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Classification criteria for regular trees

Khanh Nguyen

Abstract. We give characterizations for the parabolicity of regular trees.

Luokitusehtoja säännöllisille puille

Tiivistelmä. Esitämme säännöllisten puiden parabolisuudelle yhtäpitäviä ehtoja.

1. Introduction

Let us begin with the uniformization theorem of Klein, Koebe and Poincaré
for Riemann surfaces. The celebrated theorem says that every simply connected
Riemann surface M is conformally equivalent (or bi-holomorphic) to one of three
Riemann surfaces: the half plane H2 (surface of hyperbolic type), the complex plane
R2 (surface of parabolic type), the Riemann sphere S (surface of elliptic type). Then
M admits a Riemannian metric g with constant curvature. A simply connected
Riemann surface is said to be hyperbolic if it is conformally equivalent to H2, otherwise
we say that it is parabolic.

Let M be a simply connected Riemann surface with Riemannian metric g. A
C2-smooth function u defined in M is superharmonic if

−∆u ≥ 0

where ∆ is the Laplace–Beltrami operator associated to the Riemannian metric g.
It is well known that every conformal mapping in dimension two preserves super-

harmonic functions (see [1, Page 135]). Since H2 possesses a nonconstant nonnegative
superharmonic function and every nonnegative superharmonic function on R2 or S

is constant, it then follows that there is no nonconstant nonnegative superharmonic
function on (M, g) if and only if M is parabolic.

Let K be a compact subset in (M, g). We define the capacity Cap(K) by

Cap(K) = inf

{
ˆ

M

|∇u|2 dmg : u ∈ Lip0(M), u|K ≡ 1

}

where Lip0(M) is a set of all Lipschitz functions with compact support on M , and mg

is the Riemannian measure associated to g. Then there is a nonconstant nonnegative
superharmonic function on M if and only if Cap(K) > 0 for some compact subset K,
(see [7, Theorem 5.1] for Riemannian manifolds). It follows that the parabolicity of
a Riemann surface M can be characterized both in terms of capacity and superhar-
monic functions. By this reason, in the setting of Riemannian manifolds or metric
measure spaces, one defines parabolicity either via capacity (see [12, 14, 15, 16])
or via superharmonic functions (see [7] and also references therein). In this paper,
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we will consider K-regular trees and give the definition of parabolicity in terms of
capacity.

Recently, analysis on K-regular trees has been under development, see [3, 21,
22, 23, 20, 27]. Let G be a K-regular tree with a set of vertices V and a set of
edges E for some K ≥ 1. The union of V and E will be denoted by X. We abuse
the notation and call X a K-regular tree. We introduce a metric structure on X
by considering each edge of X to be an isometric copy of the unit interval. Then
the distance between two vertices is the number of edges needed to connect them
and there is a unique geodesic that minimizes this number. Let us denote the root
by 0. If x is a vertex, we define |x| to be the distance between 0 and x. Since
each edge is an isometric copy of the unit interval, we may extend this distance
naturally to any x belonging to an edge. We define ∂X as the collection of all infinite
geodesics starting at the root 0. Then every ξ ∈ ∂X corresponds to an infinite
geodesic [0, ξ) (in X) that is an isometric copy of the interval [0,∞). Let µ and
λ : [0,∞) → (0,∞) be locally integrable functions. Let d|x| be the length element on
X. We define a measure µ on X by setting dµ(x) = µ(|x|) d|x|, and a metric d on X
via ds(x) = λ(|x|) d|x| by setting d(y, z) =

´

[y,z]
ds whenever y, z ∈ X and [y, z] is the

unique geodesic between y and z. Then (X, d, µ) is a metric measure space and hence
one may define a Newtonian Sobolev space N1,p(X) := N1,p(X, d, µ) based on upper
gradients [10, 24]. As usual, N1,p

0 (X) is the completion of the family of functions
with compact support in N1,p(X), and Ṅ1,p

0 (X) is the completion of the family of

functions with compact support in Ṅ1,p(X), the homogeneous version of N1,p(X).
Let Ω be a subset of X. We denote by N1,p

loc (Ω) the space of all functions u ∈ Lp
loc(Ω)

that have an upper gradient in Lp
loc(Ω), where Lp

loc(Ω) is the space of all measurable
functions that are p-integrable on any compact subset of Ω. See Section 2 for the
precise definitions.

Let 1 < p < ∞ and O be a subset of X. We define the p-capacity of O, denoted
Capp(O), by setting

(1.1) Capp(O) = inf

{
ˆ

X

gpu dµ : u|O ≡ 1, u ∈ N1,p
0 (X)

}

where gu is the minimal upper gradient of u as in Section 2.2. A K-regular tree X
is said to be p-parabolic if Capp(O) = 0 for all compact sets O ⊂ X; otherwise X is
p-hyperbolic.

Given 1 < p < ∞ and an open subset Ω ⊆ X, we say that u ∈ N1,p
loc (Ω) is a

p-harmonic function (or a p-superharmonic function) on Ω if

(1.2)

ˆ

spt(ϕ)

gpu dµ ≤

ˆ

spt(ϕ)

gpu+ϕ dµ

holds for all functions (or for all nonnegative functions) ϕ ∈ N1,p(Ω) with compact
support spt(ϕ) ⊂ Ω. We refer the interested readers to [2, 9, 11] for a discussion on
the p-capacity and p-(super)harmonic functions.

Since a K-regular tree (X, d) is the quintessential Gromov hyperbolic space, it
is then natural to ask for whether the parabolicity (or hyperbolicity) of X can be
characterized via p-(super)harmonic functions under some conditions on the measure
µ only depending on the given metric d, and also ask for intrinsic conditions of K-
regular trees that would characterize the parabolicity (or hyperbolicity). We refer
the readers to [1, Chapter IV] for a discussion in the case of Riemann surfaces, and
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[6, 7, 14, 15, 16] for a discussion in the setting of Riemannian manifolds, and [25,
Section 6], [28] for a discussion on infinite networks.

In order to state our results, we introduce a notion from [21]. Let 1 < p < ∞.
We set

Rp(λ, µ) =

ˆ ∞

0

λ(t)
p

p−1µ(t)
1

1−pK
j(t)
1−p dt

where j(t) is the smallest integer such that j(t) ≥ t, and let Xn = {x ∈ X : |x| ≤ n}
for each n ∈ N. Since we work with a fixed pair λ, µ, we will usually write Rp(λ, µ)
simply as Rp when no confusion can arise. In what follows, we additionally assume

that λpµ−1 ∈ L
1/(p−1)
loc ([0,∞)) to make sure that the finiteness of Rp is a condition at

infinity.
The first result of our paper is a characterization of parabolicity of K-regular

trees.

Theorem 1.1. Let 1 < p < ∞ and X be a K-regular tree with metric d and

measure µ as above, with K ≥ 1. Then (X, d, µ) is p-parabolic if and only if any one

of the following conditions is fulfilled:

1. Rp(λ, µ) = ∞.

2. Capp(X
n) = 0 for all n ∈ N ∪ {0}.

3. Capp(X
n) = 0 for some n ∈ N ∪ {0}.

In Section 2.1, we will show that the compactness on a K-regular tree X with
respect to our metric d and with respect to the graph metric are equivalent. Since
each compact set in (X, d) is contained in some n-level set Xn that is an analog of a
ball with respect to graph metric, parabolicity of X can be characterized by the zero
p-capacity of some/ all n-level sets Xn.

In [21, Theorem 1.3], the condition Rp(λ, µ) = ∞ gives a characterization of

the existence of boundary trace operators and for density properties for Ṅ1,p(X).
Hence parabolicity of K-regular trees can be characterized in terms of boundary trace
operators and density properties. Combining Theorem 1.1 and [21, Theorem 1.3 and
Theorem 3.5], we obtain the following corollary.

Corollary 1.2. Let 1 < p < ∞ and X be a K-regular tree with metric d and

measure µ as above, with K ≥ 1. Then (X, d, µ) is p-parabolic if and only if any one

of the following conditions is fulfilled:

1. There exists u ∈ Ṅ1,p(X) such that

lim
[0,ξ)∋x→ξ

u(x) = ∞

for all ξ ∈ ∂X.

2. Ṅ1,p
0 (X) = Ṅ1,p(X).

It is well known, see for instance the survey paper [15], that the volume growth
condition

ˆ ∞

1

(

t

V (B(0, t))

)
1

p−1

dt = ∞

is a sufficient condition to guarantee parabolicity of Riemannian manifolds. Here
V (B(0, t)) is the volume of the ball with radius t and center at a fixed point 0.
However, this condition is far from being necessary in general, as shown by a coun-
terexample due to Holopainen [14] and to Varopoulos [26] in the case p = 2. Our
condition Rp(λ, µ) = ∞ is an analog of this volume growth condition. Example 3.8 in
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Section 3 shows that there exists a K-regular tree with a distance d and a “non-radial”
measure µ such that Rp(λ, µ) = ∞ but X is p-hyperbolic.

Let 1 < p < ∞ and let int(Xn) := {x ∈ X : |x| < n} for n ∈ N. We say
that (int(Xn), d, µ) is doubling and supports a p-Poincaré inequality if there exist
constants C1 ≥ 1, C2 > 0 only depending on n such that for all balls B(x, 2r) ⊂
int(Xn),

µ (B(x, 2r)) ≤ C1µ (B(x, r))

and for all balls B(x, r) ⊂ int(Xn),

−

ˆ

B(x,r)

|u− uB(x,r)| dµ ≤ C2r

(

−

ˆ

B(x,r)

gp dµ

)
1
p

whenever u is a measurable function on B(x, r) and g is an upper gradient of u, where
uB(x,r) := −

´

B(x,r)
udµ = 1

µ(B(x,r))

´

B(x,r)
udµ. The validity of a p-Poincaré inequality for

X has very recently been characterized via a Muckenhoupt-type condition under a
doubling condition on (X, d, µ), see [23] for more information.

Our second result deals with a characterization of parabolicity in terms of p-
(super)- harmonic functions.

Theorem 1.3. Let 1 < p < ∞ and X be a K-regular tree with metric d and

measure µ as above, with K ≥ 2. Assume additionally that (int(Xn), d, µ) is doubling

and supports a p-Poincaré inequality for each n ∈ N. Then (X, d, µ) is p-parabolic if

and only if any one of the following conditions is fulfilled:

1. Every nonnegative p-superharmonic function u on X is constant.

2. Every nonnegative p-harmonic function u on X is constant.

3. Every bounded p-harmonic function u on X is constant.

4. Every bounded p-harmonic function u on X with
´

X
gpu dµ < ∞ is constant.

Let us close the introduction with some comments on Theorem 1.3. According to
a version of Theorem 1.3 in the setting of Riemannian manifolds from [12, 13, 17] we
have that 1. ⇒ 2. ⇒ 3. ⇒ 4. However 3. does not imply 2. in general. Our condition
that (int(Xn), d, µ) is doubling and supports a p-Poincaré inequality for each n ∈ N

is equivalent to µ being a locally doubling measure supporting a local p-Poincaré
inequality on (X, d).

Theorem 1.3 is not empty in the sense that there exist both p-parabolic and
p-hyperbolic K-regular trees that are doubling and support a p-Poincaré inequality,
see Example 3.9 in Section 3 for more details.

The motivation for our paper comes from classification problems of spaces. By
the survey papers [4, 7], the development of potential theory in the setting of metric
measure spaces leads to a classification of spaces as either p-parabolic or not. This di-
chotomy can be seen as a non-linear analog of the recurrence or transience dichotomy
in the theory of Brownian motion. This classification is helpful in the development
of a quasiconformal uniformization theory, or for a deeper understanding of the links
between the geometry of hyperbolic spaces and the analysis on their boundaries at
infinity.

The paper is organized as follows. In Section 2, we introduce K-regular trees,
Newtonian spaces, and p-(super)harmonic functions on our trees. In Section 3, we
give the proofs of Theorem 1.1 and Theorem 1.3.

Throughout this paper, the letter C (sometimes with a subscript) will denote
positive constants that usually depend only on the space and may change at different



Classification criteria for regular trees 7

occurrences; if C depends on a, b, . . ., we write C = C(a, b, . . .). For any function
f ∈ L1

loc(X) and any measurable subset A ⊂ X, let −
´

A
fdµ stand for 1

µ(A)

´

A
fdµ.

2. Preliminaries

2.1. Regular trees. A graph G is a pair (V,E), where V is a set of vertices and
E is a set of edges. We call a pair of vertices x, y ∈ V neighbors if x is connected
to y by an edge. The degree of a vertex is the number of its neighbors. The graph
structure gives rise to a natural connectivity structure. A tree G is a connected graph
without cycles. A graph (or tree) is made into a metric graph by considering each
edge as a geodesic of length one.

We call a tree G a rooted tree if it has a distinguished vertex called the root,
which we will denote by 0. The neighbors of a vertex x ∈ V are of two types: the
neighbors that are closer to the root are called parents of x and all other neighbors
are called children of x. Each vertex has a unique parent, except for the root itself
that has none.

We say that a tree is K-regular if it is a rooted tree such that each vertex has
exactly K children for some integer K ≥ 1. Then all vertices except the root of a
K-regular tree have degree K + 1, and the root has degree K.

Let G be a K-regular tree with a set of vertices V and a set of edges E for some
integer K ≥ 1. For simplicity of notation, we let X = V ∪ E and call it a K-regular
tree. For x ∈ X, let |x| be the distance from the root 0 to x, that is, the length of the
geodesic from 0 to x, where the length of every edge is 1 and we consider each edge to
be an isometric copy of the unit interval. The geodesic connecting two points x, y ∈ X
is denoted by [x, y]. Throughout this paper, we denote Xn := {x ∈ X : |x| ≤ n} and
int(Xn) := {x ∈ X : |x| < n} for each n ∈ N.

On our K-regular tree X, we define a measure µ and a metric d via ds by setting

dµ(x) = µ(|x|) d|x|, ds(x) = λ(|x|) d|x|,

where λ, µ : [0,∞) → (0,∞) are fixed with λ, µ ∈ L1
loc([0,∞)). Here d |x| is the

measure which gives each edge Lebesgue measure 1, as we consider each edge to be
an isometric copy of the unit interval and the vertices are the end points of this
interval. Hence for any two points z, y ∈ X, the distance between them is

d(z, y) =

ˆ

[z,y]

ds(x) =

ˆ

[z,y]

λ(|x|) d|x|

where [z, y] is the unique geodesic from z to y in X.
We abuse the notation and let µ(x) and λ(x) denote µ(|x|) and λ(|x|), respec-

tively, for any x ∈ X, if there is no danger of confusion. We denote by dE the graph
metric on X. Then for any two points z, y ∈ X,

dE(z, y) =

ˆ

[z,y]

d|x|

is the graph distance between z and y where [z, y] is the unique geodesic from z to y.

Theorem 2.1. The identity mapping IdX : (X, dE) → (X, d) is a homeomor-

phism.

Proof. Let us first prove that the identity mapping f : (X, dE) → (X, d), f(x) = x
if x ∈ X, is continuous. Let Bd(x, r) be an arbitrary open ball with center x and
radius r > 0 in (X, d). Recall that λ : [0,∞) → (0,∞) is a locally integrable function.
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Hence λ is an integrable function on [a, b] whenever [a, b] is a compact interval with
|x| ∈ (a, b) if x 6= 0, or |x| = a if x = 0 where 0 is the root of X. Then

F (h) :=

ˆ h

a

λ(t) dt

is absolutely continuous on [a, b]. It follows that there exists δr > 0 only depending
on x, r such that

{

´ |x|+δr
|x|−δr

λ(t) dt < r
2

if |x| ∈ (a, b), x 6= 0,
´ |x|+δr
|x|

λ(t) dt < r
2

if |x| = 0.

The open ball with center x and radius δr in (X, dE) is denoted by BdE (x, δr). For any
y ∈ BdE(x, δr), we have that [x, y] ⊂ [x, x̄]∪ [x̄, y] where x̄ ∈ [0, x] with dE(x, x̄) = δr.
Then the above estimate gives that

{

d(x, y) =
´

[x,y]
λ(t) dt < 2

´ |x|+δr
|x|−δr

λ(t) dt < r if |x| ∈ (a, b), x 6= 0,

d(x, y) =
´

[x,y]
λ(t) dt < 2

´ |x|+δr
|x|

< r if |x| = 0,

and hence y ∈ Bd(x, r). As Bd(x, r) is arbitrary, we obtain that for any open ball
Bd(x, r) there exists δr > 0 only depending on x, r such that BdE(x, δr) ⊂ Bd(x, r).
Thus

(2.1) the identity mapping f : (X, dE) → (X, d) is continuous.

Next, we claim that also the identity mapping g : (X, d) → (X, dE), g(x) = x if
x ∈ X, is continuous. Let BdE(x, r

′) be an arbitrary open ball with center x and
radius r′ > 0 in (X, dE). We set

(2.2) δr′ = min

{

ˆ |x|

|x|−r′/3

λ(t) dt,

ˆ |x|+r′/3

|x|

λ(t) dt

}

.

Then δr′ > 0 since λ > 0. We denote by Bd(x, δr′) the open ball with center x and
radius δr′ in (X, d). For any y ∈ Bd(x, δr′), we have that

(2.3)

ˆ

[x,y]

λ(t) dt = d(x, y) < δr′ .

It follows from (2.2) and (2.3) that |z| ∈ [|x| − r′/3, |x| + r′/3] for any z ∈ [x, y],
and hence dE(x, z) < r′ for any z ∈ [x, y]. In particular, dE(x, y) < r′ for any
y ∈ Bd(x, δr′). Then Bd(x, δr′) ⊂ BdE(x, r

′) for any BdE(x, r
′). Therefore

(2.4) the identity mapping g : (X, d) → (X, dE) is continuous.

We conclude from (2.1) and (2.4) that IdX : (X, dE) → (X, d) is a homeomorphism.
The claim follows. �

We note that Xn is compact in (X, dE) for each n ∈ N because it is a union of
finitely many compact edges. Furthermore, any compact set in (X, dE) is contained
in Xn for some n since any compact set in (X, dE) is bounded. Since compactness is
preserved under homeomorphisms, we have the following corollaries.

Corollary 2.2. Let O be an arbitrary compact set in (X, d). Then O ⊂ Xn for

some n ∈ N.

Corollary 2.3. Let n ∈ N. Then Xn is compact in (X, d), and int(Xn) is open

in (X, d).
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Corollary 2.4. (X, d, µ) is a connected, locally compact, and non-compact met-

ric measure space.

2.2. Newtonian spaces. Let 1 < p < ∞ and X be a K-regular tree with
metric d and measure µ as in Section 2.1. Let u ∈ L1

loc(X). We say that a Borel
function g : X → [0,∞] is an upper gradient of u if

(2.5) |u(y)− u(z)| ≤

ˆ

γ

g ds

whenever y, z ∈ X and γ is the geodesic from y to z. In the setting of our tree, any
rectifiable curve with end points z and y contains the geodesic connecting z and y,
and therefore the upper gradient defined above is equivalent to the definition which
requires that (2.5) holds for all rectifiable curves with end points z and y. In [8, 11],
the notion of a p-weak upper gradient is given. A Borel function g : X → [0,∞] is
called a p-weak upper gradient of u if (2.5) holds on p-a.e. curve. Here we say that a
property holds for p-a.e. curve if it fails only for a curve family Γ with zero p-modulus,
i.e., there is a Borel nonnegative function ρ ∈ Lp(X) such that

´

γ
ρ ds = ∞ for any

curve γ ∈ Γ. We refer to [8, 11] for more information about p-weak upper gradients.
The notion of upper gradients is due to Heinonen and Koskela [10], we refer inter-

ested readers to [2, 8, 11, 24] for a more detailed discussion on upper gradients. The
following lemma of Fuglede shows that a converging sequence in Lp has a subsequence
that converges with respect to p-a.e. curve (see [11, Section 5.2]).

Lemma 2.5. (Fuglede’s lemma) Let {gn}
∞
n=1 be a sequence of Borel nonnegative

functions that converges to g in Lp(X). Then there is a subsequence {gnk
}∞k=1 such

that

lim
k→∞

ˆ

γ

|gnk
− g| ds = 0

for p-a.e. curve γ in X.

The following useful results are from [11, Section 2.3 and Section 2.4] or [2,
Section 6.1].

Theorem 2.6. Every bounded sequence {un}
∞
n=1 in a reflexive normed space

(V, |.|V ) has a weakly convergent subsequence {unk
}∞k=1. Moreover, there exists u ∈ V

such that unk
→ u weakly in V as k → ∞ and

|u|V ≤ lim inf
k→∞

|unk
|V .

Lemma 2.7. (Mazur’s lemma) Let {un}
∞
n=1 be a sequence in a normed space V

converging weakly to an element u ∈ V . Then there exists a sequence v̄k of convex

combinations

v̄k =

Nk
∑

i=k

λi,kui,

Nk
∑

i=k

λi,k = 1, λi,k ≥ 0

converging to v in the norm.

The Newtonian space N1,p(X), 1 < p < ∞, is defined as the collection of all the
functions u with finite N1,p-norm

‖u‖N1,p(X) := ‖u‖Lp(X) + inf
g
‖g‖Lp(X)

where the infimum is taken over all upper gradients of u. We denote by gu the
minimal upper gradient, which is unique up to measure zero and which is minimal in
the sense that if g ∈ Lp(X) is any upper gradient of u then gu ≤ g a.e. We refer to
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[8, Theorem 7.16] for proofs of the existence and uniqueness of such a minimal upper
gradient.

If u ∈ N1,p(X), then it is continuous by (2.5) under the assumption λp

µ
∈

L
1

p−1

loc ([0,∞)) and it has a minimal p-weak upper gradient, see [21, Section 2]. More
precisely, by [21, Proposition 2.2] the empty family is the only curve family with
zero p-modulus, and hence any p-weak upper gradient is actually an upper gradient
here and the conclusion of Lemma 2.5 holds for every curve γ. Moreover, it follows
from [8, Definition 7.2 and Lemma 7.6] that any function u ∈ L1

loc(X) with an upper
gradient 0 ≤ g ∈ Lp(X) is locally absolutely continuous, for example, absolutely con-
tinuous on each edge. The classical derivative u′ of this locally absolutely continuous
function is a minimal upper gradient in the sense that gu = |u′(x)|/λ(x) when u is
parametrized in the natural way.

We define the homogeneous Newtonian space Ṅ1,p(X), 1 < p < ∞, the collection
of all the continuous functions u that have an upper gradient 0 ≤ g ∈ Lp(X), for
which the homogeneous Ṅ1,p-norm of u defined as

‖u‖Ṅ1,p(X) := |u(0)|+ inf
g
‖g‖Lp(X)

is finite. Here 0 is the root of our K-regular tree X and the infimum is taken over
all upper gradients of u.

The completion of the family of functions with compact support in N1,p(X) (or

Ṅ1,p(X)) is denoted by N1,p
0 (X) (or Ṅ1,p

0 (X)). We denote by N1,p
loc (X) the space of

all functions u ∈ Lp
loc(X) that have an upper gradient in Lp

loc(X), where Lp
loc(X) is

the space of all measurable functions that are p-integrable on any compact subset of
X. Especially, since each Xn is compact in (X, d) by Corollary 2.3, we conclude that
each u ∈ N1,p

loc (X) is both continuous and bounded on each Xn.

2.3. p-(super)harmonic functions. Let 1 < p < ∞ and X be a K-regular
tree with metric d and measure µ as in Section 2.1. For an open subset Ω of X, a
function u ∈ N1,p

loc (Ω) is said to be a p-harmonic function on Ω if

(2.6)

ˆ

spt(ϕ)

gpu dµ ≤

ˆ

spt(ϕ)

gpu+ϕ dµ

holds for all functions ϕ ∈ N1,p(Ω) with compact support spt(ϕ) ⊂ Ω. We say that a
function u ∈ N1,p

loc (Ω) is a p-superharmonic function if (2.6) holds for all nonnegative
functions ϕ ∈ N1,p(Ω) with compact support spt(ϕ) ⊂ Ω.

We have a characterization of p-harmonic functions on X, see [2, Lemma 7.11].

Theorem 2.8. A function u is a p-harmonic function on X if and only if u is

p-harmonic on int(Xn) for all n ∈ N.

By the stability properties of p-superharmonic functions (superminimizers) in
general metric measure spaces (see for instance [2, Theorem 7.25]), since int(Xn) is
open for each n ∈ N (see Corollary 2.3), we obtain the following results in our setting.

Theorem 2.9. Let n ∈ N. If {ui}i≥n is a sequence of p-harmonic functions on

int(Xn) which converges locally uniformly to u in int(Xn), then u is p-harmonic on

int(Xn).

Let 1 < p < ∞ and n ∈ N. Then (int(Xn), d, µ) is said to be doubling and
to support a p-Poincaré inequality if there exist constants C1 ≥ 1, C2 > 0 only
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depending on n such that for all balls B(x, 2r) ⊂ int(Xn),

µ(B(x, 2r)) ≤ C1µ(B(x, r))

and for all balls B(x, r) ⊂ int(Xn),

−

ˆ

B(x,r)

|u− uB(x,r)| dµ ≤ C2r

(

−

ˆ

B(x,r)

gp dµ

)
1
p

whenever u is a measurable function on B(x, r) and g is an upper gradient of u.
Recall that if (int(Xn), d, µ) is doubling and supports a p-Poincaré inequality, then
N1,p(int(Xn), d, µ) is a reflexive space (see [5, Theorem 4.48]).

Combining Proposition 3.9 and Theorem 5.4 in [19], we obtain the local Hölder
continuity of p-harmonic functions on int(Xn) for each n ∈ N.

Theorem 2.10. Let n ∈ N. Assume that (int(Xn), d, µ) is doubling and sup-

ports a p-Poincaré inequality. Then every p-harmonic function u on int(Xn) is locally

α-Hölder continuous for some 0 < α ≤ 1.

3. Proofs of Theorem 1.1 and Theorem 1.3

In this section, if we do not specifically mention, we always assume that 1 <
p < ∞ and that X is a K-regular tree with metric d and measure µ as in Section 2.1.

Lemma 3.1. X is p-parabolic if and only if Capp(X
n) = 0 for all n ∈ N ∪ {0}.

Proof. Let X be p-parabolic. By Corollary 2.3, we have that Xn is compact in
(X, d) for all n ∈ N and hence

Capp(X
n) = 0

for all n ∈ N. This also holds for all n ∈ N ∪ {0} because Capp(X
0) ≤ Capp(X

n).
Conversely, suppose that

(3.1) Capp(X
n) = 0

for all n ∈ N ∪ {0}. Let O be an arbitrary compact set in (X, d). Then O ⊂ Xn

for some n ∈ N by Corollary 2.2, and so that Capp(O) ≤ Capp(X
n). Combining

this with (3.1) yields Capp(O) = 0. Since O is arbitrary, we conclude that X is
p-parabolic. The proof is complete. �

Lemma 3.2. Let n ∈ N ∪ {0} be arbitrary. Then Rp = ∞ if and only if

Capp(X
n) = 0.

Proof. Suppose that Rp = ∞. We first claim that Capp(X
n) = 0. Let us define

a sequence {uk}
∞
k=n+1 by setting

(3.2) uk(x) =



















1 if x ∈ Xn,

1−
´ |x|
n

λ
p

p−1 (t)µ
1

1−p (t)K
j(t)
1−p dt

´ k

n
λ

p
p−1 (t)µ

1
1−p (t)K

j(t)
1−p dt

if x ∈ Xk \Xn,

0 otherwise.

Then

gk(x) =
λ

1
p−1 (x)µ

1
1−p (x)K

j(x)
1−p

´ k

n
λ

p

p−1 (t)µ
1

1−p (t)K
j(t)
1−p dt

χXk\Xn(x)
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is an upper gradient of uk. Next, a direct computation reveals that

(3.3)

ˆ

X

gpuk
dµ ≤

ˆ

X

gpk dµ =
1

(

´ k

n
λ

p
p−1 (t)µ

1
1−p (t)K

j(t)
1−p dt

)p−1 < ∞

for all k ≥ n + 1. Since Rp = ∞ and µ(Xk) < ∞ for each k ∈ N, it follows from

(3.2)–(3.3) that uk ∈ N1,p
0 (X) with uk|Xn ≡ 1 and that

lim
k→∞

ˆ

X

gpuk
dµ = 0.

We thus get Capp(X
n) = 0. Conversely, suppose that Capp(X

n) = 0. Then there

exists a sequence {uk}
∞
k=1 in N1,p

0 (X) with uk|Xn ≡ 1 such that

(3.4) lim
k→∞

ˆ

X

gpuk
dµ = 0.

Set vk := uk − 1. Then guk
= gvk . Combining this with (3.4) and uk(0) = 1 yields

‖uk − 1‖p
Ṅ1,p(X)

= ‖vk‖
p

Ṅ1,p(X)
=

ˆ

X

gpvk dµ → 0, as k → ∞.

Therefore uk → 1 in Ṅ1,p(X) with uk ∈ N1,p
0 (X), and hence 1 ∈ Ṅ1,p

0 (X). Recall

that Rp = ∞ is equivalent to 1 ∈ Ṅ1,p
0 (X) by [21, Theorem 1.3 and Corollary 4.2].

Thus Rp = ∞ which completes the proof. �

Lemma 3.3. Let X be p-parabolic. Then every nonnegative p-superharmonic

function u on X is constant.

Proof. Let u ∈ N1,p
loc (X) be an arbitrary nonnegative p-superharmonic function

on X. We claim that u is constant. Indeed, let n0 ∈ N be arbitrary. We denote

M := ‖u‖L∞(Xn0 ).

Then M < ∞, since u ∈ N1,p
loc (X) is bounded on Xn for each n ∈ N, see the end

of Section 2.2. By Lemma 3.1, we have Capp(X
n0) = 0, and hence that there is a

sequence {1n}
∞
n=1 in N1,p

0 (X) with 1n|Xn0 ≡ 1 such that

(3.5) lim
n→∞

ˆ

X

gp1n dµ = 0.

Without loss of generality we assume that each spt(1n) is compact. We define a
sequence {ϕn}

∞
n=1 by setting

ϕn(x) = max{M · 1n(x), u(x)} − u(x)

for each n ∈ N and for all x ∈ X. Then

(3.6) spt(ϕn) ⊂ spt(1n)

for all n ∈ N. We have that 0 ≤ ϕn ∈ N1,p(X) with compact support spt(ϕn),
because (3.6) holds and spt(1n) is compact. Since u is p-superharmonic on X, it
follows that

(3.7)

ˆ

spt(ϕn)

gpu dµ ≤

ˆ

spt(ϕn)

gpu+ϕn
dµ

for all n ∈ N. As u+ ϕn = max{M · 1n, u}, we have that

(3.8) gpu+ϕn
(x) = gpM ·1n

(x)χ{x∈X : M ·1n≥u}(x) + gpu(x)χ{x∈X : u>M ·1n}(x)
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for all x ∈ X. According to M = ‖u‖L∞(Xn0 ), 1n|Xn0 ≡ 1, it follows that u(x) ≤
M · 1n(x) and M · 1n(x) ≡ M for all x ∈ Xn0. Thanks to (3.6), we have that for all
x ∈ spt(1n),

(3.9) χ{x∈X : u>M ·1n}(x) ≤ χ{x∈spt(1n)\Xn0}(x) and gM ·1n = M · g1nχ{x∈spt(1n)\Xn0}.

Substituting (3.9) into (3.8) and combining with χ{x∈X:M ·1n≥u} ≤ 1 yields

gpu+ϕn
(x) ≤ Mp · gp1n(x)χ{x∈spt(1n)\Xn0}(x) + gpu(x)χ{x∈spt(1n)\Xn0}(x)

for all x ∈ spt(1n). By (3.6), the above inequality holds for all x ∈ spt(ϕn). Then
(3.7) gives that

(3.10)

ˆ

spt(ϕn)

gpu dµ ≤ Mp

ˆ

spt(ϕn)\Xn0

gp1n dµ+

ˆ

spt(ϕn)\Xn0

gpu dµ

for all n ∈ N. By
´

spt(ϕn)\Xn0
gpu dµ < ∞, because u ∈ N1,p

loc (X) and spt(ϕn) is

compact, subtracting
´

spt(ϕn)\Xn0
gpu dµ from both sides of (3.10) yields

(3.11)

ˆ

Xn0

gpu dµ ≤ Mp

ˆ

spt(ϕn)\Xn0

gp1n dµ ≤ Mp

ˆ

X

gp1n dµ

for all n ∈ N. Letting n → ∞, we conclude from (3.5) and (3.11) that
´

Xn0
gpu dµ = 0.

Since n0 is arbitrary, this implies that u is constant, and the claim follows. �

Remark 3.4. Assume that f > 0 is a p-superharmonic function on X. Then

(3.12)

ˆ

X

f−pgpfϕ
p dµ ≤

(

p

p− 1

)p ˆ

X

gpϕ dµ

for all ϕ ∈ N1,p
0 (X) with 0 ≤ ϕ ≤ 1. This inequality (3.12) is often called a

Caccioppoli-type inequality, see Section 3 in [18].

One can give an alternate proof for Lemma 3.3 via the Caccioppoli inequality
(3.12). Indeed, let u be an arbitrary nonnegative p-superharmonic function on X.
Suppose that X is p-parabolic. By Lemma 3.1, we have that Capp(X

n) = 0 for all

n ∈ N. Let n ∈ N be arbitrary. Then for any ε > 0 there exists un,ε ∈ N1,p
0 (X) with

0 ≤ un,ε ≤ 1 and un,ε|Xn ≡ 1 such that

(3.13)

ˆ

X

gpun,ε
dµ ≤ Capp(X

n) + ε = ε.

Applying the Caccioppoli inequality (3.12) for f = u+ 1 with ϕ = un,ε, yields

(3.14)

ˆ

X

(u+ 1)−pgpu+1u
p
n,ε dµ ≤

(

p

p− 1

)p ˆ

X

gpun,ε
dµ.

Note that glog(u+1) = (u + 1)−1gu+1 by [2, Theorem 2.16 or Proposition 2.17]. We
combine this and (3.13)–(3.14) with un,ε|Xn ≡ 1 to obtain that

ˆ

Xn

glog(u+1)
p dµ ≤

(

p

p− 1

)p

ε.

Letting ε → 0, this gives glog(u+1) = 0 on Xn and hence that u is constant on Xn.
Thus u is constant on X since n ∈ N is arbitrary.

Let x0 be a closest vertex of the root 0 of a K-regular tree where K ≥ 2. Then
we set

Tx0 := {y ∈ X : x0 ∈ [0, y]} and T1 := [0, x0] ∪ Tx0 .
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For any n ∈ N, we denote

En := (X \Xn) ∩ T1 and Fn := (X \Xn) \ T1.

We define the p-capacity of the pair (En, Fn), denoted Capp(En, Fn), by setting
(3.15)

Capp(En, Fn) = inf

{
ˆ

X

gpu dµ : u ∈ N1,p
loc (X), u|En

≡ 1, u|Fn
≡ 0, 0 ≤ u ≤ 1

}

.

The following lemma follows straightforwardly from the definition (3.15) of p-capacity.

Lemma 3.5. Let X be a K-regular tree where K ≥ 2 and let 1 < p < ∞.

Then the sequence {Capp(En, Fn)}
∞
n=1 is non-increasing and there exists a constant

0 < M1 < ∞ such that

(3.16) Capp(En, Fn) ≤ M1 < ∞ for all n ∈ N.

Proof. It is clear from (3.15) that {Capp(En, Fn)}
∞
n=1 is non-increasing and

bounded from above by Capp(E1, F1). As the piecewise linear function f with
f |E1 ≡ 1, f |F1 ≡ 0 is admissible for computing Capp(E1, F1), the claim follows
since

Capp(En, Fn) ≤ Capp(E1, F1) ≤

ˆ

X

gpf dµ ≤
µ(X1)

d(E1, F1)p
< ∞

for all n ∈ N. �

Lemma 3.6. Let X be a p-hyperbolic K-regular tree where K ≥ 2 and 1 <
p < ∞. Suppose that, for each n ∈ N, (int(Xn), d, µ) is doubling and supports a

p-Poincaré inequality. Then there exist a constant 0 < M2 < ∞ and a sequence

{un}
∞
n=1 in N1,p

loc (X) with un|En
≡ 1, un|Fn

≡ 0, 0 ≤ un ≤ 1 and so that each un is a

nonconstant p-harmonic function on int(Xn) with

0 < M2 ≤

ˆ

Xn

gpun
dµ = Capp(En, Fn).

Proof. Let n ∈ N. By the definition (3.15) of Capp(En, Fn), there exists a

sequence {un,m}
∞
m=1 in N1,p

loc (X) with un,m|En
≡ 1, un,m|Fn

≡ 0, 0 ≤ un,m ≤ 1 such
that

(3.17) Capp(En, Fn) ≤

ˆ

X

gpun,m
dµ ≤ Capp(En, Fn) +

1

m
.

By Lemma 3.5, there is a constant 0 < M1 < ∞ such that

(3.18) Capp(En, Fn) < M1 < ∞ for all n ∈ N

and hence {gun,m
}∞m=1 is bounded in Lp(X). We have from µ(Xn+1) < ∞, 0 ≤

un,m ≤ 1 that {un,m}
∞
m=1 is bounded in Lp(Xn+1). Then {un,m}

∞
m=1 is bounded in

N1,p(Xn+1). We note that N1,p(int(Xn+1)) is a reflexive space since (int(Xn+1), d, µ)
is doubling and supports a p-Poincaré inequality, see [5, Theorem 4.48]. Hence The-
orem 2.6 gives that there is a subsequence {un,mk

}∞k=1 which converges weakly to
some un ∈ N1,p(int(Xn+1)). By Mazur’s Lemma 2.7, there is a sequence of convex
combinations fk which converges to un in N1,p(int(Xn+1)):

(3.19) fk :=

Nk
∑

i=k

ai,kun,i

where ai,k ≥ 0,
∑Nk

i=k ai,k = 1, un,i ∈ {un,mk
}∞k=1. We may assume that fk(x) converges

pointwise to un(x) as k → ∞ on int(Xn+1). It is easy to see that un|int(Xn+1)∩En
≡ 1
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and un|int(Xn+1)∩Fn
≡ 0 from (3.19) since un,i|int(Xn+1)∩En

≡ 1, un,i|int(Xn+1)∩Fn
≡ 0 for

all i. We extend un by setting un|En\int(Xn+1) ≡ 1, un|Fn\int(Xn+1) ≡ 0. Then

(3.20) un ∈ Lp
loc(X) with un|En

≡ 1, un|Fn
≡ 0, 0 ≤ un ≤ 1.

Next, we have by the convexity of the function t 7→ tp that

ˆ

Xn

gpfk dµ ≤

Nk
∑

i=k

ai,k

ˆ

Xn

gpun,i
dµ.

By the triangle inequality, this gives
(
ˆ

Xn

gpun
dµ

)
1
p

≤

(
ˆ

Xn

gpfk−un
dµ

)
1
p

+

(
ˆ

Xn

gpfk dµ

)
1
p

≤

(
ˆ

Xn

gpfk−un
dµ

)
1
p

+

(

Nk
∑

i=k

ai,k

ˆ

Xn

gpun,i
dµ

)

1
p

.(3.21)

According to (3.17) and
∑Nk

i=k ai,k = 1,

(

Nk
∑

i=k

ai,k

ˆ

Xn

gpun,i
dµ

)

1
p

≤

(

Nk
∑

i=k

ai,kCapp(En, Fn) +

Nk
∑

i=k

ai,k
1

i

)

1
p

≤

(

Capp(En, Fn) +
1

k

)
1
p

.(3.22)

Substituting (3.22) into (3.21) and combining with fk → un in N1,p(int(Xn+1)) as
k → ∞, we obtain that
(
ˆ

Xn

gpun
dµ

)
1
p

≤

(
ˆ

Xn

gpfk−un
dµ

)
1
p

+

(

Capp(En, Fn) +
1

k

)
1
p

→ Capp(En, Fn)
1
p

as k → ∞. Then the above estimate gives via (3.18) and un|Fn
≡ 0, un|En

≡ 1
that gun

∈ Lp(X). Combining this with (3.20) yields un ∈ N1,p
loc (X) with un|En

≡ 1,
un|Fn

≡ 0, 0 ≤ un ≤ 1 and hence un is admissible for computing the capacity
Capp(En, Fn). It follows from this and the above estimate that

(3.23)

ˆ

Xn

gpun
dµ = Capp(En, Fn) for all n ∈ N.

We conclude from (3.18), (3.20), (3.23) that there are a constant 0 < M1 < ∞ and
a function un ∈ N1,p

loc (X) with un|En
≡ 1, un|Fn

≡ 0, and 0 ≤ un ≤ 1 such that

(3.24)

ˆ

Xn

gpun
dµ = Capp(En, Fn) ≤ M1 < ∞ for all n ∈ N.

We now prove that there is a constant 0 < M2 < ∞ such that

(3.25) 0 < M2 ≤

ˆ

Xn

gpun
dµ = Capp(En, Fn) for all n ∈ N.

Let n ∈ N and un be as in (3.24). If un(0) < 1/2, we define v := max{0,min{1, 2(1−
un)}}. Then v ∈ N1,p

loc (X) with v(0) = 1, v|En
≡ 0, and hence

Capp({0}, En) ≤

ˆ

X

gpv dµ ≤ 2p
ˆ

Xn

gpun
dµ = 2pCapp(En, Fn).
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If un(0) ≥ 1/2, we define w := max{0,min{1, 2un}}. Then w ∈ N1,p
loc (X) with

w(0) = 1, w|Fn
≡ 0, and hence

Capp({0}, Fn) ≤

ˆ

X

gpw dµ ≤ 2p
ˆ

Xn

gpun
dµ = 2pCapp(En, Fn).

Combining the above estimates for each n ∈ N, we obtain that

inf
n∈N

min{Capp({0}, En),Capp({0}, Fn)} ≤ 2p
ˆ

Xn

gpun
dµ = 2pCapp(En, Fn) for all n ∈ N.

To obtain (3.25), we show that

(3.26) M2 := inf
n∈N

min{Capp({0}, En),Capp({0}, Fn)} > 0.

Applying Lemma 3.1 and Lemma 3.2 for the subtrees T1 and X \ T1, we obtain that

T1 is p-hyperbolic if and only if RT1
p :=

1

K
Rp < ∞

and

X \ T1 is p-hyperbolic if and only if RX\T1
p :=

K − 1

K
Rp < ∞.

Notice that if X is p-hyperbolic, then both T1 and X \ T1 are p-hyperbolic since

Rp < ∞ implies finiteness of RT1
p and R

X\T1
p . By Lemma 3.2 with the p-hyperbolicity

of T1 and X \ T1, it follows that

Capp({0}, En) ≥ CapT1
p ({0}) := inf

{
ˆ

T1

gpu dµ : u ∈ N1,p
0 (T1), u(0) = 1

}

> 0

and

Capp({0}, Fn) ≥ CapX\T1
p ({0}) := inf

{
ˆ

X\T1

gpu dµ : u ∈ N1,p
0 (X \ T1), u(0) = 1

}

> 0

for each n ∈ N. Hence (3.26) holds.
Finally, we only need to show that un is a p-harmonic function on int(Xn). Let

ϕ be an arbitrary element of N1,p(int(Xn)) with compact support spt(ϕ) ⊂ int(Xn).
By choosing v = max{0,min{1, un + ϕ}} we have that v ∈ N1,p(int(Xn)) with
v|En

≡ 1, v|Fn
≡ 0, 0 ≤ v ≤ 1 because spt(ϕ) ⊂ int(Xn) and because (3.20) holds. It

follows from the definition (3.15) of Capp(En, Fn) that

Capp(En, Fn) ≤

ˆ

Xn

gpv dµ ≤

ˆ

Xn

gpun+ϕ dµ.

Combining this with (3.23), we obtain that
ˆ

Xn

gpun
dµ ≤

ˆ

Xn

gpun+ϕ dµ

for all ϕ ∈ N1,p(int(Xn)) with compact support spt(ϕ) ⊂ int(Xn). Hence un is
p-harmonic on int(Xn), and the claim follows. �

Lemma 3.7. Let X be a p-hyperbolic K-regular tree where K ≥ 2 and 1 < p <
∞. Suppose that (int(Xn), d, µ) is doubling and supports a p-Poincaré inequality

for each n ∈ N. Then there exists a nonconstant nonnegative bounded p-harmonic

function u on X with 0 <
´

X
gpu dµ < ∞.
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Proof. We first prove that there exists a nonnegative bounded p-harmonic func-
tion u on X. Towards this, Lemma 3.5 and Lemma 3.6 give that there exist constants
0 < M2 ≤ M1 < ∞ and a sequence {un}

∞
n=1 in N1,p

loc (X) with un|En
≡ 1, un|Fn

≡ 0,
0 ≤ un ≤ 1 such that un is a nonconstant p-harmonic function on int(Xn) and

(3.27) 0 < M2 ≤

ˆ

Xn

gpun
dµ = Capp(En, Fn) ≤ M1 < ∞ for all n ∈ N.

Let n0 ∈ N be arbitrary. It follows from the local Hölder continuity of p-harmonic
functions (see Theorem 2.10) that {un}n≥n0 is equibounded and locally equicontin-
uous on int(Xn0+1). By the Arzelà-Ascoli theorem, there exists a subsequence, still
denoted {un}n≥n0, that converges to u uniformly on Xn0 as n → ∞. Since n0 is
arbitrary, by uniqueness of locally uniform convergence, we may assume that un

converges to u locally uniformly in X as n → ∞. Then {ui}i≥n is a sequence of
p-harmonic functions on int(Xn) which converge uniformly to u in int(Xn) for each
n, and hence by Theorem 2.9 and Theorem 2.8 we obtain that u is a p-harmonic
function on X. Thus u is a nonnegative bounded p-harmonic function on X since
0 ≤ un ≤ 1.

We next show that

0 <

ˆ

X

gpu dµ < ∞.

It follows from (3.27) that {gun
}∞n=1 is a bounded sequence in the reflexive space

Lp(X), and hence Theorem 2.6 and Mazur’s Lemma 2.7 give that there exists g ∈

Lp(X) and a convex combination sequence ḡn =
∑Nn

i=n ai,ngui
with ai,n ≥ 0,

∑Nn

i=n ai,n
= 1 such that ḡn → g in Lp(X) as n → ∞. By Fuglede’s Lemma 2.5, we obtain that
there is a subsequence, still denoted ḡn, such that

lim
n→∞

ˆ

[x,y]

ḡn ds =

ˆ

[x,y]

g ds

for every curve [x, y]. Note that ḡn =
∑Nn

i=n ai,ngui
is an upper gradient of ūn =

∑Nn

i=n ai,nui and ūn converges to u locally uniformly in X as n → ∞. Hence

|u(x)− u(y)| = lim
n→∞

|ūn(x)− ūn(y)| ≤ lim
n→∞

ˆ

[x,y]

ḡn ds =

ˆ

[x,y]

g ds

for every curve [x, y]. Then g is an upper gradient of u and hence gu ≤ g a.e.
Combining this with ḡn → g in Lp(X) as n → ∞ and with the convexity of the
function t 7→ tp yields

(3.28)

ˆ

X

gpu dµ ≤

ˆ

X

gp dµ = lim
n→∞

ˆ

X

ḡpn dµ ≤ lim
n→∞

Nn
∑

i=n

ai,n

ˆ

X

gpui
dµ.

Notice that {Capp(En, Fn)}
∞
n=1 is a nonincreasing sequence by Lemma 3.5. Hence we

have by ui|Fi
≡ 0, ui|Ei

≡ 1 and (3.27) that

lim
n→∞

Nn
∑

i=n

ai,n

ˆ

X

gpui
dµ = lim

n→∞

Nn
∑

i=n

ai,n

ˆ

Xi

gpui
dµ = lim

n→∞

Nn
∑

i=n

ai,nCapp(Ei, Fi)

≤ lim
n→∞

Nn
∑

i=n

ai,nCapp(En, Fn) = lim
n→∞

Capp(En, Fn) < ∞.

Substituting the above estimate into (3.28) yields
´

X
gpudµ < ∞.
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It remains to show that
´

X
gpu dµ > 0. The preceding being understood, we argue

by contradiction and assume that
´

X
gpu dµ = 0. Then u is constant on X. Recall

that ḡn =
∑Nn

i=n ai,ngui
with ai,n ≥ 0,

∑Nn

i=n ai,n = 1 are such that ḡn → g in Lp(X) as
n → ∞ and

(3.29) lim
n→∞

ˆ

[x,y]

ḡn ds =

ˆ

[x,y]

g ds

for every curve [x, y]. Moreover, ḡn is an upper gradient of ūn =
∑Nn

i=n ai,nui and ūn

is admissible for computing the capacity Capp(ENn
, FNn

), and so
ˆ

X

ḡpn dµ ≥

ˆ

X

gpūn
dµ ≥ Capp(ENn

, FNn
).

Combining this with (3.27) and using ḡn → g in Lp(X) as n → ∞ yields

(3.30)

ˆ

X

gp dµ > 0.

Let ε > 0 be arbitrary, and let [x, y] be an arbitrary edge in X. Since un converges
to u locally uniformly in X, there exist positive constants N, r only depending on
x, y such that for all n ≥ N ,

sup
t∈B(x,r)

|un(t)− u(t)| < ε, sup
t∈B(y,r)

|un(t)− u(t)| < ε

where B(x, r), B(y, r) are balls with centers x, y and radius r, respectively. Since u
is constant, the above estimates yield that for all n ≥ N ,

|un(x)− un(y)| ≤ |un(x)− u(x)|+ |u(y)− un(y)| < 2ε.

By Section 2.2, un is absolutely continuous on [x, y] and gun
(z) = |u′

n(z)|/λ(z) for
z ∈ [x, y]. By the strong maximum principle (see for instance [19, Corollary 6.5]), un

is a monotone function on [x, y]. Hence

|un(x)− un(y)| =

ˆ

[x,y]

|u′
n(z)| dz.

Since the minimal upper gradient gun
of un satisfies gun

(x) = |u′
n(x)|/λ(z), we con-

clude that
ˆ

[x,y]

gun
ds ≤ 2ε

for all n ≥ N . By (3.29), it follows that
ˆ

[x,y]

g ds = lim
n→∞

ˆ

[x,y]

ḡn ds = lim
n→∞

Nn
∑

i=n

ai,n

ˆ

[x,y]

gui
ds < 2ε.

Letting ε → 0, we obtain that g = 0 a.e. on [x, y]. As [x, y] is arbitrary, we conclude
that g = 0 a.e. which contradicts (3.30). This completes the proof. �

Proof of Theorem 1.1. X is p-parabolic ⇔ 2. is given by Lemma 3.1.
1. ⇔ 2. ⇔ 3. is given by Lemma 3.2. �

Proof of Theorem 1.3. X is p-parabolic ⇒ 1. is given by Lemma 3.3.
1. ⇒ 2. is trivial.
2. ⇒ 3.: Let u be a bounded p-harmonic function on X. Then there exists a

constant C > 0 such that u+ C is a nonnegative p-harmonic function on X. Hence
u+ C is constant by the assumption and so u is constant.

3. ⇒ 4. is trivial.
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4. ⇒ X is p-parabolic is given by Lemma 3.7. �

The following example shows that Theorem 1.1 is not true for general metrics
and measures.

Example 3.8. Let 1 < p < ∞. There exists a p-hyperbolic K-regular tree X
with a distance and a “non-radial” measure such that Rp = ∞.

Let us begin with some notation. For simplicity, let X be a dyadic tree (which
means K = 2). Then the root 0 of our tree has two closest vertices, denoted v1 and
v2. We denote

T1 = [0, v1] ∪ {x ∈ X : v1 ∈ [0, x]} and T2 = [0, v2] ∪ {x ∈ X : v2 ∈ [0, x]}.

Note that the union of T1 and T2 is our tree. Suppose λi, µi : [0,∞) → (0,∞) satisfy
λi, µi ∈ L1

loc([0,∞)), for i = 1, 2. We introduce a measure µ and a metric d via ds by
setting

dµ(x) = µi(|x|) d|x|, ds(x) = λi(|x|) d|x|,

for all x ∈ Ti, for i = 1, 2. To obtain what we desire, we choose λ1 ≡ µ1 ≡ 1 and
λ2 ≡ 1, µ2(x) = 2−j(x). Define a metric d and a measure µ as above. Then

Rp|T1 :=
1

2

ˆ ∞

0

λ
p

p−1

1 (t)µ
1

1−p

1 (t)2
j(t)
1−p dt < ∞,

Rp|T2 :=
1

2

ˆ ∞

0

λ
p

p−1

2 (t)µ
1

1−p

2 (t)2
j(t)
1−p dt = ∞,

and Rp = Rp|T1 + Rp|T2 = ∞. By Theorem 1.1 for the subtree T1 with Rp|T1 < ∞,
we obtain that T1 is p-hyperbolic. Hence there exists a compact set O in T1 such
that CapT1

p (O) > 0, where

CapT1
p (O) := inf

{
ˆ

T1

gpu dµ : u|O ≡ 1, u ∈ N1,p
0 (T1)

}

.

Let O be such a set. Then O is bounded in T1 by Corollary 2.2. Let u ∈ N1,p
0 (X)

be an arbitrary function with u|O ≡ 1. It follows from u ∈ N1,p
0 (X) that there exists

a sequence un ∈ N1,p(X) with compact support spt(un) ⊂ X such that un → u in
N1,p(X) as n → ∞. By Corollary 2.2, we may assume that spt(un) ⊂ Xn for each
n. Hence spt(un) ∩ T1 ⊂ Xn ∩ T1, and so spt(un) ∩ T1 is compact in T1 because
spt(un) ∩ T1 is a closed set in T1 and Xn ∩ T1 is compact in T1. Then for each n,
un ∈ N1,p(T1) with compact support spt(un) and un → u in N1,p(T1) as n → ∞, and
hence u ∈ N1,p

0 (T1) with u|O ≡ 1. Thus u is admissible for computing CapT1
p (O) and

so
ˆ

X

gpu dµ ≥

ˆ

T1

gpu dµ ≥ CapT1
p (O).

Since u ∈ N1,p
0 (X) with u|O ≡ 1 is arbitrary, the above estimate gives

Capp(O) ≥ CapT1
p (O).

Combining this with CapT1
p (O) > 0, we have Capp(O) > 0. Thus X is p-hyperbolic.

Example 3.9. Let 1 < p < ∞. There exist both p-hyperbolic and p-parabolic
K-regular trees (X, d, µ) that are doubling and support a p-Poincaré inequality.
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We begin with the p-hyperbolic case. Let µ(t) = e−βj(t) and λ(t) = e−εj(t) with
ε, β > 0 and logK < β < logK + εp. It is obvious that µ(X) < ∞ and Rp < ∞.
More precisely, since logK < β < logK + εp we have that

µ(X) =

ˆ ∞

0

µ(t)Kj(t) dt =

ˆ ∞

0

e−(β−logK)j(t) dt < ∞

and

Rp =

ˆ ∞

0

λ(t)
p

p−1µ(t)
1

1−pK
j(t)
1−p dt =

ˆ ∞

0

e
(β−logK−εp)j(t)

p−1 dt < ∞.

As Rp < ∞, by Theorem 1.1, it follows that (X, d, µ) is a noncomplete p-hyperbolic
metric measure space. By [3, Section 3 and Section 4] or [22, Section 2] for logK < β,
we obtain that (X, d, µ) is doubling and supports a 1-Poincaré inequality.

For the p-parabolic case, let µ(t) = e−βj(t) and λ(t) = e−εj(t) with ε, β > 0 and
β = logK+εp. It is easy to see that (X, d, µ) is a noncomplete p-parabolic K-regular
tree that is doubling and supports a 1-Poincaré inequality.
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