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Abstract. We study the boundary behaviour of open, light mappings satisfying generalized
modular inequalities in general metric measure spaces. We extend in this way known facts from
the theory of quasiregular mappings and from their recent generalizations, namely the mappings of
finite distortion and the so called ring mappings.

1. Introduction.

A well-known, basic tool in the study of quasiregular mappings is the modular
inequality of Poleckii

(1.1) M(f(I) < KM(T)

valid for all path families I' in D. Here D is a domain in R", the mapping f: D —
R"™ is quasiregular and M is the modulus of a curve family (see the monographs
[45, 46] and [63, 64| for more information about quasiregular mappings). Several
generalizations of quasiregular mappings have been studied in the last 35 years. The
most important is the class of mappings of finite distortion (see the monographs [27]
and [31] and the papers [34, 44]). The classes of mappings distinguished by moduli
inequalities and also defined on open sets in R™ were intensively studied in the last
15 years (see [10-13, 15-19, 29, 35, 39-41, 47-49, 52-57, 63]). Such an approach
was proposed by Martio for homeomorphisms between open sets in R™ and the topic
was summarized in the resulting monograph [41] written with Ryazanov, Srebro and
Yakubov. Another generalization of this well-known class of quasiregular mappings
is the class of quasiconformal maps on general metric measure spaces (see [1, 2, 7, 8,
23-26, 32, 33]). Quasiregular mappings on metric measure spaces were studied in |6,
9, 14, 21, 22, 43]. Finally, homeomorphisms and open, discrete mappings satisfying
generalized modular inequalities were studied in [4, 5, 30, 50, 51, 57-61, 64| on
generalized metric measure spaces, other then R"™ with the euclidean metric. In [30]
the boundary behaviour and equicontinuity of bounded open, discrete mappings on
Riemannian manifolds for which a Poleckii type modular inequality holds is studied
(see Theorem 5.4 in [30]). The same thing is studied on Ahlfors @Q-regular metric
measure spaces in [58] and on factor spaces in [60] and a Poleckii type modular
inequality is given in [60]. We extend some of these results and some older results
from the theory of quasiregular mappings from [38] and of the mappings of finite
distortion from [10] on general metric measure spaces and for continuous, open, light
mappings f: X — Y.

In this paper X,Y will be metric measure spaces endowed with Borel regular
measures p and v such that 0 < u(B) < oo for every ball B in X and 0 < v(B) < oo
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for every ball B in Y and we suppose that the spaces X and Y are locally pathwise
connected and locally compact and have countable bases of neighbourhoods. The
distance on X and Y will be denoted by d. We also suppose that X is proper (i.e.
every closed ball B C X is compact) and we denote X = X U {occ} the Alexandrov
compactification of X. In such a space if X # X and if d(z,7,) — oo for some
x € X, we say that x, — oo. We work with continuous, open, light mappings
f:DCX —Y, where D C X is open and Y will always be Ahlfors Q-regular and
will support a (1, q)-Poincaré inequality with @) — 1 < ¢ < @. Every Riemannian
n-manifold is Ahlfors n-regular. The basic approach of the theory on metric measure
spaces is from Vaiséla [65]. We give the complete proof in Section 2, just for the sake
of completeness.

Let v: [a,b] — X be a path and let A = (a =t < t; <,...,< t, = b) be
a subdivision of [a,b]. Let D([a,b]) be the set of all subdivisions of [a,b]. We set
Va(v) = 2221 d(v(ti-1),7(t:)) and {(y) = supaep(a.)) Va(y) be the length of . If
I(y) < oo, we say that 7 is rectifiable. We also have I(y) = >_7" | 1(7|[ti-1, t:]).

Let v: [a,b] — X berectifiable. Asin [65] we show that there exists a unique path
7%: [0, ¢] — X such that v = 4%oh, where h: [a,b] — [0, c] is increasing, [(7°[[0,t]) =t
for every t € [0, ¢|] and we prove that h = s, and ¢ = (). Here s,: [a,b] — [0,(7)]
is given by s,(t) = l(7y][a,t]) for every t € [a,b] and is called the length function of
7. Then s, is increasing and continuous and d(vy(t),v(s)) < s,(t) — s,(s) for every
a<s<t<bandif h: [d V] — [a,b] is increasing (decreasing), then I(yoh) = I(7).
The path 7°: [0,1(y)] — X is called the normal representation of +.

Let v: [a,b] — X be rectifiable and p: X — [0,00] a Borel function. We set
fﬁ/pds = folm p(7°(t)) dt the line integral of p over 7. If v: [a,b] — X is locally
rectifiable, we set f,y pds = supg [ 8 pds, where the supremum is taken over all closed
subpaths (3 of ~.

Let D C X be open. We set A(D) the set of all nonconstant path families in
D. If I' € A(D), we set F(I') = {p: X — [0, 0] Borel function | fﬁ/pds > 1 for
every v € I locally rectifiable}. If I'y, 'y € A(D), we say that I'y > I'y if every path
v1 € 'y has a subpath v, € T's.

Let p > 1 and w: D — [0, 00] be p measurable and finite ;1 a.e. We define the
p-modulus of weight w by

MP(D) = in /X w(z)P(x) dp if T € A(D).

peF ()

If F(I') = ¢, we set MP(I") = 0. If w =1, we put

M) = inf / P(x)du it T € A(D).
peF () Jx

We see that if I'y, I’y € A(D), I'y > Ty, then ME(I';) < MP(Ty) and if I = (J,o, T,
with I'y € A(D) for every k € N, then ME(T') <32, ME(Ty,).

Let EC X, p>1and w: X — [0,00] be p measurable and finite 4 a.e. We say
that MP(F) =0 if ME(T") = 0, where I' = {7: [0,1) — X path |y has at least a limit
point in £} and if w = 1, we say that M,(E) = 0. We say that MP(E) > 0 if it is
false that MP(FE) = 0. It is clear that if £ = {x,},en and MP(z,) = 0 for every
n € N, then MP(FE) = 0.

Here, if v: [0,1) — X is an open path and there exists ¢, — 1 such that v(¢,,) —
x, we say that x is a limit point of ~.
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Example 1.1. Let p < m, E C X such that M,,(F) = 0, D C X open such
that [}, yw(z)™#dp < oo. Let I' = {y: [0,1) = D\ E path [y(0) € D\ E and v
has at least a limit point in £} and let p € F(I'). Then using Holder’s inequality, we
have

m—p D

M) < [l ) < (f el w) " ([ \Ep<x>mdu)’”.

Since M,,(I') = M,,(E) = 0 and p € F(I') was arbitrarily chosen, we see that
MP(E) = 0.
Let E,F C X and U C X such that BEUF C U. Weset A(E, F,U) = {y: [0,1] —

U path |v(0) € E,v(1) € F and v((0,1)) C U}. As in [25], we set for p > 1 and E, F
closed subsets of an open set U C X

cap,(E, F, U):inf/Upp(:z)du

where the infimum is taken over all upper gradients of all functions v: U — R such
that U|E > 1 and U|F < 1. We see from Proposition 2.17 in [25] that if X is proper
and -convex, then cap,(E, F,U) = M,(A(E, F,U)).

Let E C X closed, E C Aopenand 'y = A(E,CA, A). We say that cap,(E) =0
if cap,(F, CA, A) = 0 for every open set E C A and if X is proper and ¢-convex, then
cap,(E,CA, A) = M,(I'g) and hence a closed set E C X is such that cap,(E) = 0
if and only if M,(EF) = 0. It is important in our paper to find conditions for a set
E C X to be such that MP(E) = 0, at least for a punctual set E.

Let z € X and 0 < a < b. We set [, = A(B(z,a),S(x,b), B(x,b)). We set
Lyap ={p: X — [0,00]| there exists a Borel function 7: (a,b) — (0, cc] such that
f;n(t)dt > 1 and p(z) = n(d(z,2)) if z € C(x,a,b), p(z) = 0 otherwise}. Here
C(z,a,b) = B(z,b) \ B(z,a). We set if w: D — [0, 00] is 4 measurable and finite u
a.e.

AP(Tyqp) = inf / w(2)pP(2) dp.
b

peLCL‘,a,b
We shall prove in Chapter 2 that L, ., C F(I';4p) and hence

(1.2) MP(Tyap) < AP(Tyap)-

We say that ME(x) = 0 if there exists 0 < by < d(z, dD) such that lim,_,o ME2(I'; 0p) =
0 for every fixed 0 < b < by and we say that AP (z) = 0 if there exists 0 < by <
d(xz,0D) such that lim, 0 AP (I, .p) = 0 for every fixed 0 < b < by. We see from
(1.2) that if AP (x) =0, then MZ(z) = 0.

Let D C X be a domain. We say that a p measurable function w: D — [0, o0]
has finite mean oscillation at a point x € D (abbr. w € FMO(z)) if there exists
€0 > 0 such that fB(wO) w(z)dp < oo and

e—0

lim sup][ |w(2) — Wh,e|dp < oo.
B(x,€)

Here, if f: X — R is u measurable, we set fp = ﬁ [ f(z)dp for every ball B C X.
Using a result from Chapter 13 in [41], we have

Lemma 1.1. Let X be an Ahlfors QQ-regular metric measure space with () > 2,
D C X a domain, x € D and w € FMO(x). Then A%(x) = 0.
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We found in Lemma 1.1 and Lemma 2.6 some conditions in order that AP (x) = 0.
We remark that if n: (0, 00) — [0, 00] is a Borel function such that fab n(t)dt > 0 for
every 0 < a < b and fob n(t) dt = oo, then

M) < [ amzwxduaz»pdu/(jCUchﬁ)p.

C(z,a,b)
It results that if fB(w’b) w(z)n(d(z, z))? du < oo for some b > 0, then AP (x) = 0.

Let D C X be open and f: D — Y. We say that f is open if f carries open sets
into open sets, we say that f is discrete if either f~1(y) = ¢, or f~1(y) is a discrete
set in D for every y € Y and we say that f is a light map if dimf~!(y) < 0 for every
y € Y. Here, if A C X, dimA is the topological dimension of A (see the monograph
[28] for more information on dimension theory).

A metric measure space X is Ahlfors @)-regular if there exists a Borel regular
measure 4 on X and a constant Cj such that

1
57"@ < pw(B(x,7)) < Cor?  for every ball B(x,r) C X.
0
Let u: X — R. A non-negative Borel measurable function p: X — [0, 00] is
said to be an upper gradient of u if for every x,y € X and every rectifiable path

v: [a,b] = X with v(a) = z, v(b) = y, the following inequality holds:

ule) ~uly)] < [ pds.
i

The space X is said to support a (1,q)-Poincaré inequality (¢ > 1) if there
exists constants C' > 1 and r > 1 such that for every bounded continuous functions
u: X — R, all balls B C X and all upper gradients p of u the following inequality

holds true
]i fu(x) — ug| du < Cd(B) (][B () du)

Here, if A C X, we denote by d(A) the diameter of the set A.
In this paper we study the geometric properties of continuous, open light map-
pings f: D — Y satisfying the following relation:

(1.3) M,(f(I')) < v(MP(T)) for every I € A(D).

Here D C X is a domain, Y is Ahlfors @Q-regular and supports a (1, q)-Poincaré
inequality with Q@ — 1 < ¢ < @, p > 1, w: D — [0,00] is a p-measurable function
which is p-finite a.e., v: (0,00) — (0, 00) is increasing and lim;_,oy(t) = 0.

If y(t) =t for t > 0 and p = g, relation (1.3) is a Poleckii type modular inequality
for general metric measure spaces. In [21] this relation is proved for quasiregular
mappings f: X — Y between Ahlfors p-regular spaces. In [30] such a relation is
proved for open, discrete mappings between Riemannian manifolds M,, # R™ and in
[60] such a relation is proved for factor spaces B™/G, where B" is the unit ball in
R™ and G is a Mobius group. This shows that there exist open, discrete mappings
satisfying a Poleckii type modular inequality on general metric measure spaces and
hence the theory of the class mappings satisfying relation (1.3) is effective.

It is interesting that even if n > 3 and D C R" is a domain, a result of Wilson
[68] shows that there exists a continuous, open, light mapping f: D C R" — R”
such that D = By = {z € D|f is not a local homeomorphism at =} and hence such
a mapping is not discrete. We prove the following eliminability result:

q
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Theorem 1.1. Let p > 1, D C X a domain, E C D closed and nowhere
disconnecting, w: D — [0, oo] be y» measurable and finite u a.e. such that MP(E) = 0,
let f: D\ E — Y be continuous, open and light and x € E. Suppose that there
exists a continuum M C 'Y with Card M > 1 and r, > 0 such that B(x,r,) C D and
f(B(z,ry) \ E) CY \ M and there exists v: (0,00) — (0, 00) increasing such that f
satisfies condition (1.3). Then there exists lim,_,, f(y) € Y.

Remark 1.1. If F = {z}, we can replace condition (1.3) from the preceding
theorem with a weaker one

(1.4) M,(f(Tyap)) <Y(AP (T4 4p)) forevery 0 <a<b<d(x,0D).
We also replace condition “MP(z) = 0” with the condition “AP (z) = 0.

Mappings satisfying condition (1.4) are called in [41] ring mappings in the point
x. Theorem 1.1 was proved in [30] and [58] for bounded, open discrete mappings
satisfying condition (1.4) and such that A?(z) =0. If D C X isopen, EC D,z € E
and f: D\ F — Y is a mapping, we say that x is an essential singularity of f if there
exists no lim,,, f(y) =1 €Y.

Theorem 1.2. Let p > 1, D C X a domain, E C D closed and nowhere discon-
necting, w: D — [0, 00] be u measurable and finite u a.e. such that MP(E) = 0, let
f: D\ E — Y be continuous open and light and let © € E be an essential singularity
of f. Suppose that there exists v: (0,00) — (0, 00) increasing with lim;_,oy(t) = 0
and such that f satisfies condition (1.3). Then dim(Y \ f(B(z,r)\ E)) = 0 for every
r > 0.

Remark 1.2. If £ = {z} we may replace in the preceding theorem condition
(1.3) by condition (1.4). We also replace condition “MP(z) = 0” with condition
“AP(x)=0".

Our theorem extends a result from [61]. Of course, if dimY > 1, our theo-
rem shows, as in the classical case of holmorphic or quasiregular mappings, that
f(B(z,r)\ E) is densely in Y for every > 0. We prove the following equicontinuity
result:

Theorem 1.3. Letp > 1, D C X adomain, z € D, w: D — [0, c0] u measurable
and finite p a.e. such that AP (x) = 0. Let W be a family of continuous, open, light
mappings f: D — Y \ My, where My is a continuum with Card My > 1 for every
f € W and there exists § > 0, y € Y and Ry > 0 such that d(My) > § and
M; N B(y, Ry) # ¢ for every f € W and {f(x)}sew C B(y, Ro). Suppose that
there exists : (0,00) — (0,00) increasing with lim;_,, y(t) = 0 such that condition
(1.4) is satisfied for every mapping f € W in the point x. Then the family W is
equicontinuous at x.

Remark 1.3. The preceding theorem was proved in [30] and [58] for uniformly
bounded families W of open, discrete mappings f: D — B(y, Ry) \ My, for every
f € W, where My is a continuum in B(y, Ry) depending on f.

We prove a Picard type theorem.

Theorem 1.4. Let X besuch that X # X, E C X,letp > landw: X — [0, 0]
be p measurable and finite p a.e. such that MP(E) = 0 and there exists x € X and
r > 0 such that limg oo AP (I'; . g) = 0. Let f: X\ E — Y be continuous, open and
light such that there exists v: (0,00) — (0,00) increasing with lim; o v(¢) = 0 and
f satisfies condition (1.3). Then dim(Y \ f(X \ E)) = 0.
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Remark 1.4. If X is Ahlfors p-regular and w = 1, the conditions from the
preceding theorem are satisfied. The result from Theorem 1.4 was proved in [10] for
mappings with finite distortion.

Let D C X be a domain, x € dD and f: D — Y. We define the cluster set
C(f,x) = {y € Y| there exists z, € D, z, # x, v, — x such that f(z,) — y}.
Let F': 0D — P(Y) be given by F(z) = C(f,z) for every z € 0D. If K C 0D,
we set C(f, 2z, K) = (o_, F(Un N (K \ {z})), where the closure is taken in ¥ and
(Un)men is a fundamental system of neighbourhoods of z. Here P(Y) is the family
of all subsets of Y. If 4: [0,1) — D is a path and lim; ,; y(¢) = x and w € Y is such
that lim; 1 f((t)) = w, we say that w is an asymptotic value of f in x and we set
A(f,z) ={w € Y|w is an asymptotic value of f at x}.

We say that the space Y has property (P,), ¢ > 1, if for every y € Y there exists
r, > 0 and a constant C' depending on y such that M,(A(Cy, Cy, B(y,Cr)) > 0 for
every non-degenerate disjoint continua Cy,Cy C B(y,r) and every 0 < r < r,. It is
known that R™ has property (P,). We also see from page 17 in [22| that if YV is of
locally ¢-bounded geometry, then Y has property (P,). As a particular case, let us
point out that every Riemannian ¢ manifold has property (F,).

An important chapter in the theory of complex functions is dedicated to the
study of cluster sets (see the book [42]). A classical theorem in this field is due to
Nashiro. He proved in [42], page 14 that if D C C is a domain, £ C 0D is compact
and capy(E) = 0, f: D — C is meromorphic and v € C(f,z) \ C(f,x,0D \ E) is
an exceptional value of f (i.e. o & (),o f(B(x,7) N D)), then either a € A(f,z), or
there exists zy € F, x;, — x such that x € A(f, z) for every k € N. Some extensions
of this result were given by Martio and Rickman in [38| for quasiregular mappings
and in [10] by Cristea for mappings of finite distortion.

Theorem 1.5. Let Y be a metric measure space having property (P,), ¢ > 1,
such that B(y,r) is pathwise connected and such that dimS(y,r) > 1 for every
y € Y and every r > 0, p > 1, D C X a domain such that dimoD > 1, let
w: D — [0,00| be u measurable and finite y a.e., E C 0D such that dimE = 0 and
MP(E)=0. Let f: D — Y be continuous, open light and suppose that there exists
~v: (0,00) = (0,00) increasing with lim, .o~ (t) = 0 such that f satisfies condition
(1.3).

Let x € (OD\E) and z € C(f, )\ (C(f,z, 0D\ E)U,~o [(B(z,r)ND)). Then
either z € E and z € A(f, z), or there exists z, € E, x;, — x such that z € A(f, xy)
for every k € N.

The next result extends a theorem which for plane meromorphic functions is
known as Iversen’s theorem and Cartwright’s theorem. Our result also extends a
theorem of Martio and Rickman from [38| established for quasiregular mappings and
a theorem of Cristea from [10] established for mappings of finite distortion.

Theorem 1.6. Let Y having property (P,), Q@ —1 < q¢ < @, such that B(y,r)
is pathwise connected and such that dimS(y,r) > 1 for every y € Y and every
r>0,p>1 D C X adomain, E is D closed in D and nowhere disconnecting,
w: D — [0,00] be u measurable and finite p a.e. such that ME(E) = 0. Let
f: D\ E — Y be continuous, open and light and x an essential singularity of f.
Suppose that there exists 7v: (0,00) — (0,00) increasing with lim;_,ov(t) = 0 and
such that f satisfies condition (1.3). Then, if x is an isolated point of E, it results
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that Y \ (,~o f(B(z,7) \ E) C A(f,z) and in the general case there exists ), € F,
Ty # x, v, — « such that Y \ (., f(B(z,7) \ E) C A(f,zy) for every k € N.

Remark 1.5. If in the preceding theorem z is an isolated singularity of f we may
replace condition (1.3) by condition (1.4). We also replace condition “MZE(x) = 0” by
condition “AP () = 0”. Some analog of Theorem 1.6 was proved in Theorem 1 from
[57]. We also see that our Theorem 1.5 extends the classical result of Noshiro from
[42], page 14 even in the Euclidean setting, since it works for “singular” sets £ C 0D
which might not always be compact.

The next theorem extends a result of Martio and Rickman from [38] concerning
the density of the points € S™ at which a quasiregular mapping f: B" — B"
with cap(Cf(B™)) > 0 has some asymptotic values and a result of Cristea from [10]
established for mappings of finite distortion.

Theorem 1.7. Let D C X a domain, B = {b € 0D| there exists a: [0,1) — D
a path such that lim, ,; «(t) = b}, let f: D — Y be continuous, open and light
and E = {b € B| there exists a path a: [0,1) — D such that lim;,; a(t) = b and
lim;; f(a(t)) =1 €Y}. Letp > 2, w € LL (D) such that w(x) > 0 for i a.e. x € D,
MP(b) = 0 for every b € B\ E, MP(BN B(b,€)) > 0 for every b € B and every € > 0
and for every b € B\ E and every € > 0, there exists a continuum M depending on b
and € such that Card M > 1 and f(D N B(b,e)) C Y \ M. Suppose that there exists
v: (0,00) — (0,00) increasing with lim; ,oy(t) = 0 such that f satisfies condition
(1.3). Then ME(B(b,e) N E) > 0 for every b € B and every ¢ > 0 and hence E is
dense in B.

2. Preliminaries

We first prove that L, ., C F(I'y.5) and hence we prove relation (1.2). We
use the arguments from [65]. We say that v: [a,b] — X is absolutely continuous
if for every € > 0 there exists . > 0 such that >, d(y(b;),v(a;)) < € whenever
A; = [a;, b;] are non-overlaping subintervals of [a, b] such that > " | (b; —a;) < 0. As
in [65] we see that such a path is rectifiable and if v: [a, b] — X is a rectifiable path,
then s, is absolutely continuous if and only if v is absolutely continuous.

Let f: X — Y be a continuous mapping and let z € X. We set

y#2

We see that the mapping x — L(z, f) is a Borel function. Let 7: [a,b] — X be a
path. We set L,(t) = lim sup LW when oy — ¢, u >t v = t, v <t v#u As

=
in [65], we have

Lemma 2.1. Let v: [a,b] — X be a rectifiable path. Then s.(t) = L,(t) a.e. in
la,b].

Proof. Since d(y(t),7v(s)) < s4(t) — s4(s) for every a < s <t < b, we see that
L,(t) < s (t) ae. Let A= {t € [a,1]|s](t) exists} and let Aj = {t € A D=5®) >

lp—q =

WjL%Wheneveragpgtgngand0<\q—p\<%}f0reveryk€N. Let
us fix £ € N and € > 0.

Let A = (a =t < t; <,...,< t, = b) € D([a,b]) be such that I(y) <

Z?:l d(’}/(tl_l),’y(tz)) —l—é if 0 S tz - ti—l < % for 1 = 1,...,n. Let Az = [ti—lati]
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fori=1,....n. If &;NAg # ¢, then s,(h) = s,(ti1) > d(y(tio1), v (1)) + 3 and
hence my (Ag) < D on na,0 1 (B0) < KL, (54(F:) = sy(tior) — d(v(tia), 7(8))) <
E(l(y) — >0 d(y(ti=1),v(t:)))) < e. Letting ¢ — 0, we find that m;(Ag) = 0 for
every k € N. Let t € A\, Ax. Then s/ (t) < L,(t) and the theorem is proved. [J

Lemma 2.2. Let : [a,b] — X be absolutely continuous and let p: X — [0, oo]
be a Borel function. Then [  pds = ff p(v(t)) L, () dt.

Proof. Applying the change of variable formulae for real integrals we have

() b b
[ois= [ ptwna= [ o @50t = [ o)L od

Let U C X be open, v: [a,b] — U be rectifiable and let f: U — Y be continuous.
We say that f is absolutely continuous on « if f o~%: [0,1(y)] — Y is absolutely
continuous. Suppose that f: U — Y is L-lipschitz. Then

d(f 07"(t), £ 0+°(s)) < Ld(1°(£),1(s)) < LI(x"[[s. 1)) < Lt — ]

for every 0 < s <t <I(v) and hence if f: U — Y is L-lipschitz, then f is absolutely
continuous on 7. 0

As in [65], we have

Lemma 2.3. Let U C X be open, f: U — X continuous, v: [a,b] — U be a
locally rectifiable path such that f is absolutely continuous on every closed subpath
of v and let p: X — [0, 00] be a Borel function. Then f o~ is locally rectifiable and

[, pds < [ p(f(x))L(z., ) ds.

Proof. We can suppose that v is rectifiable. Since f o~ is absolutely continuous,
it is rectifiable and hence f oy = fo~%o0 s, is rectifiable and let p = I(v) and
q=1(fovy)=1(fo1°). Let s: [0,p] = [0,q] be the length function of f o~°. Then
s is absolutely continuous and we see from Lemma 2.1 that s'(t) = Ljo0(t) a.e. in
0,p]. Let 8= (fov)°. We have foy = foro0s, = (f01") 054008, and also
foy=(fov)o0ss,. Using the unicity of the normal representation of a path, we
see that (fov)? = (foq°)". Then fos=(foy)?os=(for")0s= for" Using
the change of variable formulae for real integrals, we have

Af%zA%WmﬁzfﬂﬂwmmﬁIA%UM%NwWMt

Let t € [0,p] and let r; \, 0, s; 0 such that r; — s; # 0 for every j € N. Since
7" is a normal representation, we see that v°(t + r;) # 7°(t + s;) for every j € N.
We have

d(f ot +r;), for’(t+s55))

r; — Sj
_d(f o (t+ 1), for (t+s;) AVt +15),7°( + 7))
At +7y), 0+ ) i = 8

< L(YO(t), f)Lo(t) < L(Y°(t), f)
< 0

for every j € N and hence Lgo,0(t) < L(7°(2), f) for every t € [0, p]. We proved that

(wasﬁprwmuwmﬁﬁz/Mﬂmu%ﬁw 0

Y
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Lemma 2.4. Let vy: [a,b] — X be rectifiable, x € X such that Im~y C C(x,r, R)
and let p: [r, R] — [0,00] be a Borel function. Then

R d(z,y(b))
/ p(u) du < / p(u) du
r d(z,v(a))

Proof. Let f: X — [0,00], f(2) = d(z,z) for every z € X. Then f is 1-
Lipschitz and L(z, f) < 1 for every z € X and f is absolutely continuous on +.
Using Lemma 2.3, we have

/prds < /yp(f(z))L(z, f)ds < [yp(d(x,z))ds.

< / o(d(z, 2)) ds.

y

Let # = (fo7)° and ¢ = [(fo9). Then foy = (for)%s ey, (fo7)(a) = d(x,7(a)),
(f 04)(b) = d(x,7(b)) and hence B(0) = d(z,(a)) and A(¢) — d(z,7(b)). We also
see that § is 1-Lipschiz and hence is absolutely continuous and |8'(t)| < 1 a.e. Let

|
pr = min{p, k} for & € N. We may suppose that d(z,7v(a)) < d(x,v(b)) and using
the formulae from page 221 in [20], we have

d(z,y(b)) B(c) c
/ pu(t) dt = /ﬁ pu(t) dt = / pe(B(E)B/ (1) dt

d(z,v(a)) (0)

< [ oeoyar= [ pds< [iptite.))as
0 foy ol
Letting k — oo, we have

R d(z,y(b))
[ o] [y du
T d(z,v(a))
Remark 2.1. Let x € X and 0 < a < b. We see from Lemma 2.4 that
Lyap C F(Iy4p) and hence relation (1.2) is proved.

< /p(d(m, 2)) ds. O

The second main result of this chapter is the following:

Lemma 2.5. Let D C X be open, p > 2, w € Li (D) such that w(z) > 0
p a.e. Then MP(x) = 0 if and only if there exists 0 < by < d(x,0D) such that
lim,_,o ME(L; 4p) = 0 for every fixed 0 < a < b < by < d(x,0D).

It results that MP(z) = 0 if A?(z) = 0 and we can prove some conditions in
order that AP (z) = 0 and hence such that M?(z) = 0.

Lemma 2.6. Let X be an Ahlfors QQ-regular space, D C X a domain, x € D,
l<p<@Q,a> Q_p and w € L*(D). Then AP (x) = 0.

Proof. Let d = d(x,0D) and 0 < a < b < d. Let b, = b27F for k € N and

v = %. Letting n(t) = % in the definition of L, .3, we have

a—1

< (fD“(Zz; i)* ( /C Ll du)T
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Lemma 2.7. Let w: X — [0,00| be p measurable and finite p a.e., v € X,
a>0,p>10<a<p—1and M >0 such that [, ; )d,u<M5p(ln5) for

every 0 < a < 6. Then limp oo AP (T, 4 1) = 0.
Proof. Let n: (a,00) — (0,00), n(t) = te for ¢ > a. Then f 7] t)dt =
In In( 6) and let A, = B(x,aef*) \ B(x,ae ) for k € N. We see that < %

d(x z)
and k—HlfzeAkkeN We have

1n(—d<jz) ) —

AL(Dyun) < / sCemtate )y anf ( [ ’ <>dt)p

C(z,a R)

mmRe Z/A )d o

o)

1 1
<
~ (Inlnfeyp kZ:o (ack)p(k + 1 /Ak w(z) dp
1 i M(ae**)P(In(a ) CHE ) ma
(

= (Inln ) ae®)p(k+ 1)p ~ (Inln(Z))p

k=0
The theorem is now proved. O

Let f: X — Y be continuous, open and light. A domain D C X is called
normal if D is compact and df(D) = f(0D). We see from page 186 in [67] (see also
Lemma 2.7 in [37]) that if D C X is a normal domain, p: [0,1] — f(D) is a path
and x € D is such that f(z) = p(0), then there exists a path ¢: [0,1] — D such that
q(0) =z and foq=np.

Let f: X — Y be continuous, open and light and p: [0,1] — Y be a path and
let © € X be such that f(z) = p(0). We say that ¢: [0,a) — X is a maximal lifting
of p from z if 0 < a <1, ¢q(0) = z, foq = p|[0,a) and ¢ is maximal with this
property. As in Lemma 3.12 in [36] we show that if p: [0,1] — Y is a path, z € X
and f: X — Y is continuous, open and light such that f(x) = p(0), then we always
find a maximal lifting of p from z. We say that we cannot lift a path p: [0,1] — YV
from a point x € X such that f(x) = p(0) if we cannot find a path ¢: [0,1] — X
such that ¢(0) =z and foq=p.
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A set F C X is nowhere disconnecting if Int £ = ¢ and for every domain D C X
it results that D \ E is pathwise connected. If X is a n-dimensional manifold, F is
closed and dimFE < n — 2, then E is nowhere disconnecting (see Theorem IV.4, page
48 in [28]). However, it is possible that dimX = m > 1, E' is a punctual set and E
disconnects the space X. Indeed, let X = By U By U {x}, where B;, B, are open
balls in R™ such that B, C (B, By () B2 = {x} and the topology and metric on X
is Euclidean.

If A, B C X, we set d(A, B) the distance between A and B. If A C X and r > 0,

we set B(A,r) = {y € X | there exists © € A such that d(z,y) < r}. The inclusion
D CC X means that D is open and D is a compact subset of X. If D C X is open,

p>1landw: D — [0,00] is p measurable and 0 < w(x) < oo for p a.e. z € D, we
let LP(D)={f:D—R| fD x)|fP(x)| du < co}. Then LP (D) is a Banach space

with the norm || f|F, = ([, w(z)|f ()P dp)?.
We shall use the fundamental theorem from |[3].

Theorem A. Let p > 1 and X an Ahlfors QQ-regular space that supports a (1, p)-
Poincaré inequality with Q —1 <p < @, let R > 0 and E, F C B(x, R) be continua.
Then there exists a constant C; > 0 such that

Cymin{d(F),d(F)}ROP < M,(A(E, F,Y)).

Lemma 2.8. Let M C X be a continua such that B(z, R)NM # ¢, CB(z,3R)N
M # ¢. Then there exists a continuum My C M NC(x, R,3R) such that d(My) > R.
Proof. We see that S(x,r) N M # ¢ for every R < r < 3R and let M, be
a component of M N C(x, R,3R)) which intersects S(x,2R). We see from (10.1),
page 16 in [67] that My N OC(z, R,3R) # ¢ and hence either My N S(x, R) # ¢, or
My N S(z,3R) # ¢. It results that d(My) > R and My C C(x, R, 3R). O

Lemma 2.9. Let D C X be open, w € L (D), p>1and let I' € A(D). Then,
for every € > 0 and every p € F(I') there exists p < n lower semicontinuous such

that [ w(@)n?(z) dp < [, w(z)pP(x) dp + €.

Proof. Let p € F(I') such that p?» = > >° ¢;xg, where ¢; > 0 and E; are
measurable such that E; are compact for every 1 € N. Let ¢ >0and E; C V
open sets such that 0 < fv x)dp — fE x)dp < 1-25“1 for every © € N. Let
nP =32 cixy;. Then p <n, n is lower semlcontmuous and

OS/XW(x)n”(x) du—/X x) dp = ZC/ ) dp — ZC/

o0

zgc,-(/ww(x)du—/&w(x)du)SZQZ.;:E- O

i=1

Lemma 2.10. Let D CC X be an open set, w: D — [0, 00] u measurable and
finite p a.e., p > 1 and let I' € A(D) be such that () > § > 0 for every v € I'.
Then M2(I) < & [, w(z)d

Proof. Let p: X — |0, oo] p(x) L for x 6 D, p(x) = 0 otherwise. Then
p € F(I') and ME(T) < [ pP d,u<6p [pw(z)dp. O

A Fuglede type theorem and a Zlemer type theorem hold as in the classical case.
We give here a proof for the sake of completeness.
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Theorem 2.1. (Fuglede’s theorem) Let fr: X — R be a sequence of Borel
functions which converges to a Borel function f: X — R in LP(X). Here p > 1 and
w: X — [0,00] is u measurable and finite j1 a.e. Then there exists a subsequence
(frj)jen of (fx)ken such that f,y | fx, — flds — 0 for all locally rectifiable paths + in

X except for a family I" with ME(I") = 0.

Proof. Let (fi;)jen be such that [, w(x)|fy,(x) — f(z)[Pdu < 277577 for all
j € N. Let I' = {y: [0,1] — X locally rectifiable path | [ |fi, — f[ds - 0}. Let
I'; = {y:[0,1] — X locally rectifibale path \f | fr, — flds > 5} for j € N. Then
2| fx, — f| € F(T;) for every j € N and ij(F ) < QWfX o)) fr, — fIP(2) dp <
for every 7 € N. We see that I' C U, Ty for every i € N and hence MP(T") <
D02 ME(T;) < 3772, 57 = gier for every 4 > 1. We proved that ME(T) = 0. O

Theorem 2.2. (Ziemer’s theorem) Let p > 2, w: X — [0, 0o] u measurable such

that 0 < w(x) < oo for p a.e. x € X and let I, € A(X) be such that I, C ', 41 for
every m € N and ' =J . _; I'y,. Then MZ(T) = lim,, oo ME(T,,).

Proof. We see that MP(T',,,) I < MP(I'). Let us show that ME(I") < I and
we can suppose that I < co. Let p,, € F(I'y,) be such that [, w(x)p,(x)?du <
MP(T,,) + 2%1 for every n € N. Using Clarkson’s inequality, we have

(1)

If i > 7, then @ € F(I';) and hence

Pi — Pj i

2 < 5l + iz

pi + pj
2

p

M,

p

dp

E_E
N
+
PR
: &

IN

for i > j. Since MP(I';) < I < oo, we have

1 1 1
= pilP)P < = [ MP(Ty) — ME(T,

(o= ity < 5 (30) - 21200 + 3+ )
for ¢ > j. Since ME(L';) /I < oo, we see that (p;)ien is a Cauchy sequence in
the Banach space LP(X) and hence there exists p € LP(X) such that p; — p in
LP(X). Using Fuglede’s theorem we find a subsequence (p;, )ren of (pi)ien such that
if I = {7€F|f|p,k p|lds - 0}, then M2(T') = 0.

Let v € D\ I and € > 0. There exists m. € N such that f,y lpi, — plds < €

for £ > m. and let k. > m, be such that v € I';, for &k > k.. Let k > k.. Then
fypds > fv Pi, — fv |pi,, — plds > 1 — €. Letting € — 0, we find that fy pds > 1 for
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every v € I'\ T and hence p € F(I'\ T). Then

MP(T) < MP(PA\T) + M2(E) = ME(D\ T) < /X w(@)pP (@) dy

= 12 < (o) + (o= il < (M2 + 5 )+ o ol

Letting ¢ — oo, we find that ME(T") < I. The theorem is now proved. 0J

Theorem 2.3. Let X such that there exists Dy, CC X such that Dy /‘ ,
let w e LL (D), w > 0 ae, let p>2 let T € AX) and let T" = {y € T |
~y is rectifiable}. Then ME(T") = ME(T'").

Proof. Let I, = {y € I' | Imy C D,,} for m € N. Let m € N be fixed,
I'" = {y €T, | v is rectifiable} and p,, € F(I,). Let € > 0 and n,,: X — [0, 00|,

Nm = XD,, a0d pem = (PP, + epn%)%. Let v €I7,. Then 1 < fﬁ/ Pmds < f,y Pem ds. If
vyeT,\I" ,then1l < oco=¢ f,y N ds < fﬁ/ pe.n ds and this shows taht p,,, € F(T'y,).
We find that

M) < [ ey dn= [ o dute [ i) de
X b m

Letting € — 0, we see that MP(I,,) < ME(T7 ) for every m € R. Letting m — oo
and using Ziemer’s theorem, we obtain that M?(I') < MP(I'") < MP(T") and hence
Me(T) = M2(I7). O

Theorem 2.4. Let Cy, Cy be disjoint continua in X r = d(Cy,Cy), D CC X
such that CoUCy C D, let p > 2, w € L} (D), T' = A(Cy,Cy, D) and let T's =
A(B(Cy,6), B(C1,6),D) for 0 < § < 7. Then lims_,o ME(I's) = ME(T).

Proof. Using Theorem 2.3, we can suppose that every path v € I' is rectifiable.
Let D,, = {x € D | d(z,CoUCy) > L} for every m € N. Then D,, are open sets
and D,, / D. Let I',, = {f path | there exists v: [0,1] — D rectifiable, v € T'
and 0 < o, < B, < 1 such that 5 = 7|[a,, 5], 7(y) € IDy,, ¥(By) € OD,, and
Y((ay, By)) C Dy} for m € N. Then I' > T4y > Iy, for every m € N and hence
MP(T) < MP(T)11) < ME(L,,) for every m € N and this shows that there exists
lim,,, oo MP (F ) > ME(T"). Let € > 0. Using Lemma 2.7, we find n € F(I") lower
semicontinuous such that [, w(z)n?(x)dp < ME(T) +

Let A, = sup{\ > 0 | fvnds > \ for every v € T',,,} for m € N. We see that
Ami1 = Ay for every m € N and let A = lim,,, o A;,,. We show that A > 1. Indeed,
suppose otherwise that A < 1 and let 0 < A < p < 1. We can find paths v, € I',
such that f“/m nds < p for every m € N and we can suppose that ~,, = v, for every
m € N.

Let us fix m € N. We define 7,,: [0,00] — D,, in the following way: Let
0 < agm < Bym < l(7m) be the greatest, respectively the least ¢ € [0, [(7,,)] such that
Ym(t) € 0D, for ¢ = 1,...,m and we set Yy = Vi |[Qgm, Bgm) and g, is constant on
0, agm] and [Bym, 00) and 7, is continuous on [0, 00) for ¢ = 1,...,m. We see that
Ykm 1s @ subpath of 7, if 1 <k < p < m and v, is a subpath of v,,, for k =1,...,m
and Vpm € for k=1,...,m

The family (V1,,)men is @ 1-lipschitzian family and hence is equicontinuous. Us-
ing Ascoli’s theorem, we obtain a sequence (vVim)mes, With J; C N and a path
BY:[0,00) — D such that vy, — ' if m € J;, m — oco. Taking a subsequence, we
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can presume that ay,, — a1, Bim — b1 for m € J;, m — oo and that ! is constant
outside [aq, by].

The family (7o, )mey, is equicontinuous and using Ascoli’s theorem we find Jy C
Ji an increasing sequence of natural numbers such that the family (7o, )mes, con-
verges uniformly to a path 32: [0,00) — D and we can suppose that the first number
from J5 is the first number from J;, that as,, — as, B2, — bo if m € J5, m — o0,
as < a; < by < by and that 3? is constant outside [as, by].

We continue the process of infinite. At step k& we find J, C Jp_1 C,...,C J;
sets of decreasing natural number and the first £ — 1 numbers from J; are the first
k — 1 number from J_; and the family (Vxm)mes, converges uniformly to a path
B¥:0,00) — D. We can suppose that agm, — ag, Brm — by for m € Ji, m — oo,
that a < ar_1 <,...,<a; <b <,...,<by_1 <b, and that ¥ is constant outside
[ak, bk] .

Let py be the k-th term from Jy for k € N and J = {p1,ps,...,Pk,--.}. Then
J C J for every k € N, Yp,,, — B* uniformly on [ag, bx], 8¥|[ax, bx] = B5|[ar, by
for every k € N. We can correctly define 3: [0,00) — D by B|[ax, bx] = B*|[ax, b
for k € N and f is 1-lipschitzian, Lg(t) < 1 for every ¢t € [0,00) and 3 is absolutely
continuous on every closed interval I C [0, 00). We also see that there exists my > py,
my, € J for every k € N such that v, — 3.

We see that ap — a, by — b and let a < o’ < V' < b. We can suppose that
ap < a’ < b < b for every k € N. Let k € N and 7, € I')y,. Then fﬁ{ ) nds <

fy N ds < p for every k € N. Using Fatou’s lemma and the lower semicontinuity of
1, we find that

Lymmwﬂwwduz/wnwu»wzif

! a/ CLI

kEm

b bt

n( Him g, (1)) dt < /
k—oo

a

lim 7 (Yim, (£)) di
; k—oo
b/
< lim inf/ N(Vem, (t) dt < lim inf/ nds < p<1.
k—o00 a k—00 ’Yk'mk
On the other side, since (8 is absolutely continuous, we see from Lemma 2.2 that
ff, n(B(t))Ls(t)dt = fﬁ\[a’ yds. Letting o’ — a, b’ — b and since § € ', we find
that

b
1§Amk=/nwwﬂﬂﬂﬁ§p<1

We reached a contradiction and we showed that A > 1.
Let now K, CC D be such that K, /* D and I';,,, = {y € I, | Im~vy C K,} for

q € N. Let prg € F(Iyg) be such that [ w(2)pmg(2)? diw < ME(T ) + 55 for every

q € N. Since 3= € F(T',), we see that 3 (5% + pmg) € F(T'yg) for every ¢ € N. Using
Clarkson’s inequality, we have
P
o

1/ n P 1
B - d Z
1/1
<3 (g [ [Losmam)

for every ¢ € N. Then
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for every q e N.
Smce — < 7, We see from Lemma 2.8 that MP(T < fK x)dp < oo for

every q € N It results that

1 1 /1 € 1
0< = dn < 5 (57 (MET) + ) = ME(Twg) + 5
<[5 ) <y (5 (2 + 5) - ne >+2m)

for every m,q € N. Let m, € N be such that 2%” < 5 for every m > m.. Then
AP MP(T,,) < ME(T) + € for every m > m, and every g € N.

Since I'yy 7 Ty we use Ziemer’s theorem to see that MP(T',,,) ~ ME(T,,) if
q — oo and then X2, MP(T,,,) < MP(T") + ¢ for m > m,. Letting m — oo, we find that
lim, 00 ME(T',,) < MP(T') 4 € and letting € — 0 we find that lim,, . ME(I',,) <
MP(T"). We finally proved that lim,, ., M2(T,,) = ME(T). O
_ Proof of Lemma 2.5.  Suppose that ME(x) = 0 and let by > 0 be such that
B(z,by) is compact. Let 0 < b < by, Cp = {x}, C; = S(x,b) and let 0 < r < b and
Iy =Ty We see form the preceding theorem that lim, o ME(I',) = ME(z) = 0.

Let now I' be the family of all nonconstant paths having at least a limit point
in z. Let I'; = {7:[0,1) — D path | z is a limit point of v and d(Im~) > %} for
j € N. Let j € N be fixed and let 0 < 7, < %, e — 0. Then I'; > T', 1 and
hence MP(T';) < ME(T, et 0 if & — oo. Since MP(I';) = 0 for every j € N and
I'=J;2, T; we see that MP(F) = 0 and hence MP(z) = 0 if lim,_,o MZ(I';,p) = 0
for every fixed 0 < b < d(x,0D). O

L —p
A1

3. Proofs of the results

Proof of Theorem 1.1.  Suppose that f is not continuous at x. We can find
r; = x, y; — x, v;,y; € E for every j € N such that f(z;) — b, f(y;) = bo
with by, by € Y, by # by. Let 0 < r; < rg, r; — 0 such that there exists U; € V(z)
pathwise connected such that U; C B(z,7;) and x;,y; € U; for every j € N. Since
E is nowhere disconnecting, we can find a path H; joining z; with y; in U; \ E for
every 57 € N. We have two cases.

Case 1. There exists y € Y and R > 0 and an infinite set J; C N such that
f(H;) UM C B(y,R) for every j € J;. Then by,by € B(y,R) and d(f(H;)) >
d(by,by) for every j € Ji. Let py = CyRO™ 7 'min{d(by,by),d(M)} and let T, =
A(f(Hj), M,Y) for j € Ji. Using Theorem A, we see that My (T";) > p; for every
J € Ji.

Case 2. There exists y € Y and R > 0 and an infinite set Jo C N such that

M C B(y, R) and a subpath ); C H; such that Q;NB(y, R) # ¢, Q,;NB(y, 2R) # ¢,

Q; C B(y,3R) for every j € Jo. Let pp = Ci(3R)¥ 7 'min{R,d(M)} and let

= A(f(Qy), M,Y) for j € Jo. Then M,(I'}) > py for every j € Jo and N = J U J,.
Let p = min{py, p2}. We proved that M,(I";) > p for every j € N.
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Let j € N be fixed and let I'; be the family of all maximal liftings of some paths
from I"; starting from some point of H; or @;. We can suppose that B(z,r,) is
compact and let p: [0,1] = Y \ M, p € I';. Using the compactness of B(x,7,) and
the openness of the mapping f, we see that if ¢: [0,a) — X is a maximal lifting of the
path p from some point of H; or @;, then either the open path ¢: [0,a) — X has at
least a limit point in (B(z,r,) \ E) C EUS(z,r,), or intersects S(z,r,). Let I'y; =
{a € T'; | a has at least a limit point in E} and I'y; = {a € ['; | ImanS(x,r,) # ¢}
and Aj = Fxﬁ’jﬂ“m' Then Fj = Flj U ng, F; > f(F]), ij(FU) =0, ng > Aj. Since
ME(z) = 0, we see from Lemma 2.5 that lim;_,. MP(A;) = 0. We have

p < My(T) < My(f(T5)) < My(f(T1; U f(Tgy)) < My(f(T1)) + My(f(T25))
< A(ME(T5)) +v(ME(Ty)) = v(ME(Ty;)) < v(ME(A;)) — 0

if 5 — oo. We reached a contradiction and hence there exists lim,_,, f(y) = [ €
Y. O

Proof of Theorem 1.2. It results immediately from Theorem 1.1. O

Proof of Theorem 1.3.  Suppose that the family W is not equicontinuous at
x. Then there exists € > 0, r; — 0, y; € B(x,r;) such that d(f;(y;), fj(x)) > € for
every j € N. Since each mapping f; is continuous at =, we can find x; # z such
that d(f;(y;), fj(x;)) > €, with y; # z, x; # z for every j € N and let H; be a path
joining y; with ; in B(x,r;)\ {z} for j € N. Then d(f;(H;)) = d(f;(y;), f;(x;)) = €,
My, N B(y, Ry) # ¢ and we can suppose that f;(H;) N B(y, Ry) # ¢ for every j € N.
We have 4 cases.

Case 1. There exists R > Ry and an infinite set .J; C N such that f;(H;)UM;, C
B(y, R) for every j € J;. Let p; = C1R"% ' min{e, §} and I = A(f;(Hj), My,;, Y)
for j € Ji. We see from Theorem A that My (T";) > p; for every j € Ji.

Case 2. There exists R > Ry and an infinite set Jo C N such that f;(H;) C
B(y,R), M;,NB(y, R) # ¢, M;,NCB(y,3R) # ¢ for every j € Jo. Using Lemma 2.8,
we find a continuum K; C My, N C(y, R,3R) such that d(K;) > R for every j € J.
Let p, = C1(3R)“"9 ' min{e, R} and let T, = A(f;(H,),K;,Y) for j € J;. Then
My(T%) > py for j € Js.

Case 3. There exists R > Ry and an infinite set J3 C N such that My, C B(y, R)
and a subpath @; of H; such that Q;NB(y, R) # ¢, Q;NB(y,2R) # ¢, (); C B(y,3R)
for j € J5. Let p3 = C1(3R)?" " 'min{R, 0} and let T, = A(f;(Q;), My,,Y) for
j € J3. We see from Theorem A that M, (I";) > p3 for every j € Js.

Case 4. There exists R > Ry and an infinite set J4 C N such that we find a
subpath @); of H; such that Q; N B(y, R) # ¢, Q; N B(y,2R) # ¢, Q; C B(y,3R)
and a continuum K; C My, N C(y,R,3R) and d(K;) > R for every j € Jy. Let
ps = C1(3R)?" % and I'; = A(f;(Q;), K;,Y) for j € J;. Using Theorem A, we see
that M,(I'}) > p4 for every j € Jy. Let p = min{pi, p2, p3, pa} and we see that
N=JiUJUJsUJy.

Let I'; be the family of all maximal liftings of some paths from I'} starting from
some points of the sets H; or @, for j € N. We can suppose that B(z,r,) is compact
and that 0 < r; < r, forj € N. Let I'y; = {a € I'; | a has at least a limit point in x}
and F2j = {Oé S Fj ‘ ImozﬂB(x,rm) §£ ¢} fOI‘j € N. Then Fj = FljUFQj, F; > fj(FJ)
and I'y; > I'y,, », for every j € N. Let 3; = d(x, H;) > 0 for j € N and let us fix
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Jj € N. Let 0 < aj, < B, ogjp = 0. Then I'y; > Lo, for every kK € N. We have

0 < p < My(T) < My(f;(T5)) = My(f;(T1;) U fi(Tg5)) < My(f5(T15)) + My(f;5(T2))
< Mq(fj(rxajk,ﬁj)) + Mq(fj(rx,rj,rx)) < V(Ai(rx,ajkﬂj)) + V(Ai(rxmﬁm))'
Letting k — oo, we find that
0<p< My(T) <AL (Toar )

for every j € N. Letting now j — oo and using the fact that v(A?(I'z,,,,,)) — 0 we
reached a contradiction. We finally proved that the family W is equicontinuous at
x. 0J

Proof of Theorem 1.4.  Suppose that there exist a continuum M C Y with
Card M > 1 such that f(X \ E) C Y\ M. Let K C B(z,r) \ E be compact,
connected such that Card K > 1. Then f(K) is a continuum and Card f(K) > 1
and let y € Y and Ry > 0 be such that f(K)UM C B(y, Ry). Let R > Ry and I =
A(f(K),M,Y) and let T" be the family of all maximal liftings of some paths from I"
starting from some points in K. Let I'y = {a € " | @ has at least a limit point in E'}
and 'y = {a el |ImanS(y,R) # ¢}. Then ' =T, Uy, IV > f(I'), ME(T'y) =0,
Ty > T, and let 6 = C, RS min{d(f(K)), M}. We have

0 <0< My(I") < My(f(I) < My(f(P1UT2)) < My(f(I1)) + My(f(I2)) <

< A(MET)) +y(ME(T2)) = y(ME(Ts)) < y(ME(Lar k) < A(AL(Terr)) =0
if R — oco. We reached a contradiction and hence dim(Y \ f(X \ F)) = 0. O

Proof of Theorem 1.5. Let Uy € V(x) be connected such that Uy, C B(z, +) and
is compact, OU, N E = ¢ for every k € N and suppose that z & (-, f(B(z, 1) N D).
Let Fj, = C(f,z,B(z,7) N (0D \ E) \ {z}) for k € N. Then Fjy; C Fj for every
k € N and C(f,2,0D \ E) = N, Fx. Let 2a = d(2,C(f,z,0D \ E). We can
suppose that a < d(z, F},) for every k € N.

Let pr, = d(z, f(OU,N D)) for k € N. Suppose that there exists k, € N such that
pr, = 0 for every p € N. Let p € N be fixed. We can find a;,; € OUy, N D such that
f(ay,;) — =z and if necessarily extracting a subsequence, we can presume that there
exists a, € OUy, ND such that ay,j — ap. If a, € OUy,NOD, then a, € OU,,N(OD\ E)
and then z € F),, which contradicts the fact that d(z, Fi,) = o > 0. We find that
a, € Uy, N D C B(x, é) N D and f(a,) = z for every p € N and this contradicts
the fact that z & ()2, f(B(z, é) N D).

We proved that there exists k, € N such that p, > 0 for every k£ > ky and we
can suppose that pp > 0 for every k € N. Since z € C(f, x), there exists oy, € U, N D
such that f(ay) — 2. Let C be the constant from property (P,) corresponding to
the point z. Since f is an open mapping, there exist 0 < r < % pr and open subsets
Co in S(z,7) and Qo C Ux N D such that f(Qy) = Co.

Let k € N be fixed. Let ¢y = 7 and ¢; N\, 0. Let A; = {y € S(z, ¢1)| for every
path p: [0,1] — B(z,Cyo) with p(0) € Cy, p(1) = y there exists o € @ such that
f(a) = p(0) and we cannot lift p from a}. Suppose that there exists a continuum
Q C Ay with Card@ > 1. Let [' = A(Cy, Q, B(z,Cyy)). Since dim Cy > 1 there
exists a continuum M, C Cy with Card My > 1 and we see from Theorem A that
0 < M,(T).

Let I' be the family of all maximal liftings of some paths p: [0, 1] — Y from IV such
that there exists a point b € @)y such that f(b) = p(0) and we cannot lift p from b}.
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Let p: [0,1] = B(z,Cry), p € I" and let ¢: [0,a) — D be a maximal lifting of p from
some point b € Cy with f(b) = p(0) and 0 < a < 1. We see that D N Uy, is compact,
that CD N Uy is nonempty and open and Im ¢ = (ImgN D NU,)U (ImgNCD N T,) U
(ImgNo(DNUy)). Since Im ¢ is connected, we see that if ImgNCD N Uy # ¢, then
Im ¢NA(DNUy) # ¢. Since d(DNUy) C (UrNOD)U(DNAU) and Im g C D, it results
that Im ¢ N OU # ¢ and hence there exists 0 < ¢ < a such that ¢(c) € OUy and then
p(c) = f(q(c)) € f(DNOUE). We reached a contradiction, since d(p(c), z) < Cry < pg
and on the otherside d(p(c), z) > d(z, f(OU, N D) = pg.

We proved that Img € D NU,. Let t, / a. Since D N U, is compact and if
necessarily extracting a subsequence, we can suppose that there exists w € D N Uy
such that ¢(t,) — w. If w € D[\ U, we use the openness of the mapping f and
we find U € V(w), U C D N Uy such that p(a) = f(q(a)) € f(U) C f(DNUy)
and this contradicts the maximality of the open path ¢: [0,a) — D N Uy. It results
that w € (D NU,) C (U, NOD)U (DNIU,). If w e DN AU, then p(a) =
limy, 00 p(tn) = lim, 00 f(q(t,)) = f(w) and d(p(a), z) < Cry < p and on the other
side d(p(a), z) > d(z, f(D NOUy)) = pr. and we reached a contradiction.

If we dD \ E, then z € F}, and on the other side d(z, Fy) = a > 0. It results
that w € 0DNE. We see that ME(E) = 0 and hence MP(I') = 0 and since [ > f(I'),
we have 0 < M,(I") < M,(f(I')) < v(ME(I')) = 0 and we reached a contradiction.
We proved that dimA; = 0.

Let us show that A; is closed in S(z,1). Let y, € Ay, y, — y € S(2,¢1) and
suppose that y € A;. Then there exists a € Qq, a path 5: [0,1] — B(z,Cyg) with
B(0) = f(a), B(1) = y and a path v: [0, 1] — DNUj such that y(0) = a and § = for.
Let V4,...,V,, be normal domains such that Im~y c U, V;, f(V:) C B(z, Cegy),
it = 1,...,m and there exists points z; € V; NV, ; for i = 1,...,m — 1 and let
Yn € f(Vyn) for some n € N. We choose paths ¢;: [0,1] — Vi, i = 1,...,m such that
@(0) =, qi(1) = 21, ¢:41(0) = ¢i(1) = z for i = 1,....,m — 1 and f(gm(1)) = Yn.
Let g=q1V,...,Vgy and p = fog. Then ¢(0) = a, p(0) = f(a), p = foq, p(1) = yn,
Imp C B(z,Cyp) and we can lift p from «. This contradicts the fact that y, € A;.
We proved that A; is closed in S(z, ¢1).

Let Al = A(f(Qo), S(z,¢1)\ A1, B(z,C¢p)) and let Q1 be the set of all endpoints
of the maximal liftings of the paths from A} starting from some points in Qy. We
see that if p: [0, 1] — B(z, Cpy) is a path from A} and p(0) = f(«) for some o € Qy,
there always exists a path ¢: [0,1] — D N Uy, such that ¢(0) = a and foq=p. We
also see that f(Q1) = S(z,¢1) \ 41.

Let Ay = {y € S(z,p2)| for every path p: [0,1] — B(z,C¢1) with p(0) € f(Q1)
and p(1) = y there exists a point b € (); with p(0) = f(b) and we cannot lift p from
b}. As before, we see that dimAs = 0 and that A, is closed in S(z, ¢2).

Let Ay = A(f(Q1)), S(z, p2)\ Az, B(z,Cy1)) and let Q2 be the set of all endpoints
of the maximal liftings of some paths from A starting from some points in Q);. We
see that if p: [0,1] — B(z,C¢y) is a path from A} and p(0) = f(b) with b € Qy,
there always exists a path ¢: [0,1] — D N Uy such that ¢(0) = b and foq=p.

We also remark that if p;: [0,1] — B(z,Cyyp) is a path from A} and by € Qo is
such that f(by) = p1(0), there exists y; € f(Qo) = B(z,¢1) \ A such that pi(1) =y,
and a path ¢;: [0,1] — D N Uy such that ¢;(0) = by and foq = pi. If po: [0,1] —
B(z,C¢y) is a path from A} such that py(0) = y; and po(1) € S(z,¢,) \ Asg, there
exists a path ¢o: [0, 1] — D N Uy, such that ¢2(0) = ¢1(1) and f(g2(0)) = f(q1(1)) =
pi(l) = y; and f o gy = po. In this way we find closed sets A; in S(z, ;) with
dimA; = 0 and sets Q; C DNU; with f(Q;) = S(2,¢;) \ 4, for j > 1 and such that
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for every path p;: [0,1] = B(z,Cyj;_1) with p;(0) € f(Qj-1), pj(1) € f(Q;), there
exists a path g;: [0,1] = D N Uy with ¢;(0) € Qj-1, ¢;(0) = ¢j_1(1), ¢;(1) € Q; and
fogq; =p; for every j > 1.

Let pg: [0,00) — B(z,C¢o), pr = p1 V paV,...,Vp,V, ... and g : [0,00) = DN
Uk, G = 1V @2V, ... ,NVqnV, . . .,. Then py, and g are open paths and limy_,, px(t) = z,
foq. = pr and g(0) € Qo.

Let By, be the set of all limit points of the open path g : [0,00) — DN U. Then
By, is compact, connected. Suppose that Card(B, NUy N D) > 1. We use Lemma 2.8
and we find a continuum Ky C By N U, N D with Card K > 1 and since f(a) = z
for every a € Kj and f is a light mapping, we reached a contradiction. We have 3
possible cases.

Case 1. By, = {x}} with 2, € Uy N D and f(zy) = 2. Since z € (),~, f(B(z,7) N
D) we see that case 1 cannot hold for infinitely many & € N. We can suppose that
case 1 does not hold for every k € N.

Case 2. Card By, > 1 and hence B, C U, NdD. Since dimB;, > 1 and dimFE = 0,
we can find a point x;, € U, N (0D \ E) and t,, — oo such that Gx(t,,) — . Then
f(@(tnp) = Pr(tnp) — 2 and this implies that z € C(f,xx) C Fy. We reached a
contradiction, since d(z, Fy) > a > 0. We proved that case 2 cannot hold.

Case 3. By, = {z}} with z;, € UND. Since limy_,« Gx(t) = 1, we prove as before
that we cannot find infinitely many & € N such that z;, € Uy N (0D \ E). We can
suppose that x € E for every k € N and hence z, — = and z € A(f, xy) for every
x € N. U

Proof of Theorem 1.6. Since x € IntD, we see that B(x,r) NdD = ¢ for small
r > 0 and hence C(f,z,0D \ E) = ¢, Since x is an essential singularity of f, we
see from Theorem 1.2 that dimY \ (f(B(z,r)\ E)) = 0 for every r > 0 and since
dimY > 1, we see that C(f,z) =Y. We apply now Theorem 1.5. It is obvious that
if x is an isolated essential singularity of f, we can use condition (1.4) instead of
condition (1.3). O

Proof of Theorem 1.7. Suppose that Y # Y and that there exists b € B and
€ > 0 such that ME(E N B(b,e)) = 0. Since ME(B N B(b, 5)) > 0, there exists a
point y € (B \ E) N B(b, ). It results that there exists a path a: [0,1) — D such
that lim,_; a(t) = y and lim,_,; f(a(t)) in Y does not exist. There exists y;,y2 € Y,

y1 # y2 and t; 7 1 such that f(a(te;)) = v1, f(agjt1) = yo. Let H; = a([ty;, taj41])
and r; — 0 such that 0 < r; < § and H; C B(y,r;) for every j € N. Then there
exists § > 0 such that d(f(H;)) > ¢ for every j € N and f(H,) is a continua and
Card f(H;) > 1 for j € N. Let M C Y be a continuum with Card M > 1 and such

that f(DNB(y,5)) CY \ M. We have two cases.

Case 1. There exists yp € Y and R > 0 and an infinite set J; C N such that
f(H;) UM C B(yo, R) for every j € Ji. Let I'; = A(f(Hj), M,Y) for j € Ji.
Using Theorem A, if p; = C; R~ min{d, d(M)} we see that M,(T"}) > p; for every
Jj € Jr.

Case 2. There exists yp € Y, R > 0 and an infinite set J, C N such that

M C B(yo, R) and f(H;) N S(yo, R) # &, f(H;) N S(yo, 2R) # ¢, f(H;) C B(yo,3R)
for j € Jo. Let p; = C1(3R)? 7 Imin{R,d(M)}. We see from Theorem A that
M,(T%) > pa for every j € Jy.
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Let J = J1 U Jy and p = min{p;, p2}. We proved that M, (T;) > p for every
j € J. Let I'; be the family of all maximal liftings of some paths from I'; starting
from some points of H; or (); for j € J. Let I'y; = {a € [';|a has at least a limit
point in D N B(y, )} and I'y; = {a € I';|Ima N S(y, §) # ¢} for j € J. Using the
compactness of B(y, 5) and the openness of the mapping f, we see that if a € I',
then either a has at least a limit point in 9D N B(y, 5) or Ima N S(y,5) # ¢. Then
[y =Ty Uly, I > f(Iy) for j € J and let A; =T, ¢ for j € J. We see that
Iy; > A; for j € J and we see from Lemma 2.5 that lim;_,., MZ(A;) = 0.

Let T'); = {7 € I'y|y is rectifiable} for j € J. We see from Theorem 2.3 that
ME(Ty;) = ME(T'Y;) for j € J. Let now j € J be fixed and let a2 [0,1) — X, a € T'{;.
Then there exists lim,_,; a(t) = a, € X and obviously there exists lim,_,; f(a(t)) € Y
and hence a, € E. Now EN B(y,5) C £ N B(b,e) and ME(E N B(b,¢)) = 0 and
hence ME(E N B(y, §5)) = 0 and this implies that ME(I'j;) = 0 for every j € J. We
have

p < My(1) < Mo(f(L'5)) = My(f(T'1;) U f(T;)) < My(f(T'15)) + Mg(f (')
< A (ME(Ty)) + 1 (ME(Ty;)) = (M) + 7 (ME(Ty;)) < v(ME(4;)) = 0

if j — oo. We reached a contradiction and hence MP(ENB(b,¢)) > 0 for every b € B
and every € > (0. A similar argument holds if Y is compact. OJ
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