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Abstract. We study two notions of topological entropy of correspondences introduced by

Friedland and Dinh–Sibony. Upper bounds are known for both. We identify a class of holomorphic

correspondences whose entropy in the sense of Dinh–Sibony equals the known upper bound. This

provides an exact computation of the entropy for rational semigroups. We also explore a connection

between these two notions of entropy.

1. Introduction, definitions and some results

This paper studies certain semigroups of holomorphic maps. It is motivated,
however, by two related notions of topological entropy—one of which applies to
meromorphic correspondences on a compact Kähler manifold, while the other ap-
plies, more generally, to closed relations on a compact metric space. Both notions
are thus applicable to holomorphic correspondences (which we shall define presently)
on a compact Kähler manifold. The first notion is due to Dinh and Sibony [5] while
the second, introduced much earlier, is due to Friedland [7]. In both cases, upper
bounds for each type of topological entropy were given: by Friedland in [7] and by
Dinh–Sibony in [5]. However, for either type of entropy, this upper bound is in gen-
eral strictly greater than the actual entropy. In this work, among other things, we
identify a natural class of holomorphic correspondences for which this upper bound
equals the entropy of Dinh–Sibony.

We use the word “natural” because the above-mentioned correspondences turn
out to be correspondences representing certain semigroups of holomorphic maps.
Hence, the main results in this paper will be stated for these semigroups. To get to
these results, we need some definitions.

Definition 1.1. Let X1 and X2 be two compact, connected complex manifolds
of dimension n. A holomorphic correspondence from X1 to X2 is a formal linear
combination of the form

(1.1) Γ =
∑

1≤j≤N
mjΓj ,

where the mj ’s are positive integers and Γ1,Γ2, . . . ,ΓN are distinct irreducible complex-
analytic subvarieties of X1 ×X2 of pure dimension n that satisfy the following con-
ditions:

(1) for each Γj in (1.1), π1|Γj
and π2|Γj

are surjective;
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(2) for each x ∈ X1 and y ∈ X2,
(
π−1
1 {x} ∩ Γj

)
and

(
π−1
2 {y} ∩ Γj

)
are finite sets

for each j;

where πi is the projection onto Xi, i = 1, 2.

Given a holomorphic correspondence Γ from X1 to X2, the set (in terms of the
notation in (1.1))

⋃
1≤j≤N Γj is called the support of Γ, which we denote by |Γ|.

The data (m1, . . . , mN) in (1.1) are an essential part of the definition above. We
shall elaborate on this below, but a brief reason is as follows. If X1 = X2 = X
in Definition 1.1, then we say that Γ is a holomorphic correspondence on X. Two
holomorphic correspondences on X can be composed with each other. It is possible
for a correspondence Γ, even if m1 = · · · = mN = 1, to be such that some of the
irreducible components of Γ ◦Γ occur with multiplicity higher than 1. The ability to
compose two correspondences introduces the perspective of dynamics to the study of
correspondences.

We now introduce the two notions of entropy that we alluded to. We begin with
the more general notion.

Definition 1.2. (Friedland [7, 8]) Let X be a compact metric space and let Γ
be a closed relation on X (i.e., Γ is a closed subset of X ×X and the projection π1|Γ
is surjective). Let

XN := {(x0, x1, x2, . . . ) : xn ∈ X, n ∈ N}

endowed with the product topology, and let

Γ∞ := {(x0, x1, x2, . . . ) ∈ XN : (xn, xn+1) ∈ Γ ∀n ∈ N}.

If Γ∞ is endowed with the topology that it inherits from XN, then, by definition, the
left-shift on XN induces a continuous map σ : Γ∞ −→ Γ∞, where σ : (x0, x1, x2, . . . )
7−→ (x1, x2, x3, . . . ). Then Friedland’s entropy for Γ, denoted by hF (Γ), is defined as
the topological entropy, in the sense of Bowen, of σ : Γ∞ −→ Γ∞ (usually denoted by
h(σ) in the literature).

For the sake of completeness we will define the topological entropy in the sense of
Bowen—see Section 3, where we examine the latter notion more closely. For the next
definition, we need an alternative presentation of the correspondence introduced in
Definition 1.1. We rewrite Γ as

(1.2) Γ =
∑′

1≤j≤M
Γ•
j ,

where the primed sum indicates that the irreducible subvarieties Γ•
j , j = 1, . . . ,M ,

are not necessarily distinct and are repeated according to multiplicity that is given
by the coefficients m1, . . . , mN in (1.1). Therefore, M = m1 + · · ·+mN . With this
explanation, we give

Definition 1.3. (Dinh–Sibony [5]) Let X be compact, connected complex man-
ifold and let Γ be a holomorphic correspondence on X. For each ν ∈ Z+, a ν-orbit
of Γ is any tuple of the form

(x0, x1, . . . , xν ;α1, . . . , αν) ∈ Xν+1 × {1, . . . ,M}ν ,

where (xj−1, xj) ∈ Γ•
αj

, j = 1, . . . , ν, assuming the presentation (1.2) for Γ. Fix a
metric d compatible with the topology of X. If F is a family of ν-orbits, we say that
F is an (ε, ν)-separated family, ε > 0, if for all pairs of distinct elements

(x0, x1, . . . , xν ;α1, . . . , αν) and (y0, y1, . . . , yν; β1, . . . , βν)
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of F , we have

(1.3) d(xj , yj) > ε for some j = 0, 1, . . . , ν or αj 6= βj for some j = 1, . . . , ν.

Then, the topological entropy of Γ, denoted by htop(Γ), is defined as

htop(Γ) := sup
ε>0

lim sup
ν→∞

1

ν
log

(
max{♯F : F is an (ε, ν)-separated family}

)
.

Remark 1.4. Since the manifold X is compact, for any ε > 0 and ν ∈ Z+, any
(ε, ν)-separated family in the above definition is finite. Furthermore, it is routine to
verify (see [5, Section 4]) that htop(Γ) does not depend on the choice of the metric d
for defining (ε, ν)-separatedness.

Comparing the above definition with Definition 3.2, we see that Definition 1.3 is
closely related to Bowen’s definition of the topological entropy of maps.

Definition 1.5. A rational semigroup is a semigroup, with composition of maps
as the semigroup operation, whose elements are surjective holomorphic self-maps of
Pn for some n ∈ Z+.

Remark 1.6. Note that, despite the word “rational” in Definition 1.5, the ele-
ments of a rational semigroup on Pn, n ≥ 2, do not possess indeterminacies. We have
some results about classical rational semigroups (i.e., defined on (C ∪ {∞}) ∼= P1),
and do not want to coin new terminology for theorems that also hold true for higher-
dimensional analogues of the latter semigroups. This is the reason for the term
“rational semigroups” introduced in Definition 1.5.

There is a very natural connection between finitely generated rational semigroups
and holomorphic correspondences. Since this association defines the holomorphic
correspondences for which we shall make exact entropy computations, let us state it
formally. This association makes sense in greater generality, and not just for rational
semigroups.

Definition 1.7. Let X be a compact, connected complex manifold and let S
be a finitely generated semigroup consisting of surjective holomorphic self-maps of
X. Let G = {f1, . . . , fN} be a set of generators of S. We call the holomorphic
correspondence

(1.4) ΓG :=
∑

1≤j≤N
graph(fj)

on X the holomorphic correspondence associated with (S,G ).

As has been observed earlier—see [10] by Ghys, Langevin and Walczak for the
case of pseudogroups, or [8]—the entropy of a finitely-generated semigroup requires
the specification of a set of generators. Thus, for X and S as in Definition 1.7, and
for a choice G of a set of generators of S, we formally set:

hF (S,G ) := hF

(
|ΓG |

)
and htop(S,G ) := htop(ΓG ).

We must mention that with S as above, the definition of Friedland’s entropy for S
in [8], denoted by hF (S), is independent of the choice of the set of generators. Its
definition is

hF (S) := inf
{
hF (S,G ) : G is a finite set of generators of S

}
.

Given this definition, it is essential to first understand the quantity hF (S,G ) for a
given set of generators G —which is why we focus on hF (S,G ) and htop(S,G ) in this
work.
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Recall that if f : Pn −→ Pn is holomorphic, then using homogeneous coordinates,
we have:

f([z0 : z1 : · · · : zn]) =
[
f0(z0, z1, . . . , zn) : f1(z0, z1, . . . , zn) : · · · : fn(z0, z1, . . . , zn)

]
,

where there exists a number d1(f) ∈ Z+, and f0, f1, . . . , fn are homogeneous polyno-
mials of degree d1(f) such that ∩n

i=0 f
−1
i {0} = {0}. With this definition, we can state

our first result.

Theorem 1.8. Let S be a finitely generated rational semigroup on Pn for some

n ∈ Z+. Let G = {f1, . . . , fN} be a set of generators of S. Then

htop(S,G ) = log
(∑

1≤j≤N
d1(fj)

n
)
.

We can say a lot more than Theorem 1.8. The latter is a consequence of a more
general theorem, which provides bounds from above and below on htop(S,G ) in a
more general context—see Theorem 4.2 below. Here, however: as the notion of a
rational semigroup first arose in the area of complex dynamics in one dimension
(see [12] by Hinkkanen and Martin)—and to foreshadow Theorem 5.2—we state the
following special case:

Corollary 1.9. Let S be a finitely generated rational semigroup on P1, and let

G = {f1, . . . , fN} be a set of generators of S. Then

htop(S,G ) = log
(∑

1≤j≤N
deg(fj)

)
.

We now turn to Friedland’s entropy. Although it makes sense in a much more
general setting, hF turns out to be harder to compute. This is because, among other
reasons, notions that approximate concepts such as irreducible components, etc., are
much less well-structured outside the complex-analytic setting, and do not feature in
Definition 1.2. In the complex-analytic setting, this absence leads to two difficulties
that one can point to (with X here as in Definition 1.1):

(i) A holomorphic correspondence Γ on X can be iterated. If dtop(Γ) denotes the
topological degree of Γ (see Section 2), then one has the identity dtop(Γ

◦ν) =
dtop(Γ)

ν for any ν ∈ Z+. The analogous identity for the ν-fold iterate of the
relation |Γ|—which is relevant to the entropy hF—is not true in general. This
vitiates computations of hF .

(ii) If X is Kähler, then either type of entropy is dominated by the quantity lov(Γ)
(see Section 2)—which results from a technique of Gromov [11]. For similar
reasons as in (i), lov(Γ) turns out not to be the best upper bound for hF (Γ)
even for Γ = ΓG .

We shall elaborate upon these points and discuss further the relationship between
the above notions of entropy in Section 1.1 below. For the moment, we note that
rather few examples of exact computations of hF (not necessarily in the holomorphic
category) are known: see, for instance, [8, Section 5] and [9] by Geller and Pollicott.
But, as indicated above, computing hF is inherently hard. However, certain lower
bounds for hF (S,G ), G finite, are almost immediate: hF (S,G ) ≥ hF (〈f : f ∈ G ′〉,G ′)
for any ∅ 6= G ′  G (see Section 5 for details). In contrast to this, for S a rational
semigroup on P1, we shall establish a lower bound for hF (S,G ) that takes into
consideration each of the generators in G . This is our Theorem 5.2. Since it requires
some notation, we present it in Section 5. This theorem, in turn, relies on our
central proposition of Section 3, which might be of independent interest. The proof
of Theorem 1.8 (from which Corollary 1.9 is immediate) is presented in Section 4.
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1.1. A comparison of htop and hF . This section presents a bit more discussion
on the two notions of entropy defined above. The material in the sections below does
not depend on this discussion (and readers interested in the proofs can skip this
on the first reading). The first point of contrast involves this question: given a
correspondence Γ with the presentation (1.1), is htop(Γ) = hF (Γ) if the multiplicity
of each Γj is 1? The answer to this is “No”, in general. To understand this answer, let
us consider one of the roles these multiplicities serve. Consider a finitely generated
semigroup S and a set of generators G := {f1, . . . , fN}. If S is not freely generated
and suppose, for some ν ∈ Z+ \ {1}, there exists a relation

(1.5) fiν ◦ · · · ◦ fi1 = fjν ◦ · · · ◦ fj1 =: Φ,

where (i1, . . . , iν) 6= (j1, . . . , jν), then the irreducible component graph(Φ) occurs
with multiplicity at least 2 in the correspondence Γ◦ν

G
. Given such a semigroup and

a choice, G , of a set of generators, it is usually hard to count all the relations of the
form (1.5) as ν → ∞. This, hopefully, reveals explicitly one of the reasons why hF (Γ)
is difficult to compute in many cases. For any holomorphic correspondence, a coarse
manifestation of the issue of multiplicities—discussed here for the correspondence ΓG

associated with a rational semigroup—is the phenomenon mentioned in (i) above.
Now, to return to the question above, the following example illustrates our answer.
Let S be the rational semigroup generated by G , let G1 = {f1, f2}, where f1 and f2
are distinct loxodromic Möbius transformations such that f1 and f2 have the same
attracting fixed point and the same repelling fixed point. Then, while both the
irreducible components of the correspondence ΓG (as defined in (1.4)) occur with
multiplicity 1, we have

hF (ΓG ) =: hF (S,G ) = 0, (see [8, Lemma 5.2])

htop(ΓG ) =: htop(S,G ) = log(2). (by Corollary 1.9)

One relation between the two notions of entropy that holds universally is as follows:
with X as above and for any holomorphic correspondence Γ on X, hF (Γ) ≤ htop(Γ).
This is immediate from Proposition 3.5 below.

Now, htop has some features that may seem anomalous. E.g., with X as above, if
Γ is an irreducible complex-analytic subvariety of X ×X with the properties stated
in Definition 1.1, then htop(2Γ) 6= htop(Γ). When X = Pn and Γ is the graph
of a non-constant holomorphic map f : Pn −→ Pn, then it follows from the proof

of Theorem 1.8 that htop(2Γ) = log(2) + htop(Γ). But this value isn’t necessarily
anomalous in a context where one must consider 2Γ (instead of Γ). As a lot of the
formalism of this paper is that of general holomorphic correspondences, one may ask
why one cares for the entropy of holomorphic correspondences. It would be natural
to study the entropy of these objects if one cares about the iterative dynamics of
correspondences. Correspondences serve as a common framework—as the theorems
above and the discussion in Section 0 of [8] testify—for a number of dynamical
systems of interest. The iteration of true holomorphic correspondences on P1 (i.e.,
not maps) are of interest too: they realise matings between certain rational maps
and certain classes of Kleinian groups: see [2, 3], for instance.

2. Complex geometry preliminaries

This section is devoted to a discussion of terminology from geometry appearing in
Section 1 whose definitions had been deferred, and to stating a result that constitutes
one part of the proofs of Theorem 1.8 and Corollary 1.9.
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We first begin with a discussion of the composition of two holomorphic correspon-
dences. Since one needs to understand this only to define a certain finite sequence
of numbers associated to a correspondence Γ, we shall be brief. We refer the reader
to [5, Section 3] for details (with a note to those unfamiliar with holomorphic corre-
spondences that the footnote to [5, Section 3] is irrelevant in the case of holomorphic
correspondences). We focus on two points that are relevant to this article (in what
follows, Γ◦ν will denote the νth iterated composition of Γ):

(i) With X as in Definition 1.1, consider two holomorphic correspondences

Γ1 =
∑′

1≤j≤M1

Γ•
1, j and Γ2 =

∑′

1≤k≤M2

Γ•
2, k

on X, written in accordance with the presentation (1.2). The support of
Γ2 ◦ Γ1 is just the classical composition of |Γ2| with |Γ1| as relations. Let
us denote the latter composition by ⋆. If Ys, jk, s = 1, . . . ,M(j, k), are the
distinct irreducible components of |Γ•

2, k| ⋆ |Γ
•
1, j |, then let

ηs, jk :=the number of y’s, for a generic (x, z) ∈ Ys, jk, such that

(x, y) ∈ Γ•
1, j & (y, z) ∈ Γ•

2, k.

Then, the definition in [5, Section 3] results in the formula:

Γ2 ◦ Γ1 :=
∑

1≤j≤M1

∑

1≤k≤M2

∑

1≤s≤M(j, k)

ηs, jkYs, jk.

(ii) For the semigroup S, a choice of a set of generators G , and the correspondence
ΓG introduced in Definition 1.7, we have

Γ◦2
G := ΓG ◦ ΓG =

∑
1≤j, k≤N

graph(gj ◦ gk).

Observe that if S is not a free semigroup and if, for instance, there exists a relation
of the form gj1 ◦ gk1 = gj2 ◦ gk2 for (j1, k1) 6= (j2, k2), then the irreducible variety
graph(gj1 ◦ gk1) would occur with multiplicity at least 2. Observations such as the
one above are the reason why the data (m1, . . . , mN) in (1.1) are essential in defining
a holomorphic correspondence.

One can pull back certain types of currents by a holomorphic correspondence—
see [4, Section 3.1]. The formal prescription for the pullback (which we denote by
F ∗
Γ) of any current T of bidegree (p, p), p = 0, 1, . . . , n (recall that dimC(X) = n) is:

(2.1) F ∗
Γ(T ) := (π1)∗ (π

∗
2(T ) ∧ [Γ])

whenever the intersection π∗
2(T ) ∧ [Γ] makes sense. Here, Γ detemines a current of

bidimension (n, n) given by the currents of integration defined by its constituent
subvarieties—which we denote by [Γ]. Recall that if X1 and X2 are two compact,
connected complex manifolds of dimensions n1 and n2, respectively, π : X1 −→ X2 is
a holomorphic map, and T is a current on X1 of bidegree (p, p), max(n1 − n2, 0) ≤
p ≤ n1, then the push-forward of T by π is given by

〈π∗T, ϕ〉 := 〈T, π∗ϕ〉 ∀(n1 − p, n1 − p)-forms ϕ on X2,

whereby π∗T is a current of bidegree (n2 − n1 + p, n2 − n1 + p) on X2 (with the
understanding that if 0 ≤ p < n1 − n2, then π∗T ≡ 0 for any (p, p)-current T ). With
X1, X2 and π as before, the pullback of a current by π is somewhat non-standard.
To begin with, one can define a pullback if π is a submersion onto X2. If π is not a
submersion, then the pullback is defined for special classes of (p, p)-currents on X2.
We refer the reader to [4, Section 2.4] for the definition of the pullback of T by π in
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these various cases. In (2.1), the map π2 is a submersion and is simple enough that
we have

〈π∗
2(T ), ϕ〉 :=

〈
T,

ˆ

x∈X

ϕ(x, ·)
〉

∀(2n− p, 2n− p)-forms ϕ on X ×X,

for a (p, p)-current T , 0 ≤ p ≤ n.
We consider an example where the intersection of currents in (2.1) makes sense.

Any smooth (p, p)-form Θ on X, p = 0, 1, . . . , n, can be pulled back by Γ to give a
(p, p)-current (equivalenty, a current of bidimension (n− p, n− p)) as follows:

〈F ∗
Γ(Θ), ϕ〉 :=

N∑

j=1

mj

ˆ

reg(Γj )

(
π2|Γj

)∗
Θ ∧

(
π1|Γj

)∗
ϕ ∀(n− p, n− p)-forms ϕ,

using the presentation (1.1) for Γ. Now suppose (X,ω) is a Kähler manifold and let
ωX denote the normalisation of ω so that

´

X
ωn
X = 1. For p = 0, 1, . . . , n, we define

the pth intermediate degree of Γ by

λp(Γ) := 〈F ∗
Γ(ω

p
X), ω

n−p
X 〉.

It is well known that for each p, λp is sub-multiplicative with respect to composition.
Thus, the limit on the right-hand side below

(2.2) dp(Γ) := lim
ν→∞

λp(Γ
◦ν)1/ν , p = 0, 1, . . . , n,

exists. The number dp(Γ) is called the pth dynamical degree of Γ. Since the limit
on the right-hand side of (2.2) exists, dp(Γ

◦k) = dp(Γ)
k, p = 0, 1, . . . , n, for every

k ∈ Z+.
With these definitions, we can state a result that we shall need in proving The-

orem 1.8 and Corollary 1.9.

Result 2.1. (Paraphrasing of [5, Theorem 1.1]) Let (X,ω) be a compact Kähler

manifold of dimension n and let Γ be a holomorphic correspondence on X. Then

htop(Γ) ≤ max
0≤p≤n

log dp(Γ).

We ought to mention that Dinh–Sibony establish the above bound on htop for
the more general class of meromorphic correspondences. Furthermore, this bound is
actually obtained—adapting a technique of Gromov [11]—by computing the value of
lov(Γ), which dominates htop(Γ). Roughly speaking, lov(Γ) is the asymptotic rate of
logarithmic growth (relative to ν) of the volume of the space of all ν-orbits.

3. Notation and essential propositions on topological entropy

We begin by fixing some notation that will be needed for the propositions in this
section and in subsequent sections. The objects introduced here will pertain to a
general holomorphic correspondence Γ, and our notation will be with reference to
the presentation (1.2) of Γ.

We begin by introducing an object similar to Γ∞ of Definition 1.2. The parameter
M has the same meaning in the following definition as in (1.2):

ΓX := {(x0, x1, x2, . . . ;α1, α2, . . . ) ∈ XN×{1, . . . ,M}Z+ : (xν−1, xν) ∈ Γ•
αν

∀ν ∈ Z+}.

This space is endowed with the topology that it inherits from XN × {1, . . . ,M}Z+

endowed with the product topology. We will denote by ΓOν the space of all ν-orbits,
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i.e.,

ΓOν := {(x0, . . . xν ;α1, . . . , αν) ∈ Xν+1 × {1, . . . ,M}ν : (xj−1, xj) ∈ Γ•
αj
, 1 ≤ j ≤ ν}.

The above is endowed with the relative topology that it inherits from Xν+1 ×
{1, . . . ,M}ν .

We shall need the following maps. By a mild abuse of notation, we shall denote
by πitn either the map πitn : ΓX −→ XN or the map πitn : ΓOν −→ Xν+1 that maps
the relevant orbit of an iteration under Γ to the itinerary of points in X along that
orbit. In other words:

πitn : ΓX ∋ (x0, x1, . . . ;α1, . . . ) 7→ (x0, x1, . . . ) or

πitn : ΓOν ∋ (x0, x1, . . . , xν ;α1, . . . , αν) 7→ (x0, x1, . . . , xν) respectively,

where the precise definition of πitn will be obvious from the context. By a sim-
ilar abuse of notation, we shall denote by πsymb either the map πsymb : ΓX −→
{1, . . . ,M}Z+ or the map πsymb : ΓOν −→ {1, . . . ,M}ν , defined by

πsymb : ΓX ∋ (x0, x1, . . . ;α1, . . . ) 7→ (α1, . . . ) or

πsymb : ΓOν ∋ (x0, x1, . . . , xν ;α1, . . . , αν) 7→ (α1, . . . , αν) respectively.

Lastly, start : ΓOν −→ X will denote the map (x0, x1, . . . , xν ;α1, . . . , αν) 7→ x0. The
need to consider sets of finite and infinite orbits (in ways similar to how the above
objects are used here) has arisen earlier in the literature. E.g., formalisms similar to
those given here for correspondences are seen in studying surjective holomorphic self-
maps of P2 due to the need to consider different prehistories (i.e., backward orbits)
of a point x0 ∈ P2—see, e.g., [14] and [6].

We shall also need a standard result in elementary topology (also see Remark 3.4).
We shall abbreviate σ◦j as σj .

Lemma 3.1. Let (Y,D) be a compact metric space and let D̂ denote the metric

D̂(x̂, ŷ) := sup
n∈N

D(xn, yn)

2n
,

x̂ := (x0, x1, x2, . . . ) and ŷ := (y0, y1, y2, . . . ), which metrises the product topology

on Y N. Let σ : (x0, x1, x2, . . . ) 7−→ (x1, x2, x3, . . . ) be the left-shift on Y N. Then:

max
0≤j≤n

D̂
(
σj(x̂), σj(ŷ)

)
= sup

j∈N

D(xj , yj)

2(j−n)+
,

where (j − n)+ := max(j − n, 0).

Before stating the principal result of this section, we provide a couple of clarifica-
tions. In what follows, if Y is a compact metric space and f : Y −→ Y is a continuous
map, then h(f) will denote its topological entropy in the sense of Bowen. We shall de-
fine this in the setting of compact metric spaces, along with a remark on the broader
concept introduced by Bowen in [1]. Since the phrase “(ε, ν)-separated” appears
in Definition 1.3 in a (slightly) different context, we shall—to avoid confusion—use
wording that is slightly different from that in [1].

Definition 3.2. Let (Y,D) be a compact metric space and let f : Y −→ Y be
a continuous map. A set F of orbits of f of duration n, n ∈ Z+, is said to be an
ε-separated set of orbits of f of duration n, ε > 0, if for all pairs of distinct orbits

(x0, x1, . . . , xn) and (y0, y1, . . . , yn)
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of F (i.e., xj = f j(x0), yj = f j(y0), j = 1, . . . , n)

D(xj, yj) > ε for some j = 0, 1, . . . , n.

Let M(ε, n) denote the greatest possible cardinality of any ε-separated set F of orbits
of f of duration n. Then, the topological entropy of f , denoted by h(f), is defined as

h(f) := sup
ε>0

lim sup
n→∞

1

n
logM(ε, n).

Remark 3.3. In [1], Bowen gives a definition of entropy that does not require Y
to be compact. In that case, f must be uniformly continuous relative to the metric
on Y , and the value of Bowen’s entropy of f depends on this metric. But when Y
is compact, Bowen’s entropy is independent of the metric, provided it metrises the
topology on Y . This is the special case of the broader framework in [1] that we focus
on in Definition 3.2.

Remark 3.4. In Definition 1.2, where hF (Γ) is defined as h(σ) for the shift map
σ : Γ∞ −→ Γ∞, we now see that the latter is given by Definition 3.2 with Y = Γ∞

and f = σ. This, in fact, is the motivation for Lemma 3.1.

We now state and prove a result that will be needed in the proof of Theorem 5.2.
This result is hinted at in [5, Section 4]. However:

• It is unclear if Proposition 3.5 follows, as alluded to in [5], from the conjugacy
invariance of topological entropy (which applies to pairs of maps).

• For Γ as in Definition 1.1, if the topological degree of
(
π1|Γj

)
≥ 2 for any

j ∈ {1, . . . , N}, then it is unclear whether Γ can at all be conjugated to a
shift on ΓX.

While we shall apply Proposition 3.5 only to the holomorphic correspondence ΓG in
Section 5, it holds true for general holomorphic correspondences. It may thus be of
independent interest. In view of the two points above, it seems worthwhile to state
and give a direct proof of

Proposition 3.5. Let X and Γ be as in Definition 1.1. For ε > 0 and ν ∈ Z+,

let

N(ε, ν) := the cardinality of any (ε, ν)-separated family of ν-orbits, in the

sense of Definition 1.3, having the greatest possible cardinality.

Let S denote the restriction of the shift map

σ : (x0, x1, x2, . . . ;α1, α2, . . . ) 7→ (x1, x2, x3, . . . ;α2, α3, . . . )

to ΓX. Then,

htop(Γ) := sup
ε>0

lim sup
ν→∞

1

ν
logN(ε, ν) = h(S ),

where h(S ) is the entropy, in the sense of Bowen, of the continuous map S : ΓX −→
ΓX.

Proof. Let us fix a metric d on the complex manifold X that is compatible with
the manifold topology. We choose the metric

∆
(
(x0, x1, . . . ;α1, . . . ), (y0, y1, . . . ; β1, . . . )

)
:= max

[
sup
ν∈N

d(xν , yν)

2ν
, sup
ν∈N

δ(αν+1, βν+1)

2ν

]

(where δ denotes the 0-1 metric on the symbols {1, . . . ,M}) which metrises the
topology on ΓX. Since we must show that htop(Γ) equals the Bowen entropy of S ,
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we introduce, for ε > 0 and ν ∈ Z+, the set

M(ε, ν) :=the cardinality of any ε-separated set of orbits of S

of duration ν having the greatest possible cardinality.

Recall that any two orbits,

(3.1) O1 := (x0, x1, . . . ;α1, . . . ) and O2 := (y0, y1, . . . ; β1, . . . ),

belonging to any of the sets referred to in the definition of M(ε, ν) satisfy

(3.2) max
0≤j≤ν

∆(S j
(
O1),S

j(O2)
)
> ε.

Fix a ν ∈ Z+. It suffices to consider ε ∈ (0, 1).
Let S(ε, ν) ⊂ ΓOν be an (ε, ν)-separated family, in the sense of Definition 1.3,

such that ♯S(ε, ν) = N(ε, ν). For each ν-orbit x ∈ S(ε, ν), let us pick a (x0, x1, x2, . . . ;
α1, α2 . . . ) ∈ ΓX such that

(x0, x1, . . . , xν ;α1, . . . , αν) = x,

and fix it. Call the latter infinite orbit x̃. Let us consider two distinct ν-orbits

x := (x0, x1, . . . , xν ;α1, . . . , αν) and y := (y0, y1, . . . , yν ; β1, . . . , βν)

belonging to S(ε, ν). We have two possibilities for the pair {x, y}:

Case 1. max 0≤j≤ν d(xj , yj) > ε. Then (with the meaning of ỹ hopefully being
clear) by the definition of ∆, and in view of Lemma 3.1, we have

(3.3) max
0≤j≤ν

∆
(
S

j(x̃),S j(ỹ)
)
≥ sup

j∈N

d(xj, yj)

2(j−ν)+
> ε.

Case 2. max 0≤j≤ν d(xj , yj) ≤ ε. In this case, by (1.3) there exists a j∗, with
1 ≤ j∗ ≤ ν, such that αj∗ 6= βj∗. Therefore, in view of Lemma 3.1, we have

(3.4) max
0≤j≤ν

∆
(
S

j(x̃),S j(ỹ)
)
≥ sup

j∈N

δ(αj+1, βj+1)

2(j−ν)+
≥ 1 > ε.

From (3.3) and (3.4) it follows that the set {x̃ ∈ ΓO : x ∈ S(ε, ν)} is an ε-separated
set of orbits of S in the sense of (3.2). Since the latter set has cardinality N(ε, ν),
we get:

(3.5) M(ε, ν) ≥ N(ε, ν).

Now let Σ(ε, ν) ⊂ ΓX be an ε-separated set of orbits in the sense of (3.2) such
that ♯Σ(ε, ν) = M(ε, ν). Then, for two distinct orbits O1,O2 ∈ Σ(ε, ν), we have
(using the notation in (3.1)):

d(xj , yj)

2(j−ν)+
≤ ε ∀j ≥ ν + log2(1/ε) + log2(diam(X)),(3.6)

δ(αj+1, βj+1)

2(j−ν)+
≤ ε ∀j ≥ ν + log2(1/ε),(3.7)

where log2(t) := log(t)/ log(2) ∀t > 0. Given the definition of the metric ∆, it is
impossible for the quantities

max
0≤j≤ν

sup
k∈N

d
(
πk ◦ πitn(S

j(O1)), πk ◦ πitn(S
j(O2))

)

2k
,
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and

max
0≤j≤ν

sup
k∈Z+

δ
(
πk ◦ πsymb(S

j(O1)), πk ◦ πsymb(S
j(O2))

)

2k−1

(where πk denotes the projection onto the kth factor) to both be less than or equal
to ε. Thus, by (3.6), (3.7) and Lemma 3.1, we have

d(xj, yj) > 2(j−ν)+ε or δ(αj+1, βj+1) 6= 0 for some j : 0 ≤ j ≤ C(ε) + ν,

where C(ε) is the greatest integer that is strictly less than log2(1/ε)+log2(diam(X)).
Hence

(x0, x1 . . . , xC(ε)+ν ;α1, . . . , αC(ε)+ν) and (y0, y1 . . . , yC(ε)+ν; β1, . . . , βC(ε)+ν)

are (ε, C(ε) + ν)-separated in the sense of Definition 1.3. Since this applies to any
pair of distinct O1,O2 ∈ Σ(ε, ν), we get

N(ε, C(ε) + ν) ≥ M(ε, ν).

From this and (3.5), it follows that

N(ε, ν) ≤ M(ε, ν) ≤ N(ε, C(ε) + ν).

From the above, and from the definitions of the numbers M(ε, ν) and N(ε, ν), the
result is now immediate. �

We end this section revisiting Bowen’s entropy. It will be needed in the proof of
Theorem 5.2. To state it, we need some terminology. Let (Y,D) be as in Lemma 3.1
and let f : Y −→ Y be a continuous map. Let K ⊆ Y . Given ε > 0 and n ∈ Z+,
a subset F ⊂ Y is said to (ε, n)-span K with respect to f if for each x ∈ K there
exists a y ∈ F so that

D
(
f j(x), f j(y)

)
≤ ε ∀j = 0, 1, . . . , n− 1.

Let rn(ε,K) := inf{♯F : F ⊂ Y (ε, n)-spans K}. If K is compact, then, clearly,
rn(ε,K) is finite for any ε > 0 and n ∈ Z+. Now, define:

(3.8) h(f,K) := lim
ε→0+

lim sup
n→∞

1

n
log

(
rn(ε,K)

)
.

We must admit that, in the above discussion, we are omitting a considerable amount
of context. For instance, the quantity h(f,K) is an ingredient in the definition of
Bowen’s entropy, which—as mentioned in Remark 3.3—does not require Y to be
compact. Before we state the result that we need, we must mention that as Y above
is compact, h(f,K) does not depend on the choice of D (provided it metrises the
topology on Y ): see the proof of [1, Proposition 3].

Result 3.6. (Bowen [1, Theorem 17]) Let (Yi, di), i = 1, 2, be two compact

metric spaces. Let fi : Yi −→ Yi, i = 1, 2, be continuous surjective maps. Let

π : Y1 −→ Y2 be a continuous surjective map such that π ◦ f1 = f2 ◦ π. Then

h(f2) ≤ h(f1) ≤ h(f2) + sup
y∈Y2

h(f1, π
−1{y}).
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4. The proof of Theorem 1.8

This section will chiefly be devoted to Theorem 4.2 below. Theorem 1.8 would
follow as its corollary. But before we can prove Theorem 4.2, we must present an
auxiliary quantity and a lemma. To do so, let X, Γ and d be as in Definition 1.3.
For a given ν ∈ Z+, fix a ν-tuple α := (α1, . . . , αν) ∈ {1, . . . ,M}ν . We say that a
family F of ν-orbits is (ε,α)-separated if for all pairs of distinct elements

(x0, x1, . . . , xν ; β1, . . . , βν) and (y0, y1, . . . , yν ; γ1, . . . , γν)

of F , we have

• (β1, . . . , βν) = α = (γ1, . . . , γν); and
• max0≤j≤ν d(xj , yj) > ε.

Lemma 4.1. Let X and Γ be as in Definition 1.3. For ε > 0, ν ∈ Z+ and

α ∈ {1, . . . ,M}ν , let

n(ε,α) :=the cardinality of any (ε,α)-separated family of

ν-orbits having the greatest possible cardinality.

Then,

htop(Γ) = sup
ε>0

lim sup
ν→∞

1

ν
log

[
∑

α∈{1,...,M}ν

n(ε,α)

]
.

The proof of this lemma is extremely elementary. But since it is vital to the proof
of Theorem 4.2, we provide the following

Outline of proof. Fix an ε > 0 and ν ∈ Z+. For α ∈ {1, . . . ,M}, let F (α) be
an (ε,α)-separated family such that ♯F (α) = n(ε,α). Write

F :=
⋃

α∈{1,...,M}ν

F (α).

The lemma follows from the fact that F is an (ε, ν)-separated family and that ♯F =
N(ε, ν)—where N(ε, ν) is as introduced in Proposition 3.5. Both these statements
follow from the definitions and the fact that if

(x0, x1, . . . , xν ;α1, . . . , αν) ∈ F
(
(α1, . . . , αν)

)
,

(y0, y1, . . . , yν; β1, . . . , βν) ∈ F
(
(β1, . . . , βν)

)
,

and (α1, . . . , αν) 6= (β1, . . . , βν), then these two ν-orbits are (ε, ν)-separated in the
sense of Definition 1.3. �

We can now present the central result of this section. In what follows, dtop will
denote the topological degree, while for a surjective holomorphic map f : X −→ X,
X a compact Kähler manifold, dp(f) will denote the pth dynamical degree of graph(f)
(see Section 2). We must also spell out what is meant by the topological degree of
a holomorphic correspondence. Let X1 and X2 be as in Definition 1.1 and Γ be a
holomorphic correspondence from X1 to X2. Representing Γ as in (1.1), it is classical
that there is a Zariski-open set W ⊂ X2 and dj ∈ Z+ such that (π−1

2 (W )∩Γj ,W, π2)
is a dj-sheeted covering. The topological degree of Γ is defined as

dtop(Γ) :=
∑

1≤j≤N
mj dj.

In other words, dtop(Γ) is the generic number of preimages of a point counted ac-
cording to multiplicity. If X1 = X2 = X and Γ = graph(f), where f : X −→ X is a
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surjective holomorphic map, then the latter definition applied to graph(f) coincides
with the classical definition of the topological degree of f .

One half of our proof of the following theorem is strongly influenced by the
derivation by Misiurewicz and Przytycki [15] of a lower bound for topological entropy
of a single map in the C1 setting. Our notation below follows the treatment of the
above result by Katok–Hasselblatt in [13, Chapter 8].

Theorem 4.2. Let (X,ω) be a compact Kähler manifold of dimension n and let

S be a finitely generated semigroup consisting of surjective holomorphic self-maps of

X. Let G = {f1, . . . , fN} be a set of generators of S. Then

log

(∑N

j=1
dtop(fj)

)
≤ htop(S,G )

≤ max

[
log(N), log

(∑N

j=1
dtop(fj)

)
, max
1≤p≤n−1

log dp(ΓG )

]
.(4.1)

Proof. Let ωX be the normalisation of the form ω as in Section 2. For any
holomorphic correspondence Γ on X, we have (see [4, Section 3.1], for instance):

(4.2) λn(Γ) =
∑

1≤j≤N
mj

ˆ

reg(Γj)

(
π2|Γj

)∗
ωX ,

assuming the presentation (1.2) for Γ. Since, for each j = 1, . . . , N , (Γj, π2, X)
is a holomorphic branched covering, if follows from (4.2) and a change-of-variable
argument that λn(Γ) equals the topological degree of Γ: call if dtop(Γ). Since the
toplogical degree is multiplicative with respect to composition, it follows from (2.2)
that

dn(Γ) = lim
ν→∞

dtop(Γ
◦ν)1/ν = dtop(Γ)

for any holomorphic correspondence Γ on X. Applying this to the correspondence
ΓG we get

(4.3) dn(ΓG ) =
∑

1≤j≤N
dtop(fj).

A completely analogous discussion (whose details we leave to the reader) gives us
d0(ΓG ) = N . Recalling the definition of htop(S,G ), the upper bound in (4.1) follows
from the last identity, (4.3), and Result 2.1.

For any holomorphic map f : X −→ X, let Jac(f) denote the real Jacobian of
f determined by the volume form ωn. Since f is holomorphic, Jac(f) ≥ 0. Fix a
metric d that metrises the topology of X. Fix a number L such that

L > 1 and sup
x∈X

Jac(fj)(x) ≤ L, j = 1, . . . , N.

Let us pick a number β ∈ (0, 1) and set δ(β) := L−β/(1−β). Define the sets

B(β, j) := {x ∈ X : Jac(fj)(x) ≥ δ(β)}, j = 1, . . . , N,

and consider the open cover consisting of balls,

C (β, j) :=
{
Bd(x; rx) : x ∈ B(β, j) and fj |Bd(x;rx)

is invertible
}
,

of B(β, j), j = 1, . . . , N . Let ε(β, j) ∈ (0, 1) be a Lebesgue number of C (β, j) (each
B(β, j) is compact) and write ε(β) := min1≤j≤N ε(β, j).

Fix a ν ∈ Z+. We simplify the symbol ΓGOν to GOν . For each α ∈ {1, . . . , N}ν ,
define

Aβ,α :=
{
(x0, x1, . . . , xν ;α) ∈ GOν | ♯{1 ≤ k ≤ ν : xk−1 ∈ B(β, αk)} ≤ βν

}
.
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For any l: 1 ≤ l ≤ ν, let us abbreviate

fαl
◦ · · · ◦ fα1 =: f(α1,...,αl).

Whenever ν ≥ 2, the chain rule gives

Jac
(
f(α1,...,αν)

)
(x) =

[
∏

2≤k≤ν

Jac
(
fαk

)(
f(α1,...,αk−1)(x)

)
]
Jac

(
fα1

)
(x).

Therefore, by the definitions of Aβ,α and L (for any ν ∈ Z+):

0 ≤ Jac
(
f(α1,...,αν)

)
(x0) < δ(β)ν−[βν]L[βν]

≤ δ(β)ν(1−β)Lβν = 1 ∀(x0, x1, . . . , xν ;α) ∈ Aβ,α,(4.4)

where here (and elsewhere in this proof) [s] denotes the greatest integer less than or
equal to s. If µX denotes the Borel measure, constructed in the standard manner,
with the property that µX(Ω) :=

´

Ω
ωn for every coordinate patch Ω ⊆ X, then:

(a) (4.4) implies that µX

(
f(α1,...,αν)(Aβ,α)

)
< µX(X) for each α = (α1, . . . , αν) ∈

{1, . . . , N}ν .
(b) Thus, if we fix an α, then, by Sard’s Theorem, there exists a point in X \

fα(Aβ,α) that is a regular value of fα.

Let us call this regular value xν .
For the α = (α1, . . . , αν) fixed in (b) above, for any αk, 1 ≤ k ≤ ν, and any

regular value y of fαk
, we present a construction associated with the pair (y, k).

Define

S(y, k) :=

{
f−1
αk

{y}, if f−1
αk

{y} ⊂ B(β, αk),

{x(y)}, if f−1
αk

{y} 6⊂ B(β, αk),

where, x(y) denotes some point in f−1
αk

{y} \ B(β, αk) that we pick and fix. We now
consider the point xν introduced at the end of the previous paragraph. We will use it
to construct a certain (ε(β),α)-separated family in GOν using the following iterative
construction. This construction is possible because, as every f ∈ S is surjective, by
the definition of a regular value we get:

each element of (fαν
◦ · · · ◦ fαk+1

)−1{xν} is a regular value of fαk
for 1 ≤ k ≤ ν − 1.

Define (the maps appearing below were defined in Section 3):

1Oα := {(x, xν ;αν) : x ∈ S(xν , ν)},

k+1Oα :=
⋃

ξ∈ kOν

{(x, πitn(ξ);αν−k, . . . , αν) : x ∈ S(start(ξ), ν − k)} , 1 ≤ k ≤ ν − 1.

Here, we commit a minor abuse of notation in that if, for 1 ≤ k ≤ ν − 1, kOν ∋ ξ =
(xν−k, . . . , xν ;αν−k+1, . . . , αν), then we interpret (x, πitn(ξ);αν−k, . . . , αν) to mean

(x, xν−k, . . . , xν ;αν−k, . . . , αν) and not (x, (xν−k, . . . , xν);αν−k, . . . , αν).

With this explanation, note that each kOν is a collection of k-orbits that end at the
point xν . The iterative construction lengthens each k-orbit ξ ∈ kOν to one or more
(k + 1)-orbits by designating new initial points for the latter orbits.

Let us write Oα := νOα. We now show that Oα is an (ε(β),α)-separated family
of ν-orbits. To do so, consider two distinct ν-orbits

x := (x0, . . . , xν−1, xν ;α) and y := (y0, . . . , yν−1, xν ;α)
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in Oα (note that, by construction, the terminal points of these ν-orbits are the same).
Write

τ := max{1 ≤ k ≤ ν : xk−1 6= yk−1}.

By our iterative construction, xτ−1, yτ−1 ∈ f−1
ατ

{xτ}. In terms of the notation intro-
duced above, this also tells us that ♯S(xτ , τ) ≥ 2. This means that

xτ−1, yτ−1 ∈ B(β, ατ ) and fατ
is injective on small balls around xτ−1, yτ−1.

Clearly, xτ−1 and yτ−1 cannot belong to one single ball belonging to the open cover
C (β, ατ). Thus, by the definition of Lebesgue number, d(xτ−1, yτ−1) > ε(β). Since
x 6= y ∈ Oα were arbitrarily chosen, we conclude that Oα is an (ε(β),α)-separated
family.

Write dj := dtop(fj), j = 1, . . . , N . We may assume without loss of generality
that d1 ≤ · · · ≤ dN . Let νj := the number of times j appears in α. Let us now set

(4.5) m := [βν]+ 1, J := max{1 ≤ j ≤ N : ν1 + · · ·+ νj < m}.

By construction, for each ν-orbit x ∈ Oα, start(x) ∈ f−1
α

{xν}. Hence, by our above
choice of xν ,

(4.6) {start(x) : x ∈ Oα} ∩ Aβ,α = ∅.

Some more notation: write

Σ(x) := {1 ≤ k ≤ ν : xk−1 ∈ B(β, αk)}, σ(x) := ♯Σ(x)

for each x = (x0, x1, . . . , xν ;α) ∈ Oα. Additionally, let k1 < k2 < · · · < kσ(x) denote
the ordering of the elements of Σ(x). By (4.6), σ(x) ≥ m for each x ∈ Oα. With these
facts, we can estimate ♯Oα. To do so, pick and fix an x = (x0, x1, . . . , xν ;α) ∈ Oα.
By construction:

♯S(xk, k) =

{
1, if k /∈ Σ(x),

dαk
, if k ∈ Σ(x).

This means that in Oα:

(∗) we can find dαkl
distinct ν-orbits that traverse the points xkl , xkl+1, . . . , xν ∈

X corresponding, respectively, to iterations of orders kl, kl + 1, . . . , ν of ΓG ,
l = 1, . . . σ(x).

This implies that Oα would have the smallest possible number of orbits of the kind
described by (∗) if ν1 + · · ·+ νJ =: d(α) of the elements of Σ(x) were to correspond
to νj distinct terms in the tuple (x0, . . . , xν−1) being in B(β, j), j = 1, . . . , J . From
this discussion and (∗), we get the (perhaps very conservative) lower bound:

(4.7) n(ε(β),α) ≥ ♯Oα ≥ dν11 . . . dνJJ d
m−d(α)
J+1 .

Here, n(ε(β),α) is as in Lemma 4.1, and the first inequality in (4.7) is owing to the
fact that Oα is (ε(β),α)-separated.

Now, given any (ν1, . . . , νN ) ∈ NN satisfying ν1 + · · · + νN = [βν] + 1, we can
find an α ∈ {1, . . . , N}ν so that the νj’s are related to this α precisely as in the last
paragraph. Thus:

∑

α∈{1,...,N}ν

n(ε,α) ≥
∑

ν1,...,νN∈N

ν1+···+νN=m

dν11 . . . dνNN

= (d1 + · · ·+ dN)
m ≥ (d1 + · · ·+ dN)

βν .
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Applying Lemma 4.1, this gives

htop(S,G ) := htop(ΓG ) ≥ β log(d1 + · · ·+ dN).

However, as this holds for any β ∈ (0, 1), letting β → 1−, we get

h(S,G ) ≥ log(d1 + . . . dN).

This establishes the lower bound in (4.1), and hence the result. �

We remark here that it is, in general, not possible to get a cleaner upper bound for
htop(S,G ) than (4.1). For instance, there isn’t, in general, a way to determine which
of the numbers {d1(f), . . . , dn(f)} is the largest even for f : X −→ X surjective and
holomorphic (let alone for a general correspondence Γ). We shall not discuss here
what is known in general about the function {0, 1, . . . , n} ∋ p 7→ dp(f). However,
for X as above, λp(f), for f : X −→ X holomorphic and p = 0, 1, . . . , n, can be de-
termined cohomologically. This can lead to cleaner expressions whenever Hp,p(X ;R)
are one-dimensional for each p = 1, . . . , n. This, essentially, is what underlies

The proof of Theorem 1.8. Russakovskii–Shiffman have shown [16, Section 4]
that for any non-constant holomorphic map f : Pn −→ Pn

(4.8) λp(f) = dp(f) and dp(f) = d1(f)
p for p = 1, . . . , n.

As argued in the proof of Theorem 4.2, dn(f) = dtop(f). Thus, from the above facts,
we get

(4.9) λp(f) = dtop(f)
p/n, for p = 1, . . . , n.

Fix a set of generators {f1, . . . , fN} of S. Clearly, by definition, λp(Γ
◦ν
G
) is the sum

of the pth intermediate degrees of the maps, counted according to multiplicity, whose
graphs constitute Γ◦ν

G
. From (4.9), we see that for Pn, λp, p = 1, . . . , n, is multiplica-

tive with respect to composition of non-constant holomorphic self-maps. Thus, by
(4.8), we get

λp(Γ
◦ν
G
) =

(
d1(f1)

p + · · ·+ d1(fN)
p
)ν

for p = 1, . . . , n.

Hence, dp(ΓG ) =
(
d1(f1)

p + · · ·+ d1(fN)
p
)
, p = 1, . . . , n. As for p = 0: d0(ΓG ) = N .

Given these facts, the conclusion of Theorem 1.8 follows from Theorem 4.2. �

Corollary 1.9 now follows immediately.

5. Concerning Friedland’s entropy

This section is dedicated to the result on hF mentioned in Section 1—i.e., The-
orem 5.2. First, however, we need some notation and a lemma. Let S be a finitely
generated rational semigroup on P1. If we fix a finite set of generators G , then the
space Γ∞ (introduced in Definition 1.2) corresponding to ΓG will be denoted by Γ∞

G
.

Also, we abbreviate ΓG P1 to GP1. Given any holomorphic correspondence Γ from
X1 to X2, where Xi, i = 1, 2, are as in Definition 1.1, we define

FΓ(x) := π2

((
π1||Γ|

)−1
{x}

)
∀x ∈ X1,

and write F ν
Γ (x) := FΓ◦ν(x). Coming back to the correspondence ΓG : we abbreviate

F ν
ΓG

(x) to F ν
G
(x).
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Lemma 5.1. Let S be a finitely generated rational semigroup on P1. Let G =
{f1, . . . , fN} be a set of generators of S. Write

SG :=
⋃N

j=1

⋃
i 6=j

{x ∈ P1 : fi(x) = fj(x)}.

Consider a point O = (x0, x1, x2, . . . ) ∈ Γ∞
G

. If the pre-image of O under the map

πitn : GP1 −→ Γ∞
G

is infinite, then there exist an n• ∈ N and a point

x• ∈ SG

⋂(
lim sup
ν→∞

F ν
G
(x•)

)

such that x• = xn• .

Proof. First consider any O = (x0, x1, x2, . . . ) ∈ Γ∞
G

. For each ν ∈ Z+, there are
only finitely many j such that fj(xν−1) = xν . Thus, it is easy to see that π−1

itn{O} is
infinite if and only if

(∗∗) there exists a sequence of positive integers ν1 < ν2 < ν3 < · · · such that for
each k ∈ Z+, fj(x(νk−1)) = xνk for more than one j ∈ {1, . . . , N}.

Now, assume that π−1
itn{O} is infinite. Then, by (∗∗) there exists a sequence of positive

integers ν1 < ν2 < ν3 < · · · such that

(5.1) x(νk−1) ∈ SG ∀k ∈ Z+.

Since f1, . . . , fN are distinct and P1 is one-dimensional, SG is finite. Thus, by (5.1),
we conclude that there exists an increasing subsequence {νkℓ} ⊂ {νk} and a point
x• ∈ SG such that

x(νkℓ−1) = x• ∈ SG ∀ℓ ∈ Z+.

If we write nℓ := νkℓ − νk1, then the above equation implies that x• ∈ F nℓ

G
(x•) for

every ℓ ∈ Z+ \ {1}. Therefore, we conclude that

x• ∈
⋂

k∈N

⋃
ν≥k

F ν
G (x

•) =: lim sup
ν→∞

F ν
G (x

•).

Taking n• = (νk1 − 1), the desired conclusion is obtained. �

Before we present Theorem 5.2, we elaborate upon the remark made towards the
end of Section 1. For the purposes of this discussion, let X be any compact metric
space and let S be the semigroup generated by the maps fj : X −→ X, j = 1, . . . , N ,
that are continuous, and take Γ = ∪1≤j≤N graph(fj) in Definition 1.2. For each
A  {1, . . . , N}, A 6= ∅, consider

Y (A) := {(x0, x1, x2, . . . ) ∈ Γ∞ : xn+1 = fj(xn) for some j ∈ A, n = 0, 1, 2, . . . }.

Y (A) is a closed subspace of Γ∞ that is invariant under σ, where σ is as in Defini-
tion 1.2. Recalling the definition of hF (S,G ), the basic properties of Bowen’s entropy,
and as Y (A) is σ-invariant, we get (as before, G := {f1, . . . , fN})

hF (S,G ) ≥ h
(
σ|Y (A)

)
= hF (〈fj : j ∈ A〉, {fj : j ∈ A}).

When A = {j}, write Y (A) =: Y (j). Observe: fj is conjugate to σ|Y (j) via the map
x 7−→ (x, fj(x), fj ◦fj(x), . . . ) ∈ Y (j). From this and our preceding argument, we get

hF (S,G ) ≥ h
(
σ|Y (j)

)
= h(fj) ∀j = 1, . . . , N.

Hence, hF (S,G ) ≥ max1≤j≤N h(fj). In particular, this estimate holds true for all the
semigroups discussed in Sections 1, 4 and the present section.

One might intuit from the previous lemma that the latter lower bounds could be
improved (as least when S is a finitely generated rational semigroup on P1). That
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intuition motivates the principal result of this section. We follow below the notation
established for Proposition 3.5—for instance, S is the shift map introduced by that
proposition.

Theorem 5.2. Let S be a finitely generated rational semigroup on P1. Let

G = {f1, . . . , fN} be a set of generators of S. Define

E(G ) :=
{
(x0, x1, x2, . . . ) ∈ Γ∞

G
: x0 ∈ SG and x0 ∈ lim sup

ν→∞
F ν

G
(x0)

}
.

Then, Friedland’s entropy satisfies

log
(∑

1≤j≤N
deg(fj)

)
− sup

O∈E(G )

h
(
S , π−1

itn{O}
)
≤ hF (S,G )

≤ log
(∑

1≤j≤N
deg(fj)

)
.(5.2)

Before seeing a proof of the above theorem, it might be helpful to discuss when
the estimates (5.2) are informative. To this end, we refer to the paragraph just after
the proof of Lemma 5.1. We see there a lower bound that applies to any finitely
generated rational semigroup on P1. To the best of our knowledge, this (apart from
the exact computations for semigroups of Möbius transformations in [8]) is the only
lower bound known for hF (S,G ). With this in mind: an example of a class of
(S,G ) for which (5.2) would be informative is a class comprising finitely generated
semigroups of Möbius transformations with ♯G ≥ 3 such that the left-hand side of
(5.2) is positive (however small). One way to achieve this, for (S,G ) as described,
is for the maps in each proper subset of G of cardinality (♯G − 1) to have common
fixed points (along with a technical condition) but for the maps in G to have no fixed
points in common. This endows the elements in E(G ) with a very specific structure.
However, since

• a detailed discussion of such an example would be rather protracted, and
• we do not see an overarching geometric description for (the class of) such

semigroups,

we shall not dwell any further on this. That being said, there is an alternative
approach that involves establishing that (GP1, µ) is isomorphic to

(
Γ∞

G
, (πitn)∗µ

)
for

an appropriate Markov measure µ, which accounts more coherently for the (S,G )’s
alluded to above. This is currently work in progress by the first-named author; details
will appear elsewhere.

We present an example where the lower bound in (5.2) is informative for a dif-
ferent reason, and in which we get to see some of the reasoning hinted at above.
Consider the semigroup S whose set of generators G comprises the two functions f1
and f2 such that

fj|C : z 7−→ z + aj , j = 1, 2,

where a1 6= a2 ∈ C. So, SG = {∞}. Moreover, as ∞ is the common fixed point of f1
and f2, E(G ) is a singleton consisting of the constant sequence O∞ = (∞,∞, . . . ).
Thus

π−1
itn{O∞} = {(∞,∞,∞ . . . ;α1, α2, . . . ) : αj ∈ {1, 2} for each j ∈ Z+}.

Observe that S (π−1
itn{O∞}) ⊆ π−1

itn{O∞}. Thus, the iterated application of S on
π−1
itn{O∞} behaves like the dynamics of the left-shift on {1, 2}N, whence we get

h(S , π−1
itn{O∞}) = log(2).
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Thus, (5.2) gives 0 as the lower bound for hF (S,G ). However, there is no better

lower bound for hF (S,G ) in the vast majority of the examples in this class! Specif-
ically, if {a1, a2} is linearly independent over R, or if a2 = ca2 for some c ≥ 0, then
hF (S,G ) = 0—see [8, Lemma 5.3]. With those comments on (5.2), we now present

The proof of Theorem 5.2. Consider the compact metric spaces GP1 and Γ∞
G

.
Denote by σ : Γ∞

G
−→ Γ∞

G
the shift

Γ∞
G

∋ (x0, x1, x2, . . . ) 7→ (x1, x2, x3, . . . ).

Recall that S : GX −→ GX is as described in Proposition 3.5. We have:

• πitn is a continuous surjective map; and
• πitn ◦ S = σ ◦ πitn.

In other words, σ is a factor of S . Thus, Proposition 3.5 and Corollary 1.9 together
imply:

(5.3) hF (S,G ) := h(σ) ≤ h(S ) = htop(S,G ) = log
(∑

1≤j≤N
deg(fj)

)
.

We now derive the lower bound for hF . For the moment, fix an O ∈ Γ∞
G

. We
have two cases.

Case 1. π−1
itn{O} is a finite set. For any ν ∈ Z+ and ε > 0, O (ε, ν)-spans itself.

Thus, the finiteness of π−1
itn{O} implies that h(S , π−1

itn{O}) = 0.

Case 2. π−1
itn{O} is an infinite set. Write O = (x0, x1, x2, . . . ). In this case,

Lemma 5.1 enables us to define

k(O) := min
{
n ∈ N : xn ∈ SG ∩

(
lim sup
ν→∞

F ν
G
(xn)

)}
.

If k(O) ≥ 1, then by definition, there is a fixed tuple (α1, . . . , αk(O)) such that
every element of π−1

itn{O} has the form (x0, . . . , xk(O), . . . ;α1, . . . , αk(O), . . . ). Thus,
following the notation of the discussion that precedes Result 3.6, for each ε > 0 we
have:

rν
(
ε, π−1

itn{O}
)
= rν

(
ε, π−1

itn{(xk(O), xk(O)+1, xk(O)+2 , . . . )}
)

∀ν suffiiciently large.

We therefore conclude (irrespective of whether k(O) = 0 or k(O) ≥ 1) that

h
(
S , π−1

itn{O}
)
= h

(
S , π−1

itn{(xk(O), xk(O)+1, xk(O)+2 , . . . )}
)
, and

xk(O) ∈ SG ∩
(
lim sup
ν→∞

F ν
G
(xk(O))

)
.(5.4)

From the discussion of each of the above cases, and by (5.4), we get

sup
O∈Γ∞

G

h
(
S , π−1

itn{O}
)
= sup

O∈E(G )

h
(
S , π−1

itn{O}
)
.

From this, Result 3.6 and Proposition 3.5, we have

htop(S,G ) = h(S ) ≤ h(σ) + supO∈E(G ) h
(
S , π−1

itn{O}
)

= hF (S,G ) + supO∈E(G ) h
(
S , π−1

itn{O}
)
.(5.5)

From (5.3) and (5.5), and given the conclusion of Corollary 1.9, the theorem follows.
�

Remark 5.3. Theorem 5.2 can be extended to higher dimensions. But, in that
case, it is possible for the set SG introduced in Lemma 5.1 to contain algebraic
varieties of positive dimension. In view of the discussion preceding the proof of
Theorem 5.2, it seems likely that it would be difficult to understand the analogue of
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the lower bound of hF (S,G ) in higher dimensions. Therefore, we have focused on
classical rational semigroups in this section.
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