ADAMS' TRACE PRINCIPLE IN MORREY-LORENTZ SPACES ON $\boldsymbol{\beta}$-HAUSDORFF DIMENSIONAL SURFACES

Marcelo F. de Almeida and Lidiane S. M. Lima
Universidade Federal de Sergipe, Departamento de Matemática CEP 49100-000, Aracaju-SE, Brazil; marcelo@mat.ufs.br
Universidade Federal de Goiás, IME - Departamento de Matemática CEP 740001-970, Goiania-GO, Brazil; lidianesantos@ufg.br

Abstract

In this paper we strengthen to Morrey-Lorentz spaces the famous trace principle introduced by Adams. More precisely, we show that Riesz potential I_{α} is continuous $$
\left\|I_{\alpha} f\right\|_{\mathcal{M}_{q, \infty}^{\lambda, \infty}(d \mu)} \lesssim\|\mu\|_{\beta}^{1 / q}\|f\|_{\mathcal{M}_{p, \infty}^{\lambda}(d \nu)}
$$

if and only if the Radon measure $d \mu$ supported in $\Omega \subset \mathbf{R}^{n}$ is controlled by

$$
\llbracket \mu \rrbracket_{\beta}=\sup _{x \in \mathbf{R}^{n}, r>0} r^{-\beta} \mu(B(x, r))<\infty
$$

provided that $1<p<q<\infty$ satisfies $n-\alpha p<\beta \leq n, \alpha=\frac{n}{\lambda}-\frac{\beta}{\lambda_{*}}$ and $\frac{\lambda_{*}}{q} \leq \frac{\lambda}{p}$. Our result provide a new class of functions spaces which is larger than previous ones, since we have strict continuous inclusions $\dot{B}_{p, \infty}^{s} \hookrightarrow L^{\lambda, \infty} \hookrightarrow \mathcal{M}_{p}^{\lambda} \hookrightarrow \mathcal{M}_{p, \infty}^{\lambda}$ as $1<p<\lambda<\infty$ and $s \in \mathbf{R}$ satisfies $\frac{1}{p}-\frac{s}{n}=\frac{1}{\lambda}$. If $d \mu$ is concentrated on $\partial \mathbf{R}_{+}^{n}$, as a byproduct we get Sobolev-Morrey trace inequality on half-spaces \mathbf{R}_{+}^{n} which recovers the well-known Sobolev-trace inequality in $L^{p}\left(\mathbf{R}_{+}^{n}\right)$. Also, by a suitable analysis on non-doubling Calderón-Zygmund decomposition we show that

$$
\left\|M_{\alpha} f\right\|_{\mathcal{M}_{p, \ell}^{\lambda}(d \mu)} \sim\left\|I_{\alpha} f\right\|_{\mathcal{M}_{p, \ell}^{\lambda}(d \mu)}
$$

provided that $\mu\left(B_{r}(x)\right) \sim r^{\beta}$ on support $\operatorname{spt}(\mu)$ and $n-\alpha<\beta \leq n$ with $0<\alpha<n$. This result extends the previous ones.

1. Introduction

It is well known that doubling property of measures μ plays an important role in many topics of research in analysis on euclidean spaces, essentially because Vitali covering lemma and Calderón-Zygmund decomposition depend of the doubling property $\mu\left(B_{2 r}(x)\right) \lesssim \mu\left(B_{r}(x)\right)$ for all x on support $\operatorname{spt}(\mu)$ of measure μ and $r>0$. Recently it has been shown that fundamental results in harmonic analysis remain if doubling measures is replaced by a growth condition, namely,

$$
\begin{equation*}
\mu\left(B_{r}(x)\right) \lesssim C r^{\beta} \text { for all } x \in \operatorname{spt}(\mu) \text { and } r>0 \tag{1.1}
\end{equation*}
$$

where the implicit constant is independent of μ and $0<\beta \leq n$. For instance, we refer the pioneering work on Calderón-Zygmund theory for non-doubling measures [32, 33, 34] and [27]. According to Frostman's lemma [25, Chapter 1], a measure μ satisfying (1.1) is close to Hausdorff measure and Riesz capacity of Borel sets $\Omega \subset \mathbf{R}^{n}$. Essentially Frostman's lemma states that Hausdorff dimension of a Borel set $\Omega \subset \mathbf{R}^{n}$ is equal to

$$
\begin{aligned}
\operatorname{dim}_{\Lambda_{\beta}} \Omega & =\sup \{\beta \in(0, n]: \exists \mu \in \mathcal{M}(\Omega) \text { such that (1.1) holds }\} \\
& =\sup \left\{\beta>0: \operatorname{cap}_{\beta}(\Omega)>0\right\}
\end{aligned}
$$

https://doi.org/10.5186/aasfm.2021.4670
2020 Mathematics Subject Classification: Primary 31C15, 42B35, 42B37, 28A78.
Key words: Riesz potential, trace inequality, Morrey-Lorentz spaces, non-doubling measure. M. F. de Almeida was supported by CNPq:409306/2016, Brazil (corresponding author).
L. S. M. Lima was supported by CNPq:409306/2016, Brazil.
where $\Lambda_{\beta}(\Omega)$ denotes the β-dimensional Hausdorff measure and $\operatorname{cap}_{\beta}(\Omega)$ denotes the Riesz capacity,

$$
\begin{aligned}
\operatorname{cap}_{\beta}(\Omega)=\sup \{ & {\left[\mathrm{E}_{\beta}(\mu)\right]^{-1}: \mathrm{E}_{\beta}(\mu)=\int_{\mathbf{R}^{n}} \int_{\mathbf{R}^{n}}|x-y|^{-\beta} d \mu(x) d \mu(y) } \\
& \text { for finite Borel measure } \mu\} .
\end{aligned}
$$

The L^{p}-Riesz capacity on compact sets

$$
\dot{c}_{\alpha, p}(E)=\inf \left\{\int_{\mathbf{R}^{n}}|f(x)|^{p} d \nu(x): f \geq 0 \text { and } I_{\alpha} f(x) \geq 1 \text { on } E\right\}
$$

plays an important role in potential analysis, where I_{α} is defined by

$$
I_{\alpha} f(x)=C_{\alpha, n} \int_{\mathbf{R}^{n}}|x-y|^{\alpha-n} f(y) d \nu(y) \quad \text { a.e. } x \in \mathbf{R}^{n} \quad \text { as } \quad 0<\alpha<n
$$

and $d \nu$ stands for Lebesgue measure in \mathbf{R}^{n}. It is well known from [6, Theorem 7.2.1] and $[5,11$, Theorem 1] that a necessary and sufficient condition for Sobolev embedding

$$
\dot{L}_{p}^{\alpha}\left(\mathbf{R}^{n}\right) \hookrightarrow L^{q}(\Omega, \mu)
$$

on the "lower triangle" $1<p \leq q<\infty, 0<\alpha<n$ and $p<n / \alpha$ is given by the isocapacitary inequality

$$
\begin{equation*}
\mu(E) \lesssim\left[\dot{c}_{\alpha, p}(E)\right]^{q / p} \tag{1.2}
\end{equation*}
$$

whenever E is a compact subset of \mathbf{R}^{n} and μ is a Radon measure in Ω. Since $\dot{c}_{\alpha, p}\left(B_{r}(x)\right) \cong r^{n-\alpha p}$, then (1.2) implies the growth condition (1.1) with $\beta=q(n / p-$ $\alpha)$. Capacity inequality is very difficult to verify even for compact sets, then one could ask: does the embedding $\dot{L}_{p}^{\alpha}\left(\mathbf{R}^{n}\right) \hookrightarrow L^{q}(\Omega, \mu)$ still hold if (1.2) is replaced by (1.1)? In [3, Theorem 2] Adams gave a positive answer to this question as $1<p<q<\infty$ and $\beta=q(n / p-\alpha)$ satisfies $0<\beta \leq n$ and $0<\alpha<n / p$. This theorem has a weakMorrey version [4, Theorem 5.1] (see also [35, Lemma 2.1]) and a strong Morrey version [22, Theorem 1.1]. Let us be more precise. The Morrey space $\mathcal{M}_{r}^{\ell}(\Omega, d \mu)$ is defined by the space of μ-measurable functions $f \in L^{r}\left(\Omega \cap B_{R}\right)$ such that

$$
\|f\|_{\mathcal{M}_{r}^{e}(\Omega, d \mu)}=\sup _{x \in \operatorname{spt}(\mu), R>0} R^{-\beta\left(\frac{1}{r}-\frac{1}{\ell}\right)}\left(\int_{B_{R}}|f(y)|^{r} d \mu\lfloor\Omega)^{\frac{1}{r}}<\infty\right.
$$

where the supremum is taken on balls $B_{R}(x) \subset \mathbf{R}^{n}, 1 \leq r \leq \ell<\infty$ and $\beta>0$ denotes the Housdorff dimension of Ω. In [22] the space $\mathcal{M}_{r}^{\ell}(d \mu)$ is denoted by $L^{r, \kappa}(d \mu)$ with $\kappa / r=n / \ell$ and in [13] is denoted by $\mathcal{M}_{r, \kappa}(d \mu)$ with $(n-\kappa) / r=n / \ell$. The Morrey-Lorentz space $\mathcal{M}_{r, s}^{\ell}(\Omega, d \mu)$ is defined by space of μ-measurable function $f \in L^{r, s}\left(\Omega \cap B_{R}\right)$ such that

$$
\begin{equation*}
\|f\|_{\mathcal{M}_{r, s}^{\ell}(\Omega, d \mu)}=\sup _{x \in \operatorname{spt}(\mu), R>0} R^{-\beta\left(\frac{1}{r}-\frac{1}{\ell}\right)}\|f\|_{L^{r, s}\left(\Omega \cap B_{R}\right)}<\infty \tag{1.3}
\end{equation*}
$$

where $L^{r, s}\left(\Omega \cap B_{R}\right)$ denotes the Lorentz space (see Section 2) defined by

$$
\|f\|_{L^{r, s}\left(\mu\left\lfloor\Omega\left(B_{R}\right)\right)\right.}=\left(r \int_{0}^{\mu\left\lfloor\Omega\left(B_{R}\right)\right.}\left[t^{r} d_{f}(t)\right]^{\frac{s}{r}} \frac{d t}{t}\right)^{\frac{1}{s}}
$$

where $d_{f}(t)=\mu\left(\left\{x \in \Omega \cap B_{R}:|f(x)|>t\right\}\right)$ and $\mu L_{\Omega}\left(B_{R}\right)=\mu\left(\Omega \cap B_{R}\right)$. According to [4, Theorem 5.1] if the growth condition (1.1) holds and $1<p<q<\infty$ satisfies

$$
\begin{equation*}
\frac{q}{\lambda_{*}} \leq \frac{p}{\lambda}, \quad 0<\alpha<\frac{n}{\lambda}, \quad n-\alpha p<\beta \leq n \quad \text { and } \quad \frac{\beta}{\lambda_{*}}=\frac{n}{\lambda}-\alpha, \tag{1.4}
\end{equation*}
$$

then

$$
\begin{equation*}
I_{\alpha}: \mathcal{M}_{p}^{\lambda}\left(\mathbf{R}^{n}, d \nu\right) \rightarrow \mathcal{M}_{q, \infty}^{\lambda_{*}}(\Omega, d \mu) \tag{1.5}
\end{equation*}
$$

is a bounded operator. Since Morrey space is not closed by real interpolation, the weak-trace theorem [4, Theorem 5.1] does not imply the strong trace version

$$
\begin{equation*}
\left\|I_{\alpha} f\right\|_{\mathcal{M}_{q}^{\lambda *}(d \mu)} \leq C\|f\|_{\mathcal{M}_{p}^{\lambda}(d \nu)} . \tag{1.6}
\end{equation*}
$$

However, by using Lemma 4.1-(i), continuity of fractional maximal function M_{γ} : $L^{p}\left(\mathbf{R}^{n}\right) \rightarrow L^{p \beta /(n-\gamma p)}(\Omega, d \mu)$ and atomic decomposition theorem in Hardy-Morrey space $\mathfrak{h}_{p}^{\lambda}(d \nu)=\mathcal{H} \mathcal{M}_{p}^{\lambda}\left(\mathbf{R}^{n}, d \nu\right)$,
$\|f\|_{\mathfrak{h}_{\hat{p}}}=\left\|\sup _{t \in(0, \infty)}\left|\varphi_{t} * f\right|\right\|_{\mathcal{M}_{p}^{\lambda}}<\infty$ with $\varphi_{t}=t^{-n} \varphi(x / t)$ for $\varphi \in \mathcal{S}\left(\mathbf{R}^{n}\right)$ and $f \in \mathcal{S}^{\prime}\left(\mathbf{R}^{n}\right)$,
Liu and Xiao [22, Theorem 1.1] showed that $I_{\alpha}: \mathfrak{h}_{p}^{\lambda}(d \nu) \rightarrow \mathcal{M}_{q}^{\lambda_{*}}(d \mu)$ is continuous if and only if the Radon measure μ satisfy $\llbracket \mu \rrbracket_{\beta}<\infty$, provided that $1 \leq p<q<$ ∞ satisfies (1.4). In particular, Liu and Xiao shown the strong trace inequality (1.6) and since $\mathcal{M}_{q}^{\lambda_{*}}(d \mu) \subset \mathcal{M}_{q, \infty}^{\lambda_{*}}(d \mu)$ they get immediately a version of (1.6) with weak-Morrey norm in the left-hand side. However, according to Sawano et al. [17, Theorem 1.2] there is a function $g \in \mathcal{M}_{p, \infty}^{\lambda}\left(\mathbf{R}^{n}\right)$ such that $g \notin \mathcal{M}_{p}^{\lambda}\left(\mathbf{R}^{n}\right)$ and [22, Theorem 1.1] cannot recover this case. This motivates us to study trace inequality in Morrey-Lorentz spaces. In particular, under previous assumptions (1.4) we show that

$$
I_{\alpha}: \mathcal{M}_{p, \infty}^{\lambda}\left(\mathbf{R}^{n}, d \nu\right) \rightarrow \mathcal{M}_{q, \infty}^{\lambda_{*}}(\Omega, d \mu)
$$

is continuous if and only if the Radon measure μ satisfy $\llbracket \mu \rrbracket_{\beta}<\infty$. Then we provide a new class of data for the trace theorem (see Theorem 1.1). The Lorentz space $L^{p, \infty}$ and functions space based on $L^{p, \infty}$ have been successful applied to study existence and uniqueness of mild solutions for Navier-Stokes equations. The main effort in these works is to prove a bilinear estimate

$$
\begin{equation*}
\|B(u, v)\|_{L^{\infty}((0, \infty) ; X)} \lesssim\|u\|_{L^{\infty}((0, \infty) ; X)}\|v\|_{L^{\infty}((0, \infty) ; X)} \tag{1.7}
\end{equation*}
$$

without invoke Kato's approach, see [13] for weak-Morrey spaces, see [14] for Besov-weak-Morrey spaces and see [36] for weak- L^{p} spaces. For stationary Boussinesq equations, see [15] for Besov-weak-Morrey spaces and see [16] for weak- L^{p} spaces.

Choosing a specific $\mathfrak{h}_{p}^{\lambda}$-atom and using discrete Calderón reproducing formula in Hardy-Morrey spaces, from atomic decomposition theorem the authors [23] characterized the continuity of $I_{\alpha}: \mathfrak{h}_{p}^{\lambda}(d \nu) \rightarrow \mathfrak{h}_{q}^{\lambda_{*}^{*}}(d \mu)$ by using the growth condition $\llbracket \mu \rrbracket_{\beta}<\infty$, provided that $0<p<q<1$ satisfies (1.4). Meanwhile, it should be emphasized that $\mathcal{M}_{p, \infty}^{\lambda} \neq \mathfrak{h}_{p}^{\lambda}$. Indeed, according to the Fourier decaying $|\widehat{f}(\xi)| \lesssim$ $|\xi|^{n(1 / \lambda-1)}\|f\|_{\mathfrak{h}_{\hat{p}}^{\lambda}(d \nu)}\left(\right.$ see $\left[2\right.$, Theorem 3.2]) every distribution $f \in \mathfrak{h}_{p}^{\lambda}$ satisfy $\int_{\mathbf{R}^{n}} f(x) d x$ $=0$ when $0<p \leq \lambda<1$ which implies $|x|^{-n / \lambda} \notin \mathfrak{h}_{p}^{\lambda}$, however $|x|^{-n / \lambda} \in \mathcal{M}_{p, \infty}^{\lambda}$.

If $d \mu$ is a doubling measure and satisfy $\llbracket \mu \rrbracket_{\beta}<\infty$, the authors of [24, Theorem 1.1] showed that I_{α} is bounded from Besov space $\dot{B}_{p, \infty}^{s}\left(\mathbf{R}^{n}, d \nu\right)$ to Radon-Campanato
space $\mathcal{L}_{q}^{\lambda_{*}}(\mu)$ for suitable parameters p, q, λ_{*} and $0<s<1$. Note that we have the continuous inclusions (see [10, pg. 154] and [21, Lemma 1.7])

$$
\begin{equation*}
\dot{H}_{p}^{s} \hookrightarrow \dot{B}_{p, \infty}^{s} \hookrightarrow L^{\lambda, \infty} \hookrightarrow \mathcal{M}_{p}^{\lambda} \hookrightarrow \mathcal{M}_{p, \infty}^{\lambda}, \tag{1.8}
\end{equation*}
$$

where $1<p<\lambda<\infty$ and $s \in \mathbf{R}$ satisfy $\frac{1}{p}-\frac{s}{n}=\frac{1}{\lambda}$. In fact, the inclusions in (1.8) are strict and then $\mathcal{M}_{p, \infty}^{\lambda}$ is strictly larger than Besov space $\dot{B}_{p, \infty}^{s}$. So, our Theorem 1.1 extends the previous trace results even when $d \mu$ is a doubling measure.

Theorem 1.1. Let $1<p \leq \lambda<\infty$ and $1<q \leq \lambda_{*}<\infty$ be such that $q / \lambda_{*} \leq p / \lambda$ for all $n-\delta p<\beta \leq n$ and $1<p<q<\infty$. Then

$$
\left\|I_{\delta} f\right\|_{\mathcal{M}_{q, s}^{\lambda *}(d \mu)} \lesssim \llbracket \mu \rrbracket_{\beta}^{1 / q}\|f\|_{\mathcal{M}_{p, \ell}^{\lambda}(d \nu)}
$$

if and only if the Radon measure $d \mu$ satisfy $\llbracket \mu \rrbracket_{\beta}<\infty$, provided that $\delta=\frac{n}{\lambda}-\frac{\beta}{\lambda_{*}}$, $0<\delta<n / \lambda$ and $1 \leq \ell<s \leq \infty$ or $s=\ell=\infty$.

A few remarks are in order.
Remark 1.2. (i) (Hardy-Littlewood-Sobolev) Theorem 1.1 implies

$$
\left\|I_{\delta} f\right\|_{\mathcal{M}_{q, s}^{\lambda *}} \lesssim \llbracket \nu \rrbracket_{n}^{1 / q}\|f\|_{\mathcal{M}_{p, \ell}^{\lambda}}
$$

for $d \mu=d \nu$ and $\beta=n$. So, our theorem extend Hardy-Littlewood-Sobolev [28, Theorem 9] for weak-Morrey spaces. However the optimality of $q / \lambda_{*} \leq$ p / λ is known only for Morrey spaces [28, Theorem 10].
(ii) (Regularity on Morrey spaces) If u is a weak solution to fractional Laplace equation $(-\Delta)^{\frac{\delta}{2}} u=f$ in \mathbf{R}^{n},
$(-\Delta)^{\frac{\delta}{2}} u(x):=C(n, \delta)$ P.V. $\int_{\mathbf{R}^{n}} \frac{u(x)-u(y)}{|x-y|^{n+\delta}} d \nu(y) \quad$ with $\quad 0<\delta<2$,
then $u \in \mathcal{M}_{q, s}^{\lambda_{\star}}(\Omega, d \mu)$ if provided that $f \in \mathcal{M}_{p, \ell}^{\lambda}\left(\mathbf{R}^{n}, d \nu\right)$. Indeed, $u=I_{\delta} f$ is a weak solution of $\left(-\Delta_{x}\right)^{\frac{\delta}{2}} u=f$ because

$$
\left\langle(-\Delta)^{\delta / 2} u, \widehat{\varphi}\right\rangle=\int_{\mathbf{R}^{n}} \widehat{u}(\xi)|\xi|^{\delta} \varphi(\xi) d \xi=\int_{\mathbf{R}^{n}} \widehat{f}(\xi) \varphi(\xi) d \xi=\langle f, \widehat{\varphi}\rangle
$$

for all $\varphi \in \mathcal{S}\left(\mathbf{R}^{n}\right)$. Then, Theorem 1.1 give us desired result.
(iii) (Adams' trace to surface-carried measures) Let Ω be a compact smooth surface with nonnegative second fundamental form and

$$
\widehat{d \mu}(\xi)=\int_{\Omega} e^{-2 \pi i x \cdot \xi} d \mu
$$

the Fourier transform of a measure μ supported on Ω. If Ω has at least k non-vanishing principal curvatures at $\operatorname{spt}(\mu)$, the stationary phase method (see Stein and Shakarchi [31, Chapter 8]) gives the optimal decay

$$
|\widehat{d \mu}(\xi)| \lesssim|\xi|^{-\frac{k}{2}} \quad \text { as } \quad|\xi|>1
$$

Let $\phi \in \mathcal{S}\left(\mathbf{R}^{n}\right)$ be nonnegative, $\phi \gtrsim 1$ on $B(0,1)$ and $\widehat{\phi}=0$ on $\mathbf{R}^{n} \backslash B(0, r)$ for some $r>0$. Choosing $\phi_{x, r}(y)=\phi\left(\frac{x-y}{r}\right)$ we have

$$
\begin{aligned}
\left|\mu\left(B_{r}(x)\right)\right| & \lesssim\left|\int_{\mathbf{R}^{n}} \phi_{x, r}(y) d \mu(y)\right|=\left|\int_{\mathbf{R}^{n}} \widehat{\phi}_{x, r}(\xi) \widehat{\mu}(-\xi) d \xi\right| \\
& \leq \int_{|\xi| \leq r}|\widehat{\phi}(\xi)||\widehat{\mu}(-\xi / r)| d \xi \lesssim r^{\frac{k}{2}} \int_{|\xi| \leq r}|\widehat{\phi}(\xi)||\xi|^{-\frac{k}{2}} d \xi \\
& \lesssim r^{k / 2} \quad \text { for all } x \in \operatorname{spt}(\mu) .
\end{aligned}
$$

It follows from Theorem 1.1 that $\left\|I_{\delta} f\right\|_{\mathcal{M}_{q, s}^{\lambda, *}(\Omega, d \mu)} \lesssim \llbracket \mu \rrbracket_{k / 2}^{1 / q}\|f\|_{\mathcal{M}_{p, e}^{\lambda}}$, if provided that $f \in \mathcal{M}_{p, \ell}^{\lambda}$.
Employing non-doubling Calderon-Zygmund decomposition [33] we obtain the suitable "good- λ inequality" (see (3.5))

$$
\sum_{j} \mu\left(Q_{j}^{t}\right) \leq \mu\left(\left\{x:\left(I_{\alpha} f\right)^{\sharp}(x)>3 \epsilon t / 4\right\}\right)+\epsilon \sum_{j} \mu\left(Q_{j}^{s}\right) \text { with } s=4^{-n-2} t
$$

provided that μ satisfy (1.1), where $\left(I_{\alpha} f\right)^{\sharp}$ denotes the (noncentered) sharp maximal function and $\left\{Q_{j}^{t}\right\}$ is a family of doubling cubes, see Section 3.1. Then, by a suitable analysis we have the norm equivalence (see Theorem 3.5)

$$
\begin{equation*}
\left\|M_{\alpha} f\right\|_{\mathcal{M}_{p, \ell}^{\lambda}(d \mu)} \sim\left\|I_{\alpha} f\right\|_{\mathcal{M}_{p, \ell}^{\lambda}(d \mu)} \tag{1.9}
\end{equation*}
$$

provided that Radon measure μ satisfies $\mu\left(B_{r}(x)\right) \sim r^{\beta}$ for all $x \in \operatorname{spt}(\mu)$, where $0<\alpha<n$ satisfy $n-\alpha<\beta \leq n$ and M_{α} is defined as (centered fractional maximal function)

$$
M_{\alpha} f(x)=\sup _{r>0} r^{\alpha-n} \int_{|y-x|<r}|f(y)| d \nu
$$

for all locally integrable function $f \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{n}, d \nu\right)$. It should be emphasized that (1.9) is understood in sense of trace, since M_{α} and I_{α} are defined for $f \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{n}, d \nu\right)$ with Lebesgue measure $d \nu$. In particular, when $d \mu$ coincides with Lebesgue measure $d \nu$, this equivalence recovers [7, Theorem 4.2] for Morrey spaces. The proof of (1.9) is involved, because it requires a suitable analysis of non-doubling Calderon-Zygmund decomposition to yield "good- λ inequality" (see Lemma 3.3) as well as the suitable pointwise estimate (see Lemma 3.4)

$$
\bar{M}^{\sharp} I_{\alpha} f(x) \lesssim M_{\alpha} f(x)
$$

whenever $\mu\left(B_{r}(x)\right) \sim r^{\beta}$, where \bar{M}^{\sharp} denotes the (centered) sharp maximal function. Note that (1.9) and Theorem 1.1 yields a trace principle for M_{δ} if and only if $\mu\left(B_{r}(x)\right) \sim r^{\beta}$. However, the "if part" of trace principle for M_{δ} can be obtained directly from pointwise inequality $M_{\delta} f(x) \lesssim I_{\delta}|f(x)|$ and Theorem 1.1. The "only if part" is derived from the same technique used in Section 4.2.

Corollary 1.3. (Trace principle for M_{δ}) Let $1<p \leq \lambda<\infty$ and $1<q \leq \lambda_{*}<$ ∞ be such that $q / \lambda_{*} \leq p / \lambda$ for all $n-\delta p<\beta \leq n$ and $1<p<q<\infty$. Then,

$$
M_{\delta}: \mathcal{M}_{p, \ell}^{\lambda}\left(\mathbf{R}^{n}, d \nu\right) \longrightarrow \mathcal{M}_{q, s}^{\lambda_{*}^{*}}(\Omega, d \mu) \text { is continuous }
$$

if and only if $\llbracket \mu \rrbracket_{\beta}<\infty$, for all $\delta=\frac{n}{\lambda}-\frac{\beta}{\lambda_{*}}, 0<\delta<n / \lambda$ and $1 \leq \ell<s \leq \infty$.

It is worth noting from an integral representation formula that $\left\|I_{k} f\right\|_{L^{q}(d \mu)} \lesssim$ $\llbracket \mu \rrbracket_{\beta}\|f\|_{L^{p}\left(\mathbf{R}^{n}\right)}$ is equivalent to the trace inequality (see [26, Corollary, p. 67$]$)

$$
\begin{equation*}
\left(\int_{\Omega}|f(x)|^{q} d \mu\right)^{\frac{1}{q}} \lesssim \llbracket \mu \rrbracket_{\beta}\|f\|_{W^{k, p}\left(\mathbf{R}^{n}\right)} \tag{1.10}
\end{equation*}
$$

where $\|f\|_{W^{k, p}\left(\mathbf{R}^{n}\right)}=\sum_{|\gamma| \leq k}\left\|D^{\gamma} f\right\|_{L^{p}\left(\mathbf{R}^{n}\right)}$ for all $1<p<q<\infty$ and $\beta=q(n / p-k)>$ 0 with $0<k<n$. If Ω is a $W^{k, p}$-extension domain, that is, if there is a bounded linear operator $\mathcal{E}_{k}: W^{k, p}(\Omega) \rightarrow W^{k, p}\left(\mathbf{R}^{n}\right)$ such that $\left.\mathcal{E}_{k} f\right|_{\Omega}=f$ for all $f \in W^{k, p}(\Omega)$, then (1.10) yields the Sobolev trace inequality

$$
\left(\int_{\Omega}|f(x)|^{q} d \mu\right)^{\frac{1}{q}} \lesssim \llbracket \mu \rrbracket_{\beta}\|f\|_{W^{k, p}(\Omega)}
$$

provided that μ is a measure on Ω such that $\sup _{x \in \mathbf{R}^{n}, r>0} r^{-\beta} \mu\left(\Omega \cap B_{r}(x)\right)<\infty$. From [30, Theorem 5, p. 181] it is known that Lipschitz domain is a $W^{k, p}$-extension domain. Moreover, it is also known that (ϵ, δ)-locally uniform domain is a $W^{k, p_{-}}$ extension domain for all $1 \leq p \leq \infty$ and $k \in \mathbf{N}$ (see [19] and [29]). Let us move to Sobolev-Morrey space $\mathcal{W}^{1, p}(\Omega)$ which is defined by

$$
\|f\|_{\mathcal{W}^{1, p}(\Omega)}=\sup _{x \in \Omega, r>0}\left(r^{p-n} \int_{B_{r}(x) \cap \Omega}|\nabla f|^{p} d \nu\right)^{1 / p}
$$

for all $f \in L_{l o c}^{1}(\Omega)$ and $p \in[1, n]$. Employing a slight modification to the extension operator \mathcal{E}_{k} of Jones [19], the authors of [20] showed that an ϵ-uniform domain is a $\mathcal{W}^{1, p}$-extension domain. Since $\Omega=\mathbf{R}_{+}^{n}$ is a uniform domain, if $d \mu$ is supported on $\partial \mathbf{R}_{+}^{n}$ then from Theorem 1.1 (or [22, Theorem 1.1]) in Morrey spaces with $\beta=n-1$ and integral representation formula [4, (3.5)] we obtain the Sobolev-Morrey trace inequality:

$$
\begin{equation*}
\left\|f\left(x^{\prime}, 0\right)\right\|_{\mathcal{M}_{q}}{ }^{\frac{\lambda(n-1)}{n-\lambda}}{ }_{\left(\partial \mathbf{R}_{+}^{n}, d x^{\prime}\right)} \leq C\|\nabla f\|_{\mathcal{M}_{p}^{\lambda}\left(\mathbf{R}_{+}^{n}\right)} \tag{1.11}
\end{equation*}
$$

provided that $1<p \leq \lambda<n$ and $p<q \leq \lambda(n-1) /(n-\lambda)$. However we cannot apply directly $\left[20\right.$, Theorem 1.5(i)] to yield (1.11), since $\|f\|_{\mathcal{W}^{1, p}\left(\mathbf{R}_{+}^{n}\right)}=\|\nabla f\|_{\mathcal{M}_{p}^{n}\left(\mathbf{R}_{+}^{n}\right)}$ and $\lambda=n$. One could ask: does the Sobolev trace embedding (1.11) holds for Morrey spaces or weak-Morrey spaces? As a byproduct of Theorem 1.1 and Calderón-Stein's extension on half-spaces (see Lemma 5.1) we give a positive answer for this question.

Corollary 1.4. (Sobolev-Morrey trace) Let $1<p \leq \lambda<n$ and $1<q \leq \lambda_{*}<\infty$ be such that $\frac{n-1}{\lambda_{*}}=\frac{n}{\lambda}-1$ and $q / \lambda_{*} \leq p / \lambda$. Then

$$
\left.\left\|f\left(x^{\prime}, 0\right)\right\|_{\mathcal{M}_{q, s}^{\lambda}, s} \partial \mathbf{R}_{+}^{n}, d x^{\prime}\right)=C\|\nabla f\|_{\mathcal{M}_{p, d}^{\lambda}\left(\mathbf{R}_{+}^{n}\right)},
$$

for all $1<p<q<\infty$ and $1 \leq d<s \leq \infty$ or $s=\ell=\infty$.
The paper is organized as follows. In Section 2 we summarize properties of Lorentz spaces. In Section 3 we deal with non-doubling CZ-decomposition for polynomial growth measures and estimates for sharp maximal function. In Sections 4 and 5 we prove our main theorems.

2. The Lorentz spaces

Let $(\Omega, \mathcal{B}, \mu)$ be a measure space endowed by Borel regular measure $d \mu$. The Lorentz space $L^{p, d}(\Omega, \mu)$ is defined as the set of μ-measurable functions $f: \Omega \rightarrow \mathbf{R}$
such that

$$
\begin{equation*}
\|f\|_{L^{p, d}}^{*}=\left(\frac{d}{p} \int_{0}^{\mu(\Omega)}\left[t^{1 / p} f^{*}(t)\right]^{d} \frac{d t}{t}\right)^{\frac{1}{d}}=\left(p \int_{0}^{\mu(\Omega)}\left[s^{p} d_{f}(s)\right]^{\frac{d}{p}} \frac{d s}{s}\right)^{\frac{1}{d}}<\infty \tag{2.1}
\end{equation*}
$$

for all $1 \leq p<\infty$ and $1 \leq d<\infty$, where

$$
f^{*}(t)=\inf \left\{s>0: d_{f}(s) \leq t\right\} \text { and } d_{f}(s)=\mu(\{x \in \Omega:|f(x)|>s\})
$$

For $1 \leq p \leq \infty$ and $d=\infty$, the Lorentz space $L^{p, \infty}(\Omega, \mu)$ is defined by

$$
\begin{equation*}
\|f\|_{L^{p, \infty}}^{*}=\sup _{0<t<\mu(\Omega)} t^{1 / p} f^{*}(t)=\sup _{0<s<\mu(\Omega)}\left[s^{p} d_{f}(s)\right]^{1 / p} \tag{2.2}
\end{equation*}
$$

The Lorentz space $L^{p, d}(\Omega, d \mu)$ increases with the index d, that is,

$$
L^{p, 1} \hookrightarrow L^{p, d_{1}} \hookrightarrow L^{p} \hookrightarrow L^{p, d_{2}} \hookrightarrow L^{p, \infty}
$$

provided that $1 \leq d_{1} \leq p \leq d_{2}<\infty$. More precisely, we have the following lemma.
Lemma 2.1. (Calderón) If $1 \leq p<\infty$ and $0<q<r \leq \infty$, then $\|f\|_{L^{p, r}} \leq$ $(q / p)^{\frac{1}{q}-\frac{1}{r}}\|f\|_{L^{p, q}}$.

The quantities (2.1) and (2.2) are not a norm, however

$$
\|f\|_{L^{p, d}}^{\natural}=\left(\frac{d}{p} \int_{0}^{\mu(\Omega)}\left[t^{1 / p} f^{\natural}(t)\right]^{d} \frac{d t}{t}\right)^{\frac{1}{d}}<\infty \text { with } f^{\natural}(t)=\frac{1}{t} \int_{0}^{t} f^{*}(s) d s
$$

defines a norm in $L^{p, d}(\Omega, d \mu)$ and one has

$$
\|f\|_{L^{p, d}}^{*} \leq\|f\|_{L^{p, d}}^{\natural} \leq \frac{p}{p-1}\|f\|_{L^{p, d}}^{*}
$$

for all $1<p<\infty$ and $1 \leq d \leq \infty$. The following lemma is well-known in theory of Lorentz spaces.

Lemma 2.2. (Hunt's Theorem [9]) Let $\left(M_{1}, \mu_{1}\right)$ and $\left(M_{2}, \mu_{2}\right)$ be measure spaces and let T be a sublinear operator such that

$$
\|T f\|_{L^{q_{i}, s_{i}\left(M_{1}, d \mu_{1}\right)}} \leq C_{i}\|f\|_{L^{p_{i}, r_{i}\left(M_{2}, d \mu_{2}\right)}} \quad \text { for } \quad i=0,1
$$

for all $p_{0} \neq p_{1}$ and $q_{0} \neq q_{1}$. Let $0<\theta<1$ be such that $1 / p=(1-\theta) / p_{0}+\theta / p_{1}$ and $1 / q=(1-\theta) / q_{0}+\theta / q_{1}$, then

$$
\|T f\|_{L^{q, s}\left(M_{1}, d \mu_{1}\right)} \leq C_{0}^{\theta} C_{1}^{1-\theta}\|f\|_{L^{p, r}\left(M_{2}, d \mu_{2}\right)},
$$

provided that $p \leq q$ and $0<r \leq s \leq \infty$, where $C_{i}>0$ depends only on p_{i}, q_{i}, p, q.

3. Maximal functions and non-doubling measure

In this section we are interested in proving the estimate

$$
\left\|I_{\alpha} f\right\|_{\mathcal{M}_{p, \ell}^{\lambda}(d \mu)} \lesssim\left\|M^{\sharp} I_{\alpha} f\right\|_{\mathcal{M}_{p, \ell}^{\lambda}(d \mu)}
$$

for every Radon measure μ satisfying (1.1), where $M^{\sharp} f(x):=f^{\sharp}(x)$ denotes the uncentered sharp maximal function

$$
\begin{equation*}
f^{\sharp}(x)=\sup _{Q, x \in Q}\left\{\frac{1}{\mu(Q)} \int_{Q}\left|f-f_{Q}\right| d \mu\right\} \tag{3.1}
\end{equation*}
$$

and $f_{Q}=\frac{1}{\mu(Q)} \int_{Q} f d \mu$. Also, we are interested in proving the estimate

$$
\bar{M}^{\sharp} I_{\alpha} f(x) \lesssim M_{\alpha} f(x)
$$

when the Radon measure μ satisfy $\mu\left(B_{r}(x)\right) \sim r^{\beta}$, where $\bar{M}^{\sharp} f(x):=f^{\sharp}(x)$ denotes the centered sharp maximal function

$$
\begin{equation*}
f^{\bar{\sharp}}(x)=\sup _{r>0}\left\{\frac{1}{\mu\left(B_{r}(x)\right)} \int_{B_{r}(x)}\left|f-f_{B_{r}}\right| d \mu\right\} . \tag{3.2}
\end{equation*}
$$

3.1. Non-doubling CZ-decomposition. Let us recall that a cube $Q \subset \mathbf{R}^{n}$ is called a (τ, γ)-doubling cube with respect to polynomial growth (1.1) of the measure μ, if $\mu(\tau Q) \leq \gamma \mu(Q)$ as $\tau>1$ and $\gamma>\tau^{\beta}$. According to [33, Remark 2.1 and Remark 2.2] there are small/big (τ, γ)-doubling cubes in \mathbf{R}^{n}.

Lemma 3.1. [33] Let μ be a Radon measure in \mathbf{R}^{n} with growth condition (1.1), then
(i) (Small doubling cubes) Assume $\gamma>\tau^{n}$, then for μ-a.e. $x \in \mathbf{R}^{n}$ there exists a sequence $\left\{Q_{j}\right\}_{j}$ of (τ, γ)-doubling cubes centered at x such that $\ell\left(Q_{j}\right) \rightarrow 0$ as $j \rightarrow \infty$.
(ii) (Big doubling cubes) Assume $\gamma>\tau^{\beta}$, then for any $x \in \operatorname{spt}(\mu)$ and $c>0$, there exists a (τ, γ)-doubling cube Q centered at x such that $\ell(Q)>c$.
Let $f \in L_{\text {loc }}^{1}(\mu)$ and $\lambda>\frac{1}{\mu\left(Q_{0}\right)}\|f\|_{L^{1}\left(Q_{0}\right)}$ be such that $\Omega_{\lambda}=\left\{x \in Q_{0}:|f(x)|>\right.$ $\lambda\} \neq \varnothing$. From Lemma 3.1-(i) and Lebesgue differentiation theorem, there is a sequence of $\left(2,2^{n+1}\right)$-doubling cubes $\left\{Q_{j}(x)\right\}_{j}$ with $\ell\left(Q_{j}\right) \rightarrow 0$ such that

$$
\frac{1}{\mu\left(Q_{j}\right)} \int_{Q_{j}}|f| d \mu>\lambda
$$

for j sufficiently large. Since there are big $\left(2,2^{n+1}\right)$-doubling cubes Q_{j}, then

$$
\frac{1}{\mu\left(Q_{j}\right)} \int_{Q_{j}}|f| d \mu \leq \frac{\|f\|_{L^{1}(\mu)}}{\mu\left(Q_{j}\right)} \leq \lambda \text { for } \mu\left(Q_{j}\right)>c
$$

sufficiently large. In other words, for μ-almost all $x \in \mathbf{R}^{n}$ such that $|f(x)|>\lambda$ there is a $\left(2,2^{n+1}\right)$-doubling cube $Q^{\prime} \in\left\{Q_{x}\right\}_{x \in \Omega_{\lambda}}$ with center $x=x_{Q}$ such that

$$
\frac{1}{\mu\left(2 Q^{\prime}\right)} \int_{Q^{\prime}}|f| d \mu \leq \lambda / 2^{n+1}
$$

Moreover, if $Q=Q(x)$ is a $\left(2,2^{n+1}\right)$-doubling cube with sidelength $\ell(Q)<\ell\left(Q^{\prime}\right) / 2$ then

$$
\frac{1}{\mu(Q)} \int_{Q}|f| d \mu>\lambda
$$

Hence, a non-doubling Calderón-Zygmund decomposition can be obtained. To simply, a doubling cube Q mean $\left(2,2^{n+1}\right)$-doubling cube.

Lemma 3.2. (Non-doubling CZ-decomposition [33]) Let the Radon measure μ satisfy (1.1). Let Q be a doubling cube big so that $\lambda>\frac{1}{\mu(Q)} \int_{Q}|f| d \mu$ for $f \in$ $L^{1}(\mu)(Q)$. Then, there is a sequence of doubling cubes $\left\{Q_{j}\right\}_{j}$ such that
(i) $|f(x)| \leq \lambda$ for $x \in Q \backslash \bigcup_{j} Q_{j}$, μ-a.e.,
(ii) $\lambda<\frac{1}{\mu\left(Q_{j}\right)} \int_{Q_{j}}|f| d \mu \leq 4^{n+1} \lambda$,
(iii) $\bigcup_{j} Q_{j}=\bigcup_{k=1}^{\varepsilon_{n}} \bigcup_{Q_{j}^{k} \in \mathcal{F}_{k}} Q_{j}^{k}$,
where the family $\mathcal{F}_{k}=\left\{Q_{j}^{k}\right\}$ is pairwise disjoint.

Proof. This lemma is a consequence of Besicovitch's covering theorem and has been proved by Tolsa [33, Lemma 2.4]. Note that [33, Lemma 2.4] with $\eta=4$ implies

$$
\begin{aligned}
\frac{1}{\mu\left(Q_{j}\right)} \int_{Q_{j}}|f| d \mu & \leq \frac{\mu\left(\eta Q_{j}\right)}{\mu\left(Q_{j}\right)}\left(\frac{1}{\mu\left(\eta Q_{j}\right)} \int_{\eta Q_{j}}|f| d \mu\right) \leq \frac{\mu\left(\eta Q_{j}\right)}{\mu\left(Q_{j}\right)}\left(\frac{2^{n+1}}{\mu\left(2 \eta Q_{j}\right)} \int_{\eta Q_{j}}|f| d \mu\right) \\
& \leq 4^{n+1} \lambda
\end{aligned}
$$

thanks to $\mu\left(2 \eta Q_{j}\right) \leq 2^{n+1} \mu\left(\eta Q_{j}\right)$ and $\mu\left(4 Q_{j}\right) \leq 4^{n+1} \mu\left(Q_{j}\right)$.
3.2. Estimates for sharp maximal function. Inspired in [12, p. 153] we prove the following lemma.

Lemma 3.3. Let μ be a Radon measure in \mathbf{R}^{n} such that $\llbracket \mu \rrbracket_{\beta}<\infty$ for $0<\beta \leq$ n. If $I_{\alpha} f \in L_{\mathrm{loc}}^{1}(d \mu)$ for $0<\alpha<n$, then

$$
\begin{equation*}
\left\|I_{\alpha} f\right\|_{\mathcal{M}_{p, \ell}^{\lambda}(d \mu)} \lesssim\left\|\left(I_{\alpha} f\right)^{\sharp}\right\|_{\mathcal{M}_{p, \ell}^{\lambda}(d \mu)}, \tag{3.3}
\end{equation*}
$$

for every $1 \leq p \leq \lambda<\infty$ and $1 \leq \ell \leq \infty$.
Proof. Let $Q_{0} \subseteq \mathbf{R}^{n}$ be a doubling cube. Applying Lemma 3.2 with $I_{\alpha} f \in$ $L_{\text {loc }}^{1}(\mu)\left(Q_{0}\right)$ and $t=\lambda$ we obtain a family of almost disjoint doubling cubes $\left\{Q_{j}^{t}\right\}$ so that

$$
\begin{equation*}
t<\frac{1}{\mu\left(Q_{j}^{t}\right)} \int_{Q_{j}^{t}}\left|I_{\alpha} f\right| d \mu \leq 4^{n+1} t \tag{3.4}
\end{equation*}
$$

and $I_{\alpha} f(x) \leq t$ as $x \notin \bigcup_{j} Q_{j}^{t} \mu$-a.e. The main inequality to be proved reads as follows

$$
\begin{equation*}
\sum_{j} \mu\left(Q_{j}^{t}\right) \leq \mu\left(\left\{x:\left(I_{\alpha} f\right)^{\sharp}(x)>3 \epsilon t / 4\right\}\right)+\epsilon \sum_{j} \mu\left(Q_{j}^{s}\right) \quad \text { with } s=4^{-n-2} t \tag{3.5}
\end{equation*}
$$

for all $\epsilon>0$. Indeed, let $s=4^{-n-2} t$ and \mathcal{F}_{1} be the family of doubling cubes $\left\{Q_{j}^{s}\right\}$ of the $C Z$-decomposition associated to s and satisfying

$$
\begin{equation*}
Q_{j}^{s} \subset\left\{x \in Q_{0}:\left(I_{\alpha} f\right)^{\sharp}(x)>\frac{3 \epsilon t}{4}\right\} \tag{3.6}
\end{equation*}
$$

and let \mathcal{F}_{2} be the family of doubling cubes such that $Q_{j}^{s} \nsubseteq\left\{x \in Q_{0}:\left(I_{\alpha} f\right)^{\sharp}(x)>\right.$ $3 \epsilon t / 4\}$. If $Q \in \mathcal{F}_{2}$, obviously one has $\left(I_{\alpha} f\right)^{\sharp}(x) \leq \frac{3 \epsilon t}{4}$ for $x \in Q$ and right-hand side of (3.4) implies $\left(I_{\alpha} f\right)_{Q}=\frac{1}{\mu(Q)} \int_{Q}\left|I_{\alpha} f\right| d \mu \leq 4^{n+1} s=t / 4$. Now from left-hand side of (3.4) one has

$$
\begin{aligned}
\sum_{Q_{j}^{t} \subset Q} t \mu\left(Q_{j}^{t}\right) & <\sum_{Q_{j}^{t} \subset Q} \int_{Q_{j}^{t}}\left|I_{\alpha} f(x)\right| d \mu \\
& \leq \sum_{Q_{j}^{t} \subset Q} \int_{Q_{j}^{t}}\left|I_{\alpha} f(x)-\left(I_{\alpha} f\right)_{Q}\right| d \mu+\left(I_{\alpha} f\right)_{Q} \sum_{Q_{j}^{t} \subset Q} \mu\left(Q_{j}^{t}\right) \\
& \leq \int_{Q}\left|I_{\alpha} f(x)-\left(I_{\alpha} f\right)_{Q}\right| d \mu+\left(I_{\alpha} f\right)_{Q} \sum_{Q_{j}^{t} \subset Q} \mu\left(Q_{j}^{t}\right) \\
& \leq \frac{3 \epsilon}{4} t \mu(Q)+\frac{t}{4} \sum_{Q_{j}^{t} \subset Q} \mu\left(Q_{j}^{t}\right)
\end{aligned}
$$

Hence, summing over all cubes $Q \in \mathcal{F}_{2}$, we have

$$
\begin{equation*}
\sum_{Q \in \mathcal{F}_{2}} \sum_{Q_{j}^{t} \subset Q} \mu\left(Q_{j}^{t}\right) \leq \epsilon \sum_{Q \in \mathcal{F}_{2}} \mu(Q) . \tag{3.7}
\end{equation*}
$$

If $Q \in \mathcal{F}_{1}$, trivially (3.6) gives us

$$
\begin{align*}
\sum_{Q \in \mathcal{F}_{1}} \sum_{Q_{j}^{t} \subset Q} \mu\left(Q_{j}^{t}\right) & \leq \sum_{Q \in \mathcal{F}_{1}} \mu\left(\left\{x \in Q_{0}:\left(I_{\alpha} f\right)^{\sharp}(x)>3 \epsilon t / 4\right\} \cap Q\right) \\
& \leq \mu\left(\left\{x \in Q_{0}:\left(I_{\alpha} f\right)^{\sharp}(x)>3 \epsilon t / 4\right\}\right) . \tag{3.8}
\end{align*}
$$

Since

$$
\sum_{j} \mu\left(Q_{j}^{t}\right)=\left(\sum_{Q \in \mathcal{F}_{1}}+\sum_{Q \in \mathcal{F}_{2}}\right) \sum_{Q_{j}^{t} \subset Q} \mu\left(Q_{j}^{t}\right),
$$

from estimates (3.7) and (3.8) we obtain the good- λ inequality (3.5).
Now let $d_{I_{\alpha} f}(t)=\mu\left(\left\{x \in Q_{0}: I_{\alpha} f(x)>t\right\}\right)$ be the distribution function of $I_{\alpha} f$, then by CZ-decomposition we have

$$
d_{I_{\alpha} f}(t) \leq \rho(t):=\sum_{j} \mu\left(Q_{j}^{t}\right)
$$

thanks to Lemma 3.2-(i). Now fix $N=\mu \varrho_{\Omega}\left(B_{R}\right)$ and invoke (3.5) in order to infer

$$
\begin{aligned}
& p \int_{0}^{N} t^{\ell-1}[\rho(t)]^{\frac{\ell}{p}} d t \lesssim p \int_{0}^{N} t^{\ell-1}\left[d_{\left(I_{\alpha} f\right)^{\sharp}}(3 \epsilon t / 4)\right]^{\frac{\ell}{p}} d t+p \int_{0}^{N} t^{\ell-1}\left[\epsilon \rho\left(4^{-n-2} t\right)\right]^{\frac{\ell}{p}} d t \\
& =(4 / 3 \epsilon)^{\ell} p \int_{0}^{3 \epsilon N / 4} t^{\ell-1}\left[d_{\left(I_{\alpha} f\right)^{\sharp}}(t)\right]^{\frac{\ell}{p}} d t+4^{(n+2) \ell} \epsilon^{\frac{\ell}{p}} p \int_{0}^{N 4^{-n-2}} t^{\ell-1}[\rho(t)]^{\frac{\ell}{p}} d t .
\end{aligned}
$$

Now choosing $\epsilon>0$ in such a way that $\epsilon^{\frac{\ell}{p}} 4^{(n+2) \ell}=1 / 2$ we obtain

$$
\frac{p}{2} \int_{0}^{N} t^{\ell-1}[\rho(t)]^{\frac{\ell}{p}} d t \lesssim p \int_{0}^{N} t^{\ell-1}\left[d_{\left(I_{\alpha} f\right)^{\sharp}}(t)\right]^{\frac{\ell}{p}} d t .
$$

Since $d_{I_{\alpha} f}(t) \leq \rho(t)$ we estimate

$$
\begin{aligned}
\left\|I_{\alpha} f\right\|_{\mathcal{M}_{p, \ell}^{\lambda}(d \mu)}^{\ell} & =\sup _{x \in \operatorname{spt}(\mu), R>0} R^{-\ell \beta\left(\frac{1}{p}-\frac{1}{\lambda}\right)}\left(p \int_{0}^{\mu\left\lfloor\Omega\left(B_{R}\right)\right.} t^{\ell-1}\left[d_{I_{\alpha} f}(t)\right]^{\frac{\ell}{p}} d t\right) \\
& \lesssim \sup _{x \in \operatorname{spt}(\mu), R>0} R^{-\ell \beta\left(\frac{1}{p}-\frac{1}{\lambda}\right)}\left(p \int_{0}^{\mu\left\lfloor\Omega\left(B_{R}\right)\right.} t^{\ell-1}\left[d_{\left(I_{\alpha} f\right)^{\sharp}}(t)\right]^{\frac{\ell}{p}} d t\right) \\
& =\left\|\left(I_{\alpha} f\right)^{\sharp}\right\|_{\mathcal{M}_{p, \ell}^{\lambda}(d \mu)}^{\ell},
\end{aligned}
$$

as required. The case $\ell=\infty$ is achieved without great effort.
Lemma 3.4. Let μ be a Radon measure such that $\mu\left(B_{r}(x)\right) \sim r^{\beta}$ for all $x \in \mathbf{R}^{n}$ and $r>0$. If $f \in L_{\mathrm{loc}}^{1}(d \nu)$ is such that $I_{\alpha} f \in L_{\mathrm{loc}}^{1}(d \mu)$ when $0<\alpha<n$ satisfy $n-\alpha<\beta \leq n$, then

$$
\bar{M}^{\sharp} I_{\alpha} f(x) \lesssim M_{\alpha} f(x) .
$$

Proof. Taking $f^{\prime}=f \chi_{B\left(x_{0}, 2 r\right)}$ and $f^{\prime \prime}=\chi_{\mathbf{R}^{n} \backslash B\left(x_{0}, 2 r\right)}$ from Fubini's theorem and [6, Lemma 3.1.1] we estimate

$$
\begin{aligned}
& \int_{\left|x-x_{0}\right|<r}\left|I_{\alpha} f^{\prime}(x)\right| d \mu(x) \lesssim \int_{\left|x-x_{0}\right|<r}\left(\int_{\left|y-x_{0}\right|<2 r}|y-x|^{\alpha-n}|f(y)| d \nu\right) d \mu(x) \\
& \leq \int_{\left|y-x_{0}\right|<2 r}\left(\int_{|y-x|<3 r}|y-x|^{\alpha-n} d \mu(x)\right)|f(y)| d \nu \\
& \leq \int_{\left|y-x_{0}\right|<2 r}\left[(n-\alpha) \int_{0}^{3 r} \frac{\mu(B(x, s))}{s^{n-\alpha}} \frac{d s}{s}+\frac{\mu(B(x, 3 r))}{(3 r)^{n-\alpha}}\right]|f(y)| d \nu \\
& \lesssim \llbracket \mu \rrbracket_{\beta} r^{\beta}[2 r]^{\alpha-n} \int_{\left|y-x_{0}\right|<2 r}|f(y)| d \nu \lesssim \llbracket \mu \rrbracket_{\beta} \mu\left(B_{r}\left(x_{0}\right)\right) M_{\alpha} f\left(x_{0}\right),
\end{aligned}
$$

which yields $\bar{M}^{\sharp} I_{\alpha} f^{\prime}\left(x_{0}\right) \lesssim \llbracket \mu \rrbracket_{\beta} M_{\alpha} f\left(x_{0}\right)$. Now from mean value theorem we have

$$
\left||x-z|^{\alpha-n}-|y-z|^{\alpha-n}\right| \lesssim r\left|z-x_{0}\right|^{\alpha-n-1}
$$

for $\left|x-x_{0}\right|<r$ and $\left|y-x_{0}\right|<r$. Hence, Fubini's theorem implies

$$
\begin{aligned}
& \left|\left(I_{\alpha} f^{\prime \prime}\right)(x)-\left(I_{\alpha} f^{\prime \prime}\right)_{B_{r}\left(x_{0}\right)}\right| \\
& \leq \frac{1}{\mu\left(B_{r}\right)} \int_{\left|z-x_{0}\right|>2 r}\left\{r \int_{\left|y-x_{0}\right|<r}\left|z-x_{0}\right|^{\alpha-n-1} d \mu(y)\right\}|f(z)| d \nu \\
& \lesssim r \int_{\left|z-x_{0}\right|>2 r}\left|z-x_{0}\right|^{\alpha-n-1}|f(z)| d \nu \\
& =r \sum_{k=1}^{\infty} \int_{2^{k} r \leq\left|z-x_{0}\right|<2^{k+1} r}\left|z-x_{0}\right|^{\alpha-n-1}|f(z)| d \nu \\
& \leq \sum_{k=1}^{\infty} 2^{-(k+1)} M_{\alpha} f\left(x_{0}\right) \lesssim M_{\alpha} f\left(x_{0}\right)
\end{aligned}
$$

which yields

$$
\bar{M}^{\sharp} I_{\alpha} f^{\prime \prime}\left(x_{0}\right)=\sup _{r>0} \frac{1}{\mu\left(B_{r}\left(x_{0}\right)\right)} \int_{\left|x-x_{0}\right|<r}\left|\left(I_{\alpha} f^{\prime \prime}\right)(x)-\left(I_{\alpha} f^{\prime \prime}\right)_{B\left(x_{0}, r\right)}\right| d \mu(x) \lesssim M_{\alpha} f\left(x_{0}\right),
$$

as required.
Theorem 3.5. (Trace-type equivalence) Let μ be a Radon measure such that $\mu\left(B_{r}(x)\right) \sim r^{\beta}$ for all $x \in \mathbf{R}^{n}$ and $r>0$. If $f \in L_{l o c}^{1}(d \nu)$ is such that $I_{\alpha} f \in L_{l o c}^{1}(d \mu)$ whenever $0<\alpha<n$ satisfy $n-\alpha<\beta \leq n$, then

$$
\left\|M_{\alpha} f\right\|_{\mathcal{M}_{p, \ell}^{\lambda}(d \mu)} \sim\left\|I_{\alpha} f\right\|_{\mathcal{M}_{p, \ell}^{\lambda}(d \mu)}
$$

for all $1 \leq p \leq \lambda<\infty$ and $1 \leq \ell \leq \infty$.
Proof. Note that Lemma 3.3 is true with centered sharp maximal function $\bar{M}^{\sharp} I_{\alpha} f$. Since $M_{\alpha} f(x) \lesssim I_{\alpha} f(x)$, by Lemma 3.3 and 3.4 we obtain

$$
\begin{equation*}
\left\|M_{\alpha} f\right\|_{\mathcal{M}_{p, \ell}^{\lambda}} \lesssim\left\|I_{\alpha} f\right\|_{\mathcal{M}_{p, \ell}^{\lambda}} \stackrel{\text { Lemma }}{\lesssim} \stackrel{3.3}{\lesssim}\left\|\bar{M}^{\sharp} I_{\alpha} f\right\|_{\mathcal{M}_{p, \ell}^{\lambda}} \stackrel{\text { Lemma } 3.4}{\lesssim}\left\|M_{\alpha} f\right\|_{\mathcal{M}_{p, \ell}^{\lambda}}, \tag{3.9}
\end{equation*}
$$

which is the desired result.

4. Proof of trace Theorem 1.1

Let us recall the pointwise estimate between Riesz potential and fractional maximal operator.

Lemma 4.1. Let $f \in L_{\text {loc }}^{1}\left(\mathbf{R}^{n}, d \nu\right)$ and $B(x, r) \subset \mathbf{R}^{n}$ a ball with radius $r>0$.
(i) If $0 \leq \gamma<\delta<\alpha \leq n$, then

$$
\left|I_{\delta} f(x)\right| \lesssim\left[M_{\alpha} f(x)\right]^{\frac{\delta-\gamma}{\alpha-\gamma}}\left[M_{\gamma} f(x)\right]^{1-\frac{\delta-\gamma}{\alpha-\gamma}}, \quad \forall x \in \mathbf{R}^{n} .
$$

(ii) If $1 \leq p<\infty$ and $1 \leq k \leq \infty$, then

$$
[\nu(B(x, r))]^{\frac{1}{p}-1} \int_{B(x, r)}|f(y)| d \nu \lesssim\|f\|_{L^{p, k}(B(x, r))}
$$

In particular, $\left(M_{n / \lambda} f\right)(x) \lesssim\|f\|_{\mathcal{M}_{p, k}^{\lambda}(d \nu)}$, for all $p \leq \lambda<\infty$.
Proof. The item (i) was obtained in [22, Lemma 4.1]. To show (ii), first let us recall the Hardy-Littlewood inequality

$$
\int_{B(x, r)}|f(y) g(y)| d \nu \leq \int_{0}^{\nu(B(x, r))} f^{*}(t) g^{*}(t) d t .
$$

This inequality and Hölder's inequality in $L^{k}(\mathbf{R}, d t / t)$ give us

$$
\begin{aligned}
\int_{B(x, r)}|f(x)| d \nu & \leq \int_{0}^{\nu(B(x, r))} t^{1-\frac{1}{p}}\left(t^{\frac{1}{p}} f^{*}(t)\right) \frac{d t}{t} \\
& \leq\left(\int_{0}^{\nu(B(x, r))}\left(t^{1-\frac{1}{p}}\right)^{k^{\prime}} \frac{d t}{t}\right)^{\frac{1}{k^{\prime}}}\left(\int_{0}^{\nu(B(x, r))}\left(t^{\frac{1}{p}} f^{*}(t)\right)^{k} \frac{d t}{t}\right)^{\frac{1}{k}} \\
& \lesssim[\nu(B(x, r))]^{1-\frac{1}{p}}\|f\|_{L^{p, k}(B(x, r))}
\end{aligned}
$$

as desired.
Now, we are in position to prove Theorem 1.1.
4.1. The condition $\llbracket \boldsymbol{\mu} \rrbracket_{\beta}<\infty$ is sufficient. For $x \in B_{\rho}=B\left(x_{0}, \rho\right)$ with $\rho>0$, let us write

$$
\begin{aligned}
I_{\delta} f(x) & =\int_{|y-x|<\rho}|x-y|^{\delta-n} f(y) d \nu(y)+\int_{|y-x| \geq \rho}|x-y|^{\delta-n} f(y) d \nu(y) \\
& :=I_{\delta} f^{\prime}(x)+I_{\delta} f^{\prime \prime}(x)
\end{aligned}
$$

where $f^{\prime}=\chi_{B\left(x_{0}, 2 \rho\right)} f$ and $f^{\prime \prime}=f-f^{\prime}$. If $y \in \mathbf{R}^{n} \backslash B\left(x_{0}, 2 \rho\right)$, using integration by parts and Lemma 4.1-(ii), respectively, we have

$$
\begin{aligned}
\left|I_{\delta} f^{\prime \prime}(x)\right| & \leq \int_{2 \rho}^{\infty} s^{\delta-n}\left(\int_{B(x, s)}|f(y)| d \nu\right) \frac{d s}{s} \\
& \lesssim \int_{\rho}^{\infty} s^{\delta-n}[\nu(B(x, s))]^{1-\frac{1}{p}}\|f\|_{L^{p, \ell}(B(x, s))} \frac{d s}{s} \\
& \leq\left(\int_{\rho}^{\infty} s^{\delta-1-\frac{n}{\lambda}} d s\right)\|f\|_{\mathcal{M}_{p, \ell}^{\lambda}(d \nu)} \lesssim \rho^{\delta-\frac{n}{\lambda}}\|f\|_{\mathcal{M}_{p, \ell}^{\lambda}(d \nu)},
\end{aligned}
$$

in view of $0<\delta<n / \lambda$. Therefore, $\left(I_{\delta} f^{\prime \prime}\right)^{*}(t) \lesssim \rho^{\delta-\frac{n}{\lambda}}\|f\|_{\mathcal{M}_{p, \ell}^{\lambda}(d \nu)}$ and we can estimate

$$
\begin{align*}
\left\|I_{\delta} f^{\prime \prime}\right\|_{L^{q, s}\left(B\left(x_{0}, \rho\right), d \mu\right)} & \lesssim \rho^{\delta-\frac{n}{\lambda}}\|f\|_{\mathcal{M}_{p, \ell}^{\lambda}\left(\mathbf{R}^{n}, d \nu\right)}\left(\int_{0}^{\mu\left(B\left(x_{0}, \rho\right)\right)} t^{\frac{s}{q}-1} d t\right)^{\frac{1}{s}} \\
& \leq \rho^{\delta-\frac{n}{\lambda}} \mu\left(B\left(x_{0}, \rho\right)\right)^{\frac{1}{q}}\|f\|_{\mathcal{M}_{p, \ell}^{\lambda}(d \nu)} \\
& \leq \rho^{\frac{\beta}{q}-\frac{\beta}{\lambda_{*}}} \llbracket \mu \rrbracket_{\beta}^{\frac{1}{q}}\|f\|_{\mathcal{M}_{p, \ell}^{\lambda}(d \nu)}, \tag{4.1}
\end{align*}
$$

thanks to $\delta=\frac{n}{\lambda}-\frac{\beta}{\lambda_{*}}$ and $\mu\left(B\left(x_{0}, r\right)\right) \leq \llbracket \mu \rrbracket_{\beta} r^{\beta}$, for all $x_{0} \in \operatorname{spt}(\mu)$ and $r>0$. Since

$$
\frac{n-\beta}{p}<\delta<\frac{n}{\lambda}
$$

we can ensure the existence of γ such that $(n-\beta) / p<\gamma<\delta<n / \lambda$ which yields $n-\beta<\gamma p<n p / \lambda \leq n$. Hence, for $y \in B\left(x_{0}, 2 \rho\right)$ we invoke Lemma 4.1 with $\alpha=n / \lambda$ and estimate

$$
\begin{aligned}
\left\|I_{\delta} f^{\prime}\right\|_{L^{q, s}\left(B\left(x_{0}, \rho\right), d \mu\right)} & \lesssim\|f\|_{\mathcal{M}_{p, \ell}}^{\frac{\delta-\gamma}{\alpha-\gamma}}(d \nu)
\end{aligned}\left\|\left|M_{\gamma} f^{\prime}\right|^{\left(1-\frac{\delta-\gamma}{\alpha-\gamma}\right)}\right\|_{L^{q, s\left(B\left(x_{0}, \rho\right), d \mu\right)}},
$$

in view of $\left\||g|^{b}\right\|_{L^{q, s}}=\|g\|_{L^{q b, s b}}^{b}$ for $b=1-\frac{\delta-\gamma}{\alpha-\gamma}$. Now, since $\ell<s$ and $b=$ $\left(1-\frac{\delta-\gamma}{\alpha-\gamma}\right) \in(0,1)$ we can choose γ close to δ such that $\ell \leq s b$. It follows from Calderón's Lemma 2.1 that

$$
\begin{equation*}
\left\|I_{\delta} f^{\prime}\right\|_{L^{q, s}\left(B\left(x_{0}, \rho\right), d \mu\right)} \lesssim\|f\|_{\mathcal{M}_{p, \ell}^{\lambda}(d \nu)}^{1-b}\left\|M_{\gamma} f^{\prime}\right\|_{L^{q b, \ell}\left(B\left(x_{0}, \rho\right), d \mu\right)}^{b} . \tag{4.2}
\end{equation*}
$$

Now from real interpolation (see Lemma 2.2) and trace principle [3, Theorem 2] in $L^{p}(d \mu)$ we will show that

$$
\begin{equation*}
\left\|M_{\gamma} f^{\prime}\right\|_{L^{\bar{p}, \ell}\left(B_{\rho}, d \mu\right)} \lesssim \llbracket \mu \rrbracket_{\beta}^{1 / \bar{p}}\left\|f^{\prime}\right\|_{L^{p, \ell}\left(\mathbf{R}^{n}, d \nu\right)} \tag{4.3}
\end{equation*}
$$

for all $f^{\prime} \in L^{p, \ell}(d \nu)$ whenever $1<p<\bar{p}=q b=\beta p /(n-\gamma p), 0<\beta \leq n$ and $n-\beta<\gamma p<n$. Indeed, let $\theta \in(0,1), p_{0}<p<p_{1}$ and $\bar{p}_{0}<\bar{p}<\bar{p}_{1}$ be such that

$$
\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}} \quad \text { and } \quad \frac{1}{\bar{p}}=\frac{1-\theta}{\bar{p}_{0}}+\frac{\theta}{\bar{p}_{1}},
$$

where $1<p_{i}<\bar{p}_{i}=\frac{\beta p_{i}}{n-\gamma p_{i}}, 0<\beta \leq n$ and $n-\beta<\gamma p_{i}<n, i=0,1$. Hence, from pointwise inequality $M_{\gamma} f^{\prime}(x) \lesssim I_{\gamma}\left|f^{\prime}(x)\right|$ and $[3$, Theorem 2] we have

$$
\left\|M_{\gamma} f^{\prime}\right\|_{L^{\bar{p}_{i}, \bar{p}_{i}}\left(B_{\rho}, d \mu\right)} \lesssim\left\|I_{\gamma} f^{\prime}\right\|_{L^{\bar{p}_{i}}, \overline{\bar{i}}_{i}\left(B_{\rho}, d \mu\right)} \leq \llbracket \mu \rrbracket_{\beta}^{1 / \bar{p}_{i}}\left\|f^{\prime}\right\|_{L^{p_{i}, p_{i}}\left(\mathbf{R}^{n}, d \nu\right)}, \quad i=0,1,
$$

provided that the Radon measure μ satisfies $\llbracket \mu \rrbracket_{\beta}<\infty$. Therefore, thanks to Hunt's Theorem (see Lemma 2.2)
$\left\|M_{\gamma} f^{\prime}\right\|_{L^{\bar{p}, \ell}\left(B_{\rho}, d \mu\right)} \lesssim \llbracket \mu \rrbracket_{\beta}^{(1-\theta) / \bar{p}_{0}} \llbracket \mu \rrbracket_{\beta}^{\theta / \bar{p}_{1}}\left\|f^{\prime}\right\|_{L^{p, \ell}\left(\mathbf{R}^{n}, d \nu\right)}=\llbracket \mu \rrbracket_{\beta}^{1 / \bar{p}}\left\|f^{\prime}\right\|_{L^{p, \ell}(d \nu)}$ as $1 \leq \ell \leq \infty$,
where $1<p<\bar{p}=\beta p /(n-\gamma p), 0<\beta \leq n$ and $n-\beta<\gamma p<n$, as required. Hence, we can inserting (4.3) into (4.2) to yield

$$
\begin{align*}
& \left\|I_{\delta} f^{\prime}\right\|_{L^{q, s}\left(B\left(x_{0}, \rho\right), d \mu\right)} \lesssim\|f\|_{\mathcal{M}_{p, \ell}\left(\mathbf{R}^{n}, d \nu\right)}^{1-b} \llbracket \mu \rrbracket_{\beta}^{b / \bar{p}}\left\|f^{\prime}\right\|_{L^{p, \ell}\left(\mathbf{R}^{n}, d \nu\right)}^{b} \\
& =\|f\|_{\mathcal{M}_{p, \ell}^{\lambda}\left(\mathbf{R}^{n}, d \nu\right)}^{1-b} \llbracket \mu \rrbracket_{\beta}^{b / \bar{p}}\|f\|_{L^{p, \ell}\left(B\left(x_{0}, 2 \rho\right), d \nu\right)}^{b} \\
& \lesssim \llbracket \mu \rrbracket_{\beta}^{b / \bar{p}} \rho^{\left(\frac{n}{p}-\frac{n}{\lambda}\right)\left(1-\frac{\delta-\gamma}{\alpha-\gamma}\right)}\|f\|_{\mathcal{M}_{p, \ell}^{\lambda}\left(\mathbf{R}^{n}, d \nu\right)} \\
& =\llbracket \mu \rrbracket_{\beta}^{\frac{1}{q}} \rho^{\beta\left(\frac{1}{q}-\frac{1}{\lambda_{*}}\right)}\|f\|_{\mathcal{M}_{p, \ell}^{\lambda}\left(\mathbf{R}^{n}, d \nu\right)}, \tag{4.4}
\end{align*}
$$

where the equality (4.4) is a consequence of (4.5) and (4.6) below. Indeed, note that by $\alpha=n / \lambda$ and $\delta=n / \lambda-\beta / \lambda_{*}$, the request

$$
\begin{equation*}
q b=q\left(1-\frac{\delta-\gamma}{\alpha-\gamma}\right)=\bar{p}=\frac{\beta p}{n-\gamma p} \tag{4.5}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
\gamma p \beta\left(1-\frac{q}{\lambda_{*}}\right)=n \beta\left(1-\frac{q}{\lambda_{*}}\right)-\beta n\left(1-\frac{p}{\lambda}\right) . \tag{4.6}
\end{equation*}
$$

Hence, we obtain

$$
\begin{aligned}
\left(\frac{n}{p}-\frac{n}{\lambda}\right)\left(1-\frac{\delta-\gamma}{\alpha-\gamma}\right) & \stackrel{(4.5)}{=} \frac{\bar{p}}{q}\left(\frac{n}{p}-\frac{n}{\lambda}\right)=\frac{\bar{p}}{q} \frac{1}{p \beta}\left[n \beta\left(1-\frac{p}{\lambda}\right)\right] \\
& \stackrel{(4.6)}{=} \frac{1}{q} \frac{1}{n-\gamma p}\left[n \beta\left(1-\frac{q}{\lambda_{*}}\right)-\gamma p \beta\left(1-\frac{q}{\lambda_{*}}\right)\right] \\
& =\beta\left(\frac{1}{q}-\frac{1}{\lambda_{*}}\right)
\end{aligned}
$$

Note that $(n-\beta) / p<\gamma<\delta<\alpha$ implies $0<b<1$. From estimates (4.1) and (4.4) we obtain

$$
\rho^{-\beta\left(\frac{1}{q}-\frac{1}{\lambda_{*}}\right)}\left\|I_{\delta} f\right\|_{L^{q, s}\left(\mu\left\lfloor\Omega\left(B_{\rho}\right)\right)\right.} \lesssim \llbracket \mu \rrbracket_{\beta}^{\frac{1}{q}}\|f\|_{\mathcal{M}_{p, \ell}(d \nu)}
$$

which is the desired continuity of the map $I_{\delta}: \mathcal{M}_{p, \ell}^{\lambda}(d \nu) \rightarrow \mathcal{M}_{q, s}^{\lambda_{*}}(\Omega, d \mu)$.
4.2. The condition $\llbracket \boldsymbol{\mu} \rrbracket_{\beta}<\infty$ is necessary. Let $B\left(x_{0}, r\right) \subset \mathbf{R}^{n}$ be a ball centered in x_{0} and with radius $r>0$. Choosing $f=\chi_{B\left(x_{0}, r\right)}$ when $x \in B\left(x_{0}, r\right)$ we can estimate

$$
\begin{aligned}
\left(I_{\delta} f\right)(x) & =\int_{\mathbf{R}^{n}}|x-y|^{\delta-n} \chi_{B\left(x_{0}, r\right)}(y) d \nu(y) \\
& =\int_{\left|y-x_{0}\right|<r}|x-y|^{\delta-n} d \nu(y) \gtrsim r^{\delta-n} \nu\left(B\left(x_{0}, r\right)\right)=C r^{\delta}
\end{aligned}
$$

thanks to $|x-y| \leq 2 r$ for $y \in B\left(x_{0}, r\right)$. The previous argument implies that the estimate $\left(I_{\delta} f\right)^{*}(t) \gtrsim r^{\delta}$ hold for $0<t<\mu\left(B\left(x_{0}, r\right)\right)$. Hence, using (2.1) (see also (2.2)) we obtain

$$
\begin{equation*}
\left\|I_{\delta} f\right\|_{L^{q, s}\left(B\left(x_{0}, r\right), d \mu\right)} \gtrsim r^{\delta}\left(\int_{0}^{\mu\left(B\left(x_{0}, r\right)\right)} t^{\frac{s}{q}-1} d s\right)^{\frac{1}{s}}=C r^{\frac{n}{\lambda}-\frac{\beta}{\lambda_{*}}}\left[\mu\left(B\left(x_{0}, r\right)\right]^{\frac{1}{q}}\right. \tag{4.7}
\end{equation*}
$$

Since $I_{\delta}: \mathcal{M}_{p, \ell}^{\lambda}(d \nu) \rightarrow \mathcal{M}_{q, s}^{\lambda_{*}}(d \mu)$ is bounded and $\left\|\chi_{B\left(x_{0}, r\right)}\right\|_{\mathcal{M}_{p, \ell}^{\lambda}\left(\mathbf{R}^{n}\right)}=C r^{n / \lambda}$, then (4.7) implies that

$$
r^{\frac{n}{\lambda}} \gtrsim\left\|I_{\delta} f\right\|_{\mathcal{M}_{q, s}^{\lambda, s}(d \mu)} \gtrsim r^{\beta\left(\frac{1}{\lambda_{*}}-\frac{1}{q}\right)}\left\|I_{\delta} f\right\|_{L^{q, s}\left(B\left(x_{0}, r\right), d \mu\right)} \gtrsim r^{\frac{n}{\lambda}-\frac{\beta}{q}} \mu\left(B\left(x_{0}, r\right)\right)^{\frac{1}{q}}
$$

which yields $\mu\left(B\left(x_{0}, r\right)\right) \lesssim r^{\beta}$ as desired.

5. Proof of Corollary 1.4

The Calderón-Stein's extension operator \mathcal{E} on Lipschitz domain Ω is defined by $\mathcal{E} f=f$ in $\bar{\Omega}$ and

$$
\mathcal{E} f(x)=\int_{1}^{\infty} f\left(x^{\prime}, x_{n}+s \delta^{*}(x)\right) \psi(s) d s \quad \text { on } \quad \mathbf{R}^{n} \backslash \bar{\Omega}
$$

where ψ is a continuous function on $[1, \infty)$ such that $\psi(s)=O\left(s^{-N}\right)$ as $s \rightarrow \infty$ for every N,

$$
\int_{1}^{\infty} \psi(s) d s=1 \quad \text { and } \quad \int_{1}^{\infty} s^{k} \psi(s) d s=0, \quad \text { for } k=1,2, \cdots
$$

and $\delta^{*}(x)=2 c \Delta(x)$ is a C^{∞}-function comparable to $\delta(x)=\operatorname{dist}(x, \bar{\Omega})$, see [30, Theorem 2]. On half-space \mathbf{R}_{+}^{n} one has $\delta^{*}(x)=2 x_{n}$ and we have

$$
\begin{equation*}
\mathcal{E} f\left(x^{\prime}, x_{n}\right)=\int_{1}^{\infty} f\left(x^{\prime},(1-2 s) x_{n}\right) \psi(s) d s \quad \text { if } \quad x_{n}<0 \tag{5.1}
\end{equation*}
$$

provided that the above integral converges. The proof of the Lemma 5.1 below is similar to [1, Lemma 3.1], we include the proof for reader convenience.

Lemma 5.1. Let $n \geq 2$ and $f \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}_{+}^{n}\right)$ such that $\nabla f \in \mathcal{M}_{p, d}^{\lambda}\left(\mathbf{R}_{+}^{n}\right)$, then

$$
\|\nabla \mathcal{E} f\|_{\mathcal{M}_{p, d}^{\lambda}\left(\mathbf{R}^{n}\right)} \leq C\|\nabla f\|_{\mathcal{M}_{p, d}^{\prime}\left(\mathbf{R}_{+}^{n}\right)}
$$

for $1 \leq p \leq \lambda<\infty$ and $d \in[1, \infty]$.
Proof. For each $x^{\prime} \in \mathbf{R}^{n-1}$ fixed and multi-index α, the scaling property

$$
\left\|D^{\alpha} f(\gamma \cdot)\right\|_{\mathcal{M}_{p, d}^{\lambda}}=\gamma^{|\alpha|-\frac{n}{\lambda}}\|f\|_{\mathcal{M}_{p, d}^{\lambda}}
$$

yields

$$
\left\|D^{\alpha} f\left(\cdot,(2 s-1) x_{n}\right)\right\|_{\mathcal{M}_{p, d}^{\lambda}\left(\mathbf{R}_{+}^{n}\right)}=(2 s-1)^{|\alpha|-\frac{1}{\lambda}}\left\|D^{\alpha} f\left(\cdot, x_{n}\right)\right\|_{\mathcal{M}_{p, d}^{\lambda}\left(\mathbf{R}_{+}^{n}\right)} .
$$

It follows that

$$
\begin{aligned}
\left\|\frac{\partial}{\partial x_{n}} \mathcal{E} f \mathbb{1}_{\left\{x_{n}<0\right\}}\right\|_{\mathcal{M}_{p, d}^{\lambda}\left(\mathbf{R}^{n}\right)} & =\left\|\int_{1}^{\infty} \partial_{n} f\left(x^{\prime},(2 s-1) x_{n}\right) \psi(s) d s\right\|_{\mathcal{M}_{p, d}^{\lambda}\left(\mathbf{R}_{+}^{n}\right)} \\
& \leq \int_{1}^{\infty}(2 s-1)\left\|\partial_{n} f\left(x^{\prime},(2 s-1) x_{n}\right)\right\|_{\mathcal{M}_{p, d}\left(\mathbf{R}_{+}^{n}\right)}|\psi(s)| d s \\
& \leq\left(\int_{1}^{\infty}(2 s-1)^{2-\frac{1}{\lambda}}|\psi(s)| d s\right)\left\|\partial_{n} f\right\|_{\mathcal{M}_{p, d}^{\lambda}\left(\mathbf{R}_{+}^{n}\right)} \\
& \leq C\left\|\partial_{n} f\right\|_{\mathcal{M}_{p, d}^{\lambda}\left(\mathbf{R}_{+}^{n}\right)},
\end{aligned}
$$

because $|\psi(s)| \leq C s^{-N}$ for all N implies

$$
\int_{1}^{\infty}(2 s-1)^{2-\frac{1}{\lambda}}|\psi(s)| d s \leq C \int_{1}^{\infty}(s-1)^{\theta-1} s^{-\theta-(N-\theta)} d s=C \beta(\theta, N-\theta)
$$

where $\beta(\theta, N-\theta)$ denotes the beta function and $\theta=3-1 / \lambda$. Since $\mathcal{E} f=f$ in $\overline{\mathbf{R}_{+}^{n}}$, then $\left\|\nabla \mathcal{E} f \mathbb{1}_{\left\{x_{n} \geq 0\right\}}\right\|_{\mathcal{M}_{p, d}^{\lambda}\left(\mathbf{R}^{n}\right)}=\|\nabla f\|_{\mathcal{M}_{p, d}^{\lambda}\left(\mathbf{R}_{+}^{n}\right)}$ and, moreover,

$$
\begin{aligned}
\left\|\partial_{x_{j}} \mathcal{E} f \mathbb{1}_{\left\{x_{n}<0\right\}}\right\|_{\mathcal{M}_{p, d}^{\lambda}\left(\mathbf{R}^{n}\right)} & \leq\left(\int_{1}^{\infty}(2 s-1)^{1-\frac{1}{\lambda}}|\psi(s)| d s\right)\left\|\partial_{x_{j}} f\right\|_{\mathcal{M}_{p, d}^{\lambda}\left(\mathbf{R}_{+}^{n}\right)} \\
& \leq C\left\|\partial_{x_{j}} f\right\|_{\mathcal{M}_{p, d}^{\lambda}\left(\mathbf{R}_{+}^{n}\right)}
\end{aligned}
$$

for all $j=1, \cdots, n-1$, as required.
Thanks to Theorem 1.1 on $\partial \mathbf{R}_{+}^{n}$ with $\beta=n-1$, integral representation formula [4, (3.5)] and Lemma 5.1

$$
\left\|f\left(x^{\prime}, 0\right)\right\|_{\mathcal{M}_{q, s}^{\lambda *}\left(\partial \mathbf{R}_{+}^{n}\right)} \leq C\|\nabla \mathcal{E} f\|_{\mathcal{M}_{p, d}^{\lambda}\left(\mathbf{R}^{n}\right)} \leq C\|\nabla f\|_{\mathcal{M}_{p, d}^{\lambda}\left(\mathbf{R}_{+}^{n}\right)}
$$

as desired.
Acknowledgment. The authors would like to thank the anonymous referees for careful reading. The remarks and suggestions pointed by referee's in Theorems 1.1 and 3.5 , and Corollaries 1.3 and 1.4 improved our manuscript. This project was supported by Brazilian National Council for Scientific and Technological Development (CNPq-409306/2016).

References

[1] de Almeida, M. F., and L. C. F. Ferreira: On the Navier-Stokes equations in the halfspace with initial and boundary rough data in Morrey spaces. - J. Differential Equations 254:3, 2013, 1548-1570.
[2] De Almeida, M. F., and T. H. Picon: Fourier transform decay of distributions in HardyMorrey spaces. - Preprint.
[3] Adams, D. R.: Traces of potentials arising from translation invariant operators. - Ann. Scuola Norm. Sup. Pisa (3) 25, 1971, 203-217.
[4] Adams, D. R.: A note on Riesz potentials. - Duke Math. J. 42:4, 1975, 765-778.
[5] Adams, D. R.: On the existence of capacitary strong type estimates in \mathbf{R}^{n}. - Ark. Mat. 14:1, 1976, 125-140.
[6] Adams, D. R., and L. I. Hedberg: Function spaces and potential theory. - Grundlehren Math. Wiss. 314, Springer-Verlag, Berlin, 1996.
[7] Adams, D. R., and J. Xiao: Nonlinear potential analysis on Morrey spaces and their capacities. - Indiana Univ. Math. J. 53:6, 2004, 1629-1663.
[8] Adams, D. R., and J. Xiao: Morrey spaces in harmonic analysis. - Ark. Mat. 50:2, 2012, 201-230.
[9] Bennett, C., and R. Sharpley: Interpolation of operators. - Pure Appl. Math. 129, Academic Press, Inc., Boston, MA, 1988.
[10] Bergh, J., and J. LÖfström: Interpolation spaces. An introduction. - Springer-Verlag, Berlin, 1976.
[11] Dahlberg, B. E. J.: Regularity properties of Riesz potentials. - Indiana Univ. Math. J. 28:2, 1979, 257-268.
[12] Fefferman, C., and E. M. Stein: H^{p} spaces of several variables. - Acta Math. 129:3-4, 1972, 137-193.
[13] Ferreira, L. C. F.: On a bilinear estimate in weak-Morrey spaces and uniqueness for NavierStokes equations. - J. Math. Pures Appl. 105:2, 2016, 228-247.
[14] Ferreira, L. C. F., and J. E. Pérez-López: Bilinear estimates and uniqueness for NavierStokes equations in critical Besov-type spaces. - Ann. Mat. Pura Appl. (4) 199:1, 2020, 379-400.
[15] Ferreira, L. C. F., J. E. Pérez-López, and J. Villamizar-Roa: On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Commun. Pure Appl. Anal. 17:6, 2018, 2423-2439.
[16] Ferreira, L. C. F.. and E. J. Villamizar-Roa: On the stability problem for the Boussinesq equations in weak- L^{p} spaces. - Commun. Pure Appl. Anal. 9:3, 2010, 667-684.
[17] Gunawan, H., D. I. Hakim, E. Nakai, and Y. Sawano: On inclusion relation between weak Morrey spaces and Morrey spaces. - Nonlinear Anal. 168, 2018, 27-31.
[18] Hunt, R. A.: On $L(p, q)$ spaces. - Enseignement Math. (2) 12, 1966, 249-276.
[19] Jones, P. W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147:1-2, 1981, 71-88.
[20] Koskela, P., Zhang, Y. R.-Y., and Y. Zhou: Morrey-Sobolev extension domains. - J. Geom. Anal. 27:2, 2017, 1413-1434.
[21] Kozono, H., and M. Yamazaki: Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data. - Comm. Partial Differential Equations 19:5-6, 1994, 959-1014.
[22] Liu, L., and J. XiaO: Restricting Riesz-Morrey-Hardy potentials. - J. Differential Equations 262:11, 2017, 5468-5496.
[23] Liu, L. and J. Xiao: A trace law for the Hardy-Morrey-Sobolev space. - J. Funct. Anal. 274:1, 2018, 80-120.
[24] Liu, L., and J. XiaO: Mean Hölder-Lipschitz potentials in curved Campanato-Radon spaces and equations $(-\Delta)^{\frac{\alpha}{2}} u=\mu=F_{k}[u]$. - Math. Ann. 375:3-4, 2019, 1045-1077.
[25] Mattila, P.: Fourier analysis and Hausdorff dimension. - Cambridge Stud. Adv. Math. 150, Cambridge Univ. Press, Cambridge, 2015.
[26] Maz'ya, V.: Sobolev spaces with applications to elliptic partial differential equations. Second, revised and augmented edition. - Grundlehren Math. Wiss. 342, Springer, Heidelberg, 2011.
[27] Nazarov, F., S. Treil, and A. Volberg: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces. - Int. Math. Res. Not. IMRN 1998:9, 1998, 463-487.
[28] Olsen, P.A.: Fractional integration, Morrey spaces and a Schrödinger equation. - Comm. Partial Differential Equations 20:11-12, 1995, 2005-2055.
[29] Rogers, L. G.: Degree-independent Sobolev extension on locally uniform domains. - J. Funct. Anal. 235:2, 2006, 619-665.
[30] Stein, E. M.: Singular integrals and differentiability properties of functions. - Princeton Math. Ser. 30, Princeton Univ. Press, Princeton, NJ, 1970.
[31] Stein, E. M., and R. Shakarchi: Functional analysis. - Princeton Lectures in Analysis 4, Princeton Univ. Press, Princeton, NJ, 2011.
[32] Tolsa, X.: L^{2}-boundedness of the Cauchy integral operator for continuous measures. - Duke Math. J. 98:2, 1999, 269-304.
[33] Tolsa, X.: A proof of the weak $(1,1)$ inequality for singular integrals with non doubling measures based on a Calderón-Zygmund decomposition. - Publ. Mat. 45:1, 2001, 163-174.
[34] Tolsa, X.: BMO, H^{1}, and Calderón-Zygmund operators for non doubling measures. - Math. Ann. 319:1, 2001, 89-149.
[35] Xiao, J.: A trace problem for associate Morrey potentials. - Adv. Nonlinear Anal. 7:3, 2018, 407-424.
[36] Yamazaki, M.: The Navier-Stokes equations in the weak- L^{n} space with time-dependent external force. - Math. Ann. 317:4, 2000, 635-675.

