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Abstract. We study the boundary behaviour of open, light mappings satisfying generalized

modular inequalities in general metric measure spaces. We extend in this way known facts from

the theory of quasiregular mappings and from their recent generalizations, namely the mappings of

finite distortion and the so called ring mappings.

1. Introduction.

A well-known, basic tool in the study of quasiregular mappings is the modular
inequality of Poleckii

(1.1) M(f(Γ)) ≤ KM(Γ)

valid for all path families Γ in D. Here D is a domain in R
n, the mapping f : D →

R
n is quasiregular and M is the modulus of a curve family (see the monographs

[45, 46] and [63, 64] for more information about quasiregular mappings). Several
generalizations of quasiregular mappings have been studied in the last 35 years. The
most important is the class of mappings of finite distortion (see the monographs [27]
and [31] and the papers [34, 44]). The classes of mappings distinguished by moduli
inequalities and also defined on open sets in R

n were intensively studied in the last
15 years (see [10–13, 15–19, 29, 35, 39–41, 47–49, 52–57, 63]). Such an approach
was proposed by Martio for homeomorphisms between open sets in R

n and the topic
was summarized in the resulting monograph [41] written with Ryazanov, Srebro and
Yakubov. Another generalization of this well-known class of quasiregular mappings
is the class of quasiconformal maps on general metric measure spaces (see [1, 2, 7, 8,
23–26, 32, 33]). Quasiregular mappings on metric measure spaces were studied in [6,
9, 14, 21, 22, 43]. Finally, homeomorphisms and open, discrete mappings satisfying
generalized modular inequalities were studied in [4, 5, 30, 50, 51, 57–61, 64] on
generalized metric measure spaces, other then R

n with the euclidean metric. In [30]
the boundary behaviour and equicontinuity of bounded open, discrete mappings on
Riemannian manifolds for which a Poleckii type modular inequality holds is studied
(see Theorem 5.4 in [30]). The same thing is studied on Ahlfors Q-regular metric
measure spaces in [58] and on factor spaces in [60] and a Poleckii type modular
inequality is given in [60]. We extend some of these results and some older results
from the theory of quasiregular mappings from [38] and of the mappings of finite
distortion from [10] on general metric measure spaces and for continuous, open, light
mappings f : X → Y .

In this paper X, Y will be metric measure spaces endowed with Borel regular
measures µ and ν such that 0 < µ(B) < ∞ for every ball B in X and 0 < ν(B) < ∞
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for every ball B in Y and we suppose that the spaces X and Y are locally pathwise
connected and locally compact and have countable bases of neighbourhoods. The
distance on X and Y will be denoted by d. We also suppose that X is proper (i.e.
every closed ball B ⊂ X is compact) and we denote X = X ∪ {∞} the Alexandrov
compactification of X. In such a space if X 6= X and if d(x, xn) → ∞ for some
x ∈ X, we say that xn → ∞. We work with continuous, open, light mappings
f : D ⊂ X → Y , where D ⊂ X is open and Y will always be Ahlfors Q-regular and
will support a (1, q)-Poincaré inequality with Q − 1 < q ≤ Q. Every Riemannian
n-manifold is Ahlfors n-regular. The basic approach of the theory on metric measure
spaces is from Väisälä [65]. We give the complete proof in Section 2, just for the sake
of completeness.

Let γ : [a, b] → X be a path and let ∆ = (a = t0 < t1 <, . . . , < tn = b) be
a subdivision of [a, b]. Let D([a, b]) be the set of all subdivisions of [a, b]. We set
V∆(γ) =

∑n

i=1 d(γ(ti−1), γ(ti)) and l(γ) = sup∆∈D([a,b]) V∆(γ) be the length of γ. If

l(γ) < ∞, we say that γ is rectifiable. We also have l(γ) =
∑n

i=1 l(γ|[ti−1, ti]).
Let γ : [a, b] → X be rectifiable. As in [65] we show that there exists a unique path

γ0 : [0, c] → X such that γ = γ0◦h, where h : [a, b] → [0, c] is increasing, l(γ0|[0, t]) = t
for every t ∈ [0, c] and we prove that h = sγ and c = l(γ). Here sγ : [a, b] → [0, l(γ)]
is given by sγ(t) = l(γ|[a, t]) for every t ∈ [a, b] and is called the length function of
γ. Then sγ is increasing and continuous and d(γ(t), γ(s)) ≤ sγ(t) − sγ(s) for every
a ≤ s ≤ t ≤ b and if h : [a′, b′] → [a, b] is increasing (decreasing), then l(γ ◦h) = l(γ).
The path γ0 : [0, l(γ)] → X is called the normal representation of γ.

Let γ : [a, b] → X be rectifiable and ρ : X → [0,∞] a Borel function. We set
´

γ
ρ ds =

´ l(γ)

0
ρ(γ0(t)) dt the line integral of ρ over γ. If γ : [a, b] → X is locally

rectifiable, we set
´

γ
ρ ds = supβ

´

β
ρ ds, where the supremum is taken over all closed

subpaths β of γ.
Let D ⊂ X be open. We set A(D) the set of all nonconstant path families in

D. If Γ ∈ A(D), we set F (Γ) = {ρ : X → [0,∞] Borel function |
´

γ
ρ ds ≥ 1 for

every γ ∈ Γ locally rectifiable}. If Γ1,Γ2 ∈ A(D), we say that Γ1 > Γ2 if every path
γ1 ∈ Γ1 has a subpath γ2 ∈ Γ2.

Let p > 1 and ω : D → [0,∞] be µ measurable and finite µ a.e. We define the
p-modulus of weight ω by

Mp
ω(Γ) = inf

ρ∈F (Γ)

ˆ

X

ω(x)ρp(x) dµ if Γ ∈ A(D).

If F (Γ) = φ, we set Mp
ω(Γ) = 0. If ω = 1, we put

Mp(Γ) = inf
ρ∈F (Γ)

ˆ

X

ρp(x) dµ if Γ ∈ A(D).

We see that if Γ1,Γ2 ∈ A(D), Γ1 > Γ2, then Mp
ω(Γ1) ≤ Mp

ω(Γ2) and if Γ =
⋃∞

k=1 Γk

with Γk ∈ A(D) for every k ∈ N, then Mp
ω(Γ) ≤

∑∞
k=1M

p
ω(Γk).

Let E ⊂ X, p > 1 and ω : X → [0,∞] be µ measurable and finite µ a.e. We say
that Mp

ω(E) = 0 if Mp
ω(Γ) = 0, where Γ = {γ : [0, 1) → X path |γ has at least a limit

point in E} and if ω = 1, we say that Mp(E) = 0. We say that Mp
ω(E) > 0 if it is

false that Mp
ω(E) = 0. It is clear that if E = {xn}n∈N and Mp

ω(xn) = 0 for every
n ∈ N, then Mp

ω(E) = 0.
Here, if γ : [0, 1) → X is an open path and there exists tn → 1 such that γ(tn) →

x, we say that x is a limit point of γ.
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Example 1.1. Let p < m, E ⊂ X such that Mm(E) = 0, D ⊂ X open such

that
´

D\E
ω(x)

m
m−pdµ < ∞. Let Γ = {γ : [0, 1) → D \ E path |γ(0) ∈ D \ E and γ

has at least a limit point in E} and let ρ ∈ F (Γ). Then using Hölder’s inequality, we
have

Mp
ω(Γ) ≤

ˆ

D\E

ω(x)ρp(x) dµ ≤

(
ˆ

D\E

ω(x)
m

m−p dµ

)
m−p
m
(
ˆ

D\E

ρ(x)m dµ

)
p
m

.

Since Mm(Γ) = Mm(E) = 0 and ρ ∈ F (Γ) was arbitrarily chosen, we see that
Mp

ω(E) = 0.

Let E, F ⊂ X and U ⊂ X such that E∪F ⊂ U . We set ∆(E, F, U) = {γ : [0, 1] →
U path |γ(0) ∈ E, γ(1) ∈ F and γ((0, 1)) ⊂ U}. As in [25], we set for p > 1 and E, F
closed subsets of an open set U ⊂ X

capp(E, F, U) = inf

ˆ

U

ρp(x) dµ

where the infimum is taken over all upper gradients of all functions u : U → R such
that U |E ≥ 1 and U |F ≤ 1. We see from Proposition 2.17 in [25] that if X is proper
and ϕ-convex, then capp(E, F, U) = Mp(∆(E, F, U)).

Let E ⊂ X closed, E ⊂ A open and ΓE = ∆(E, ∁A,A). We say that capp(E) = 0

if capp(E, ∁A,A) = 0 for every open set E ⊂ A and if X is proper and ϕ-convex, then

capp(E, ∁A,A) = Mp(ΓE) and hence a closed set E ⊂ X is such that capp(E) = 0
if and only if Mp(E) = 0. It is important in our paper to find conditions for a set
E ⊂ X to be such that Mp

ω(E) = 0, at least for a punctual set E.
Let x ∈ X and 0 < a < b. We set Γx,a,b = ∆(B(x, a), S(x, b), B(x, b)). We set

Lx,a,b = {ρ : X → [0,∞]| there exists a Borel function η : (a, b) → (0,∞] such that
´ b

a
η(t)dt ≥ 1 and ρ(z) = η(d(x, z)) if z ∈ C(x, a, b), ρ(z) = 0 otherwise}. Here

C(x, a, b) = B(x, b) \ B(x, a). We set if ω : D → [0,∞] is µ measurable and finite µ
a.e.

∆p
ω(Γx,a,b) = inf

ρ∈Lx,a,b

ˆ

X

ω(z)ρp(z) dµ.

We shall prove in Chapter 2 that Lx,a,b ⊂ F (Γx,a,b) and hence

(1.2) Mp
ω(Γx,a,b) ≤ ∆p

ω(Γx,a,b).

We say that Mp
ω(x) = 0 if there exists 0 < b0 < d(x, ∂D) such that lima→0M

p
ω(Γx,a,b) =

0 for every fixed 0 < b < b0 and we say that ∆p
ω(x) = 0 if there exists 0 < b0 <

d(x, ∂D) such that lima→0∆
p
ω(Γx,a,b) = 0 for every fixed 0 < b < b0. We see from

(1.2) that if ∆p
ω(x) = 0, then Mp

ω(x) = 0.
Let D ⊂ X be a domain. We say that a µ measurable function ω : D → [0,∞]

has finite mean oscillation at a point x ∈ D (abbr. ω ∈ FMO(x)) if there exists
ǫ0 > 0 such that

´

B(x,ǫ0)
ω(z)dµ < ∞ and

lim sup
ǫ→0

 

B(x,ǫ)

|ω(z)− ωB(x,ǫ)|dµ < ∞.

Here, if f : X → R is µ measurable, we set fB = 1
µ(B)

´

B
f(z)dµ for every ball B ⊂ X.

Using a result from Chapter 13 in [41], we have

Lemma 1.1. Let X be an Ahlfors Q-regular metric measure space with Q ≥ 2,
D ⊂ X a domain, x ∈ D and ω ∈ FMO(x). Then ∆Q

ω (x) = 0.
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We found in Lemma 1.1 and Lemma 2.6 some conditions in order that ∆p
ω(x) = 0.

We remark that if η : (0,∞) → [0,∞] is a Borel function such that
´ b

a
η(t) dt > 0 for

every 0 < a < b and
´ b

0
η(t) dt = ∞, then

∆p
ω(Γx,a,b) ≤

ˆ

C(x,a,b)

ω(z)η(d(x, z))p dµ/

(
ˆ b

a

η(t) dt

)p

.

It results that if
´

B(x,b)
ω(z)η(d(x, z))p dµ < ∞ for some b > 0, then ∆p

ω(x) = 0.

Let D ⊂ X be open and f : D → Y . We say that f is open if f carries open sets
into open sets, we say that f is discrete if either f−1(y) = φ, or f−1(y) is a discrete
set in D for every y ∈ Y and we say that f is a light map if dimf−1(y) ≤ 0 for every
y ∈ Y . Here, if A ⊂ X, dimA is the topological dimension of A (see the monograph
[28] for more information on dimension theory).

A metric measure space X is Ahlfors Q-regular if there exists a Borel regular
measure µ on X and a constant C0 such that

1

C0
rQ ≤ µ(B(x, r)) ≤ C0r

Q for every ball B(x, r) ⊂ X.

Let u : X → R. A non-negative Borel measurable function ρ : X → [0,∞] is
said to be an upper gradient of u if for every x, y ∈ X and every rectifiable path
γ : [a, b] → X with γ(a) = x, γ(b) = y, the following inequality holds:

|u(x)− u(y)| ≤

ˆ

γ

ρ ds.

The space X is said to support a (1, q)-Poincaré inequality (q > 1) if there
exists constants C ≥ 1 and r ≥ 1 such that for every bounded continuous functions
u : X → R, all balls B ⊂ X and all upper gradients ρ of u the following inequality
holds true

 

B

|u(x)− uB| dµ ≤ Cd(B)

(
 

rB

ρq(x) dµ

)
1
q

.

Here, if A ⊂ X, we denote by d(A) the diameter of the set A.
In this paper we study the geometric properties of continuous, open light map-

pings f : D → Y satisfying the following relation:

(1.3) Mq(f(Γ)) ≤ γ(Mp
ω(Γ)) for every Γ ∈ A(D).

Here D ⊂ X is a domain, Y is Ahlfors Q-regular and supports a (1, q)-Poincaré
inequality with Q − 1 < q ≤ Q, p > 1, ω : D → [0,∞] is a µ-measurable function
which is µ-finite a.e., γ : (0,∞) → (0,∞) is increasing and limt→0 γ(t) = 0.

If γ(t) = t for t > 0 and p = q, relation (1.3) is a Poleckii type modular inequality
for general metric measure spaces. In [21] this relation is proved for quasiregular
mappings f : X → Y between Ahlfors p-regular spaces. In [30] such a relation is
proved for open, discrete mappings between Riemannian manifolds Mn 6= R

n and in
[60] such a relation is proved for factor spaces Bn/G, where Bn is the unit ball in
R

n and G is a Möbius group. This shows that there exist open, discrete mappings
satisfying a Poleckii type modular inequality on general metric measure spaces and
hence the theory of the class mappings satisfying relation (1.3) is effective.

It is interesting that even if n ≥ 3 and D ⊂ R
n is a domain, a result of Wilson

[68] shows that there exists a continuous, open, light mapping f : D ⊂ R
n → R

n

such that D = Bf = {x ∈ D|f is not a local homeomorphism at x} and hence such
a mapping is not discrete. We prove the following eliminability result:
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Theorem 1.1. Let p > 1, D ⊂ X a domain, E ⊂ D closed and nowhere
disconnecting, ω : D → [0,∞] be µ measurable and finite µ a.e. such that Mp

ω(E) = 0,
let f : D \ E → Y be continuous, open and light and x ∈ E. Suppose that there
exists a continuum M ⊂ Y with CardM > 1 and rx > 0 such that B(x, rx) ⊂ D and
f(B(x, rx) \E) ⊂ Y \M and there exists γ : (0,∞) → (0,∞) increasing such that f
satisfies condition (1.3). Then there exists limy→x f(y) ∈ Y .

Remark 1.1. If E = {x}, we can replace condition (1.3) from the preceding
theorem with a weaker one

(1.4) Mq(f(Γx,a,b)) ≤ γ(∆p
ω(Γx,a,b)) for every 0 < a < b < d(x, ∂D).

We also replace condition “Mp
ω(x) = 0” with the condition “∆p

ω(x) = 0”.

Mappings satisfying condition (1.4) are called in [41] ring mappings in the point
x. Theorem 1.1 was proved in [30] and [58] for bounded, open discrete mappings
satisfying condition (1.4) and such that ∆p

ω(x) = 0. If D ⊂ X is open, E ⊂ D, x ∈ E
and f : D \E → Y is a mapping, we say that x is an essential singularity of f if there
exists no limy→x f(y) = l ∈ Y .

Theorem 1.2. Let p > 1, D ⊂ X a domain, E ⊂ D closed and nowhere discon-
necting, ω : D → [0,∞] be µ measurable and finite µ a.e. such that Mp

ω(E) = 0, let
f : D \E → Y be continuous open and light and let x ∈ E be an essential singularity
of f . Suppose that there exists γ : (0,∞) → (0,∞) increasing with limt→0 γ(t) = 0
and such that f satisfies condition (1.3). Then dim(Y \ f(B(x, r) \E)) = 0 for every
r > 0.

Remark 1.2. If E = {x} we may replace in the preceding theorem condition
(1.3) by condition (1.4). We also replace condition “Mp

ω(x) = 0” with condition
“∆p

ω(x) = 0”.

Our theorem extends a result from [61]. Of course, if dimY ≥ 1, our theo-
rem shows, as in the classical case of holmorphic or quasiregular mappings, that
f(B(x, r) \E) is densely in Y for every r > 0. We prove the following equicontinuity
result:

Theorem 1.3. Let p > 1, D ⊂ X a domain, x ∈ D, ω : D → [0,∞] µ measurable
and finite µ a.e. such that ∆p

ω(x) = 0. Let W be a family of continuous, open, light
mappings f : D → Y \ Mf , where Mf is a continuum with CardMf > 1 for every
f ∈ W and there exists δ > 0, y ∈ Y and R0 > 0 such that d(Mf) ≥ δ and
Mf ∩ B(y, R0) 6= φ for every f ∈ W and {f(x)}f∈W ⊂ B(y, R0). Suppose that
there exists γ : (0,∞) → (0,∞) increasing with limt→∞ γ(t) = 0 such that condition
(1.4) is satisfied for every mapping f ∈ W in the point x. Then the family W is
equicontinuous at x.

Remark 1.3. The preceding theorem was proved in [30] and [58] for uniformly
bounded families W of open, discrete mappings f : D → B(y, R0) \ Mf , for every
f ∈ W , where Mf is a continuum in B(y, R0) depending on f .

We prove a Picard type theorem.

Theorem 1.4. Let X be such that X 6= X, E ⊂ X, let p > 1 and ω : X → [0,∞]
be µ measurable and finite µ a.e. such that Mp

ω(E) = 0 and there exists x ∈ X and
r > 0 such that limR→∞∆p

ω(Γx,r,R) = 0. Let f : X \E → Y be continuous, open and
light such that there exists γ : (0,∞) → (0,∞) increasing with limt→0 γ(t) = 0 and
f satisfies condition (1.3). Then dim(Y \ f(X \ E)) = 0.
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Remark 1.4. If X is Ahlfors p-regular and ω = 1, the conditions from the
preceding theorem are satisfied. The result from Theorem 1.4 was proved in [10] for
mappings with finite distortion.

Let D ⊂ X be a domain, x ∈ ∂D and f : D → Y . We define the cluster set
C(f, x) = {y ∈ Y | there exists xp ∈ D, xp 6= x, xp → x such that f(xp) → y}.
Let F : ∂D → P(Y ) be given by F (z) = C(f, z) for every z ∈ ∂D. If K ⊂ ∂D,

we set C(f, x,K) =
⋂∞

m=1 F (Um ∩ (K \ {x})), where the closure is taken in Y and
(Um)m∈N is a fundamental system of neighbourhoods of x. Here P(Y ) is the family
of all subsets of Y . If γ : [0, 1) → D is a path and limt→1 γ(t) = x and w ∈ Y is such
that limt→1 f(γ(t)) = w, we say that w is an asymptotic value of f in x and we set
A(f, x) = {w ∈ Y |w is an asymptotic value of f at x}.

We say that the space Y has property (Pq), q > 1, if for every y ∈ Y there exists
ry > 0 and a constant C depending on y such that Mq(∆(C1, C2, B(y, Cr)) > 0 for
every non-degenerate disjoint continua C1, C2 ⊂ B(y, r) and every 0 < r < ry. It is
known that R

n has property (Pn). We also see from page 17 in [22] that if Y is of
locally q-bounded geometry, then Y has property (Pq). As a particular case, let us
point out that every Riemannian q manifold has property (Pq).

An important chapter in the theory of complex functions is dedicated to the
study of cluster sets (see the book [42]). A classical theorem in this field is due to
Nashiro. He proved in [42], page 14 that if D ⊂ C is a domain, E ⊂ ∂D is compact
and cap2(E) = 0, f : D → C is meromorphic and γ ∈ C(f, x) \ C(f, x, ∂D \ E) is
an exceptional value of f (i.e. α 6∈

⋂

r>0 f(B(x, r) ∩D)), then either α ∈ A(f, x), or
there exists xk ∈ E, xk → x such that x ∈ A(f, xk) for every k ∈ N. Some extensions
of this result were given by Martio and Rickman in [38] for quasiregular mappings
and in [10] by Cristea for mappings of finite distortion.

Theorem 1.5. Let Y be a metric measure space having property (Pq), q > 1,
such that B(y, r) is pathwise connected and such that dimS(y, r) ≥ 1 for every
y ∈ Y and every r > 0, p > 1, D ⊂ X a domain such that dim∂D ≥ 1, let
ω : D → [0,∞] be µ measurable and finite µ a.e., E ⊂ ∂D such that dimE = 0 and
Mp

ω(E) = 0. Let f : D → Y be continuous, open light and suppose that there exists
γ : (0,∞) → (0,∞) increasing with limt→0 γ(t) = 0 such that f satisfies condition
(1.3).

Let x ∈ (∂D\E)′ and z ∈ C(f, x)\(C(f, x, ∂D\E)∪
⋂

r>0 f(B(x, r)∩D)). Then
either x ∈ E and z ∈ A(f, x), or there exists xk ∈ E, xk → x such that z ∈ A(f, xk)
for every k ∈ N.

The next result extends a theorem which for plane meromorphic functions is
known as Iversen’s theorem and Cartwright’s theorem. Our result also extends a
theorem of Martio and Rickman from [38] established for quasiregular mappings and
a theorem of Cristea from [10] established for mappings of finite distortion.

Theorem 1.6. Let Y having property (Pq), Q − 1 < q ≤ Q, such that B(y, r)
is pathwise connected and such that dimS(y, r) ≥ 1 for every y ∈ Y and every
r > 0, p > 1, D ⊂ X a domain, E is D closed in D and nowhere disconnecting,
ω : D → [0,∞] be µ measurable and finite µ a.e. such that Mp

ω(E) = 0. Let
f : D \ E → Y be continuous, open and light and x an essential singularity of f .
Suppose that there exists γ : (0,∞) → (0,∞) increasing with limt→0 γ(t) = 0 and
such that f satisfies condition (1.3). Then, if x is an isolated point of E, it results
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that Y \
⋂

r>0 f(B(x, r) \ E) ⊂ A(f, x) and in the general case there exists xk ∈ E,
xk 6= x, xk → x such that Y \

⋂

r>0 f(B(x, r) \ E) ⊂ A(f, xk) for every k ∈ N.

Remark 1.5. If in the preceding theorem x is an isolated singularity of f we may
replace condition (1.3) by condition (1.4). We also replace condition “Mp

ω(x) = 0” by
condition “∆p

ω(x) = 0”. Some analog of Theorem 1.6 was proved in Theorem 1 from
[57]. We also see that our Theorem 1.5 extends the classical result of Noshiro from
[42], page 14 even in the Euclidean setting, since it works for “singular” sets E ⊂ ∂D
which might not always be compact.

The next theorem extends a result of Martio and Rickman from [38] concerning
the density of the points x ∈ Sn at which a quasiregular mapping f : Bn → Bn

with cap(∁f(Bn)) > 0 has some asymptotic values and a result of Cristea from [10]
established for mappings of finite distortion.

Theorem 1.7. Let D ⊂ X a domain, B = {b ∈ ∂D| there exists α : [0, 1) → D
a path such that limt→1 α(t) = b}, let f : D → Y be continuous, open and light
and E = {b ∈ B| there exists a path α : [0, 1) → D such that limt→1 α(t) = b and
limt→1 f(α(t)) = l ∈ Y }. Let p ≥ 2, ω ∈ L1

loc
(D) such that ω(x) > 0 for µ a.e. x ∈ D,

Mp
ω(b) = 0 for every b ∈ B \E, Mp

ω(B ∩B(b, ǫ)) > 0 for every b ∈ B and every ǫ > 0
and for every b ∈ B \E and every ǫ > 0, there exists a continuum M depending on b
and ǫ such that CardM > 1 and f(D ∩B(b, ǫ)) ⊂ Y \M . Suppose that there exists
γ : (0,∞) → (0,∞) increasing with limt→0 γ(t) = 0 such that f satisfies condition
(1.3). Then Mp

ω(B(b, ǫ) ∩ E) > 0 for every b ∈ B and every ǫ > 0 and hence E is
dense in B.

2. Preliminaries

We first prove that Lx,a,b ⊂ F (Γx,a,b) and hence we prove relation (1.2). We
use the arguments from [65]. We say that γ : [a, b] → X is absolutely continuous
if for every ǫ > 0 there exists δǫ > 0 such that

∑n
i=1 d(γ(bi), γ(ai)) < ǫ whenever

∆i = [ai, bi] are non-overlaping subintervals of [a, b] such that
∑n

i=1(bi − ai) < δǫ. As
in [65] we see that such a path is rectifiable and if γ : [a, b] → X is a rectifiable path,
then sγ is absolutely continuous if and only if γ is absolutely continuous.

Let f : X → Y be a continuous mapping and let x ∈ X. We set

L(x, f) = lim sup
y→x
z→x
y 6=z

d(f(y), f(z))

d(y, z)
.

We see that the mapping x → L(x, f) is a Borel function. Let γ : [a, b] → X be a

path. We set Lγ(t) = lim sup d(γ(u),γ(v))
|v−u|

when u → t, u ≥ t, v → t, v ≤ t, v 6= u. As

in [65], we have

Lemma 2.1. Let γ : [a, b] → X be a rectifiable path. Then s′γ(t) = Lγ(t) a.e. in
[a, b].

Proof. Since d(γ(t), γ(s)) ≤ sγ(t) − sγ(s) for every a ≤ s ≤ t ≤ b, we see that

Lγ(t) ≤ s′γ(t) a.e. Let A = {t ∈ [a, b]|s′γ(t) exists} and let Ak = {t ∈ A| sγ(q)−sγ(p)

|p−q|
≥

d(γ(p),γ(q))
|q−p|

+ 1
k

whenever a ≤ p ≤ t ≤ q ≤ b and 0 < |q− p| < 1
k
} for every k ∈ N. Let

us fix k ∈ N and ǫ > 0.
Let ∆ = (a = t0 < t1 <, . . . , < tn = b) ∈ D([a, b]) be such that l(γ) ≤

∑n

i=1 d(γ(ti−1), γ(ti)) +
ǫ
k

if 0 ≤ ti − ti−1 < 1
k

for i = 1, . . . , n. Let ∆i = [ti−1, ti]
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for i = 1, . . . , n. If ∆i ∩Ak 6= φ, then sγ(ti)− sγ(ti−1) ≥ d(γ(ti−1), γ(ti))+
m1(∆i)

k
and

hence m1(Ak) ≤
∑

∆i∩Ak 6=φm1(∆i) ≤ k(
∑n

i=1(sγ(ti) − sγ(ti−1)− d(γ(ti−1), γ(ti))) ≤

k(l(γ) −
∑n

i=1 d(γ(ti−1), γ(ti)))) ≤ ǫ. Letting ǫ → 0, we find that m1(Ak) = 0 for
every k ∈ N. Let t ∈ A\

⋃∞
k=1Ak. Then s′γ(t) ≤ Lγ(t) and the theorem is proved. �

Lemma 2.2. Let γ : [a, b] → X be absolutely continuous and let ρ : X → [0,∞]

be a Borel function. Then
´

γ
ρ ds =

´ b

a
ρ(γ(t))Lγ(t) dt.

Proof. Applying the change of variable formulae for real integrals we have
ˆ

γ

ρ ds =

ˆ l(γ)

0

ρ(γ0(t)) dt =

ˆ b

a

ρ(γ0(sγ(t))s
′
γ(t) dt =

ˆ b

a

ρ(γ(t))Lγ(t) dt.

Let U ⊂ X be open, γ : [a, b] → U be rectifiable and let f : U → Y be continuous.
We say that f is absolutely continuous on γ if f ◦ γ0 : [0, l(γ)] → Y is absolutely
continuous. Suppose that f : U → Y is L-lipschitz. Then

d(f ◦ γ0(t), f ◦ γ0(s)) ≤ Ld(γ0(t), γ0(s)) ≤ Ll(γ0|[s, t]) ≤ L|t− s|

for every 0 ≤ s ≤ t ≤ l(γ) and hence if f : U → Y is L-lipschitz, then f is absolutely
continuous on γ. �

As in [65], we have

Lemma 2.3. Let U ⊂ X be open, f : U → X continuous, γ : [a, b] → U be a
locally rectifiable path such that f is absolutely continuous on every closed subpath
of γ and let ρ : X → [0,∞] be a Borel function. Then f ◦ γ is locally rectifiable and
´

f◦γ
ρ ds ≤

´

γ
ρ(f(x))L(x, f) ds.

Proof. We can suppose that γ is rectifiable. Since f ◦γ0 is absolutely continuous,
it is rectifiable and hence f ◦ γ = f ◦ γ0 ◦ sγ is rectifiable and let p = l(γ) and
q = l(f ◦ γ) = l(f ◦ γ0). Let s : [0, p] → [0, q] be the length function of f ◦ γ0. Then
s is absolutely continuous and we see from Lemma 2.1 that s′(t) = Lf◦γ0(t) a.e. in
[0, p]. Let β = (f ◦ γ)0. We have f ◦ γ = f ◦ γ0 ◦ sγ = (f ◦ γ0)0 ◦ sf◦γ0 ◦ sγ and also
f ◦ γ = (f ◦ γ)0 ◦ sf◦γ . Using the unicity of the normal representation of a path, we
see that (f ◦ γ)0 = (f ◦ γ0)0. Then β ◦ s = (f ◦ γ)0 ◦ s = (f ◦ γ0)0 ◦ s = f ◦ γ0. Using
the change of variable formulae for real integrals, we have

ˆ

f◦γ

ρ ds =

ˆ q

0

ρ(β(t)) dt =

ˆ p

0

ρ(β(s(t))s′(t) dt =

ˆ p

0

ρ(f ◦ γ0(t))Lf◦γ0(t) dt.

Let t ∈ [0, p] and let rj ց 0, sj ր 0 such that rj − sj 6= 0 for every j ∈ N. Since
γ0 is a normal representation, we see that γ0(t + rj) 6= γ0(t + sj) for every j ∈ N.
We have

d(f ◦ γ0(t + rj), f ◦ γ0(t+ sj))

rj − sj

=
d(f ◦ γ0(t + rj), f ◦ γ0(t+ sj))

d(γ0(t + rj), γ0(t + sj))

d(γ0(t+ rj), γ
0(t+ sj))

rj − sj

≤ L(γ0(t), f)Lγ0(t) ≤ L(γ0(t), f)

for every j ∈ N and hence Lf◦γ0(t) ≤ L(γ0(t), f) for every t ∈ [0, p]. We proved that
ˆ

f◦γ

ρ ds ≤

ˆ p

0

ρ(f ◦ γ0(t))L(γ0(t), f) dt =

ˆ

γ

ρ(f(x))L(x, f) ds. �
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Lemma 2.4. Let γ : [a, b] → X be rectifiable, x ∈ X such that Im γ ⊂ C(x, r, R)
and let ρ : [r, R] → [0,∞] be a Borel function. Then

ˆ R

r

ρ(u) du ≤

∣

∣

∣

∣

∣

ˆ d(x,γ(b))

d(x,γ(a))

ρ(u) du

∣

∣

∣

∣

∣

≤

ˆ

γ

ρ(d(x, z)) ds.

Proof. Let f : X → [0,∞], f(z) = d(x, z) for every z ∈ X. Then f is 1-
Lipschitz and L(z, f) ≤ 1 for every z ∈ X and f is absolutely continuous on γ.
Using Lemma 2.3, we have

ˆ

f◦γ

ρ ds ≤

ˆ

γ

ρ(f(z))L(z, f) ds ≤

ˆ

γ

ρ(d(x, z)) ds.

Let β = (f◦γ)0 and c = l(f◦γ). Then f◦γ = (f◦γ)0◦sf◦γ , (f◦γ)(a) = d(x, γ(a)),
(f ◦ γ)(b) = d(x, γ(b)) and hence β(0) = d(x, γ(a)) and β(c) = d(x, γ(b)). We also
see that β is 1-Lipschiz and hence is absolutely continuous and |β ′(t)| ≤ 1 a.e. Let
ρk = min{ρ, k} for k ∈ N. We may suppose that d(x, γ(a)) ≤ d(x, γ(b)) and using
the formulae from page 221 in [20], we have

ˆ d(x,γ(b))

d(x,γ(a))

ρk(t) dt =

ˆ β(c)

β(0)

ρk(t) dt =

ˆ c

0

ρk(β(t))β
′(t) dt

≤

ˆ c

0

ρ(β(t)) dt =

ˆ

f◦γ

ρ ds ≤

ˆ

γ

(ρ(d(x, z)) ds.

Letting k → ∞, we have

ˆ R

r

ρ(u) du ≤

∣

∣

∣

∣

∣

ˆ d(x,γ(b))

d(x,γ(a))

ρ(u) du

∣

∣

∣

∣

∣

≤

ˆ

γ

ρ(d(x, z)) ds. �

Remark 2.1. Let x ∈ X and 0 < a < b. We see from Lemma 2.4 that
Lx,a,b ⊂ F (Γx,a,b) and hence relation (1.2) is proved.

The second main result of this chapter is the following:

Lemma 2.5. Let D ⊂ X be open, p ≥ 2, ω ∈ L1
loc
(D) such that ω(x) > 0

µ a.e. Then Mp
ω(x) = 0 if and only if there exists 0 < b0 < d(x, ∂D) such that

lima→0M
p
ω(Γx,a,b) = 0 for every fixed 0 < a < b < b0 < d(x, ∂D).

It results that Mp
ω(x) = 0 if ∆p

ω(x) = 0 and we can prove some conditions in
order that ∆p

ω(x) = 0 and hence such that Mp
ω(x) = 0.

Lemma 2.6. Let X be an Ahlfors Q-regular space, D ⊂ X a domain, x ∈ D,
1 < p < Q, α > Q

Q−p
and ω ∈ Lα(D). Then ∆p

ω(x) = 0.

Proof. Let d = d(x, ∂D) and 0 < a < b < d. Let bk = b2−k for k ∈ N and
γ = Qα−pα−Q

α−1
. Letting η(t) = 1

t
in the definition of Lx,a,b, we have

∆p
ω(Γx,a,b) ≤

1

(ln b
a
)p

ˆ

C(x,a,b)

ω(z) d(x, z)−p dµ (using Hölder’s ineguality)

≤

(´

D
ω(z)α dµ

)
1
α

(ln b
a
)p

(
ˆ

C(x,a,b)

d(x, z)
−pα
α−1 dµ

)
α−1
α
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≤

(´

D
ω(z)α dµ

)
1
α

(ln b
a
)p

(

∞
∑

k=0

ˆ

C
(

x,
bk
2
,bk

)

d(x, z)
−pα
α−1 dµ

)
α−1
α

≤

(´

D
ω(z)α dµ

)
1
α

(ln b
a
)p

(

∞
∑

k=0

µ

(

C

(

x,
bk
2
, bk

))(

bk
2

)
−pα
α−1

)

α−1
α

≤

(´

D
ω(z)α dµ

)
1
α

(ln b
a
)p

(

∞
∑

k=0

C0b
Q
k 2

pα
α−1 (bk)

−pα
α−1

)
α−1
α

≤

(´

D
ω(z)α dµ

)
1
α

(ln b
a
)p

(C0)
α−1
α 2pb

Qα−pα−Q
α

(

∞
∑

k=0

2
1

2kγ

)
α−1
α

≤
C

(ln b
a
)p
.

The lemma is now proved. �

Lemma 2.7. Let ω : X → [0,∞] be µ measurable and finite µ a.e., x ∈ X,
a > 0, p > 1, 0 ≤ α < p − 1 and M > 0 such that

´

B(x,δ)
ω(z) dµ ≤ Mδp(ln δ)α for

every 0 < a < δ. Then limR→∞∆p
ω(Γx,a,R) = 0.

Proof. Let η : (a,∞) → (0,∞), η(t) = 1
t ln( te

a
)

for t > a. Then
´ R

a
η(t) dt =

ln ln(Re
a
) and let Ak = B(x, aek+1) \ B(x, aek) for k ∈ N. We see that 1

d(x,z)
≤ e−k

a

and 1

ln(d(x,z)
a

e)
≤ 1

k+1
if z ∈ Ak k ∈ N. We have

∆p
ω(Γx,a,R) ≤

ˆ

C(x,a,R)

ω(z)η(d(x, z))p dµ/

(
ˆ R

a

η(t) dt

)p

≤
1

(ln ln Re
a
)p

∞
∑

k=0

ˆ

Ak

ω(z)

d(x, z)p ln(d(x,z)
a

e)p
dµ

≤
1

(ln ln Re
a
)p

∞
∑

k=0

1

(aek)p(k + 1p)

ˆ

Ak

ω(z) dµ

≤
1

(ln ln Re
a
)p

∞
∑

k=0

M(aek+1)p(ln(aek+1))α

(aek)p(k + 1)p
≃

C
∑∞

k=1
1

kp−α

(ln ln(Re
a
))p

.

The theorem is now proved. �

Let f : X → Y be continuous, open and light. A domain D ⊂ X is called
normal if D is compact and ∂f(D) = f(∂D). We see from page 186 in [67] (see also
Lemma 2.7 in [37]) that if D ⊂ X is a normal domain, p : [0, 1] → f(D) is a path
and x ∈ D is such that f(x) = p(0), then there exists a path q : [0, 1] → D such that
q(0) = x and f ◦ q = p.

Let f : X → Y be continuous, open and light and p : [0, 1] → Y be a path and
let x ∈ X be such that f(x) = p(0). We say that q : [0, a) → X is a maximal lifting
of p from x if 0 < a ≤ 1, q(0) = x, f ◦ q = p|[0, a) and q is maximal with this
property. As in Lemma 3.12 in [36] we show that if p : [0, 1] → Y is a path, x ∈ X
and f : X → Y is continuous, open and light such that f(x) = p(0), then we always
find a maximal lifting of p from x. We say that we cannot lift a path p : [0, 1] → Y
from a point x ∈ X such that f(x) = p(0) if we cannot find a path q : [0, 1] → X
such that q(0) = x and f ◦ q = p.
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A set E ⊂ X is nowhere disconnecting if IntE = φ and for every domain D ⊂ X
it results that D \ E is pathwise connected. If X is a n-dimensional manifold, E is
closed and dimE ≤ n− 2, then E is nowhere disconnecting (see Theorem IV.4, page
48 in [28]). However, it is possible that dimX = m ≥ 1, E is a punctual set and E
disconnects the space X. Indeed, let X = B1 ∪ B2 ∪ {x}, where B1, B2 are open
balls in R

n such that B1 ⊂ ∁B2, B1

⋂

B2 = {x} and the topology and metric on X
is Euclidean.

If A,B ⊂ X, we set d(A,B) the distance between A and B. If A ⊂ X and r > 0,
we set B(A, r) = {y ∈ X | there exists x ∈ A such that d(x, y) < r}. The inclusion
D ⊂⊂ X means that D is open and D is a compact subset of X. If D ⊂ X is open,
p > 1 and ω : D → [0,∞] is µ measurable and 0 < ω(x) < ∞ for µ a.e. x ∈ D, we
let Lp

ω(D) = {f : D → R |
´

D
ω(x)|f p(x)| dµ < ∞}. Then Lp

ω(D) is a Banach space

with the norm ‖f‖pω = (
´

D
ω(x)|f(x)|p dµ)

1
p .

We shall use the fundamental theorem from [3].

Theorem A. Let p > 1 and X an Ahlfors Q-regular space that supports a (1, p)-
Poincaré inequality with Q− 1 < p ≤ Q, let R > 0 and E, F ⊂ B(x,R) be continua.
Then there exists a constant C1 > 0 such that

C1min{d(E), d(F )}RQ−p−1 ≤ Mp(∆(E, F, Y )).

Lemma 2.8. Let M ⊂ X be a continua such that B(x,R)∩M 6= φ, ∁B(x, 3R)∩

M 6= φ. Then there exists a continuum M0 ⊂ M ∩C(x,R, 3R) such that d(M0) ≥ R.

Proof. We see that S(x, r) ∩ M 6= φ for every R < r < 3R and let M0 be
a component of M ∩ C(x,R, 3R)) which intersects S(x, 2R). We see from (10.1),
page 16 in [67] that M0 ∩ ∂C(x,R, 3R) 6= φ and hence either M0 ∩ S(x,R) 6= φ, or
M0 ∩ S(x, 3R) 6= φ. It results that d(M0) ≥ R and M0 ⊂ C(x,R, 3R). �

Lemma 2.9. Let D ⊂ X be open, ω ∈ L1
loc
(D), p > 1 and let Γ ∈ A(D). Then,

for every ǫ > 0 and every ρ ∈ F (Γ) there exists ρ ≤ η lower semicontinuous such
that

´

X
ω(x)ηp(x) dµ ≤

´

X
ω(x)ρp(x) dµ+ ǫ.

Proof. Let ρ ∈ F (Γ) such that ρp =
∑∞

i=1 ciχEi
, where ci > 0 and Ei are

measurable such that Ei are compact for every i ∈ N. Let ǫ > 0 and Ei ⊂ Vi

open sets such that 0 ≤
´

Vi
ω(x) dµ −

´

Ei
ω(x) dµ ≤ ǫ

ci2l+1 for every i ∈ N. Let

ηp =
∑∞

i=1 ciχVi
. Then ρ ≤ η, η is lower semicontinuous and

0 ≤

ˆ

X

ω(x)ηp(x) dµ−

ˆ

X

ω(x)ρp(x) dµ =
∞
∑

i=1

ci

ˆ

Vi

ω(x) dµ−
∞
∑

i=1

ci

ˆ

Ei

ω(x) dµ

=

∞
∑

i=1

ci

(
ˆ

Vi

ω(x) dµ−

ˆ

Ei

ω(x) dµ

)

≤

∞
∑

i=1

ǫ

2i+1
= ǫ. �

Lemma 2.10. Let D ⊂⊂ X be an open set, ω : D → [0,∞] µ measurable and
finite µ a.e., p > 1 and let Γ ∈ A(D) be such that l(γ) ≥ δ > 0 for every γ ∈ Γ.
Then Mp

ω(Γ) ≤
1
δp

´

D
ω(x) dµ.

Proof. Let ρ : X → [0,∞], ρ(x) = 1
δ

for x ∈ D, ρ(x) = 0 otherwise. Then

ρ ∈ F (Γ) and Mp
ω(Γ) ≤

´

X
ρp(x)ω(x) dµ ≤ 1

δp

´

D
ω(x) dµ. �

A Fuglede type theorem and a Ziemer type theorem hold as in the classical case.
We give here a proof for the sake of completeness.
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Theorem 2.1. (Fuglede’s theorem) Let fk : X → R be a sequence of Borel
functions which converges to a Borel function f : X → R in Lp

ω(X). Here p > 1 and
ω : X → [0,∞] is µ measurable and finite µ a.e. Then there exists a subsequence
(fkj)j∈N of (fk)k∈N such that

´

γ
|fkj − f |ds → 0 for all locally rectifiable paths γ in

X except for a family Γ with Mp
ω(Γ) = 0.

Proof. Let (fkj )j∈N be such that
´

X
ω(x)|fkj(x) − f(x)|p dµ ≤ 2−pj−j for all

j ∈ N. Let Γ = {γ : [0, 1] → X locally rectifiable path |
´

γ
|fkj − f | ds 9 0}. Let

Γj = {γ : [0, 1] → X locally rectifibale path |
´

γ
|fkj − f | ds ≥ 1

2j
} for j ∈ N. Then

2j|fkj − f | ∈ F (Γj) for every j ∈ N and Mp
ω(Γj) ≤ 2pj

´

X
ω(x)|fkj − f |p(x) dµ ≤ 1

2j

for every j ∈ N. We see that Γ ⊂
⋃∞

j=i Γj for every i ∈ N and hence Mp
ω(Γ) ≤

∑∞
j=iM

p
ω(Γj) ≤

∑∞
j=i

1
2j

= 1
2i−1 for every i ≥ 1. We proved that Mp

ω(Γ) = 0. �

Theorem 2.2. (Ziemer’s theorem) Let p ≥ 2, ω : X → [0,∞] µ measurable such
that 0 < ω(x) < ∞ for µ a.e. x ∈ X and let Γm ∈ A(X) be such that Γm ⊂ Γm+1 for
every m ∈ N and Γ =

⋃∞
m=1 Γm. Then Mp

ω(Γ) = limm→∞ Mp
ω(Γm).

Proof. We see that Mp
ω(Γm) ր I ≤ Mp

ω(Γ). Let us show that Mp
ω(Γ) ≤ I and

we can suppose that I < ∞. Let ρm ∈ F (Γm) be such that
´

X
ω(x)ρm(x)

p dµ ≤

Mp
ω(Γm) +

1
2m

for every n ∈ N. Using Clarkson’s inequality, we have

(
∥

∥

∥

∥

ρi + ρj
2

∥

∥

∥

∥

p

ω

)p

+

(
∥

∥

∥

∥

ρi − ρj
2

∥

∥

∥

∥

p

ω

)p

≤
1

2
((‖ρi‖

p
ω)

p + (‖ρj‖
p
ω)

p).

If i > j, then
ρi+ρj

2
∈ F (Γj) and hence

Mp
ω(Γj) +

ˆ

X

ω(x)

∥

∥

∥

∥

ρi − ρj
2

(x)

∥

∥

∥

∥

p

dµ

≤

ˆ

X

ω(x)

∥

∥

∥

∥

ρi + ρj
2

(x)

∥

∥

∥

∥

p

dµ+

ˆ

X

ω(x)

∥

∥

∥

∥

ρi − ρj
2

(x)

∥

∥

∥

∥

p

dµ

≤
1

2

(
ˆ

X

ω(x)ρi(x)
p dµ+

ˆ

X

ω(x)ρj(x)
p dµ

)

≤
1

2

(

Mp
ω(Γi) +

1

2i
+Mp

ω(Γj) +
1

2j

)

for i > j. Since Mp
ω(Γj) ≤ I < ∞, we have

(‖ρi − ρj‖
p
ω)

p ≤
1

2

(

Mp
ω(Γi)−Mp

ω(Γj) +
1

2i
+

1

2j

)

for i > j. Since Mp
ω(Γj) ր I < ∞, we see that (ρi)i∈N is a Cauchy sequence in

the Banach space Lp
ω(X) and hence there exists ρ ∈ Lp

ω(X) such that ρi → ρ in
Lp
ω(X). Using Fuglede’s theorem we find a subsequence (ρik)k∈N of (ρi)i∈N such that

if Γ̃ = {γ ∈ Γ |
´

γ
|ρik − ρ| ds 9 0}, then Mp

ω(Γ̃) = 0.

Let γ ∈ Γ \ Γ̃ and ǫ > 0. There exists mǫ ∈ N such that
´

γ
|ρik − ρ| ds ≤ ǫ

for k ≥ mǫ and let kǫ ≥ mǫ be such that γ ∈ Γik for k ≥ kǫ. Let k ≥ kǫ. Then
´

γ
ρ ds ≥

´

γ
ρik −

´

γ
|ρik − ρ| ds ≥ 1 − ǫ. Letting ǫ → 0, we find that

´

γ
ρds ≥ 1 for
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every γ ∈ Γ \ Γ̃ and hence ρ ∈ F (Γ \ Γ̃). Then

Mp
ω(Γ) ≤ Mp

ω(Γ \ Γ̃) +Mp
ω(Γ̃) = Mp

ω(Γ \ Γ̃) ≤

ˆ

X

ω(x)ρp(x) dµ

= (‖ρ‖pω)
p ≤ (‖ρi‖

p
ω) + (‖ρ− ρi‖

p
ω)

p ≤

(

Mp
ω(Γi) +

1

2i

)
1
p

+ (‖ρi − ρ‖pω)
p.

Letting i → ∞, we find that Mp
ω(Γ) ≤ I. The theorem is now proved. �

Theorem 2.3. Let X such that there exists Dk ⊂⊂ X such that Dk ր X,
let ω ∈ L1

loc
(D), ω > 0 a.e., let p ≥ 2, let Γ ∈ A(X) and let Γr = {γ ∈ Γ |

γ is rectifiable}. Then Mp
ω(Γ) = Mp

ω(Γ
r).

Proof. Let Γm = {γ ∈ Γ | Im γ ⊂ Dm} for m ∈ N. Let m ∈ N be fixed,
Γr
m = {γ ∈ Γm | γ is rectifiable} and ρm ∈ F (Γr

m). Let ǫ > 0 and ηm : X → [0,∞],

ηm = χDm
and ρǫ,m = (ρpm + ǫpηpm)

1
p . Let γ ∈ Γr

m. Then 1 ≤
´

γ
ρm ds ≤

´

γ
ρǫ,m ds. If

γ ∈ Γm \Γr
m, then 1 ≤ ∞ = ǫ

´

γ
ηm ds ≤

´

γ
ρǫ,m ds and this shows taht ρǫ,m ∈ F (Γm).

We find that

Mp
ω(Γm) ≤

ˆ

X

ω(x)ρǫ,m(x)
p dµ =

ˆ

X

ω(x)ρpm(x) dµ+ ǫp
ˆ

Dm

ω(x) dµ.

Letting ǫ → 0, we see that Mp
ω(Γm) ≤ Mp

ω(Γ
r
m) for every m ∈ R. Letting m → ∞

and using Ziemer’s theorem, we obtain that Mp
ω(Γ) ≤ Mp

ω(Γ
r) ≤ Mp

ω(Γ) and hence
Mp

ω(Γ) = Mp
ω(Γ

r). �

Theorem 2.4. Let C0, C1 be disjoint continua in X r = d(C0, C1), D ⊂⊂ X
such that C0 ∪ C1 ⊂ D, let p ≥ 2, ω ∈ L1

loc(D), Γ = ∆(C0, C1, D) and let Γδ =
∆(B(C0, δ), B(C1, δ), D) for 0 < δ < r

4
. Then limδ→0M

p
ω(Γδ) = Mp

ω(Γ).

Proof. Using Theorem 2.3, we can suppose that every path γ ∈ Γ is rectifiable.
Let Dm = {x ∈ D | d(x, C0 ∪ C1) >

1
m
} for every m ∈ N. Then Dm are open sets

and Dm ր D. Let Γm = {β path | there exists γ : [0, 1] → D rectifiable, γ ∈ Γ
and 0 ≤ αγ ≤ βγ ≤ 1 such that β = γ|[αγ, βγ], γ(αγ) ∈ ∂Dm, γ(βγ) ∈ ∂Dm and
γ((αγ, βγ)) ⊂ Dm} for m ∈ N. Then Γ > Γm+1 > Γm for every m ∈ N and hence
Mp

ω(Γ) ≤ Mp
ω(Γm+1) ≤ Mp

ω(Γm) for every m ∈ N and this shows that there exists
limm→∞Mp

ω(Γm) ≥ Mp
ω(Γ). Let ǫ > 0. Using Lemma 2.7, we find η ∈ F (Γ) lower

semicontinuous such that
´

X
ω(x)ηp(x) dµ ≤ Mp

ω(Γ) +
ǫ
2
.

Let λm = sup{λ > 0 |
´

γ
η ds ≥ λ for every γ ∈ Γm} for m ∈ N. We see that

λm+1 ≥ λm for every m ∈ N and let λ = limm→∞ λm. We show that λ ≥ 1. Indeed,
suppose otherwise that λ < 1 and let 0 ≤ λ < ρ < 1. We can find paths γm ∈ Γm

such that
´

γm
η ds ≤ ρ for every m ∈ N and we can suppose that γm = γ◦

m for every
m ∈ N.

Let us fix m ∈ N. We define γqm : [0,∞] → Dm in the following way: Let
0 ≤ αqm ≤ βqm ≤ l(γm) be the greatest, respectively the least t ∈ [0, l(γm)] such that
γm(t) ∈ ∂Dq for q = 1, . . . , m and we set γqm = γm|[αqm, βqm] and γqm is constant on
[0, αqm] and [βqm,∞) and γqm is continuous on [0,∞) for q = 1, . . . , m. We see that
γkm is a subpath of γpm if 1 ≤ k ≤ p ≤ m and γkm is a subpath of γm for k = 1, . . . , m
and γk,m ∈ Γk for k = 1, . . . , m.

The family (γ1m)m∈N is a 1-lipschitzian family and hence is equicontinuous. Us-
ing Ascoli’s theorem, we obtain a sequence (γ1m)m∈J1 with J1 ⊂ N and a path
β1 : [0,∞) → D such that γ1m → β1 if m ∈ J1, m → ∞. Taking a subsequence, we
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can presume that α1m → a1, β1m → b1 for m ∈ J1, m → ∞ and that β1 is constant
outside [a1, b1].

The family (γ2m)m∈J1 is equicontinuous and using Ascoli’s theorem we find J2 ⊂
J1 an increasing sequence of natural numbers such that the family (γ2m)m∈J2 con-
verges uniformly to a path β2 : [0,∞) → D and we can suppose that the first number
from J2 is the first number from J1, that α2m → a2, β2m → b2 if m ∈ J2, m → ∞,
a2 ≤ a1 ≤ b1 ≤ b2 and that β2 is constant outside [a2, b2].

We continue the process of infinite. At step k we find Jk ⊂ Jk−1 ⊂, . . . ,⊂ J1

sets of decreasing natural number and the first k − 1 numbers from Jk are the first
k − 1 number from Jk−1 and the family (γkm)m∈Jk converges uniformly to a path
βk : [0,∞) → D. We can suppose that αkm → ak, βkm → bk for m ∈ Jk, m → ∞,
that ak ≤ ak−1 ≤, . . . ,≤ a1 ≤ b1 ≤, . . . ,≤ bk−1 ≤ bk and that βk is constant outside
[ak, bk].

Let pk be the k-th term from Jk for k ∈ N and J = {p1, p2, . . . , pk, . . .}. Then
J ⊂ Jk for every k ∈ N, γkm → βk uniformly on [ak, bk], β

k|[ak, bk] = βk+1|[ak, bk]
for every k ∈ N. We can correctly define β : [0,∞) → D by β|[ak, bk] = βk|[ak, bk]
for k ∈ N and β is 1-lipschitzian, Lβ(t) ≤ 1 for every t ∈ [0,∞) and β is absolutely
continuous on every closed interval I ⊂ [0,∞). We also see that there exists mk ≥ pk,
mk ∈ J for every k ∈ N such that γkmk

→ β.
We see that ak → a, bk → b and let a < a′ < b′ < b. We can suppose that

ak < a′ < b′ < bk for every k ∈ N. Let k ∈ N and γkmk
∈ Γmk

. Then
´

γkmk

η ds ≤
´

γmk
η ds ≤ ρ for every k ∈ N. Using Fatou’s lemma and the lower semicontinuity of

η, we find that
ˆ b′

a′
η(β(t))Lβ(t) dt ≤

ˆ b‘

a′
η(β(t)) dt =

ˆ b′

a′
η( lim

k→∞
γkmk

(t)) dt ≤

ˆ b‘

a′
lim
k→∞

η(γkmk
(t)) dt

≤ lim inf
k→∞

ˆ b′

a′
η(γkmk

(t) dt ≤ lim inf
k→∞

ˆ

γkmk

η ds ≤ ρ < 1.

On the other side, since β is absolutely continuous, we see from Lemma 2.2 that
´ b′

a′
η(β(t))Lβ(t) dt =

´

β|[a′,b′]
η ds. Letting a′ → a, b′ → b and since β ∈ Γ, we find

that

1 ≤

ˆ

β

η ds =

ˆ b

a

η(β(t))Lβ(t) dt ≤ ρ < 1.

We reached a contradiction and we showed that λ ≥ 1.
Let now Kq ⊂⊂ D be such that Kq ր D and Γmq = {γ ∈ Γm | Im γ ⊂ Kq} for

q ∈ N. Let ρmq ∈ F (Γmq) be such that
´

X
ω(x)ρmq(x)

p dµ ≤ Mp
ω(Γmq)+

1
2m

for every

q ∈ N. Since η

λm
∈ F (Γm), we see that 1

2
( η

λm
+ρmq) ∈ F (Γmq) for every q ∈ N. Using

Clarkson’s inequality, we have
ˆ

X

ω

(

1

2

(

η

λm

+ ρmq

))p

dµ+

ˆ

X

ω

(

1

2

∣

∣

∣

∣

η

λm

− ρmq

∣

∣

∣

∣

)p

dµ

≤
1

2

(

1

λp
m

ˆ

X

ωηp dµ+

ˆ

X

ωρpmq dµ

)

for every q ∈ N. Then

Mp
ω(Γmq) +

ˆ

X

ω

(

1

2

∣

∣

∣

∣

η

λm

− ρmq

∣

∣

∣

∣

)p

dµ
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≤

ˆ

X

ω

(

1

2

(

η

λm

+ ρmq

))p

dµ+

ˆ

X

ω

(

1

2

∣

∣

∣

∣

η

λm

− ρmq

∣

∣

∣

∣

)p

dµ

≤
1

2

(

1

λp
m

(

Mp
ω(Γ) +

ǫ

2

)

+Mp
ω(Γmq) +

1

2m

)

for every q ∈ N.
Since 1

m
< r

4
, we see from Lemma 2.8 that Mp

ω(Γmq) ≤ (2
r
)p
´

Kq
ω(x) dµ < ∞ for

every q ∈ N. It results that

0 ≤

ˆ

X

ω

(

1

2

∣

∣

∣

∣

η

λm

− ρmq

∣

∣

∣

∣

)p

dµ ≤
1

2

(

1

λp
m

(

Mp
ω(Γ) +

ǫ

2

)

−Mp
ω(Γmq) +

1

2m

)

for every m, q ∈ N. Let mǫ ∈ N be such that 1
2m

< ǫ
2λp

m
for every m ≥ mǫ. Then

λp
mM

p
ω(Γmq) ≤ Mp

ω(Γ) + ǫ for every m ≥ mǫ and every q ∈ N.
Since Γmq ր Γm, we use Ziemer’s theorem to see that Mp

ω(Γmq) ր Mp
ω(Γm) if

q → ∞ and then λp
mM

p
ω(Γm) ≤ Mp

ω(Γ)+ ǫ for m ≥ mǫ. Letting m → ∞, we find that
limm→∞Mp

ω(Γm) ≤ Mp
ω(Γ) + ǫ and letting ǫ → 0 we find that limm→∞ Mp

ω(Γm) ≤
Mp

ω(Γ). We finally proved that limm→∞Mp
ω(Γm) = Mp

ω(Γ). �

Proof of Lemma 2.5. Suppose that Mp
ω(x) = 0 and let b0 > 0 be such that

B(x, b0) is compact. Let 0 < b < b0, C0 = {x}, C1 = S(x, b) and let 0 < r < b and
Γr = Γx,r,b. We see form the preceding theorem that limr→0M

p
ω(Γr) = Mp

ω(x) = 0.
Let now Γ be the family of all nonconstant paths having at least a limit point

in x. Let Γj = {γ : [0, 1) → D path | x is a limit point of γ and d(Im γ) ≥ 1
j
} for

j ∈ N. Let j ∈ N be fixed and let 0 < rk < 1
j
, rk → 0. Then Γj > Γx,rk,

1
j

and

hence Mp
ω(Γj) ≤ Mp

ω(Γx,rk,
1
j
→ 0 if k → ∞. Since Mp

ω(Γj) = 0 for every j ∈ N and

Γ =
⋃∞

j=1 Γj we see that Mp
ω(Γ) = 0 and hence Mp

ω(x) = 0 if limr→0M
p
ω(Γx,r,b) = 0

for every fixed 0 < b < d(x, ∂D). �

3. Proofs of the results

Proof of Theorem 1.1. Suppose that f is not continuous at x. We can find
xj → x, yj → x, xj , yj 6∈ E for every j ∈ N such that f(xj) → b1, f(yj) → b2
with b1, b2 ∈ Y , b1 6= b2. Let 0 < rj < rx, rj → 0 such that there exists Uj ∈ V(x)
pathwise connected such that U j ⊂ B(x, rj) and xj , yj ∈ Uj for every j ∈ N. Since
E is nowhere disconnecting, we can find a path Hj joining xj with yj in Uj \ E for
every j ∈ N. We have two cases.

Case 1. There exists y ∈ Y and R > 0 and an infinite set J1 ⊂ N such that
f(Hj) ∪ M ⊂ B(y, R) for every j ∈ J1. Then b1, b2 ∈ B(y, R) and d(f(Hj)) ≥
d(b1, b2) for every j ∈ J1. Let ρ1 = C1R

Q−q−1min{d(b1, b2), d(M)} and let Γ′
j =

∆(f(Hj),M, Y ) for j ∈ J1. Using Theorem A, we see that Mq(Γ
′
j) ≥ ρ1 for every

j ∈ J1.

Case 2. There exists y ∈ Y and R > 0 and an infinite set J2 ⊂ N such that
M ⊂ B(y, R) and a subpath Qj ⊂ Hj such that Qj∩B(y, R) 6= φ, Qj∩B(y, 2R) 6= φ,
Qj ⊂ B(y, 3R) for every j ∈ J2. Let ρ2 = C1(3R)Q−q−1min{R, d(M)} and let
Γ′
j = ∆(f(Qj),M, Y ) for j ∈ J2. Then Mq(Γ

′
j) ≥ ρ2 for every j ∈ J2 and N = J1∪J2.

Let ρ = min{ρ1, ρ2}. We proved that Mq(Γ
′
j) ≥ ρ for every j ∈ N.
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Let j ∈ N be fixed and let Γj be the family of all maximal liftings of some paths
from Γ′

j starting from some point of Hj or Qj . We can suppose that B(x, rx) is

compact and let p : [0, 1] → Y \M , p ∈ Γ′
j . Using the compactness of B(x, rx) and

the openness of the mapping f , we see that if q : [0, a) → X is a maximal lifting of the
path p from some point of Hj or Qj , then either the open path q : [0, a) → X has at
least a limit point in ∂(B(x, rx) \E) ⊂ E ∪S(x, rx), or intersects S(x, rx). Let Γ1j =
{α ∈ Γj | α has at least a limit point in E} and Γ2j = {α ∈ Γj | Imα∩S(x, rx) 6= φ}
and ∆j = Γx,rj,rx . Then Γj = Γ1j ∪ Γ2j, Γ

′
j > f(Γj), M

p
ω(Γ1j) = 0, Γ2j > ∆j . Since

Mp
ω(x) = 0, we see from Lemma 2.5 that limj→∞Mp

ω(∆j) = 0. We have

ρ ≤ Mq(Γ
′
j) ≤ Mq(f(Γj)) ≤ Mq(f(Γ1j ∪ f(Γ2j)) ≤ Mq(f(Γ1j)) +Mq(f(Γ2j))

≤ γ(Mp
ω(Γ1j)) + γ(Mp

ω(Γ2j)) = γ(Mp
ω(Γ2j)) ≤ γ(Mp

ω(∆j)) → 0

if j → ∞. We reached a contradiction and hence there exists limy→x f(y) = l ∈
Y . �

Proof of Theorem 1.2. It results immediately from Theorem 1.1. �

Proof of Theorem 1.3. Suppose that the family W is not equicontinuous at
x. Then there exists ǫ > 0, rj → 0, yj ∈ B(x, rj) such that d(fj(yj), fj(x)) > ǫ for
every j ∈ N. Since each mapping fj is continuous at x, we can find xj 6= x such
that d(fj(yj), fj(xj)) ≥ ǫ, with yj 6= x, xj 6= x for every j ∈ N and let Hj be a path
joining yj with xj in B(x, rj)\{x} for j ∈ N. Then d(fj(Hj)) ≥ d(fj(yj), fj(xj)) ≥ ǫ,
Mfj ∩B(y, R0) 6= φ and we can suppose that fj(Hj)∩B(y, R0) 6= φ for every j ∈ N.
We have 4 cases.

Case 1. There exists R > R0 and an infinite set J1 ⊂ N such that fj(Hj)∪Mfj ⊂

B(y, R) for every j ∈ J1. Let ρ1 = C1R
Q−q−1min{ǫ, δ} and Γ′

j = ∆(fj(Hj),Mfj , Y )
for j ∈ J1. We see from Theorem A that Mq(Γ

′
j) ≥ ρ1 for every j ∈ J1.

Case 2. There exists R > R0 and an infinite set J2 ⊂ N such that fj(Hj) ⊂
B(y, R), Mfj ∩B(y, R) 6= φ, Mfj ∩∁B(y, 3R) 6= φ for every j ∈ J2. Using Lemma 2.8,

we find a continuum Kj ⊂ Mfj ∩ C(y, R, 3R) such that d(Kj) ≥ R for every j ∈ J2.

Let ρ2 = C1(3R)Q−q−1min{ǫ, R} and let Γ′
j = ∆(fj(Hj), Kj, Y ) for j ∈ J2. Then

Mq(Γ
′
j) ≥ ρ2 for j ∈ J2.

Case 3. There exists R > R0 and an infinite set J3 ⊂ N such that Mfj ⊂ B(y, R)
and a subpath Qj of Hj such that Qj∩B(y, R) 6= φ, Qj∩B(y, 2R) 6= φ, Qj ⊂ B(y, 3R)
for j ∈ J3. Let ρ3 = C1(3R)Q−q−1min{R, δ} and let Γ′

j = ∆(fj(Qj),Mfj , Y ) for
j ∈ J3. We see from Theorem A that Mq(Γ

′
j) ≥ ρ3 for every j ∈ J3.

Case 4. There exists R > R0 and an infinite set J4 ⊂ N such that we find a
subpath Qj of Hj such that Qj ∩ B(y, R) 6= φ, Qj ∩ B(y, 2R) 6= φ, Qj ⊂ B(y, 3R)
and a continuum Kj ⊂ Mfj ∩ C(y, R, 3R) and d(Kj) ≥ R for every j ∈ J4. Let
ρ4 = C1(3R)Q−q and Γ′

j = ∆(fj(Qj), Kj, Y ) for j ∈ J4. Using Theorem A, we see
that Mq(Γ

′
j) ≥ ρ4 for every j ∈ J4. Let ρ = min{ρ1, ρ2, ρ3, ρ4} and we see that

N = J1 ∪ J2 ∪ J3 ∪ J4.
Let Γj be the family of all maximal liftings of some paths from Γ′

j starting from

some points of the sets Hj or Qj for j ∈ N. We can suppose that B(x, rx) is compact
and that 0 < rj < rx for j ∈ N. Let Γ1j = {α ∈ Γj | α has at least a limit point in x}
and Γ2j = {α ∈ Γj | Imα∩B(x, rx) 6= φ} for j ∈ N. Then Γj = Γ1j∪Γ2j , Γ

′
j > fj(Γj)

and Γ2j > Γx,rj,rx for every j ∈ N. Let βj = d(x,Hj) > 0 for j ∈ N and let us fix
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j ∈ N. Let 0 < αjk < βj , αjk → 0. Then Γ1j > Γx,αjk,βj
for every k ∈ N. We have

0 < ρ < Mq(Γ
′
j) ≤ Mq(fj(Γj)) = Mq(fj(Γ1j) ∪ fj(Γ2j)) ≤ Mq(fj(Γ1j)) +Mq(fj(Γ2j))

≤ Mq(fj(Γx,αjk,βj
)) +Mq(fj(Γx,rj ,rx)) ≤ γ(∆p

ω(Γx,αjk,βj
)) + γ(∆p

ω(Γx,rj ,rx)).

Letting k → ∞, we find that

0 < ρ < Mq(Γ
′
j) ≤ γ(∆p

ω(Γx,rj,rx))

for every j ∈ N. Letting now j → ∞ and using the fact that γ(∆p
ω(Γx,rj ,rx)) → 0 we

reached a contradiction. We finally proved that the family W is equicontinuous at
x. �

Proof of Theorem 1.4. Suppose that there exist a continuum M ⊂ Y with
CardM > 1 such that f(X \ E) ⊂ Y \ M . Let K ⊂ B(x, r) \ E be compact,
connected such that CardK > 1. Then f(K) is a continuum and Card f(K) > 1
and let y ∈ Y and R0 > 0 be such that f(K)∪M ⊂ B(y, R0). Let R > R0 and Γ′ =
∆(f(K),M, Y ) and let Γ be the family of all maximal liftings of some paths from Γ′

starting from some points in K. Let Γ1 = {α ∈ Γ | α has at least a limit point in E}
and Γ2 = {α ∈ Γ | Imα ∩ S(y, R) 6= φ}. Then Γ = Γ1 ∪ Γ2, Γ

′ > f(Γ), Mp
ω(Γ1) = 0,

Γ2 > Γx,r,R and let δ = C1R
Q−q+1
0 min{d(f(K)),M}. We have

0 < δ ≤ Mq(Γ
′) ≤ Mq(f(Γ)) ≤ Mq(f(Γ1 ∪ Γ2)) ≤ Mq(f(Γ1)) +Mq(f(Γ2)) ≤

≤ γ(Mp
ω(Γ1)) + γ(Mp

ω(Γ2)) = γ(Mp
ω(Γ2)) ≤ γ(Mp

ω(Γx,r,R)) ≤ γ(∆p
ω(Γx,r,R)) → 0

if R → ∞. We reached a contradiction and hence dim(Y \ f(X \ E)) = 0. �

Proof of Theorem 1.5. Let Uk ∈ V(x) be connected such that Uk ⊂ B(x, 1
k
) and

is compact, ∂Uk ∩E = φ for every k ∈ N and suppose that z 6∈
⋂∞

k=1 f(B(x, 1
k
)∩D).

Let Fk = C(f, x, B(x, 1
k
) ∩ (∂D \ E) \ {x}) for k ∈ N. Then Fk+1 ⊂ Fk for every

k ∈ N and C(f, x, ∂D \ E) =
⋂∞

k=1 F k. Let 2α = d(z, C(f, x, ∂D \ E). We can

suppose that α < d(z, F k) for every k ∈ N.
Let ρk = d(z, f(∂Uk ∩D)) for k ∈ N. Suppose that there exists kp ∈ N such that

ρkp = 0 for every p ∈ N. Let p ∈ N be fixed. We can find akpj ∈ ∂Ukp ∩D such that
f(akpj) → z and if necessarily extracting a subsequence, we can presume that there

exists ap ∈ ∂Ukp∩D such that akpj → ap. If ap ∈ ∂Ukp∩∂D, then ap ∈ ∂Ukp∩(∂D\E)

and then z ∈ F kp, which contradicts the fact that d(z, F kp) = α > 0. We find that
ap ∈ ∂Ukp ∩ D ⊂ B(x, 1

kp
) ∩ D and f(ap) = z for every p ∈ N and this contradicts

the fact that z 6∈
⋂∞

p=1 f(B(x, 1
kp
) ∩D).

We proved that there exists ko ∈ N such that ρk > 0 for every k ≥ k0 and we
can suppose that ρk > 0 for every k ∈ N. Since z ∈ C(f, x), there exists αk ∈ Uk∩D
such that f(αk) → z. Let C be the constant from property (Pq) corresponding to
the point z. Since f is an open mapping, there exist 0 < rk <

1
C
ρk and open subsets

C0 in S(z, rk) and Q0 ⊂ Uk ∩D such that f(Q0) = C0.
Let k ∈ N be fixed. Let ϕ0 = rk and ϕj ց 0. Let A1 = {y ∈ S(z, ϕ1)| for every

path p : [0, 1] → B(z, Cϕ0) with p(0) ∈ C0, p(1) = y there exists α ∈ Q0 such that
f(α) = p(0) and we cannot lift p from α}. Suppose that there exists a continuum
Q ⊂ A1 with CardQ > 1. Let Γ′ = ∆(C0, Q,B(z, Cϕ0)). Since dimC0 ≥ 1 there
exists a continuum M0 ⊂ C0 with CardM0 > 1 and we see from Theorem A that
0 < Mq(Γ

′).
Let Γ be the family of all maximal liftings of some paths p : [0, 1] → Y from Γ′ such

that there exists a point b ∈ Q0 such that f(b) = p(0) and we cannot lift p from b}.
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Let p : [0, 1] → B(z, Crk), p ∈ Γ′ and let q : [0, a) → D be a maximal lifting of p from
some point b ∈ C0 with f(b) = p(0) and 0 < a ≤ 1. We see that D ∩ Uk is compact,
that ∁D ∩ Uk is nonempty and open and Im q = (Im q∩D∩Uk)∪ (Im q∩∁D ∩ Uk)∪
(Im q ∩ ∂(D ∩Uk)). Since Im q is connected, we see that if Im q ∩CD ∩ Uk 6= φ, then
Im q∩∂(D∩Uk) 6= φ. Since ∂(D∩Uk) ⊂ (Uk∩∂D)∪(D∩∂Uk) and Im q ⊂ D, it results
that Im q ∩ ∂Uk 6= φ and hence there exists 0 < c < a such that q(c) ∈ ∂Uk and then
p(c) = f(q(c)) ∈ f(D∩∂Uk). We reached a contradiction, since d(p(c), z) < Crk < ρk
and on the otherside d(p(c), z) ≥ d(z, f(∂Uk ∩D) = ρk.

We proved that Im q ⊂ D ∩ Uk. Let tn ր a. Since D ∩ Uk is compact and if
necessarily extracting a subsequence, we can suppose that there exists w ∈ D ∩ Uk

such that q(tn) → w. If w ∈ D
⋂

Uk, we use the openness of the mapping f and
we find U ∈ V(w), U ⊂ D ∩ Uk such that p(a) = f(q(a)) ∈ f(U) ⊂ f(D ∩ Uk)
and this contradicts the maximality of the open path q : [0, a) → D ∩ Uk. It results
that w ∈ ∂(D ∩ Uk) ⊂ (Uk ∩ ∂D) ∪ (D ∩ ∂Uk). If w ∈ D ∩ ∂Uk, then p(a) =
limn→∞ p(tn) = limn→∞ f(q(tn)) = f(w) and d(p(a), z) < Crk < ρk and on the other
side d(p(a), z) ≥ d(z, f(D ∩ ∂Uk)) = ρk and we reached a contradiction.

If w ∈ ∂D \ E, then z ∈ F k and on the other side d(z, F k) = α > 0. It results
that w ∈ ∂D∩E. We see that Mp

ω(E) = 0 and hence Mp
ω(Γ) = 0 and since Γ′ > f(Γ),

we have 0 < Mq(Γ
′) ≤ Mq(f(Γ)) ≤ γ(Mp

ω(Γ)) = 0 and we reached a contradiction.
We proved that dimA1 = 0.

Let us show that A1 is closed in S(z, ϕ1). Let yn ∈ A1, yn → y ∈ S(z, ϕ1) and
suppose that y 6∈ A1. Then there exists α ∈ Q0, a path β : [0, 1] → B(z, Cϕ0) with
β(0) = f(α), β(1) = y and a path γ : [0, 1] → D∩Uk such that γ(0) = α and β = f◦γ.
Let V1, . . . , Vm be normal domains such that Im γ ⊂

⋃m

i=1 Vi, f(V i) ⊂ B(z, Cϕ0),
i = 1, . . . , m and there exists points zi ∈ Vi ∩ Vi+1 for i = 1, . . . , m − 1 and let
yn ∈ f(Vm) for some n ∈ N. We choose paths qi : [0, 1] → Vi, i = 1, . . . , m such that
q1(0) = α, q1(1) = z1, qi+1(0) = qi(1) = zi for i = 1, . . . , m − 1 and f(qm(1)) = yn.
Let q = q1∨, . . . ,∨qm and p = f ◦q. Then q(0) = α, p(0) = f(α), p = f ◦q, p(1) = yn,
Im p ⊂ B(z, Cϕ0) and we can lift p from α. This contradicts the fact that yn ∈ A1.
We proved that A1 is closed in S(z, ϕ1).

Let ∆′
1 = ∆(f(Q0), S(z, ϕ1)\A1, B(z, Cϕ0)) and let Q1 be the set of all endpoints

of the maximal liftings of the paths from ∆′
1 starting from some points in Q0. We

see that if p : [0, 1] → B(z, Cϕ0) is a path from ∆′
1 and p(0) = f(α) for some α ∈ Q0,

there always exists a path q : [0, 1] → D ∩ Uk such that q(0) = α and f ◦ q = p. We
also see that f(Q1) = S(z, ϕ1) \ A1.

Let A2 = {y ∈ S(z, ϕ2)| for every path p : [0, 1] → B(z, Cϕ1) with p(0) ∈ f(Q1)
and p(1) = y there exists a point b ∈ Q1 with p(0) = f(b) and we cannot lift p from
b}. As before, we see that dimA2 = 0 and that A2 is closed in S(z, ϕ2).

Let ∆′
2 = ∆(f(Q1)), S(z, ϕ2)\A2, B(z, Cϕ1)) and let Q2 be the set of all endpoints

of the maximal liftings of some paths from ∆′
2 starting from some points in Q1. We

see that if p : [0, 1] → B(z, Cϕ1) is a path from ∆′
2 and p(0) = f(b) with b ∈ Q1,

there always exists a path q : [0, 1] → D ∩ Uk such that q(0) = b and f ◦ q = p.
We also remark that if p1 : [0, 1] → B(z, Cϕ0) is a path from ∆′

1 and b0 ∈ Q0 is
such that f(b0) = p1(0), there exists y1 ∈ f(Q0) = B(z, ϕ1) \A1 such that p1(1) = y1
and a path q1 : [0, 1] → D ∩ Uk such that q1(0) = b0 and f ◦ q1 = p1. If p2 : [0, 1] →
B(z, Cϕ1) is a path from ∆′

2 such that p2(0) = y1 and p2(1) ∈ S(z, ϕz) \ A2, there
exists a path q2 : [0, 1] → D ∩ Uk such that q2(0) = q1(1) and f(q2(0)) = f(q1(1)) =
p1(1) = y1 and f ◦ q2 = p2. In this way we find closed sets Aj in S(z, ϕj) with
dimAj = 0 and sets Qj ⊂ D ∩Uk with f(Qj) = S(z, ϕj) \Aj for j ≥ 1 and such that



Boundary behaviour of open, light mappings in metric measure spaces 1197

for every path pj : [0, 1] → B(z, Cϕj−1) with pj(0) ∈ f(Qj−1), pj(1) ∈ f(Qj), there
exists a path qj : [0, 1] → D ∩ Uk with qj(0) ∈ Qj−1, qj(0) = qj−1(1), qj(1) ∈ Qj and
f ◦ qj = pj for every j ≥ 1.

Let p̃k : [0,∞) → B(z, Cϕ0), p̃k = p1 ∨ p2∨, . . . ,∨pn∨, . . . and q̃k : [0,∞) → D ∩
Uk, q̃k = q1∨q2∨, . . . ,∨qn∨, . . . ,. Then p̃k and q̃k are open paths and limt→∞ p̃k(t) = z,
f ◦ q̃k = p̃k and q̃k(0) ∈ Q0.

Let Bk be the set of all limit points of the open path q̃k : [0,∞) → D ∩Uk. Then
Bk is compact, connected. Suppose that Card(Bk ∩Uk ∩D) > 1. We use Lemma 2.8
and we find a continuum Kk ⊂ Bk ∩ Uk ∩ D with CardKk > 1 and since f(a) = z
for every a ∈ Kk and f is a light mapping, we reached a contradiction. We have 3
possible cases.

Case 1. Bk = {xk} with xk ∈ Uk ∩D and f(xk) = z. Since z 6∈
⋂

r>0 f(B(x, r)∩
D) we see that case 1 cannot hold for infinitely many k ∈ N. We can suppose that
case 1 does not hold for every k ∈ N.

Case 2. CardBk > 1 and hence Bk ⊂ Uk ∩ ∂D. Since dimBk ≥ 1 and dimE = 0,
we can find a point xk ∈ Uk ∩ (∂D \ E) and tnp → ∞ such that q̃k(tnp) → xk. Then
f(q̃k(tnp) = p̃k(tnp) → z and this implies that z ∈ C(f, xk) ⊂ Fk. We reached a
contradiction, since d(z, Fk) > α > 0. We proved that case 2 cannot hold.

Case 3. Bk = {xk} with xk ∈ U ∩D. Since limt→∞ q̃k(t) = xk, we prove as before
that we cannot find infinitely many k ∈ N such that xk ∈ Uk ∩ (∂D \ E). We can
suppose that xk ∈ E for every k ∈ N and hence xk → x and z ∈ A(f, xk) for every
x ∈ N. �

Proof of Theorem 1.6. Since x ∈ IntD, we see that B(x, r) ∩ ∂D = φ for small
r > 0 and hence C(f, x, ∂D \ E) = φ, Since x is an essential singularity of f , we
see from Theorem 1.2 that dimY \ (f(B(x, r) \ E)) = 0 for every r > 0 and since
dimY ≥ 1, we see that C(f, x) = Y . We apply now Theorem 1.5. It is obvious that
if x is an isolated essential singularity of f , we can use condition (1.4) instead of
condition (1.3). �

Proof of Theorem 1.7. Suppose that Y 6= Y and that there exists b ∈ B and
ǫ > 0 such that Mp

ω(E ∩ B(b, ǫ)) = 0. Since Mp
ω(B ∩ B(b, ǫ

2
)) > 0, there exists a

point y ∈ (B \ E) ∩ B(b, ǫ
2
). It results that there exists a path α : [0, 1) → D such

that limt→1 α(t) = y and limt→1 f(α(t)) in Y does not exist. There exists y1, y2 ∈ Y ,
y1 6= y2 and tj ր 1 such that f(α(t2j)) → y1, f(α2j+1) → y2. Let Hj = α([t2j , t2j+1])
and rj → 0 such that 0 < rj < ǫ

2
and Hj ⊂ B(y, rj) for every j ∈ N. Then there

exists δ > 0 such that d(f(Hj)) ≥ δ for every j ∈ N and f(Hj) is a continua and
Card f(Hj) > 1 for j ∈ N. Let M ⊂ Y be a continuum with CardM > 1 and such
that f(D ∩ B(y, ǫ

2
)) ⊂ Y \M . We have two cases.

Case 1. There exists y0 ∈ Y and R > 0 and an infinite set J1 ⊂ N such that
f(Hj) ∪ M ⊂ B(y0, R) for every j ∈ J1. Let Γ′

j = ∆(f(Hj),M, Y ) for j ∈ J1.

Using Theorem A, if ρ1 = C1R
Q−q−1min{δ, d(M)} we see that Mq(Γ

′
1) ≥ ρ1 for every

j ∈ J1.

Case 2. There exists y0 ∈ Y , R > 0 and an infinite set J2 ⊂ N such that
M ⊂ B(y0, R) and f(Hj) ∩ S(y0, R) 6= φ, f(Hj) ∩ S(y0, 2R) 6= φ, f(Hj) ⊂ B(y0, 3R)
for j ∈ J2. Let ρ2 = C1(3R)Q−q−1min{R, d(M)}. We see from Theorem A that
Mq(Γ

′
j) ≥ ρ2 for every j ∈ J2.
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Let J = J1 ∪ J2 and ρ = min{ρ1, ρ2}. We proved that Mq(Γ
′
j) ≥ ρ for every

j ∈ J . Let Γj be the family of all maximal liftings of some paths from Γ′
j starting

from some points of Hj or Qj for j ∈ J . Let Γ1j = {α ∈ Γj |α has at least a limit
point in ∂D ∩ B(y, ǫ

2
)} and Γ2j = {α ∈ Γj| Imα ∩ S(y, ǫ

2
) 6= φ} for j ∈ J . Using the

compactness of B(y, ǫ
2
) and the openness of the mapping f , we see that if α ∈ Γj ,

then either α has at least a limit point in ∂D ∩B(y, ǫ
2
) or Imα ∩ S(y, ǫ

2
) 6= φ. Then

Γj = Γ1j ∪ Γ2j , Γ
′
j > f(Γj) for j ∈ J and let ∆j = Γy,rj ,

ǫ
2

for j ∈ J . We see that
Γ2j > ∆j for j ∈ J and we see from Lemma 2.5 that limj→∞Mp

ω(∆j) = 0.
Let Γr

1j = {γ ∈ Γ1j|γ is rectifiable} for j ∈ J . We see from Theorem 2.3 that
Mp

ω(Γ1j) = Mp
ω(Γ

r
1j) for j ∈ J . Let now j ∈ J be fixed and let α : [0, 1) → X, α ∈ Γr

1j .

Then there exists limt→1 α(t) = aα ∈ X and obviously there exists limt→1 f(α(t)) ∈ Y
and hence aα ∈ E. Now E ∩ B(y, ǫ

2
) ⊂ E ∩ B(b, ǫ) and Mp

ω(E ∩ B(b, ǫ)) = 0 and
hence Mp

ω(E ∩ B(y, ǫ
2
)) = 0 and this implies that Mp

ω(Γ
r
1j) = 0 for every j ∈ J . We

have

ρ ≤ Mq(Γ
′
j) ≤ Mq(f(Γj)) = Mq(f(Γ1j) ∪ f(Γ2j)) ≤ Mq(f(Γ1j)) +Mq(f(Γ2j))

≤ γ(Mp
ω(Γ1j)) + γ(Mp

ω(Γ2j)) = γ(Mp
ω(Γ

r
1j)) + γ(Mp

ω(Γ2j)) ≤ γ(Mp
ω(∆j)) → 0

if j → ∞. We reached a contradiction and hence Mp
ω(E∩B(b, ǫ)) > 0 for every b ∈ B

and every ǫ > 0. A similar argument holds if Y is compact. �
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