel to the coordinate axes. For 0 < a < n,

gdoub

f; B(k-Fl) u
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the classical a-fractional Muckenhoupt condition for the weight pair (o, w) is given
by

o lQl, el
1 B = AT

and the corresponding one-tailed condition by

Y

(1.4 A3 (0.) = sup P (Qu0) e < o,
QeQn Q| ~
where the reproducing Poisson integral P is given by
. Ql
P(Q, 1) E/ i | 5 dp ().
“\ (1017 + 1z — zql

1.2. Standard fractional singular integrals, the norm inequality and
testing conditions. Let 0 < a < n and ki,ks € N. We define a standard
(K1 + 0, ko + §)-smooth a-fractional CZ kernel K*(z,y) to be a function K®: R" x
R"™ — R satisfying the following fractional size and smoothness conditions for some
0 > 0: For z # y, and with V; denoting gradient in the first variable, and V,
denoting gradient in the second variable,

(1.5) IVIK® (2,y)| < Cozlz —y[*7™", 0<j <k,
)
VEE® (2,y) - VRE® (2!, y)] < Cos ('“””“”/') T i
|z —yl |z —y| — 2

and where the same inequalities hold for the adjoint kernel K** (x,y) = K* (y, z),
in which z and y are interchanged, and where k; is replaced by ks, and V; by V.

If T* is the a-fractional singular integral operator associated with the CZ kernel
K, then the norm constant Mra = Nra (0, w) is the least constant in the two weight
norm inequality

(16) ([ e oras) <o ([ it ar)

taken over all suitable truncations, see e.g. [SSU].
The cube testing conditions associated with an a-fractional singular integral op-
erator T introduced in [SSU| are given by

1
(Tre (0,w))* = sup —/ 17216 w < oo,
Qern |Ql, Jq

1 * 2
T iray (w, o) ’= sup —/ (1) 1g|" 0 < o0,
( (T%) ) QGP"‘QLU o

1.3. The BZCT theorem. The bilinear indicator/cube testing property is

(1.7) BICT 7o (0,w) = sup sup N /ch‘(lE)w

QeP B.rcQ \/|Ql, [QL, 1/F
where the second supremum is taken over all compact sets £ and F' contained in
a cube ). In [Sal], [Sa2| and [Sa3] it is shown that for doubling weights, the cube
testing conditions, the one-tailed Muckenhoupt conditions, and the bilinear indica-
tor/cube testing property are sufficient for the norm inequality of an a-fractional CZ

< 00,
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operator. In that theorem, the kernel must satisfy smoothness conditions related to
the order of vanishing moments of the weighted Alpert wavelets used (see [RSW]),
which in turn depend on the doubling exponents of the weights.

Theorem 1. [Sal, Sa2, Sa3| Suppose that o and w are locally finite positive
doubling Borel measures on R". Let 0 < o < n. Suppose also that T is a stan-
dard (k1 + 6, ke + §)-smooth a-fractional Calderén—Zygmund singular integral in R",
where ry > 09" and ky > 09" exceed the doubling exponents of o and w. In the
case a = 0, we also assume that T° is bounded on unweighted L? (R™). Then

Nra (0,w) S Tpa (0, w) + Tpasx (w,0) + AS (0,w) + A5 (w,0) + BICT 1o (0,w),

where the implied constant depends only «, n, and the doubling constants of the
measures. Moreover, if in addition one of the measures is an A,, weight (and if
T° is also bounded on unweighted L? (R™) in the case o = 0), then the bilinear
indicator/cube testing property can be dropped:

Nre (0,w) S Tre (0,w) + Tres (w,0) + A3 (0,w) + A3 (w,0).
This theorem raises the following problem.

Problem 2. Suppose that ¢ and w are locally finite positive doubling Borel
measures on R"”. Let 0 < o < n. Suppose also that T“ is a standard a-fractional
Calderon—Zygmund singular integral in R". Is the two weight bilinear indicator
cube testing constant BZCT 7« (0,w) then controlled by the cube testing constants
Tra (0,w), Tras (w,0) and the one-tailed Muckenhoupt constants A$ (o,w), A$(w,
0)? More generally, is it true that for every 0 < e < 1,

BICT 1o (0,w) S Tre (0,w) + Tras (w,0) + A3 (0,w) + A3 (w,0) + v/eNgpa (0,w)?

1.4. Main results. In the next section we will give a positive answer to
Problem 2 for o > 0 and for certain pairs of doubling measures, without assuming
one of them is an A, weight. Instead, we assume that the product measure ¢ x w is
diagonally reverse doubling, with a bound on a diagonal reverse doubling exponent

0428 where by definition 0228 satisfies
S X S S dia,
sup 509 X Qo _ [5G, [5QL., < s%x%,  for all sufficiently small s > 0.

gerr Q@ X Q. Gebn Ql, 1Q, ~
Remark 3. If 0 and w are reverse doubling with reverse doubling exponents 6,
and 6, respectively, then the product measure o x w is reverse doubling with reverse
doubling exponent 6; 4 65, hence o x w is diagonally reverse doubling with exponent
008 > 9, + 0,. In particular, if just one of the measures is reverse doubling, then
the product measure is diagonally reverse doubling with at least half the exponent.

Actually we prove a bit more, namely that the two weight bilinear indicator cube
testing constant BZCT jo (0,w) for the fractional integral operator I is controlled
by the classical Muckenhoupt constant A$ (o, w) alone in this case. Note that when
a > 0, we have |T*v| < CI% for any positive measure v. See the next section for
more detail.

Theorem 4. Suppose o and w are locally finite positive Borel measures on R",

and that the product measure o X w is diagonally reverse doubling with a diagonal
diag

reverse doubling exponent 0922 Set 9 =low [fo<a<n <0 + «, then with a

oXw* 2 -
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constant C' = Cy ., depending only on 0, o, and n, we have

I (1go) dw < Coanv/ A5 (0,w)4/|Q], 1Q|,, for all cubes @ € P".
/ VA @)/

Using Ahlfors—-David regular measures, we show that the inequality n < 0+ « in
Theorem 4 is sharp. As a corollary of Theorems 1 and 4, we obtain a 7’1 theorem
for arbitrary a-fractional Calderén-Zygmund operators in this setting. Note that
Theorem 1 requires a degree of smoothness for the kernel that is related to the
doubling exponents, as opposed to the reverse doubling exponents.

Corollary 5. Suppose that 0 and w are locally finite positive doubling Borel

measures on R", and that the product measure o X w is diagonally reverse doubling
diag

with a diagonal reverse doubling exponent lexai and set 0 = 9"2“ Suppose 0 < o <

n < 0+ « and that T is a (k1 + 6, ke + 0)-smooth standard a-fractional Calderén—
Zygmund singular integral in R"® with rx; > 09" and ky > 09" Then

Nra (07 W) 5 Tra (07 w) + Zrasw (7 U) + Ag (07 w) + Ag (wv U) ’

where the implied constant depends on «, n, and the doubling constants for o and
w. Moreover, in terms of cancellation conditions on the kernel K* (z,y) of T, we
have

Nra (0, w) < Ago (0, w) + Ugans (w,0) + AF (0,w) + AF (w, 0),

where Ao (0,w) and Ao (w, o) denote the least positive constants so that

asy [ .

for all0 < e < N and xg € R",

/ K% (z,y)do (y)| dw(z) < UAga (0,w) / do (y),
e<|z—y|<N

|zo—y|<N

along with a similar inequality with constant ya. (w, o), in which the measures o
and w are interchanged and K* (x,y) is replaced by K** (z,y) = K (y, x).

In the third section, we will adapt Nazarov’s construction from [NV] to give a
negative answer to the analogous question for the dyadic Hilbert transform HY (a
particular martingale transform) in Theorem 4, namely that H% which is of course
bounded on unweighted L? (R), can fail the inequality

HY (1g0)dw| < C4/1Q|, |Q|,,, for all intervals Q.
/ v

for all positive constants C, no matter the doubling constants of ¢ and w. Let D°
denote the set of dyadic intervals contained in the unit interval [0,1], and let H9
denote the dyadic Hilbert transform

1
(1.9 HYu(z)= Z A, A= (Erp—FEnp), Ep= m/ld/%

IeDO xzel
where I_ and I, are the left and right hand dyadic children of I. Note that
HYp(z) = Y jepo (1 ) \/_‘11 where {h;};cpo is the Haar basis of L ([0,1]) =

{f e L*(0,1) fo = }, and where of course p(x) = > ;.po (1, hr) hy for p €
£2(0,1).



1110 Eric T. Sawyer and Ignacio Uriarte-Tuero

Theorem 6. (Adaptation of [NV]) For every I' > 1 and 7 > 0 sufficiently small,
there exist positive weights u and v on the unit interval [0, 1] satisfying

/Oldev(:):)u(:):)d:EZF\/(/Olu(x)dx) (/Olv(x)dx),
(ﬁ/ju(:p)dm) (ﬁ/}v(z)dm) <1, foralll D"

ELu E[7’11
E1+u’ E]+’ZJ

1—-7< <147, forallleD"

From the second line we obtain the two-tailed Muckenhoupt condition As (u,v) <
C for 7 > 0 sufficiently small, independent of I', and from the third line, we obtain
the doubling conditions for u and v with doubling constants arbitrarily close to 2 for
7 > 0 sufficiently small, independent of I'. See [NV] for the routine proofs of these
latter assertions.

Finally, in the appendix we discuss one of the main reasons for restricting our
attention to pairs of doubling weights here, and complete the optimal range for a
certain parameter in a characterization of doubling in [Sall.

2. Bilinear cube testing for a > 0

For a > 0 we use the domination 7% f < CI%|f]| to obtain

/FTQ (1go) dw

Let BCTa (0,w) denote the best constant in the bilinear cube testing inequality for
the fractional integral I,

(2.1) / I*(1go) dw < BECE e (0,w)1/|Q|, |Q|,, for all cubes @ € P".
Q

The constant BET o (0,w) is at most the restricted weak type norm constant
RWT o (0,w) of I*: L*! (o) — L** (w) (which by duality is the same for the in-
equality 1%: L*! (w) — L?* (0)), but a characterization of the restricted weak type
constant RW T« (0, w) has yet to be found. Indeed, the restricted weak type constant
RWT o (0,w) for ¢ is the smallest constant satisfying

/ Y(fo)gdw <RWT e (0, W) fllL21) |9l 1200wy, forall f e Lz’l(a), g€ Lz’w(w),

SC’/IO‘(IEU)deC/Ia(lQa)dw, E F CQ.
F Q

which is in turn equivalent to

I1°(1go) dw < RWT e (o,w E| |F|,, for all compact subsets £, FF C R",
AT (0.) /|, |F

by results in Stein and Weiss [SW]. Then setting £ = F = @Q yields (2.1) with
BT o (0,w) < RWT e (0,w).

Unfortunately, there is no known simple! characterization of the harmless looking
testing inequality (2.1), and in fact the only known simple sufficient condition for
(2.1) to hold is that A% (0,w) < oo and one of the measures is an A, weight, see
[Sa2]. Since we are assuming A$ (0,w) < oo in all of our work above anyways, and
since A§ (0,w) < oo is necessary for (2.1) to hold, we now consider the problem of

1By simple characterization, we mean using conditions of Muckenhoupt type.



Control of the bilinear indicator cube testing property 1111

characterizing those weight pairs for which BE% e (0,w) is controlled by A (o, w),
i.e. there is a positive constant C' satisfying

(2.2) /QIO‘ (1go) dw < C+\/A§ (0,w)4/|Q], |Q|,, for all cubes @ € P".

Again, there does not appear to be a simple characterization of (2.2) either, with
the only sufficient condition being that mentioned above, namely that one of the
measures is an A,, weight. Theorem 4 above provides a different sufficient condition
that involves a diagonal reverse doubling exponent of the product measure o X w.

2.1. Proof of the diagonal reverse doubling Theorem 4.
Proof. We estimate the left hand side of (2.2) by

/Qla(lQo—) dw = //QXQ |z —y|*" do(x) dw(y)

S Ca,n // Z Z 14 (I>a_n 13I><3I<x7 y) dO'(LIZ‘) dw(y>
QXQ | k=0 1eD:0(1)=2"4(Q)
= Cam Z > [2750(Q)]" " |(BI x 31) N (Q % Q)]s
5(1) 2 5(%) 1cQ

and then using that the diagonal reverse doubling exponent 26 for o x w satisfies
0 > n — a, we obtain that for I C Q with ¢(I) = 27%¢(Q) and k large,

g Xw

VIBEXBI1,, = \[1274 (2831 x 2831)],,., < 2747, /2631 x 2431

<277, /19Q x 9Q) .-

Using this estimate for k£ large, and the crude estimate

/131 x 31, < 1/]19Q x 9Q)|, .,
for k small, we obtain

/ I“ (1QO’) dw

Q

< Canl (Q)°7"1/19Q x 9Q| ., > 27 Hemm27H
k=0

> IBIx3DN(Qx Q)

IeD
(n=27%0(Q), I1cQ

< Conl (Q)°7"1/19Q], 19Q],, D 27+
k=0

2

> 3I1Q|, > 31N Ql,

IeD IeD
LN=2"%0(Q), IcQ AN=2"%¢(Q), IcQ

(SIS
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< Cpanl 99" \/19Q1, 19Q11/1Q1, 1QL < Connv/A5,/1QL, QL. O

2.2. Sharpness of the diagonal reverse doubling exponent. Our sharpness
examples will be for the equal weight case y = o0 = w. We now reformulate the equal
weight case of inequality (2.2) using the semigroup property I* = I 0l% and § = &
First, by a result of Muckenhoupt and Wheeden [MW]|, we have

|1 Qanydu = [ rter® Gomdu= | 1 (1on) @) dox [ M (10w (2
Q Q "

R"”

where MPv (x) =
the equal weight case p = 0 = w, (2.2) is equivalent to

(2.3) MP (1op) (z)* dz < C\/AY (1, 1) |Ql,, for all cubes @ € P".

R’!L
Example 7. In the case p = 0 = w = dx; is the singular measure in the plane
R? given by one-dimensional Lebesgue measure on the real axis, and with a = 1 = 5,
we have that the reverse doubling exponent of pu x p is 2, and that the fractional
Muckenhoupt constant is finite, yet |, o 1% (1go) dw = oo, showing that (2.3) can fail
when 6 = n — a. Indeed, it is trivial that § =1 =n — «. For @ = [0, R] x [0, R] and

—a_1
p =5 =35, we have

nt /. 0 dv is the fractional maximal function. Thus in

2(8-1 _
MP (Lop) (z1,22) =~ :)32(2 ):)32 = xg 1, x = (11,72) € Q,

and so

\Q| /MB 1op) xl,xg) dxy dry ~ —/ / 932 1 d:)sldxg

262 —1
xy Tdry = / Ty dxe = 00,
0

o\>

while
o 1
Ay (o,w)~ sup  |Q* - / dp = sup (R*)? ""R=1.
Q=[0,R][0,R] 0 R>0

We can extend this sharpness example to general indices 0 < o < n using Ahlfors—
David regular measures. A measure p is said to be Ahlfors—David regular of order
if
(2.4) 3Ql, ~ €(Q)” whenever |Q|, > 0.

Lemma 8. If i is any Ahlfors—David regular measure in R"™ of order n— a where
0 < a < n, then (2.3) fails with = £

Proof. Suppose that p is Ahlfors—David regular of order 6. First we note that

VAo~ sup (01 [ dus sup 1@ (@) =1,
QePn QePn
if # = n — «. To show that the left side of (2.3) is infinite for the same choice of 0,
we proceed in four steps. Let €V) (Q) denote the collection of dyadic subcubes of
@ having side length £ (Q') = 27¥¢(Q). Throughout the proof, constants implied
by ~ and < depend only on «a, n and the Ahlfors—David constants implicit in the
definition (2.4).
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Step 1: Let
Iy (Q={@ee™(Q: @, >0}, forQeP"

Since p is Ahlfors—David regular of order § = n — «, we have for any cube @) € P"
that both

Yo BRI~ D @) =#Ty(@Q) 27V Q)

Q'erN(Q) Q'ern(Q)
Q'el'n(Q)

Thus we obtain

#In (Q) - 270 (Q) S BRI, ~ (@), it [Ql, >0,
and hence
(2.5) #I'y (Q) <2V, if Q e P™.

In particular there is N = N, , ¢ sufficiently large that €™ (Q)\ T'y (Q) # 0 for all
cubes ) € P™.

Step 2: Fix a cube @ and let N = N,, , , be asin Step 1. Then €™ (Q)\T'y (Q) #
(0 and so there is Q* € ¢V (Q) with |Q*[, = 0. Since

inf M (1gp) (2) > £(@)"" /Q n

we then have

2
/ MB ]_Q,u dl’ Z E(Q)a_%z (/Q d,u) E(Q*)n ~ 2—Nn€ (Q)9+a—n/leu.

Set 1 (@) = Q*. Since 6 + a —n = 0, there is a positive constant ¢y such that for

Qe P,

(2.6) MP (1gp) (z)* dz > CN/ d.
2:1(Q) Q
Step 3: Again fix a cube @) and let N = N, ,,, be as in Step 1. Let I'y (Q) =

{Qk}szl where K < 2N% by (2.5). Then we apply Step 2 to the cube @}, to obtain a
cube @} with [Q|, = 0 and

M (Lgup) (o) do > e [ du

Q% Qk

K

Then with Qy = |J @}, we obtain upon summing in k that
k=1

MP (1op) (z)* dz > CN/ dj.
Qs Q

Note that @)} C Q) where |Qk|u > 0, and that |Q*‘u = 0, which shows that Q;NQ* =
() for all k, hence 2, N Qy = . Thus we have that

MP (1op) (2)? dz > 2ex / .

QU0 Q
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Step 4: Now repeat Step 3 indefinitely to obtain

/ MP (1gp) (z)* dz > ch/ dp, for all m > 1,
Q1UQ2U U, Q

which of course shows that

/ MP (o) (2)? dz = oo. 0
Q

Problem 9. The measures p in the sharpness examples above are not however
doubling, only reverse doubling. This begs the question of whether or not (2.2) can
hold for all pairs of doubling measures, a question we leave open.

Finally, Lemma 8 shows the failure of the trace inequality I*: L? — L? (99) for a
domain 2 C R™ when 0 is an Ahlfors—David regular set of order n—«. For example
I2: L2 — L2 (9Q) fails in the plane if 99 is the Cantor dust fractal—Example 7 is
the case when 02 is a line.

3. Failure of BCT for the dyadic Hilbert transform

We do not know if the analogous inequality for the Hilbert transform on the real
line, i.e.

|H (1go)|dw < Cy/ Az (0,w)4/]Q], |Q|,, for all intervals @,
J VAT

holds, but we can show that the analogous question for the dyadic Hilbert transform
is answered in the negative here (no it can fail) using an adaptation of Nazarov’s
Bellman construction in [NV].

The following bilinear cube testing condition for the Hilbert transform H is of
course implied by restricted weak type for H:

(3.1) ‘/ H (1go)dw| < BCT uy/1Q|, |Q],, for all intervals Q.
Q

Unfortunately we are unable to determine if BCT i < oo. Instead, we will prove here
Theorem 6, that shows the discrete dyadic form of the inequality fails, i.e. that the
inequality

‘/ HY (1go) dw| < BCT gayy/|Q|, |Q],, for all dyadic intervals @) C [0, 1),
Q

fails. In fact, Theorem 6 is an easy consequence of (1.9) and the following simpler
variant of a Bellman construction from [NV].

3.1. The dyadic Bellman construction.

Lemma 10. Let 0 < 7 < 1. Then for every I' > 1, there exists a pair of weights
(U, V) on the unit interval I° = [0, 1], and a positive integer M € N, such that each
of the functions U,V is positive on [0,1] and constant* on every interval K € D°

2We do not actually need this constant property here since we are unable to apply the ‘supervisor’
argument from [NV] to extend the counterexample to the a-fractional Riesz transform on the line
when o > 0.
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having side length 2=, and moreover,

> (AV) (EU) 1] > TV(EpU) (EpV),
IeDo
(E;U)(E;V)<1, foralll €D,
ErU Er V
E U EV

To prove this lemma we use the Bellman function

1l—-7< <147, forallleD°

(3.2) B(z) = sup {i S AV EU) I (UV) € fm},

sepo | 1] 1€D0:ICT

for x = (x1,22) € (0, oo)2 with z129 < 1, in analogy with that in [NV], where F.,
consists of those pairs (U, V') of positive functions on J such that

EJU:l'l, EJV:[L’Q,
and (E;U)(E;V) <1, foralllecD°withICJ.

Note that the averages of U and V are only fixed to be z; and z5 respectively at the
interval J. Moreover, while it is the case that A;V can be negative, an appropriate
switching of children for each parent replaces A;V with |A;V| while leaving E;U
unaffected, and so we also have

B (z) = sup {i Z IANVI(EU) | (U,V) G.FJ;x},

sepo | V] 1€D0:ICJ

which shows in particular that B (x) is positive.
The Bellman function B (z) satisfies the rescaling property,

B3 = Y |ad](m0) |f|:ﬁ SO IAVIED) I,

IeDY:ICJ IeDO:ICJ

where ((7, ‘7) = (SapU, SupV) € Fyp with Spf (2) = f (Ta_blz) and T,y = ay + b,
and where J = TopJ with a > 0 and b € R. Indeed, the affine map 7}, takes an
interval I to an interval T,/ with |7}, ,/| = a|I|, and preserves the dyadic structures
within the intervals I and T ,/. Moreover, if a = 2 and b = 2%/ for some k € Z
and ¢ € N, then I € D if and only if T,/ € D. Note that S,; takes functions f
supported in I to functions S, ; f supported in 7}, ;/, and moreover preserves averages
over all dyadic intervals I, i.e.

1 1
E wnf) = T, z)dz = d
Ta,bl (S ,bf) |Ta7b[| /vaa,bl f ( a7b Z) z |Ta7b[| /I'f (y) a y

1
:m/lf(y)ady:Elﬁ
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as well as the ‘difference averages’,

A1 (Sapf) = By, bf) (Sanf) = Bz, o), (Sanf)

1
SN /(Ta,bl) Sead ()42 = 10 /(W)+ Send () dz
1 -1 1 .
oy O [ s O

1 1

- dy — —— dy=FE; f—E;. f=/Af.

Q‘I_‘/If(y)a y a|]+‘ [+f(y)a y If.f I+.f If

Now fix dyadic intervals J and J in D°. Choose an affine map T, with a = 2"

and b = 2%¢, for some k,{ € Z, that takes the interval J one-to-one and onto the
interval J =T, ;J. Define functions U = S,,U and V = S,,V. Then we have

=X Al (BO) = 0 (SuV) B (S.0) 1]

TopJ
)j' IeDO:IC ] ‘Ie’DO:IcTa,bJ

1

- T | Ieg;g | A, 1 (Sa,bv)} (Er, 1 (SapU)) | Tund]|

1 1
=— Z |A1V\(E1U)a|f\:m Z |AVI(ELO) |1,

a|J| IeDo:IcJ IeDo:IcJ

and also ((7, ‘7) = (SapU, SapV) € F7., since

E5(0) = Br, s (Sasl) = BsU = 2y and Ey (V) = B,y (SapV) = EsV = 22,
Now let
(3.4) Q= {z = (21,22) € (0,00)*: 3175 < 1}.

Assuming that B (z) < oo for all x € €2, we will derive a contradiction from The-

orem 11 below, thus concluding that B (z) must be oo for some z € 2, and so in
particular that supmeg\f% = 00. In any event, this shows that for any I' > 1 there
iszeQ, JeD"and (U, V) € Fy., such that

1
(AV) (EU)|I]> T,
I V(ESU) (EsU) IeDOZICJ

which if J = I°, as we may assume, gives

> IAVI(EU) | > TV (EpU) (Epl),

IeDO

since |I°] = 1. This will complete the proof of Lemma 10 upon restricting the sum
of the nonnegative terms |A;V|(E;U) |I| for I € D to intervals I of side length at
least 2= for a sufficiently large M € N.

We begin by establishing a very strict concavity property of B (x) in (2.

Theorem 11. Assume that B(x) < oo for all x € Q). If y = (y1,ya) Is such that
r,x+y,x—1y €S, then
B(zx+y)+ Bz —y)

5 +2|y2| 1 — B(x) <0.
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Proof. Fix an interval J € D which we could of course take to be I° = [0,1).
Consider two pairs (U, V) and (U_, V_) with corresponding intervals J,, and J,_,
that are ‘p-maximizing’ for x + y and x — y respectively with n > 0, by which we
mean that

1
B(x+y)—n< Y. AVAEU) I,

J.
[yl 1EDO:IC Ty ty
fOI‘ EJz+yU+ =T + y17 EJz+yV+ = T2 _I_ y2?

1
B(I—y)—ﬁ<ﬁ Z | AV (ErU-) |1
Y repoircd,
for EinyU_ =1 — Y1, Einyv_ = T3 — Y2.

Moreover, we may assume that all of the weights above are constant on sufficiently
small intervals. By rescaling with appropriate maps T, and S, as in (3.3) above, we
may suppose that the dyadic intervals J,,, J,—, have the form Jy, J_ respectively,
where J is the interval fixed at the beginning of the proof, and moreover that UL, V.
are supported in J..

Following [NV] we now construct a pair ((7 , ‘7> supported in J satisfying

U_|_ on J+ V+ on J+
U=LU_ onJ_. and V=<LV_ onJ_
0 on J¢ 0 on J°.

We claim that <l7, 17) € F.». Indeed,

1
E;U |J\/ al:)s—u| J+U+( )dx+m U_(z)dz
= {|J+| U, (z )dzz+ﬁ U_(I)dl'}

1 - -
:§{EJ+U+EJ7U}:§{x1+y1+x1—y1}:$1

and similarly £ JI7 = x5, and of course then
(Eﬂ7> (Eﬂ7> = T2 < 1.
Turning next to the strict dyadic subintervals I of J we have for I C J,,
EU=FEU,, AU=AU,,
EV =EVy, AV =AMV,
and for I C J_,
EU=E/U_, ANU=NMU_,
EV=EV_, NV=NMAV..
Consequently we obtain
(B:0) (V) <1,

which completes the proof of our claim that ((7 , ‘7> € Fra.
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Note that we also have
ANV =E;, V—E,V=E V. —E;, V,=\(x2—12)— (22 + 1) = 2y .
Then with
L;(f.9)= Z |Argl (Erf) ], for (f.9) € Fra,

IeDY:ICJ
we have
1 ~ ~ ~ ~ 1 ~ -
> - —
B(a) > 7Ly (0.7) \AJV) (B,0) + 7 IGDOE;CJ )A,v) (E:0) 1
HCJ+
1 ~ ~
) ‘AIV‘ EU) 1|
|J‘ I1eDO:ICJ_ ( )
11
=2 —— YA FE I
|y2|$1+ 2|J+| IGDOEI:CJ | IV+|( IU+)| |
HCJ+
11
+§m > AVL(EU-) |
“lIepo:IcJ_

1
>2|y2|x1+§{3(as+y)—17+B(:B—y)—77}

Bx+y)+Bx—y)
2

=2 |ya| 21 +

Since 1 > 0 is arbitrary, this gives

B(z+y)+B(x—1y)
2
and this completes the proof of Theorem 11. O

+2|ya| 21 — B(z) <0,

We may assume that B(x) is finite everywhere on (2, since otherwise we are
done. Then Theorem 11 shows in particular that B (z) is concave on €2, and so by
a result of Buseman and Feller [BF]| (extended to R™ by Alexandrov [Al]), B (z) is
differentiable to second order for almost every = € €. But if the Bellman function B
is twice differentiable at a fixed z € (), Taylor’s formula gives

Blr+y)=B(@)% (- V)B@) + 5"V B)y+o(sf),

o, BUIIIBEZI _ g0y 4 Ly 2B )y + o ().

for sufficiently small |y|, and then the full force of Theorem 11 shows that

1
§ytrviB (z)y+o (|y|2) +2y2| 21 <0,
ie. 2ys|z < Clyf* for sufficiently small |y,

which is clearly impossible since x; > 0. This shows that B (z) = oo for some = €
as we claimed just before the statement of Lemma 10.

In order to achieve the doubling property in the third line of the conclusion of
Lemma 10, we follow [NV] by fixing 0 < 7 < 1 and modifying the above proof as
follows.
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(1) Replace F;, with F, , where F, , consist of those pairs (U, V') of positive
functions on J such that

EJU:xl, EJVZQEQ,

‘A[U| T .

——— < —, for all dyadic I
EU =10 or all dyadic I C J,
A

‘EII“;| < 110, for all dyadic I C J,

and (E;U)(E;V) <1, foralllecD°withIC.J
(2) Replace B (x) with B, () where

1
B, (x) = sup {— Z AV (EU) ] : (UV) € ]-"J;xﬁ}, for z € Q.

sepn | 1] repo:1cy
Then we obtain from the above argument that B, (z) = oo for some z € .

Indeed, the analogue of Theorem 11 is now the following theorem.

Theorem 12. Assume that B, (x) < oo for all x € Q. If y = (y1,y2) Is such
that v,x +y,x —y € Q and Anl 2l < 1 thep

r1 7 w2 — 107
Bq— T+ Yy + BT r—y
( )2 ( )+2|y2|x1—87(x)§0.
The point of assuming 2Ly11|’ 25/22‘ < {5 in the hypotheses of Theorem 12 is that

the weight pair ((7 , ‘7) constructed in the proof of Theorem 11 above then satisfies
AT _ 2yl o 0
Elﬁ T oz — 10

((7 , ‘7) € FJ.x.r- The proof of Theorem 12 now proceeds as in the proof of Theorem 11.
The remainder of the argument is unchanged.
This completes the proof of Lemma 10 since one easily verifies that if ‘%;g' <

15 for all dyadic I € DY then 1 -7 < ELg <1+, forall I € D° and similarly for
+
V.

Remark 13. The above argument proves that if € is a domain in R", and
B: Q — [0, 00] is twice differentiable at some = € Q, then we cannot have

B(z+y)+B(z—y)
2
This simple observation doesn’t apply to the Bellman function for testing conditions
in [NV, see (3.1)-(3.4)], since in particular, the inequality for the three dimensional
Bellman function in [NV, (3.13)] has y3z; in place of 2 |yo| z1:
B (x) +ng—Byf > BEtNABEY) | ey

€T3 2
Moreover, the two problems are quite different, as the conclusion in [NV, see (4.1)—
(4.3) plus doubling] yields a Muckenhoupt doubling weight pair that satisfies one
testing condition for the dyadic Hilbert transform, but not the other; while Theorem 6
above yields a Muckenhoupt doubling weight pair that cannot satisfy either testing
condition, since they each imply bilinear testing.

Problem 14. Is the bilinear cube testing constant BCT g (o,w) for the Hilbert
transform H controlled by A$ (0,w) when the measures o, w are doubling?

and % < 5 for I' G J, and similarly for V, and so we have
I

Er

B (z) > + 2|yo| z1, for all y such that z £y € Q.
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4. Appendix

Here we complete the analysis of energy nondegeneracy conditions, introduced in
[Sal], which arise when using Calderon—Zygmund decompositions in connection with
weighted Alpert wavelets. We begin by recalling some notation from [Sal]. We say
that a polynomial P (y) = ZOSIBKH cpy? of degree less than r is normalized if

sup |P (y)] =1, WhererEﬁ[ L 1).

yeQO i=1 2 ’ 2

Definition 15. Denote by c¢g the center of the cube @, and by ¢(Q) its side
length, and for any polynomial P set

Pe(y) =Plcog+L(Q)y).

We say that P (z) is Q-normalized if P2 is normalized. Denote by (P%) _  the set
of @-normalized polynomials of degree less than k.

Thus a @-normalized polynomial has its supremum norm on @) equal to 1. Recall
from (1.1) that a locally finite positive Borel measure 1 on R™ is doubling if there
exist constants 0 < 3,y < 1 such that

(4.1) 18Q[, > v[Q|,, forall cubes @ in R™.

Note that sup,cq |P ()| = 1P|, for any cube @, polynomial P, and nontrivial

doubling measure p. It was shown in [Sal]| that if 4 is doubling on R", then for every
k € N there exists a positive constant C; such that

(4.2) Ql, < C’,.@/ |P () dp (x), for all cubes Q in R™,
Q

and for all -normalized polynomials P of degree less than k.

It was also shown that conversely, if k > 2n, then (4.2) implies that p is doubling.
Here we extend the converse to the optimal range x > 1.

Lemma 16. Let u be a locally finite positive Borel measure on R". If (4.2)
holds for some positive integer k € N, then u is doubling.

Proof. Assume that (4.2) holds for some x € N. Momentarily fix a cube @ and
an index 1 < i < n, and let ag € R" where Q =[], [(ag),, (ag), + ¢ (Q)]. Then
the polynomial

zi — (ag)
P (r) = ——2&2

=TT
is (-normalized of degree less than k, vanishes on the face of the boundary of
which lies in the hyperplane {x eR": x; = (aQ)i}, and is 1 on the opposite face
where z; = (ag), + ¢ (Q). Thus for each 0 < ¢ < 1, there is 3 < 1, sufficiently close
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to 1, and independent of the cube (), so that

Ql, < CH/Q\Pz-qu

=C, / N P d +/ _ P*d
Qﬂ{%<l_ﬁ} ‘ | Iu Qm{xl(aQ)i>1_B} ‘ | M

() (o
Sng{xi_(aQ>i<1_ﬁ} +CHQH{L (GQ)z_l_ﬁ}
Q) p Q) p
zi — (ag), }
<e +Cy N {72 >1-
Q1+ @M i 2
Now we focus on the rectangle () N {xi;((ggz)i >1-p } that appears on the right

hand side above. It can be written as a union of at most 2"~ cubes @' € I of side
length 54 (@) (thus not necessarily dyadic, and overlapping significantly—e.g. if Q) =
0,1]* and 4 = 1, then the squares Q' are [1 — 3,1] x [0, 8] and [1 — §,1] x [1 — 5, 1]),
where I is an index set of size 277! satisfying

onferis oo}~ Yo

Now fix another index j # i, and for each of these cubes @)’, apply the above argument
with the polynomial P; in place of ;. Then we obtain

Ql, <elQl, + Cx %)

I

SE‘Q‘H—FCHZ 5‘Q/|H—|—CR Q/ﬁ{m21—ﬁ}’
m

Q'el
<e(14+2"7C) @I,

£(Q")

+2n1c?

Y

7y —(ag); _ v —(ag); |
Q“{W21 T 5}

where in the final term we have written ¢ (Q') = ¢ (Q) and made the final set bigger
by replacing (aq); with the smaller number (ag);. By further replacing the second

I

factor of 2"~! by its square, we have

Ql, <e(1+[2"7'CL]) 1@,

_ z; — (aq), z; — (ag),
+ [ QN T 2 (1 - B) and = > (1 8
Now we continue this process until we have exhausted the indices in {1,2,...,n}

and are left with cubes Q' that are at distance at least 1 — 8 from each of the
hyperplanes {x cR": z;, = (aQ)i} for1 <i<n.

Then we turn our attention to the remaining n faces of the boundary of @,
which lie in the hyperplanes {z € R": z; = (ag), + £(Q)} for 1 <i < n, using the
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polynomials

We eventually obtain

Ql, <e(1+[270]+. .+ 2T QL+ 6] (B - A Q)

v
Now we choose ¢ = 2(1+[2nflcﬁ]+..1.+[2nflcﬁ}2”*1) to get
n— 2n n—
QL <22 'C )™ - 8)Q),.
which is (4.1) with 7 = 555 and 3 replaced by >"~! (1 — 3). O
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