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Abstract. In this paper we strengthen to Morrey–Lorentz spaces the famous trace principle
introduced by Adams. More precisely, we show that Riesz potential Iα is continuous

‖Iαf‖Mλ∗

q,∞(dµ) . ‖µ‖
1/q
β ‖f‖Mλ

p,∞(dν)

if and only if the Radon measure dµ supported in Ω ⊂ R
n is controlled by

JµKβ = sup
x∈Rn, r>0

r−βµ(B(x, r)) < ∞

provided that 1 < p < q < ∞ satisfies n−αp < β ≤ n, α = n
λ − β

λ∗

and λ∗

q ≤ λ
p . Our result provide

a new class of functions spaces which is larger than previous ones, since we have strict continuous
inclusions Ḃs

p,∞ →֒ Lλ,∞ →֒ Mλ
p →֒ Mλ

p,∞ as 1 < p < λ < ∞ and s ∈ R satisfies 1
p − s

n = 1
λ . If dµ

is concentrated on ∂Rn
+, as a byproduct we get Sobolev–Morrey trace inequality on half-spaces Rn

+

which recovers the well-known Sobolev-trace inequality in Lp(Rn
+). Also, by a suitable analysis on

non-doubling Calderón–Zygmund decomposition we show that

‖Mαf‖Mλ
p,ℓ

(dµ) ∼ ‖Iαf‖Mλ
p,ℓ

(dµ)

provided that µ(Br(x)) ∼ rβ on support spt(µ) and n − α < β ≤ n with 0 < α < n. This result

extends the previous ones.

1. Introduction

It is well known that doubling property of measures µ plays an important role
in many topics of research in analysis on euclidean spaces, essentially because Vi-
tali covering lemma and Calderón–Zygmund decomposition depend of the doubling
property µ(B2r(x)) . µ(Br(x)) for all x on support spt(µ) of measure µ and r > 0.
Recently it has been shown that fundamental results in harmonic analysis remain if
doubling measures is replaced by a growth condition, namely,

(1.1) µ(Br(x)) . C rβ for all x ∈ spt(µ) and r > 0,

where the implicit constant is independent of µ and 0 < β ≤ n. For instance, we
refer the pioneering work on Calderón–Zygmund theory for non-doubling measures
[32, 33, 34] and [27]. According to Frostman’s lemma [25, Chapter 1], a measure µ
satisfying (1.1) is close to Hausdorff measure and Riesz capacity of Borel sets Ω ⊂ R

n.
Essentially Frostman’s lemma states that Hausdorff dimension of a Borel set Ω ⊂ R

n

is equal to

dimΛβ
Ω = sup{β ∈ (0, n] : ∃µ ∈ M(Ω) such that (1.1) holds}

= sup{β > 0: capβ(Ω) > 0}
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where Λβ(Ω) denotes the β-dimensional Hausdorff measure and capβ(Ω) denotes the
Riesz capacity,

capβ(Ω) = sup

{
[Eβ(µ)]

−1 : Eβ(µ) =

ˆ

Rn

ˆ

Rn

|x− y|−β dµ(x) dµ(y)

for finite Borel measure µ

}
.

The Lp-Riesz capacity on compact sets

ċα,p(E) = inf

{
ˆ

Rn

|f(x)|p dν(x) : f ≥ 0 and Iαf(x) ≥ 1 on E

}
,

plays an important role in potential analysis, where Iα is defined by

Iαf(x) = Cα,n

ˆ

Rn

|x− y|α−nf(y) dν(y) a.e. x ∈ R
n as 0 < α < n

and dν stands for Lebesgue measure in R
n. It is well known from [6, Theorem 7.2.1]

and [5, 11, Theorem 1] that a necessary and sufficient condition for Sobolev embed-
ding

L̇α
p (R

n) →֒ Lq(Ω, µ)

on the “lower triangle” 1 < p ≤ q < ∞, 0 < α < n and p < n/α is given by the
isocapacitary inequality

(1.2) µ(E) . [ċα,p(E)]
q/p,

whenever E is a compact subset of R
n and µ is a Radon measure in Ω. Since

ċα,p(Br(x)) ∼= rn−αp, then (1.2) implies the growth condition (1.1) with β = q(n/p−
α). Capacity inequality is very difficult to verify even for compact sets, then one could

ask: does the embedding L̇α
p (R

n) →֒ Lq(Ω, µ) still hold if (1.2) is replaced by (1.1)?
In [3, Theorem 2] Adams gave a positive answer to this question as 1 < p < q < ∞
and β = q(n/p− α) satisfies 0 < β ≤ n and 0 < α < n/p. This theorem has a weak-
Morrey version [4, Theorem 5.1] (see also [35, Lemma 2.1]) and a strong Morrey
version [22, Theorem 1.1]. Let us be more precise. The Morrey space Mℓ

r(Ω, dµ) is
defined by the space of µ-measurable functions f ∈ Lr(Ω ∩BR) such that

‖f‖Mℓ
r(Ω,dµ) = sup

x∈ spt(µ), R>0

R−β( 1
r
− 1

ℓ )
(
ˆ

BR

|f(y)|r dµ⌊Ω

) 1
r

<∞,

where the supremum is taken on balls BR(x) ⊂ R
n, 1 ≤ r ≤ ℓ < ∞ and β > 0

denotes the Housdorff dimension of Ω. In [22] the space Mℓ
r(dµ) is denoted by

Lr,κ(dµ) with κ/r = n/ℓ and in [13] is denoted by Mr,κ(dµ) with (n − κ)/r = n/ℓ.
The Morrey–Lorentz space Mℓ

r,s(Ω, dµ) is defined by space of µ-measurable function
f ∈ Lr,s(Ω ∩ BR) such that

(1.3) ‖f‖Mℓ
r,s(Ω,dµ) = sup

x∈ spt(µ), R>0

R−β( 1
r
− 1

ℓ )‖f‖Lr,s(Ω∩BR) <∞,

where Lr,s(Ω ∩BR) denotes the Lorentz space (see Section 2) defined by

‖f‖Lr,s(µ⌊Ω(BR)) =

(
r

ˆ µ⌊Ω(BR)

0

[trdf(t)]
s
r
dt

t

) 1
s

,
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where df(t) = µ({x ∈ Ω∩BR : |f(x)| > t}) and µ⌊Ω(BR) = µ(Ω∩BR). According to
[4, Theorem 5.1] if the growth condition (1.1) holds and 1 < p < q <∞ satisfies

(1.4)
q

λ∗
≤
p

λ
, 0 < α <

n

λ
, n− αp < β ≤ n and

β

λ∗
=
n

λ
− α,

then

(1.5) Iα : M
λ
p(R

n, dν) → Mλ∗

q,∞(Ω, dµ)

is a bounded operator. Since Morrey space is not closed by real interpolation, the
weak-trace theorem [4, Theorem 5.1] does not imply the strong trace version

(1.6) ‖Iαf‖Mλ∗
q (dµ) ≤ C‖f‖Mλ

p(dν)
.

However, by using Lemma 4.1-(i), continuity of fractional maximal function Mγ :
Lp(Rn) → Lpβ/(n−γp)(Ω, dµ) and atomic decomposition theorem in Hardy–Morrey
space hλp(dν) = HMλ

p(R
n, dν),

‖f‖hλp =
∥∥∥ sup

t∈(0,∞)

|ϕt∗f |
∥∥∥
Mλ

p

<∞ with ϕt = t−nϕ(x/t) for ϕ ∈ S(Rn) and f ∈ S ′(Rn),

Liu and Xiao [22, Theorem 1.1] showed that Iα : h
λ
p(dν) → Mλ∗

q (dµ) is continuous
if and only if the Radon measure µ satisfy JµKβ < ∞, provided that 1 ≤ p < q <
∞ satisfies (1.4). In particular, Liu and Xiao shown the strong trace inequality
(1.6) and since Mλ∗

q (dµ) ⊂ Mλ∗

q,∞(dµ) they get immediately a version of (1.6) with
weak-Morrey norm in the left-hand side. However, according to Sawano et al. [17,
Theorem1.2] there is a function g ∈ Mλ

p,∞(Rn) such that g /∈ Mλ
p(R

n) and [22,
Theorem 1.1] cannot recover this case. This motivates us to study trace inequality
in Morrey–Lorentz spaces. In particular, under previous assumptions (1.4) we show
that

Iα : M
λ
p,∞(Rn, dν) → Mλ∗

q,∞(Ω, dµ)

is continuous if and only if the Radon measure µ satisfy JµKβ <∞. Then we provide
a new class of data for the trace theorem (see Theorem 1.1). The Lorentz space Lp,∞

and functions space based on Lp,∞ have been successful applied to study existence
and uniqueness of mild solutions for Navier–Stokes equations. The main effort in
these works is to prove a bilinear estimate

(1.7) ‖B(u, v)‖L∞((0,∞);X) . ‖u‖L∞((0,∞);X) ‖v‖L∞((0,∞);X)

without invoke Kato’s approach, see [13] for weak-Morrey spaces, see [14] for Besov-
weak-Morrey spaces and see [36] for weak-Lp spaces. For stationary Boussinesq
equations, see [15] for Besov-weak-Morrey spaces and see [16] for weak-Lp spaces.

Choosing a specific hλp-atom and using discrete Calderón reproducing formula
in Hardy–Morrey spaces, from atomic decomposition theorem the authors [23] char-
acterized the continuity of Iα : h

λ
p(dν) → hλ∗

q (dµ) by using the growth condition
JµKβ < ∞, provided that 0 < p < q < 1 satisfies (1.4). Meanwhile, it should

be emphasized that Mλ
p,∞ 6= hλp . Indeed, according to the Fourier decaying |f̂(ξ)| .

|ξ|n(1/λ−1)‖f‖hλp(dν) (see [2, Theorem 3.2]) every distribution f ∈ hλp satisfy
´

Rn f(x) dx

= 0 when 0 < p ≤ λ < 1 which implies |x|−n/λ /∈ hλp , however |x|−n/λ ∈ Mλ
p,∞.

If dµ is a doubling measure and satisfy JµKβ <∞, the authors of [24, Theorem 1.1]

showed that Iα is bounded from Besov space Ḃs
p,∞(Rn, dν) to Radon–Campanato
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space Lλ∗

q (µ) for suitable parameters p, q, λ∗ and 0 < s < 1. Note that we have the
continuous inclusions (see [10, pg. 154] and [21, Lemma 1.7])

(1.8) Ḣs
p →֒ Ḃs

p,∞ →֒ Lλ,∞ →֒ Mλ
p →֒ Mλ

p,∞,

where 1 < p < λ <∞ and s ∈ R satisfy 1
p
− s

n
= 1

λ
. In fact, the inclusions in (1.8) are

strict and then Mλ
p,∞ is strictly larger than Besov space Ḃs

p,∞. So, our Theorem 1.1
extends the previous trace results even when dµ is a doubling measure.

Theorem 1.1. Let 1 < p ≤ λ < ∞ and 1 < q ≤ λ∗ < ∞ be such that

q/λ∗ ≤ p/λ for all n− δp < β ≤ n and 1 < p < q <∞. Then

‖Iδf‖Mλ∗
q,s(dµ)

. JµK
1/q
β ‖f‖Mλ

p,ℓ
(dν)

if and only if the Radon measure dµ satisfy JµKβ < ∞, provided that δ = n
λ
− β

λ∗

,

0 < δ < n/λ and 1 ≤ ℓ < s ≤ ∞ or s = ℓ = ∞.

A few remarks are in order.

Remark 1.2. (i) (Hardy–Littlewood–Sobolev) Theorem 1.1 implies

‖Iδf‖Mλ∗
q,s

. JνK1/qn ‖f‖Mλ
p,ℓ

for dµ = dν and β = n. So, our theorem extend Hardy–Littlewood–Sobolev
[28, Theorem 9] for weak-Morrey spaces. However the optimality of q/λ∗ ≤
p/λ is known only for Morrey spaces [28, Theorem 10].

(ii) (Regularity on Morrey spaces) If u is a weak solution to fractional Laplace

equation (−∆)
δ
2u = f in R

n,

(−∆)
δ
2u(x) := C(n, δ)P.V.

ˆ

Rn

u(x)− u(y)

|x− y|n+δ
dν(y) with 0 < δ < 2,

then u ∈ Mλ⋆
q,s(Ω, dµ) if provided that f ∈ Mλ

p,ℓ(R
n, dν). Indeed, u = Iδf is

a weak solution of (−∆x)
δ
2u = f because

〈
(−∆)δ/2u, ϕ̂

〉
=

ˆ

Rn

û(ξ)|ξ|δϕ(ξ) dξ =

ˆ

Rn

f̂(ξ)ϕ(ξ) dξ = 〈f, ϕ̂〉

for all ϕ ∈ S(Rn). Then, Theorem 1.1 give us desired result.
(iii) (Adams’ trace to surface-carried measures) Let Ω be a compact smooth sur-

face with nonnegative second fundamental form and

d̂µ(ξ) =

ˆ

Ω

e−2πix·ξ dµ

the Fourier transform of a measure µ supported on Ω. If Ω has at least k
non-vanishing principal curvatures at spt(µ), the stationary phase method
(see Stein and Shakarchi [31, Chapter 8]) gives the optimal decay

|d̂µ(ξ)| . |ξ|−
k
2 as |ξ| > 1.
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Let φ ∈ S(Rn) be nonnegative, φ & 1 on B(0, 1) and φ̂ = 0 on R
n\B(0, r)

for some r > 0. Choosing φx,r(y) = φ(x−y
r
) we have

|µ(Br(x))| .

∣∣∣∣
ˆ

Rn

φx,r(y) dµ(y)

∣∣∣∣ =
∣∣∣∣
ˆ

Rn

φ̂x,r(ξ)µ̂(−ξ) dξ

∣∣∣∣

≤

ˆ

|ξ|≤r

|φ̂(ξ)||µ̂(−ξ/r)| dξ . r
k
2

ˆ

|ξ|≤r

|φ̂(ξ)| |ξ|−
k
2 dξ

. rk/2 for all x ∈ spt(µ).

It follows from Theorem 1.1 that ‖Iδf‖Mλ∗
q,s(Ω,dµ) . JµK

1/q
k/2 ‖f‖Mλ

p,ℓ
, if provided

that f ∈ Mλ
p,ℓ.

Employing non-doubling Calderon–Zygmund decomposition [33] we obtain the
suitable “good-λ inequality” (see (3.5))

∑

j

µ(Qt
j) ≤ µ({x : (Iαf)

♯(x) > 3ǫt/4}) + ǫ
∑

j

µ(Qs
j) with s = 4−n−2t

provided that µ satisfy (1.1), where (Iαf)
♯ denotes the (noncentered) sharp maximal

function and {Qt
j} is a family of doubling cubes, see Section 3.1. Then, by a suitable

analysis we have the norm equivalence (see Theorem 3.5)

(1.9) ‖Mαf‖Mλ
p,ℓ

(dµ) ∼ ‖Iαf‖Mλ
p,ℓ

(dµ)

provided that Radon measure µ satisfies µ(Br(x)) ∼ rβ for all x ∈ spt(µ), where
0 < α < n satisfy n− α < β ≤ n and Mα is defined as (centered fractional maximal
function)

Mαf(x) = sup
r>0

rα−n

ˆ

|y−x|<r

|f(y)| dν,

for all locally integrable function f ∈ L1
loc(R

n, dν). It should be emphasized that (1.9)
is understood in sense of trace, since Mα and Iα are defined for f ∈ L1

loc(R
n, dν) with

Lebesgue measure dν. In particular, when dµ coincides with Lebesgue measure dν,
this equivalence recovers [7, Theorem 4.2] for Morrey spaces. The proof of (1.9) is
involved, because it requires a suitable analysis of non-doubling Calderon–Zygmund
decomposition to yield “good-λ inequality” (see Lemma 3.3) as well as the suitable
pointwise estimate (see Lemma 3.4)

M
♯
Iαf(x) .Mαf(x)

whenever µ(Br(x)) ∼ rβ, where M
♯

denotes the (centered) sharp maximal func-
tion. Note that (1.9) and Theorem 1.1 yields a trace principle for Mδ if and only
if µ(Br(x)) ∼ rβ. However, the “if part” of trace principle for Mδ can be obtained
directly from pointwise inequality Mδf(x) . Iδ|f(x)| and Theorem 1.1. The “only if
part” is derived from the same technique used in Section 4.2.

Corollary 1.3. (Trace principle for Mδ) Let 1 < p ≤ λ < ∞ and 1 < q ≤ λ∗ <
∞ be such that q/λ∗ ≤ p/λ for all n− δp < β ≤ n and 1 < p < q <∞. Then,

Mδ : M
λ
p,ℓ(R

n, dν) −→ Mλ∗

q,s(Ω, dµ) is continuous

if and only if JµKβ <∞, for all δ = n
λ
− β

λ∗

, 0 < δ < n/λ and 1 ≤ ℓ < s ≤ ∞.
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It is worth noting from an integral representation formula that ‖Ikf‖Lq(dµ) .
JµKβ‖f‖Lp(Rn) is equivalent to the trace inequality (see [26, Corollary, p. 67])

(1.10)

(
ˆ

Ω

|f(x)|q dµ

) 1
q

. JµKβ‖f‖W k,p(Rn)

where ‖f‖W k,p(Rn) =
∑

|γ|≤k ‖D
γf‖Lp(Rn) for all 1 < p < q <∞ and β = q(n/p−k) >

0 with 0 < k < n. If Ω is a W k,p-extension domain, that is, if there is a bounded
linear operator Ek : W

k,p(Ω) → W k,p(Rn) such that Ekf |Ω = f for all f ∈ W k,p(Ω),
then (1.10) yields the Sobolev trace inequality

(
ˆ

Ω

|f(x)|q dµ

)1
q

. JµKβ‖f‖W k,p(Ω)

provided that µ is a measure on Ω such that supx∈Rn, r>0 r
−βµ(Ω ∩ Br(x)) < ∞.

From [30, Theorem 5, p. 181] it is known that Lipschitz domain is a W k,p-extension
domain. Moreover, it is also known that (ǫ, δ)-locally uniform domain is a W k,p-
extension domain for all 1 ≤ p ≤ ∞ and k ∈ N (see [19] and [29]). Let us move to
Sobolev–Morrey space W1,p(Ω) which is defined by

‖f‖W1,p(Ω) = sup
x∈Ω,r>0

(
rp−n

ˆ

Br(x)∩Ω

|∇f |p dν

)1/p

for all f ∈ L1
loc(Ω) and p ∈ [1, n]. Employing a slight modification to the extension

operator Ek of Jones [19], the authors of [20] showed that an ǫ-uniform domain is a
W1,p-extension domain. Since Ω = R

n
+ is a uniform domain, if dµ is supported on

∂Rn
+ then from Theorem 1.1 (or [22, Theorem 1.1]) in Morrey spaces with β = n− 1

and integral representation formula [4, (3.5)] we obtain the Sobolev–Morrey trace
inequality:

(1.11) ‖f(x′, 0)‖
M

λ(n−1)
n−λ

q (∂Rn
+,dx′)

≤ C ‖∇f‖Mλ
p (R

n
+)

provided that 1 < p ≤ λ < n and p < q ≤ λ(n− 1)/(n− λ). However we cannot
apply directly [20, Theorem 1.5(i)] to yield (1.11), since ‖f‖W1,p(Rn

+) = ‖∇f‖Mn
p (R

n
+)

and λ = n. One could ask: does the Sobolev trace embedding (1.11) holds for Morrey
spaces or weak-Morrey spaces? As a byproduct of Theorem 1.1 and Calderón-Stein’s
extension on half-spaces (see Lemma 5.1) we give a positive answer for this question.

Corollary 1.4. (Sobolev–Morrey trace) Let 1 < p ≤ λ < n and 1 < q ≤ λ∗ <∞
be such that n−1

λ∗

= n
λ
− 1 and q/λ∗ ≤ p/λ. Then

‖f(x′, 0)‖Mλ∗
q,s(∂R

n
+,dx′) ≤ C ‖∇f‖Mλ

p,d(R
n
+) ,

for all 1 < p < q <∞ and 1 ≤ d < s ≤ ∞ or s = ℓ = ∞.

The paper is organized as follows. In Section 2 we summarize properties of
Lorentz spaces. In Section 3 we deal with non-doubling CZ-decomposition for poly-
nomial growth measures and estimates for sharp maximal function. In Sections 4
and 5 we prove our main theorems.

2. The Lorentz spaces

Let (Ω,B, µ) be a measure space endowed by Borel regular measure dµ. The
Lorentz space Lp,d(Ω, µ) is defined as the set of µ-measurable functions f : Ω → R
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such that

(2.1) ‖f‖∗Lp,d =

(
d

p

ˆ µ(Ω)

0

[
t1/pf ∗(t)

]d dt
t

) 1
d

=

(
p

ˆ µ(Ω)

0

[spdf(s)]
d
p
ds

s

) 1
d

<∞

for all 1 ≤ p <∞ and 1 ≤ d <∞, where

f ∗(t) = inf{s > 0: df(s) ≤ t} and df(s) = µ({x ∈ Ω : |f(x)| > s}).

For 1 ≤ p ≤ ∞ and d = ∞, the Lorentz space Lp,∞(Ω, µ) is defined by

‖f‖∗Lp,∞ = sup
0<t<µ(Ω)

t1/pf ∗(t) = sup
0<s<µ(Ω)

[spdf(s)]
1/p.(2.2)

The Lorentz space Lp,d(Ω, dµ) increases with the index d, that is,

Lp,1 →֒ Lp,d1 →֒ Lp →֒ Lp,d2 →֒ Lp,∞

provided that 1 ≤ d1 ≤ p ≤ d2 <∞. More precisely, we have the following lemma.

Lemma 2.1. (Calderón) If 1 ≤ p < ∞ and 0 < q < r ≤ ∞, then ‖f‖Lp,r ≤

(q/p)
1
q
− 1

r ‖f‖Lp,q .

The quantities (2.1) and (2.2) are not a norm, however

‖f‖♮
Lp,d =

(
d

p

ˆ µ(Ω)

0

[t1/pf ♮(t)]d
dt

t

) 1
d

<∞ with f ♮(t) =
1

t

ˆ t

0

f ∗(s) ds

defines a norm in Lp,d(Ω, dµ) and one has

‖f‖∗Lp,d ≤ ‖f‖♮
Lp,d ≤

p

p− 1
‖f‖∗Lp,d

for all 1 < p < ∞ and 1 ≤ d ≤ ∞. The following lemma is well-known in theory of
Lorentz spaces.

Lemma 2.2. (Hunt’s Theorem [9]) Let (M1, µ1) and (M2, µ2) be measure spaces

and let T be a sublinear operator such that

‖Tf‖Lqi,si(M1,dµ1) ≤ Ci‖f‖Lpi,ri(M2,dµ2) for i = 0, 1

for all p0 6= p1 and q0 6= q1. Let 0 < θ < 1 be such that 1/p = (1− θ)/p0 + θ/p1 and

1/q = (1− θ)/q0 + θ/q1, then

‖Tf‖Lq,s(M1,dµ1) ≤ Cθ
0C

1−θ
1 ‖f‖Lp,r(M2,dµ2),

provided that p ≤ q and 0 < r ≤ s ≤ ∞, where Ci > 0 depends only on pi, qi, p, q.

3. Maximal functions and non-doubling measure

In this section we are interested in proving the estimate

‖Iαf‖Mλ
p,ℓ

(dµ) . ‖M ♯Iαf‖Mλ
p,ℓ

(dµ)

for every Radon measure µ satisfying (1.1), where M ♯f(x) := f ♯(x) denotes the
uncentered sharp maximal function

(3.1) f ♯(x) = sup
Q, x∈Q

{
1

µ(Q)

ˆ

Q

|f − fQ| dµ

}

and fQ = 1
µ(Q)

´

Q
f dµ. Also, we are interested in proving the estimate

M
♯
Iαf(x) .Mαf(x)
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when the Radon measure µ satisfy µ(Br(x)) ∼ rβ, where M
♯
f(x) := f ♯(x) denotes

the centered sharp maximal function

(3.2) f ♯(x) = sup
r>0

{
1

µ(Br(x))

ˆ

Br(x)

|f − fBr | dµ

}
.

3.1. Non-doubling CZ-decomposition. Let us recall that a cube Q ⊂ R
n is

called a (τ, γ)-doubling cube with respect to polynomial growth (1.1) of the measure
µ, if µ(τQ) ≤ γ µ(Q) as τ > 1 and γ > τβ . According to [33, Remark 2.1 and
Remark 2.2] there are small/big (τ, γ)-doubling cubes in R

n.

Lemma 3.1. [33] Let µ be a Radon measure in R
n with growth condition (1.1),

then

(i) (Small doubling cubes) Assume γ > τn, then for µ-a.e. x ∈ R
n there exists

a sequence {Qj}j of (τ, γ)-doubling cubes centered at x such that ℓ(Qj) → 0
as j → ∞.

(ii) (Big doubling cubes) Assume γ > τβ , then for any x ∈ spt(µ) and c > 0,
there exists a (τ, γ)-doubling cube Q centered at x such that ℓ(Q) > c.

Let f ∈ L1
loc(µ) and λ > 1

µ(Q0)
‖f‖L1(Q0) be such that Ωλ = {x ∈ Q0 : |f(x)| >

λ} 6= ∅. From Lemma 3.1-(i) and Lebesgue differentiation theorem, there is a
sequence of (2, 2n+1)-doubling cubes {Qj(x)}j with ℓ(Qj) → 0 such that

1

µ(Qj)

ˆ

Qj

|f | dµ > λ

for j sufficiently large. Since there are big (2, 2n+1)-doubling cubes Qj , then

1

µ(Qj)

ˆ

Qj

|f | dµ ≤
‖f‖L1(µ)

µ(Qj)
≤ λ for µ(Qj) > c

sufficiently large. In other words, for µ-almost all x ∈ R
n such that |f(x)| > λ there

is a (2, 2n+1)-doubling cube Q′ ∈ {Qx}x∈Ωλ
with center x = xQ such that

1

µ(2Q′)

ˆ

Q′

|f | dµ ≤ λ/2n+1.

Moreover, if Q = Q(x) is a (2, 2n+1)-doubling cube with sidelength ℓ(Q) < ℓ(Q′)/2
then

1

µ(Q)

ˆ

Q

|f | dµ > λ.

Hence, a non-doubling Calderón–Zygmund decomposition can be obtained. To sim-
ply, a doubling cube Q mean (2, 2n+1)-doubling cube.

Lemma 3.2. (Non-doubling CZ-decomposition [33]) Let the Radon measure µ
satisfy (1.1). Let Q be a doubling cube big so that λ > 1

µ(Q)

´

Q
|f |dµ for f ∈

L1(µ)(Q). Then, there is a sequence of doubling cubes {Qj}j such that

(i) |f(x)| ≤ λ for x ∈ Q\
⋃

j Qj , µ-a.e.,

(ii) λ < 1
µ(Qj)

´

Qj
|f | dµ ≤ 4n+1λ,

(iii)
⋃

j Qj =
⋃εn

k=1

⋃
Qk

j∈Fk
Qk

j ,

where the family Fk = {Qk
j} is pairwise disjoint.
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Proof. This lemma is a consequence of Besicovitch’s covering theorem and has
been proved by Tolsa [33, Lemma 2.4]. Note that [33, Lemma 2.4] with η = 4 implies

1

µ(Qj)

ˆ

Qj

|f | dµ ≤
µ(ηQj)

µ(Qj)

(
1

µ(ηQj)

ˆ

ηQj

|f | dµ

)
≤
µ(ηQj)

µ(Qj)

(
2n+1

µ(2ηQj)

ˆ

ηQj

|f | dµ

)

≤ 4n+1λ,

thanks to µ(2ηQj) ≤ 2n+1µ(ηQj) and µ(4Qj) ≤ 4n+1µ(Qj). �

3.2. Estimates for sharp maximal function. Inspired in [12, p. 153] we
prove the following lemma.

Lemma 3.3. Let µ be a Radon measure in R
n such that JµKβ <∞ for 0 < β ≤

n. If Iαf ∈ L1
loc(dµ) for 0 < α < n, then

(3.3) ‖Iαf‖Mλ
p,ℓ

(dµ) . ‖(Iαf)
♯‖Mλ

p,ℓ
(dµ),

for every 1 ≤ p ≤ λ <∞ and 1 ≤ ℓ ≤ ∞.

Proof. Let Q0 ⊆ R
n be a doubling cube. Applying Lemma 3.2 with Iαf ∈

L1
loc(µ)(Q0) and t = λ we obtain a family of almost disjoint doubling cubes {Qt

j} so
that

(3.4) t <
1

µ(Qt
j)

ˆ

Qt
j

|Iαf | dµ ≤ 4n+1t

and Iαf(x) ≤ t as x /∈
⋃

j Q
t
j µ-a.e. The main inequality to be proved reads as follows

(3.5)
∑

j

µ(Qt
j) ≤ µ({x : (Iαf)

♯(x) > 3ǫt/4}) + ǫ
∑

j

µ(Qs
j) with s = 4−n−2t

for all ǫ > 0. Indeed, let s = 4−n−2t and F1 be the family of doubling cubes {Qs
j} of

the CZ-decomposition associated to s and satisfying

(3.6) Qs
j ⊂

{
x ∈ Q0 : (Iαf)

♯(x) >
3ǫt

4

}

and let F2 be the family of doubling cubes such that Qs
j * {x ∈ Q0 : (Iαf)

♯(x) >

3ǫt/4}. If Q ∈ F2, obviously one has (Iαf)
♯(x) ≤ 3ǫt

4
for x ∈ Q and right-hand side

of (3.4) implies (Iαf)Q = 1
µ(Q)

´

Q
|Iαf | dµ ≤ 4n+1s = t/4. Now from left-hand side of

(3.4) one has

∑

Qt
j⊂Q

tµ(Qt
j) <

∑

Qt
j⊂Q

ˆ

Qt
j

|Iαf(x)| dµ

≤
∑

Qt
j⊂Q

ˆ

Qt
j

|Iαf(x)− (Iαf)Q| dµ+ (Iαf)Q
∑

Qt
j⊂Q

µ(Qt
j)

≤

ˆ

Q

|Iαf(x)− (Iαf)Q| dµ+ (Iαf)Q
∑

Qt
j⊂Q

µ(Qt
j)

≤
3ǫ

4
t µ(Q) +

t

4

∑

Qt
j⊂Q

µ(Qt
j).
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Hence, summing over all cubes Q ∈ F2, we have

(3.7)
∑

Q∈F2

∑

Qt
j⊂Q

µ(Qt
j) ≤ ǫ

∑

Q∈F2

µ(Q).

If Q ∈ F1, trivially (3.6) gives us
∑

Q∈F1

∑

Qt
j⊂Q

µ(Qt
j) ≤

∑

Q∈F1

µ
({
x ∈ Q0 : (Iαf)

♯(x) > 3ǫt/4
}
∩Q

)

≤ µ
({
x ∈ Q0 : (Iαf)

♯(x) > 3ǫt/4
})
.(3.8)

Since

∑

j

µ(Qt
j) =

(∑

Q∈F1

+
∑

Q∈F2

) ∑

Qt
j⊂Q

µ(Qt
j),

from estimates (3.7) and (3.8) we obtain the good-λ inequality (3.5).
Now let dIαf(t) = µ({x ∈ Q0 : Iαf(x) > t}) be the distribution function of Iαf ,

then by CZ-decomposition we have

dIαf (t) ≤ ρ(t) :=
∑

j

µ(Qt
j)

thanks to Lemma 3.2-(i). Now fix N = µ⌊Ω(BR) and invoke (3.5) in order to infer

p

ˆ N

0

tℓ−1 [ρ(t)]
ℓ
p dt . p

ˆ N

0

tℓ−1
[
d(Iαf)♯(3ǫt/4)

] ℓ
p dt+ p

ˆ N

0

tℓ−1[ǫρ(4−n−2t)]
ℓ
p dt

= (4/3ǫ)ℓp

ˆ 3ǫN/4

0

tℓ−1
[
d(Iαf)♯(t)

] ℓ
p dt+ 4(n+2)ℓǫ

ℓ
p p

ˆ N4−n−2

0

tℓ−1[ρ(t)]
ℓ
p dt.

Now choosing ǫ > 0 in such a way that ǫ
ℓ
p4(n+2)ℓ = 1/2 we obtain

p

2

ˆ N

0

tℓ−1 [ρ(t)]
ℓ
p dt . p

ˆ N

0

tℓ−1
[
d(Iαf)♯(t)

] ℓ
p dt.

Since dIαf(t) ≤ ρ(t) we estimate

‖Iαf‖
ℓ
Mλ

p,ℓ(dµ)
= sup

x∈spt(µ),R>0

R−ℓβ( 1
p
− 1

λ)

(
p

ˆ µ⌊Ω(BR)

0

tℓ−1 [dIαf(t)]
ℓ
p dt

)

. sup
x∈spt(µ),R>0

R−ℓβ( 1
p
− 1

λ)

(
p

ˆ µ⌊Ω(BR)

0

tℓ−1
[
d(Iαf)♯(t)

] ℓ
p dt

)

=
∥∥(Iαf)♯

∥∥ℓ
Mλ

p,ℓ
(dµ)

,

as required. The case ℓ = ∞ is achieved without great effort. �

Lemma 3.4. Let µ be a Radon measure such that µ(Br(x)) ∼ rβ for all x ∈ R
n

and r > 0. If f ∈ L1
loc(dν) is such that Iαf ∈ L1

loc(dµ) when 0 < α < n satisfy

n− α < β ≤ n, then

M
♯
Iαf(x) .Mαf(x).
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Proof. Taking f ′ = fχB(x0,2r) and f ′′ = χRn\B(x0,2r) from Fubini’s theorem and
[6, Lemma 3.1.1] we estimate

ˆ

|x−x0|<r

|Iαf
′(x)| dµ(x) .

ˆ

|x−x0|<r

(
ˆ

|y−x0|<2r

|y − x|α−n|f(y)| dν

)
dµ(x)

≤

ˆ

|y−x0|<2r

(
ˆ

|y−x|<3r

|y − x|α−ndµ(x)

)
|f(y)| dν

≤

ˆ

|y−x0|<2r

[
(n− α)

ˆ 3r

0

µ(B(x, s))

sn−α

ds

s
+
µ(B(x, 3r))

(3r)n−α

]
|f(y)| dν

. JµKβr
β[2r]α−n

ˆ

|y−x0|<2r

|f(y)| dν . JµKβ µ(Br(x0))Mαf(x0),

which yields M
♯
Iαf

′(x0) . JµKβMαf(x0). Now from mean value theorem we have
∣∣|x− z|α−n − |y − z|α−n

∣∣ . r |z − x0|
α−n−1,

for |x− x0| < r and |y − x0| < r. Hence, Fubini’s theorem implies
∣∣(Iαf ′′)(x)− (Iαf

′′)Br(x0)

∣∣

≤
1

µ(Br)

ˆ

|z−x0|>2r

{
r

ˆ

|y−x0|<r

|z − x0|
α−n−1dµ(y)

}
|f(z)| dν

. r

ˆ

|z−x0|>2r

|z − x0|
α−n−1|f(z)|dν

= r
∞∑

k=1

ˆ

2kr≤|z−x0|<2k+1r

|z − x0|
α−n−1|f(z)| dν

≤

∞∑

k=1

2−(k+1)Mαf(x0) .Mαf(x0),

which yields

M
♯
Iαf

′′(x0) = sup
r>0

1

µ(Br(x0))

ˆ

|x−x0|<r

∣∣(Iαf ′′)(x)− (Iαf
′′)B(x0,r)

∣∣ dµ(x) . Mαf(x0),

as required. �

Theorem 3.5. (Trace-type equivalence) Let µ be a Radon measure such that

µ(Br(x)) ∼ rβ for all x ∈ R
n and r > 0. If f ∈ L1

loc(dν) is such that Iαf ∈ L1
loc(dµ)

whenever 0 < α < n satisfy n− α < β ≤ n, then

‖Mαf‖Mλ
p,ℓ(dµ)

∼ ‖Iαf‖Mλ
p,ℓ(dµ)

,

for all 1 ≤ p ≤ λ <∞ and 1 ≤ ℓ ≤ ∞.

Proof. Note that Lemma 3.3 is true with centered sharp maximal functionM
♯
Iαf .

Since Mαf(x) . Iαf(x), by Lemma 3.3 and 3.4 we obtain

(3.9) ‖Mαf‖Mλ
p,ℓ

. ‖Iαf‖Mλ
p,ℓ

Lemma 3.3

.
∥∥∥M ♯

Iαf
∥∥∥
Mλ

p,ℓ

Lemma 3.4

. ‖Mαf‖Mλ
p,ℓ
,

which is the desired result. �
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4. Proof of trace Theorem 1.1

Let us recall the pointwise estimate between Riesz potential and fractional max-
imal operator.

Lemma 4.1. Let f ∈ L1
loc(R

n, dν) and B(x, r) ⊂ R
n a ball with radius r > 0.

(i) If 0 ≤ γ < δ < α ≤ n, then

|Iδf(x)| . [Mαf(x)]
δ−γ
α−γ [Mγf(x)]

1− δ−γ
α−γ , ∀ x ∈ R

n.

(ii) If 1 ≤ p <∞ and 1 ≤ k ≤ ∞, then

[ν(B(x, r))]
1
p
−1

ˆ

B(x,r)

|f(y)| dν . ‖f‖Lp,k(B(x,r)).

In particular, (Mn/λf)(x) . ‖f‖Mλ
p,k

(dν), for all p ≤ λ <∞.

Proof. The item (i) was obtained in [22, Lemma 4.1]. To show (ii), first let us
recall the Hardy–Littlewood inequality

ˆ

B(x,r)

|f(y)g(y)| dν ≤

ˆ ν(B(x,r))

0

f ∗(t)g∗(t) dt.

This inequality and Hölder’s inequality in Lk(R, dt/t) give us

ˆ

B(x,r)

|f(x)| dν ≤

ˆ ν(B(x,r))

0

t1−
1
p

(
t
1
pf ∗(t)

) dt
t

≤

(
ˆ ν(B(x,r))

0

(
t1−

1
p

)k′ dt
t

) 1
k′
(
ˆ ν(B(x,r))

0

(
t
1
pf ∗(t)

)k dt
t

) 1
k

. [ν(B(x, r))]1−
1
p‖f‖Lp,k(B(x,r)),

as desired. �

Now, we are in position to prove Theorem 1.1.

4.1. The condition JµKβ < ∞ is sufficient. For x ∈ Bρ = B(x0, ρ) with
ρ > 0, let us write

Iδf(x) =

ˆ

|y−x|<ρ

|x− y|δ−nf(y) dν(y) +

ˆ

|y−x|≥ρ

|x− y|δ−nf(y) dν(y)

:= Iδf
′(x) + Iδf

′′(x),

where f ′ = χB(x0,2ρ)f and f ′′ = f − f ′. If y ∈ R
n\B(x0, 2ρ), using integration by

parts and Lemma 4.1-(ii), respectively, we have

|Iδf
′′(x)| ≤

ˆ ∞

2ρ

sδ−n

(
ˆ

B(x,s)

|f(y)| dν

)
ds

s

.

ˆ ∞

ρ

sδ−n[ν(B(x, s))]1−
1
p‖f‖Lp,ℓ(B(x,s))

ds

s

≤

(
ˆ ∞

ρ

sδ−1−n
λds

)
‖f‖Mλ

p,ℓ
(dν) . ρδ−

n
λ ‖f‖Mλ

p,ℓ
(dν),
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in view of 0 < δ < n/λ. Therefore, (Iδf
′′)∗(t) . ρδ−

n
λ ‖f‖Mλ

p,ℓ
(dν) and we can estimate

‖Iδf
′′‖Lq,s(B(x0,ρ),dµ) . ρδ−

n
λ‖f‖Mλ

p,ℓ(R
n,dν)

(
ˆ µ(B(x0,ρ))

0

t
s
q
−1 dt

) 1
s

≤ ρδ−
n
λµ(B(x0, ρ))

1
q ‖f‖Mλ

p,ℓ
(dν)

≤ ρ
β
q
− β

λ∗ JµK
1
q

β ‖f‖Mλ
p,ℓ

(dν),(4.1)

thanks to δ = n
λ
− β

λ∗

and µ(B(x0, r)) ≤ JµKβ r
β, for all x0 ∈ spt(µ) and r > 0. Since

n− β

p
< δ <

n

λ

we can ensure the existence of γ such that (n− β)/p < γ < δ < n/λ which yields
n − β < γp < np/λ ≤ n. Hence, for y ∈ B(x0, 2ρ) we invoke Lemma 4.1 with
α = n/λ and estimate

‖Iδf
′‖Lq,s(B(x0,ρ),dµ) . ‖f‖

δ−γ
α−γ

Mλ
p,ℓ

(dν)

∥∥∥ |Mγf
′|(1−

δ−γ
α−γ

)
∥∥∥
Lq,s(B(x0,ρ),dµ)

= ‖f‖
δ−γ
α−γ

Mλ
p,ℓ

(dν)
‖Mγf

′‖
1− δ−γ

α−γ

L
q(1−

δ−γ
α−γ ), s(1−

δ−γ
α−γ )

(B(x0,ρ),dµ)
,

in view of ‖ |g|b‖Lq,s = ‖g‖b
Lqb,sb for b = 1 − δ−γ

α−γ
. Now, since ℓ < s and b =

(1 − δ−γ
α−γ

) ∈ (0, 1) we can choose γ close to δ such that ℓ ≤ sb. It follows from
Calderón’s Lemma 2.1 that

‖Iδf
′‖Lq,s(B(x0,ρ),dµ) . ‖f‖1−b

Mλ
p,ℓ(dν)

‖Mγf
′‖

b

Lqb, ℓ(B(x0,ρ),dµ)
.(4.2)

Now from real interpolation (see Lemma 2.2) and trace principle [3, Theorem 2] in
Lp(dµ) we will show that

(4.3) ‖Mγf
′‖Lp,ℓ(Bρ,dµ) . JµK

1/p
β ‖f ′‖Lp,ℓ(Rn,dν)

for all f ′ ∈ Lp,ℓ(dν) whenever 1 < p < p = qb = βp/(n− γp), 0 < β ≤ n and
n− β < γp < n. Indeed, let θ ∈ (0, 1), p0 < p < p1 and p̄0 < p̄ < p̄1 be such that

1

p
=

1− θ

p0
+

θ

p1
and

1

p̄
=

1− θ

p̄0
+

θ

p̄1
,

where 1 < pi < p̄i =
βpi

n−γpi
, 0 < β ≤ n and n − β < γpi < n, i = 0, 1. Hence, from

pointwise inequality Mγf
′(x) . Iγ |f

′(x)| and [3, Theorem 2] we have

‖Mγf
′‖Lp̄i,p̄i(Bρ,dµ) . ‖Iγf

′‖Lp̄i,p̄i (Bρ,dµ) ≤ JµK
1/p̄i
β ‖f ′‖Lpi,pi(Rn,dν), i = 0, 1,

provided that the Radon measure µ satisfies JµKβ <∞. Therefore, thanks to Hunt’s
Theorem (see Lemma 2.2)

‖Mγf
′‖Lp,ℓ(Bρ,dµ) . JµK

(1−θ)/p0
β JµK

θ/p1
β ‖f ′‖Lp,ℓ(Rn,dν) = JµK

1/p
β ‖f ′‖Lp,ℓ(dν) as 1 ≤ ℓ ≤ ∞,
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where 1 < p < p = βp/(n− γp), 0 < β ≤ n and n− β < γp < n, as required. Hence,
we can inserting (4.3) into (4.2) to yield

‖Iδf
′‖Lq,s(B(x0,ρ),dµ) . ‖f‖1−b

Mλ
p,ℓ

(Rn, dν)
JµK

b/p
β ‖f ′‖

b
Lp,ℓ(Rn,dν)

= ‖f‖1−b
Mλ

p,ℓ(R
n, dν)

JµK
b/p
β ‖f‖bLp,ℓ(B(x0,2ρ),dν)

. JµK
b/p
β ρ(

n
p
−n

λ)(1−
δ−γ
α−γ

)‖f‖Mλ
p,ℓ

(Rn, dν)

= JµK
1
q

β ρ
β( 1

q
− 1

λ∗
)‖f‖Mλ

p,ℓ(R
n, dν),(4.4)

where the equality (4.4) is a consequence of (4.5) and (4.6) below. Indeed, note that
by α = n/λ and δ = n/λ− β/λ∗, the request

qb = q

(
1−

δ − γ

α− γ

)
= p =

βp

n− γp
(4.5)

is equivalent to

γpβ

(
1−

q

λ∗

)
= nβ

(
1−

q

λ∗

)
− βn

(
1−

p

λ

)
.(4.6)

Hence, we obtain
(
n

p
−
n

λ

)(
1−

δ − γ

α− γ

)
(4.5)
=

p

q

(
n

p
−
n

λ

)
=
p

q

1

pβ

[
nβ
(
1−

p

λ

)]

(4.6)
=

1

q

1

n− γp

[
nβ

(
1−

q

λ∗

)
− γpβ

(
1−

q

λ∗

)]

= β

(
1

q
−

1

λ∗

)
.

Note that (n− β)/p < γ < δ < α implies 0 < b < 1. From estimates (4.1) and (4.4)
we obtain

ρ−β( 1
q
− 1

λ∗
)‖Iδf‖Lq,s(µ⌊Ω(Bρ)) . JµK

1
q

β ‖f‖Mλ
p,ℓ

(dν),

which is the desired continuity of the map Iδ : M
λ
p,ℓ(dν) → Mλ∗

q,s(Ω, dµ). �

4.2. The condition JµKβ < ∞ is necessary. Let B(x0, r) ⊂ R
n be a ball

centered in x0 and with radius r > 0. Choosing f = χB(x0,r) when x ∈ B(x0, r) we
can estimate

(Iδf)(x) =

ˆ

Rn

|x− y|δ−nχB(x0,r)(y) dν(y)

=

ˆ

|y−x0|<r

|x− y|δ−n dν(y) & rδ−nν(B(x0, r)) = Crδ

thanks to |x − y| ≤ 2r for y ∈ B(x0, r). The previous argument implies that the
estimate (Iδf)

∗(t) & rδ hold for 0 < t < µ(B(x0, r)). Hence, using (2.1) (see also
(2.2)) we obtain

‖Iδf‖Lq,s(B(x0,r),dµ) & rδ

(
ˆ µ(B(x0 ,r))

0

t
s
q
−1ds

) 1
s

= C r
n
λ
− β

λ∗ [µ(B(x0, r)]
1
q .(4.7)
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Since Iδ : M
λ
p,ℓ(dν) → Mλ∗

q,s(dµ) is bounded and ‖χB(x0,r)‖Mλ
p,ℓ(R

n) = Crn/λ, then

(4.7) implies that

r
n
λ & ‖Iδf‖Mλ∗

q,s(dµ)
& rβ(

1
λ∗

− 1
q )‖Iδf‖Lq,s(B(x0,r),dµ) & r

n
λ
−β

q µ(B(x0, r))
1
q

which yields µ(B(x0, r)) . rβ as desired. �

5. Proof of Corollary 1.4

The Calderón–Stein’s extension operator E on Lipschitz domain Ω is defined by
Ef = f in Ω and

Ef(x) =

ˆ ∞

1

f(x′, xn + sδ∗(x))ψ(s) ds on R
n\Ω

where ψ is a continuous function on [1,∞) such that ψ(s) = O(s−N) as s → ∞ for
every N ,

ˆ ∞

1

ψ(s) ds = 1 and

ˆ ∞

1

skψ(s) ds = 0, for k = 1, 2, · · ·

and δ∗(x) = 2c∆(x) is a C∞-function comparable to δ(x) = dist(x,Ω), see [30,
Theorem 2]. On half-space R

n
+ one has δ∗(x) = 2xn and we have

(5.1) Ef(x′, xn) =

ˆ ∞

1

f(x′, (1− 2s)xn)ψ(s) ds if xn < 0

provided that the above integral converges. The proof of the Lemma 5.1 below is
similar to [1, Lemma 3.1], we include the proof for reader convenience.

Lemma 5.1. Let n ≥ 2 and f ∈ L1
loc(R

n
+) such that ∇f ∈ Mλ

p,d(R
n
+), then

‖∇Ef‖Mλ
p,d

(Rn) ≤ C‖∇f‖Mλ
p,d

(Rn
+)

for 1 ≤ p ≤ λ <∞ and d ∈ [1,∞].

Proof. For each x′ ∈ R
n−1 fixed and multi-index α, the scaling property

‖Dαf(γ·)‖Mλ
p,d

= γ|α|−
n
λ ‖f‖Mλ

p,d

yields

‖Dαf(·, (2s− 1)xn)‖Mλ
p,d(R

n
+) = (2s− 1)|α|−

1
λ‖Dαf(·, xn)‖Mλ

p,d(R
n
+).

It follows that∥∥∥∥
∂

∂xn
Ef1{xn<0}

∥∥∥∥
Mλ

p,d
(Rn)

=

∥∥∥∥
ˆ ∞

1

∂nf(x
′, (2s− 1)xn)ψ(s) ds

∥∥∥∥
Mλ

p,d
(Rn

+)

≤

ˆ ∞

1

(2s− 1) ‖∂nf(x
′, (2s− 1)xn)‖Mλ

p,d(R
n
+) |ψ(s)| ds

≤

(
ˆ ∞

1

(2s− 1)2−
1
λ |ψ(s)| ds

)
‖∂nf‖Mλ

p,d(R
n
+)

≤ C ‖∂nf‖Mλ
p,d

(Rn
+) ,

because |ψ(s)| ≤ Cs−N for all N implies
ˆ ∞

1

(2s− 1)2−
1
λ |ψ(s)| ds ≤ C

ˆ ∞

1

(s− 1)θ−1s−θ−(N−θ) ds = Cβ(θ,N − θ)
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where β(θ,N − θ) denotes the beta function and θ = 3− 1/λ. Since Ef = f in R
n
+,

then ‖∇Ef1{xn≥0}‖Mλ
p,d

(Rn) = ‖∇f‖Mλ
p,d

(Rn
+) and, moreover,

∥∥∂xj
Ef1{xn<0}

∥∥
Mλ

p,d
(Rn)

≤

(
ˆ ∞

1

(2s− 1)1−
1
λ |ψ(s)| ds

)∥∥∂xj
f
∥∥
Mλ

p,d
(Rn

+)

≤ C
∥∥∂xj

f
∥∥
Mλ

p,d(R
n
+)

for all j = 1, · · · , n− 1, as required. �

Thanks to Theorem 1.1 on ∂Rn
+ with β = n− 1, integral representation formula

[4, (3.5)] and Lemma 5.1

‖f(x′, 0)‖Mλ∗
q,s(∂Rn

+) ≤ C‖∇Ef‖Mλ
p,d(R

n) ≤ C‖∇f‖Mλ
p,d(R

n
+)

as desired.
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