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Abstract. If Ω is a simply connected domain in C then, according to the Ahlfors–Gehring

theorem, Ω is a quasidisk if and only if there exists a sufficient condition for the univalence of

holomorphic functions in Ω in relation to the growth of their Schwarzian derivative. We extend

this theorem to harmonic mappings by proving a univalence criterion on quasidisks. We also show

that the mappings satisfying this criterion admit a homeomorphic extension to C and, under the

additional assumption of quasiconformality in Ω, they admit a quasiconformal extension to C. The

Ahlfors–Gehring theorem has been extended to finitely connected domains Ω by Osgood, Beardon

and Gehring, who showed that a Schwarzian criterion for univalence holds in Ω if and only if

the components of ∂Ω are either points or quasicircles. We generalize this theorem to harmonic

mappings.

1. Introduction

1.1. Schwarzian derivative. For a locally univalent analytic function f the
Schwarzian derivative is defined by

Sf = (f ′′/f ′)
′
− 1

2
(f ′′/f ′)

2
.

This operator vanishes identically if and only if f is a Möbius transformation. Ac-
cording to a classical theorem of Nehari the bound

(1) |Sf(z)| ≤
2 t

(1− |z|2)2
, z ∈ D,

for t = 1 implies the global univalence of f in the unit disk D, while another classical
result, proved by Ahlfors and Weill, gives an explicit quasiconformal extension of f
to C under the assumption that f satisfies (1) with t < 1.

Let Ω be a hyperbolic domain in C, meaning that it has at least three boundary
points, and let π : D → Ω be a universal covering map. Then the density λΩ of the
hyperbolic (Poincaré) metric in Ω is defined by

λΩ
(
π(z)

)
|π′(z)| = λD(z) =

1

1− |z|2
, z ∈ D,

and is independent of the choice for the covering π. The size of the Schwarzian
derivative of a locally univalent holomorphic function f : Ω → C is measured by its
norm, given by

(2) ‖Sf‖Ω = sup
z∈Ω

λΩ(z)
−2|Sf(z)|.

https://doi.org/10.5186/aasfm.2021.4669
2020 Mathematics Subject Classification: Primary 30C55, 30C62, 31A05.
Key words: Harmonic mappings, Schwarzian derivative, univalence criterion, quasiconformal

extension.



1124 Iason Efraimidis

The inner radius of Ω is defined as the number

σ(Ω) = sup{c ≥ 0: ‖Sf‖Ω ≤ c ⇒ f univalent}.

This domain constant is Möbius invariant. We say that a univalence criterion holds
in Ω if and only if σ(Ω) > 0. We have that σ(D) = 2 since, as shown by Hille,
the constant 2 in Nehari’s theorem is sharp. Lehtinen showed that every simply
connected domain Ω satisfies σ(Ω) ≤ 2, with equality only in the case when Ω is a
disk or a half-plane. See Lehto’s book [14, Ch. III, §5] for more information on the
inner radius.

A domain Ω is a quasidisk if it is the image of D under a quasiconformal self-map
of C. The boundary of a quasidisk is called a quasicircle.

Our starting point is the following theorem by Ahlfors and Gehring.

Theorem A. [1, 7] Let Ω be a simply connected domain in C. Then σ(Ω) > 0
if and only if Ω is a quasidisk. Moreover, any holomorphic function f : Ω → C that

satisfies ‖Sf‖Ω < σ(Ω) admits a quasiconformal extension to C.

Ahlfors [1] proved the quasiconformal extension criterion on a quasidisk stated
here; the univalence criterion follows from it. The fact that such a criterion can only
occur on a quasidisk was shown by Gehring [7]. This has been generalized to a class
of multiply connected domains with the following theorem.

Theorem B. [2, 18] Let Ω be a finitely connected domain in C. Then σ(Ω) > 0
if and only if every boundary component of Ω is either a point or a quasicircle.

The univalence criterion was proved by Osgood [18], while the fact that the class
of domains where it holds cannot be enlarged was proved by Beardon and Gehring
[2]. We note that for finitely connected domains the property of ∂Ω described in this
theorem characterizes the class of uniform domains, introduced by Martio and Sarvas
[16] (see also [8, §3.5]). We also mention that there exist both examples of infinitely
connected circle domains with positive (see [18]) and zero (see [2]) inner radius.

In recent years there is much activity in extending the theory of the Schwarzian
derivative to harmonic mappings, to which we now turn.

1.2. Harmonic mappings. A complex-valued harmonic mapping f in a simply
connected domain Ω ⊂ C has a canonical decomposition f = h + g, where h and g
are analytic in Ω. The mapping f is locally univalent if and only if its Jacobian Jf =
|h′|2 − |g′|2 does not vanish, and is said to be orientation-preserving if its dilatation
ω = g′/h′ satisfies |ω| < 1 in Ω. We say that f is normalized if h(z0) = g(z0) = 0
and h′(z0) = 1 for some specified z0 ∈ Ω.

The Schwarzian derivative has been extended to harmonic mappings by two com-
plementary definitions: a first one appeared in [4] and another was later introduced
by Hernández and Martín in [11]. We will follow the latter, which seems to be better
suited when one does not wish to consider the Weierstarss–Enneper lift to a minimal
surface. Hence, the Schwarzian derivative of a locally univalent harmonic mapping
f is defined by

Sf = ρzz −
1
2
(ρz)

2, ρ = log Jf ,

where Jf = |fz|
2 − |fz|

2 is the Jacobian. If Ω is simply connected and, therefore, the
decomposition f = h+ g is valid, then the above takes the form

(3) Sf = Sh+
ω

1− |ω|2

(
h′′

h′
ω′ − ω′′

)
−

3

2

(
ω′ω

1− |ω|2

)2

.
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Note that we are using the notation Sf when we know that the mapping f is holo-
morphic and the notation Sf , with the mapping f as a subscript, in the more general
setting of harmonic mappings. This operator satisfies the chain rule, for if ϕ is
analytic in Ω and such that the composition f ◦ ϕ is well defined then we have that

(4) Sf◦ϕ = Sf ◦ ϕ (ϕ′)2 + Sϕ.

The Schwarzian norm of a harmonic mapping f is defined exactly as in (2). It
was shown in [11] that ‖Sf‖Ω = 0 implies that f is an affine map of a Möbius
transformation and is, therefore, univalent.

1.3. Main results. We define the harmonic inner radius of a hyperbolic domain
Ω in C as the constant

σH(Ω) = sup{t ≥ 0: f harmonic in Ω with ‖Sf‖Ω ≤ t ⇒ f univalent}.

Evidently,

(5) σH(Ω) ≤ σ(Ω),

since every holomorphic function is harmonic. This shows that if σH(Ω) > 0 and Ω
is finitely connected then, in view of Theorem B, every boundary component of Ω is
either a point or a quasicircle. For Ω = D it was shown in [12] that σH(D) > 0. We
prove that the harmonic inner radius is positive for all quasidisks.

Theorem 1. Let Ω be a quasidisk. Then there exists a constant c > 0, depending

only on σ(Ω), such that if f is harmonic in Ω with ‖Sf‖Ω ≤ c then f is univalent in

Ω and admits a homeomorphic extension to C.

The proof of the univalence criterion in Theorem 1 follows closely the reasoning in
[12]: We show that if a harmonic mapping f = h+ g has small Schwarzian derivative
then so does its analytic part h, and therefore h is univalent by Theorem A. The same
can then be said about h+ ag, the analytic part of the affine transformation f + af ,
a ∈ D. Finally, Hurwitz’ theorem shows that h + ag is univalent for every a ∈ D

and by an elementary rotational argument we get that f is injective. The crucial
step in the generalization from D to a quasidisk involves the hyperbolic derivative of
admissible dilatations and is given in Lemma 5. The homeomorphic extension under
these hypotheses is novel even for the unit disk.

Further, for more general domains we prove the following theorem.

Theorem 2. Let Ω be a finitely connected domain. The following are equivalent.

(i) Every boundary component of Ω is either a point or a quasicircle.

(ii) σ(Ω) > 0.
(iii) σH(Ω) > 0.

The equivalence of (i) and (ii) was given in Theorem B, while the direction (iii) ⇒
(ii) follows trivially from (5). We prove the direction (i) ⇒ (iii) in Section 6 by using
Osgood’s [18] quasiconformal decomposition of Ω and the homeomorphic extension
of Theorem 1.

Finally, we give sufficient conditions for a harmonic mapping defined on a qua-
sidisk to admit a quasiconformal extension to C.

Theorem 3. Let Ω be a quasidisk and let d ∈ [0, 1). Then there exists a

constant c > 0, depending only on d and on σ(Ω), such that if f is harmonic in

Ω with ‖Sf‖Ω ≤ c and its dilatation satisfies supz∈Ω |ω(z)| ≤ d then f admits a

quasiconformal extension to C.
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If d = 0 then f is analytic and we recover Ahlfors’ theorem [1]. For our proof
of Theorem 3 we consider the dilation Ωr (i.e. the image of |z| < r, for r < 1,
under the Riemman mapping of Ω) and use quasiconformal reflections to obtain a
K-quasiconformal extension of f

∣∣
Ωr

to C. The desired extension is then harvested

as the limit for r → 1, once we prove that K is independent of r by studying the
cross-ratio of points on the image of ∂Ωr under f . For the latter we use the insightful
ideas of [10]. We prove Theorem 3 in Section 5.

We note that for the case when Ω is the unit disk D, Theorem 3 was proved in [12].
However, the slightly stronger statement made there, namely that the constants c
and d in the hypotheses are independent, does not seem to follow from the suggestion
of the authors to argue as in [10] for a proof. It is interesting to ask if this stronger
statement can be rigorously proved.

2. Preliminaries

2.1. Bounded Schwarzian derivative. A well-known theorem of Pommerenke
[19] states that if ϕ is analytic and locally univalent in D then

(6) (1− |z|2)

∣∣∣∣
ϕ′′(z)

ϕ′(z)
−

2 z̄

1− |z|2

∣∣∣∣ ≤ 2

√
1 +

‖Sϕ‖D
2

, z ∈ D.

From this, a simple application of Montel’s theorem shows that the set of functions

{ϕ : ‖Sϕ‖D ≤ c},

where c > 0, constitutes a normal family.
According to Theorem 6 in [11], if f = h + g is harmonic and locally univalent

in D then

(7) ‖Sf‖D <∞ if and only if ‖Sh‖D <∞.

2.2. Normalizations for harmonic mappings. Let Ω be a simply connected
domain that contains the origin and let t ≥ 0. We then denote by Ft(Ω) the set of
all sense-preserving harmonic mappings f = h+ g in Ω which satisfy ‖Sf‖Ω ≤ t and
are normalized by h(0) = g(0) = 0 and h′(0) = 1. Let

F0
t (Ω) = {f ∈ Ft(Ω) : g

′(0) = 0}.

The following proposition is well known among experts but we will include a proof
here for the convenience of the reader. We note that the compactness of F0

t (D) was
shown in [5].

Proposition 1. The family Ft(Ω) is normal. The family F0
t (Ω) is normal and

compact.

Proof. To show that F0
t (D) is normal we observe that the set

{h : f = h+ g ∈ F0
t (D)}

is a normal family in view of inequality (6) and since ‖Sh‖D is bounded by (7) (even
more so, a close inspection of [11, Thm. 6] shows that it is uniformly bounded). Also,
again by (6), the functions h′ are locally uniformly bounded in D and, in view of the
condition |g′| < |h′|, so are the functions g′. Hence the family {g : f ∈ F0

t (D)} is also
normal. Thus F0

t (D) is a normal family.
For a simply connected domain Ω, with 0 ∈ Ω, let f ∈ F0

t (Ω) and consider the
mapping F = ϕ′(0)−1f ◦ ϕ, where ϕ is a Riemann map for which Ω = ϕ(D) and
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ϕ(0) = 0. By the chain rule (4) we have that

SF (z) = Sf

(
ϕ(z)

)
ϕ′(z)2 + Sϕ(z), z ∈ D.

We then compute

(8)
|SF (z)− Sϕ(z)|

λD(z)2
=

|Sf

(
ϕ(z)

)
|

λΩ
(
ϕ(z)

)2 , z ∈ D,

which shows that ‖SF − Sϕ‖D = ‖Sf‖Ω. According to Kraus’ theorem [14, Ch. II,
Thm. 1.3] we have that ‖Sϕ‖D ≤ 6. Therefore, we get that

‖SF‖D ≤ ‖Sf‖Ω + ‖Sϕ‖D ≤ t+ 6.

Hence the set {ϕ′(0)−1f ◦ ϕ : f ∈ F0
t (Ω)} is included in the normal family F0

t+6(D)
and is, therefore, a normal family itself. The claim that F0

t (Ω) is normal follows
directly from this.

Any f ∈ Ft(Ω) can be written as an affine transform of a mapping in F0
t (Ω), in

particular, if b1 = g′(0) we may write f = f0 + b1 f0 for some f0 ∈ F0
t (Ω). Hence

|f | ≤ 2|f0| and with the observation that Montel’s criterion for normality remains
valid for families of harmonic mappings (see [6, p.80]) we conclude that Ft(Ω) is
normal.

Finally, the compactness of F0
t (Ω), as shown in the course of the proof of Theo-

rem 3 in [5], amounts to the observation that if fn is a sequence in F0
t (Ω) that con-

verges to f locally uniformly in Ω then Sfn → Sf pointwise in Ω. Hence f ∈ F0
t (Ω)

and so this class is compact. �

2.3. Affine invariance. Let a ∈ D and consider the affine transformation of a
mapping f in Ft(Ω) given by

(9) F (z) = Aaf(z) =
f(z) + a f(z)

1 + ag′(0)
, z ∈ Ω.

Now F ∈ Ft(Ω) since it satisfies SF ≡ Sf (see [11, Prop. 1]) and the correspond-
ing normalizations. It can easily be seen that the dilatation of F is given by
ωF = νϕa ◦ ω, where ν ∈ T(= ∂D) and

ϕa(z) =
a+ z

1 + az
, z ∈ D.

If we make the choice a = −ω(0) then F will have the additional normalization
ωF (0) = νϕa(−a) = 0 and will therefore belong to F0

t (Ω).

2.4. Quasiconformal mappings. A sense-preserving homeomorphism f : Ω →
C is said to be K-quasiconformal, K ≥ 1, if it is absolutely continuous on lines
and satisfies |fz| ≤ k|fz|, where k = (K − 1)/(K + 1), almost everywhere in Ω.
A mapping is called quasiconformal if it is K-quasiconformal for some K ≥ 1. The
1-quasiconformal mappings are the conformal mappings. Note that a harmonic map-
ping is quasiconformal if its dilatation satisfies |ω| ≤ k < 1.

A domain Ω is called a K-quasidisk, and its boundary a K-quasicircle, if it is
the image of D under a K-quasiconformal self-map of C. According to a theorem
of Ahlfors [1] a Jordan curve γ ⊂ C is a quasicircle if and only if for all points
zj ∈ γ, j = 1, 2, 3, 4, such that z1 and z3 separate z2 and z4, the cross-ratio

(z1, z2, z3, z4) =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
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satisfies
|(z1, z2, z3, z4)| ≤ C,

for some constant C > 0.
Let Ω1 and Ω2 be the complementary components of a Jordan curve γ ⊂ C. Then

a sense-reversing homeomorphism λ of the sphere onto itself is a reflection across γ
if it maps Ω1 onto Ω2 and keeps every point on γ fixed. According to a theorem
of Kühnau [13] (see also Theorem 2.1.4 in [8]) γ is a K-quasicircle if and only if it
admits a reflection λ such that λ(z) is K-quasiconformal.

3. Preparatory lemmas

3.1. Adaptations to general domains. The following proposition is a
straightforward generalization of (7).

Proposition 2. Let Ω be a simply connected domain and f = h + g a sense-

preserving locally univalent harmonic mapping in Ω. Then ‖Sf‖Ω < ∞ if and only

if ‖Sh‖Ω <∞.

Proof. Let ϕ be a Riemann map for which Ω = ϕ(D) and consider the mappings
F = f ◦ ϕ and H = h ◦ ϕ. By a calculation we saw in (8) we readily have that

‖SF − Sϕ‖D = ‖Sf‖Ω and ‖SH − Sϕ‖D = ‖Sh‖Ω.

The proposition is a direct consequence of Theorem 6 in [11] and Kraus’ theorem
‖Sϕ‖D ≤ 6. �

We now generalize inequality (6) to an arbitrary hyperbolic domain Ω. We write
d(z) = dist(z, ∂Ω) for the distance of a point z in Ω to the boundary ∂Ω.

Proposition 3. If h is analytic and locally univalent in Ω then
∣∣∣∣
h′′(z)

h′(z)

∣∣∣∣ ≤
2

d(z)

√
1 +

‖Sh‖Ω
2

, z ∈ Ω.

Proof. Let α ∈ Ω, d = d(α) and consider the disk ∆ = {z : |z − α| < d}. We
write z = α + d ζ ∈ ∆, for ζ ∈ D, and note that d λ∆(z) = λD(ζ). Since ∆ ⊂ Ω we
have by the comparison principle [3, Thm. 8.1] that λ∆(z) ≥ λΩ(z), for all z ∈ ∆.
Let H(ζ) = h(z) and observe that SH(ζ) = d2Sh(z). We have that

‖SH‖D = sup
ζ∈D

|SH(ζ)|

λD(ζ)2
= sup

z∈∆

|Sh(z)|

λ∆(z)2
≤ sup

z∈Ω

|Sh(z)|

λΩ(z)2
= ‖Sh‖Ω.

We now apply inequality (6) to the function H and evaluate at ζ = 0 to obtain

d(α)

∣∣∣∣
h′′(α)

h′(α)

∣∣∣∣ =
∣∣∣∣
H ′′(0)

H ′(0)

∣∣∣∣ ≤ 2

√
1 +

‖SH‖D
2

≤ 2

√
1 +

‖Sh‖Ω
2

.

The proof is complete. �

3.2. The hyperbolic derivative. If ω : Ω → D is an analytic function then its
hyperbolic derivative is given by

ω∗(z) =
ω′(z)

λΩ(z) (1− |ω(z)|2)
, z ∈ Ω,

and the quantity ‖ω∗‖ = supz∈Ω |ω∗(z)| is called the hyperbolic norm of ω. In view of
the generalized Schwarz–Pick lemma [3, Thm. 10.5] we always have that ‖ω∗‖ ≤ 1.
The hyperbolic derivative satisfies the chain rule (ω ◦ ϕ)∗ = ω∗ ◦ ϕ · ϕ∗ for any two
functions for which the composition is well defined.
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It has been shown in [9] that for any analytic ω : D → D it holds that

(10)
(1− |z|2)2|ω′′(z)|

1− |ω(z)|2
≤ C‖ω∗‖, z ∈ D,

for some constant C > 0. We will now generalize this to an arbitrary hyperbolic
domain Ω. Again, here d(z) = dist(z, ∂Ω).

Proposition 4. If ω : Ω → D is analytic then

d(z)2 |ω′′(z)|

1− |ω(z)|2
≤ C‖ω∗‖, z ∈ Ω,

for some constant C > 0.

Proof. We proceed as in the proof of Proposition 3, by fixing α ∈ Ω and writing
d = d(α),∆ = {z : |z − α| < d} and z = α+ d ζ ∈ ∆, for ζ ∈ D. We set ψ(ζ) = ω(z)
and compute

‖ψ∗‖ = sup
ζ∈D

|ψ′(ζ)|

λD(ζ) (1− |ψ(ζ)|2)
= sup

z∈∆

|ω′(z)|

λ∆(z) (1− |ω(z)|2)

≤ sup
z∈Ω

|ω′(z)|

λΩ(z) (1− |ω(z)|2)
= ‖ω∗‖.

The proof is completed by applying inequality (10) for ζ = 0 to the function ψ. �

3.3. Admissible dilatations. Let Ω be a simply connected domain with 0 ∈ Ω
and let At(Ω) and A0

t (Ω) denote the classes of admissible dilatations for mappings
in Ft(Ω) and F0

t (Ω), respectively. Let also

Rt(Ω) = max
ω∈A0

t (Ω)
‖ω∗‖.

Applying the affine transformation (9) to a mapping f ∈ Ft(Ω), as we have already
seen, we can get a mapping F = Aaf which, for an appropriate choice of a ∈ D,
belongs to ∈ F0

t (Ω). The dilatation of F is ωF = νϕa ◦ ω, for some ν ∈ T. A
straightforward computation can show that |ω∗

F | = |ω∗|, so that we have an alterna-
tive expression for Rt given by

(11) Rt(Ω) = max
ω∈At(Ω)

‖ω∗‖.

This was first observed in [5, Lem. 1]. A compactness argument was used in [12] to
show that Rt(D) → 0 as t→ 0+. Here we will prove the following.

Lemma 5. It holds that Rt(Ω) ≤ 4Rt(D) for all t > 0.

An immediate consequence is that Rt(Ω) → 0 as t → 0+, and this fact is an
important ingredient in the proofs of Theorems 1 and 3. For the proof of Lemma 5
we need to recall the inequalities

(12)
1

4
≤ d(z)λΩ(z) ≤ 1, z ∈ Ω,

where d(z) = dist(z, ∂Ω), which amount to Koebe’s 1/4-theorem and the comparison
principle; see [14, Ch. I, §1.1].

Proof of Lemma 5. Fix t > 0 and consider an extremal mapping f = h + g in
F0

t (Ω), with dilatation ω, for which Rt(Ω) = ‖ω∗‖. There exists a sequence of points
{zn} in Ω for which ‖ω∗‖ = limn→∞ |ω∗(zn)|. Let rn = d(zn) and consider the disks
∆n = {z : |z−zn| < rn}. Hereafter we use the notation ζ ∈ D and z = zn+rnζ ∈ ∆n.
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Note that rn λ∆n
(z) = λD(ζ) and that λ∆n

(z) ≥ λΩ(z), for z ∈ ∆n, since ∆n ⊂ Ω.
Let

Fn(ζ) =
f(z)− f(zn)

rn h′(zn)

and compute its dilatation ωn(ζ) = µn ω(z), where µn = h′(zn)/h′(zn) ∈ T. Compute
also SFn

(ζ) = r2nSf(z). We have that

|SFn
(ζ)|

λD(ζ)2
=

|Sf(z)|

λ∆n
(z)2

≤
|Sf(z)|

λΩ(z)2
,

so that
‖SFn

‖D ≤ ‖Sf‖Ω ≤ t

and, therefore, we find that Fn belongs to Ft(D). Recalling the expression (11) we
have that ‖ω∗

n‖ ≤ Rt(D). A calculation shows that

ω∗
n(ζ) =

ω′
n(ζ)

λD(ζ)(1− |ωn(ζ)|2)
=

µn ω
′(z)

λ∆n
(z)(1− |ω(z)|2)

= µn

λΩ(z)

λ∆n
(z)

ω∗(z)

and, in particular, that
|ω∗

n(0)| = rn λΩ(zn) |ω
∗(zn)|.

In view of Koebe’s 1/4-theorem (12) we have that rn λΩ(zn) ≥ 1/4. Therefore,

|ω∗(zn)| ≤ 4|ω∗
n(0)| ≤ 4‖ω∗

n‖ ≤ 4Rt(D).

The proof is completed upon letting n→ ∞. �

4. Proof of Theorem 1

Without loss of generality we may assume that 0 ∈ Ω and that f ∈ Ft(Ω), t ≥ 0.
By Proposition 2 we have that ‖Sh‖Ω < ∞. Moreover, since the classes Ft(Ω) are
nested and increasing with t we have that ‖Sh‖Ω is uniformly bounded for f ∈ Ft(Ω)
and small t, that is, ‖Sh‖Ω ≤M for some constant M > 0 and, say, t ≤ 1. From the
expression (3) we get

|Sh| ≤ |Sf |+
|ω′|

1− |ω|2

∣∣∣∣
h′′

h′

∣∣∣∣ +
|ω′′|

1− |ω|2
+

3

2

(
|ω′|

1− |ω|2

)2

.

Propositions 3 and 4, along with Koebe’s 1/4-theorem (12) yield

|Sh(z)|

λΩ(z)2
≤ ‖Sf‖Ω +

2|ω∗(z)|

d(z)λΩ(z)

√
1 +

‖Sh‖Ω
2

+
C‖ω∗‖

d(z)2λΩ(z)2
+

3

2
|ω∗(z)|2

≤ t+ 8‖ω∗‖

√
1 +

M

2
+ 16C‖ω∗‖+

3

2
‖ω∗‖2.

Since ‖ω∗‖ ≤ 1 we get that

‖Sh‖Ω ≤ t+ ĈRt(Ω)

for some constant Ĉ > 0. Hence, ‖Sh‖Ω → 0 as t → 0+, in view of Lemma 5. Since
σ(Ω) > 0 by Theorem A, there exists t0 > 0 for which ‖Sh‖Ω < σ(Ω), so that h is
univalent in Ω. Moreover, h has a quasiconformal extension to C by Theorem A,

which we will denote by h̃.
Using the affine invariance of Ft(Ω), the above calculation can be repeated for

the transform Aaf , given in (9), for any a ∈ D. Thus, the analytic part of Aaf and,
therefore, ha = h+ ag is univalent in Ω for every a ∈ D. Letting |a| → 1− and using
Hurwitz’ theorem we get that ha is univalent in Ω for every a ∈ T, since it can not be
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constant due to its normalization h′a(0) = 1+ag′(0) 6= 0. We show that f is injective
in Ω by contradiction. Let z1, z2 ∈ Ω be distinct, and such that f(z1) = f(z2). Since
h is injective, we have that h(z1) 6= h(z2). Setting θ = arg

(
h(z1)−h(z2)

)
we see that

(13) R ∋ e−iθ
(
h(z1)− h(z2)

)
= e−iθ

(
g(z2)− g(z1)

)
= eiθ

(
g(z2)− g(z1)

)
,

from which we get that h + e2iθg is not injective, a contradiction.

Moreover, ha has a quasiconformal extension h̃a to C for every a ∈ D. In view

of Theorem 5.3 in [15, Ch. II, §5.4], for every a ∈ T the limit function h̃a is either
constant, or takes two values, or is quasiconformal. The first two cases are discarded

by the normalization at the origin and, therefore, h̃a is quasiconformal in C for every
a ∈ D. Now we define

f̃ = h̃ + g̃,

where h̃ = h̃0 and g̃ = h̃1 − h̃0. It is clear that f̃ is a continuous (with respect to the

spherical metric) extension of f to C. It remains to show that f̃ is injective in C,

since the continuity of f̃−1 may then be obtained by a general result, see Theorem 5.6
in [17, §3–5].

We will argue again by contradiction. Let z1, z2 ∈ C be distinct, and such that

ℓ = f̃(z1) = f̃(z2) ∈ C. Since h̃ is injective, we have that h̃(z1) 6= h̃(z2). If both h̃(z1)

and h̃(z2) are finite then we proceed as in (13), setting θ = arg
(
h̃(z1) − h̃(z2)

)
and

seeing that h̃+e2iθg̃ is not injective, a contradiction. If one of h̃(z1) and h̃(z2) is finite

and the other is infinite, we may assume without loss of generality that h̃(z1) = ∞

and h̃(z2) 6= ∞. Let γθ be the pre-image of the ray {Reiθ : R ≥ 0}, θ ∈ [0, 2π), of

the function h̃. Clearly, γθ is a simple curve with one endpoint at the origin and the
other at z1. We write

h̃+ g̃ = f̃ + h̃− h̃

and see that for z ∈ γθ we have that h̃(z) − h̃(z) = Reiθ(1 − e−2iθ). We distinguish

two cases: ℓ (the common value of f̃ at z1 and z2) being finite or infinite. If ℓ 6= ∞
then

lim
γθ∋z→z1

h̃(z) + g̃(z) =

{
ℓ, if θ = 0, π,

∞, if θ 6= 0, π,

which is a contradiction since h̃+ g̃ is continuous in C. If ℓ = ∞ we take limit when

z → z1 along γ0 (so that h̃(z) = R) in order to compute that (h̃ + g̃)(z1) = ∞. But,

on the other hand, we have that (h̃ + g̃)(z2) = ∞, since h̃(z2) 6= ∞ and g̃(z2) = ∞.

This is a contradiction because h̃+ g̃ is injective.

5. Proof of Theorem 3

Let ϕ : D → Ω be a Riemann map of Ω with ϕ(0) = 0 and consider Ωr = ϕ({|z| <

r}) for r < 1. We set γr = ∂Ωr and note that, since Ω is a K̂-quasidisk for some

K̂ ≥ 1, it follows (trivially) that γr is a K̂-quasicircle for every r < 1. We also set
Γr = f(γr) and claim that it is a K-quasicircle, with K ≥ 1 independent of r. Once

we prove this claim we may then consider λr and Λr to be K̂- and K-quasiconformal
reflecions across γr and Γr, respectively, and setting

f̃r(z) =

{
f(z), if z ∈ Ωr,

Λr ◦ f ◦ λr(z), if z ∈ C\Ωr,
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we see that this is a (K 1+d
1−d

K̂)-quasiconformal mapping in the Riemann sphere.
Letting r → 1, and in view of Theorem 5.3 in [15, Ch. II, §5.4], we obtain the desired
quasiconformal extension of f to C.

Let wj ∈ Γr, j = 1, 2, 3, 4, be distinct points. Our claim that Γr is a K-quasicircle,
with K ≥ 1 independent of r, will be proved by showing that the cross-ratio of the
points wj is bounded by a uniform constant, independent of r. Since f is injective
in Ω by Theorem 1, there exist exactly four points zj ∈ γr for which wj = f(zj). For
convenience, we will write hj = h(zj) and gj = g(zj). We have

wi − wj = hi − hj + gi − gj = (hi − hj)(1 + µijAij),

where Aij =
gi−gj
hi−hj

and µij =
gi−gj
gi−gj

∈ T (we may set µij = 1 if gi = gj). We have that

(14) |(w1, w2, w3, w4)| = |(h1, h2, h3, h4)|

∣∣∣∣
(1 + µ12A12)(1 + µ34A34)

(1 + µ13A13)(1 + µ24A24)

∣∣∣∣ .

Since h(Ω) is a quasidisk (in view of the proof of Theorem 1), we have that

|(h1, h2, h3, h4)| ≤M

for some absolute constant M ≥ 0.
We saw in the course of the proof of Theorem 1 that ha = h+ ag is univalent in

Ω for every a ∈ D. We will now expand the range of |a| for which this holds.
Let δ ∈ (1, 1/d) and consider 1 < |a| ≤ δ. We compute h′a = h′(1 + aω) and

h′′a
h′a

=
h′′

h′
+

aω′

1 + aω
,

so that

Sha = Sh−
aω′

1 + aω

h′′

h′
+

aω′′

1 + aω
−

3

2

(
aω′

1 + aω

)2

.

By formula (3) and a straightforward computation we arrive at

Sha = Sf +
a+ ω

1 + aω

[
ω′′

1− |ω|2
−

ω′

1− |ω|2
h′′

h′
+

3

2

(
ω′

1− |ω|2

)2(
ω −

a(1− |ω|2)

1 + aω

)]
.

In Ω, we have that
∣∣∣∣
a+ ω

1 + aω

∣∣∣∣ ≤ max
|ζ|=d

∣∣∣∣
a+ ζ

1 + aζ

∣∣∣∣ =
|a| − d

1− |a|d
≤

δ − d

1− δd
= C,

where the first of these inequalities follows from the maximum principle. Moreover,
we have that∣∣∣∣ω −

a(1− |ω|2)

1 + aω

∣∣∣∣ ≤ d+
|a|(1− |ω|2)

1− |aω|
≤ d+

|a|(1− d2)

1− |a|d
≤ d+

δ(1− d2)

1− δd
= C ′.

Hence, we get that

|Sha| ≤ |Sf |+ C

[
|ω′′|

1− |ω|2
+

|ω′|

1− |ω|2

∣∣∣∣
h′′

h′

∣∣∣∣+
3C ′

2

(
|ω′|

1− |ω|2

)2
]
.

We assume that f ∈ Ft(Ω), for t ≥ 0, and, working as in the proof of Theorem 1, we
use Propositions 3, 4 and Koebe’s 1/4-theorem (12) in order to obtain

‖Sha‖Ω ≤ t+ ĈRt(Ω)

for some constant Ĉ > 0. Choosing t0 > 0 so that t0 + ĈRt0(Ω) = σ(Ω) we conclude
that ha is univalent.
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We fix α ∈ Ω and consider the generalized dilatation

ψα(z) =

{
g(z)−g(α)
h(z)−h(α)

, if z ∈ Ω\{α},

ω(α), if z = α.

Since h is injective in Ω it is clear that ψα is holomorphic in Ω. We claim that

S = max
z∈Ωr

|ψα(z)| ≤
1

δ
.

Note that |ω(α)| ≤ d < 1/δ so that if, otherwise, S > 1/δ, then there would exist
a point z0 ∈ Ω\{α} for which ψα(z0) = eiθ/δ, for some θ ∈ R. This shows that the
values of the function h − e−iθδg at the points α and z0 would coincide, which is a
contradiction since this is a univalent function.

Hence we may bound the terms in (14) as |Aij| ≤ 1/δ in order to obtain

|(w1, w2, w3, w4)| ≤M
(1 + |A12|)(1 + |A34|)

(1− |A13|)(1− |A24|)
≤ M

(
1 + 1/δ

1− 1/δ

)2

,

with which we finish the proof.

6. Finitely connected domains

Let Ω be a domain in C. A collection D of domains D ⊂ Ω is called a quasi-
conformal decomposition of Ω if each D is a quasidisk and any two points z1, z2 ∈ Ω
lie in the closure of some D ∈ D. This definition along with the following covering
lemma were given by Osgood in [18].

Lemma C. [18] If Ω is a finitely connected domain and each component of ∂Ω
is either a point or a quasicircle then Ω is quasiconformally decomposable.

The proof in [18] provides an explicit finite decomposition.

Proof of Therorem 2. We prove the direction (i) ⇒ (iii). The domain Ω is qua-
siconformally decomposable by a collection D in view of Lemma C. By Theorem 1,
each of the quasidisks D in D has positive harmonic inner radius. Let

0 < c ≤ min
D∈D

σH(D)

and consider f to be a harmonic mapping in Ω that satisfies ‖Sf‖Ω ≤ c. If f(z1) =
f(z2) for two distinct points z1, z2 in Ω then z1, z2 ∈ D, for some quasidisk D from
the collection D. The domain monotonicity for the hyperbolic metric shows that
λD(z) ≥ λΩ(z) for all z ∈ D and, therefore, that

‖Sf‖D ≤ ‖Sf‖Ω ≤ c.

But now the homeomorphic extension of Theorem 1 shows that if c is sufficiently
small then f is injective up to the boundary of D, a contradiction. �

We note that if we strengthen the definition of quasiconformal decomposition so
that any two points z1, z2 ∈ Ω lie in some quasidisk D (not its closure) from a collec-
tion D, then the construction in [18] can be modified so that Lemma C still holds.
Had we followed this line of reasoning then we would not need the homeomorphic
extension of Theorem 1, but only the univalence criterion from its statement.
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