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Reverse integral Hardy inequality
on metric measure spaces

AIDYN KASSsYMOV, MICHAEL RUZHANSKY and DURVUDKHAN SURAGAN*

Abstract. In this note, we obtain a reverse version of the integral Hardy inequality on metric
measure spaces. Moreover, we give necessary and sufficient conditions for the weighted reverse
Hardy inequality to be true. The main tool in our proof is a continuous version of the reverse
Minkowski inequality. In addition, we present some consequences of the obtained reverse Hardy
inequality on the homogeneous groups, hyperbolic spaces and Cartan-Hadamard manifolds.

Kainteinen Hardyn integraaliepdyhtilé metrisissi mitta-avaruuksissa

Tiivistelmd. Johdamme kidnteisen Hardyn integraaliepéyhtdlon metrisissd mitta-avaruuk-
sissa ja annamme riittavat ja valttdmattomat ehdot sen painolliselle versiolle. Todistuksemme
padtyokalu on kidnteisen Minkowskin epédyhtilon jatkuva versio. Lisdksi esitdmme johtamamme
kiaanteisen Hardyn epdyhtédlon seurauksia homogeenissa ryhmissé, hyperbolisissa avaruuksissa ja

Cartanin-Hadamardin monistoissa.

1. Introduction

In one of the pioneering papers of Hardy [10]| and [11], he proved the following
(direct) inequality:

(1.1) /(x% (/OO £(t) dt)pdx < (]%)p/am #2(x) da,

where f > 0, p > 1, and a > 0. Today’s literature on the development of the
extensions of this integral Hardy inequality is very large, see e.g. [3, 5, 16, 17, 18, 19|
and [20]. Note that the multi-dimensional version of the integral Hardy inequality
was proved in [4].

In [2], the authors obtained the so-called reverse integral Hardy inequality in the
following form:

(1.2) (/b (/;f(t) dt)qu(a:) d:c)% e (/b 7()o(x) d:c)% ,
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and the conjugate reverse integral Hardy inequality

wo ([ ([ ) worw) 2o ([ rora)

where f > 0, for some positive weights u, v and p,q < 0. The reverse Hardy inequal-
ities were also studied in |9, 15, 14] and [21].

The main aim of the present paper is to extend the reverse Hardy inequalities to
general metric measure spaces. More specifically, we consider metric spaces X with a
Borel measure dx allowing for the following polar decomposition at a € X: we assume
that there is a locally integrable function A € L such that for all f € L'(X) we
have

(1.4) /Xf(x)dx:/ooo Erf(r,w))\(r,w)dwdr,

for the set ¥, = {x € X: d(z,a) = r} C X with a measure on it denoted by dw, and
(r,w) —aasr—0.

As it can be seen, A depends on the variables x = (r,w), which yields a polar
decomposition (1.4) which is rather general. We assume (1.4), because X does not
have to have a differentiable structure. If there exits a differentiable structure on
X, the condition (1.4) can be obtained as the standard polar decomposition formula.
Euclidean space RY with A(r,w) = r¥ =1 homogeneous groups G with \(r,w) = r@~1,
(where @ is the homogeneous dimension of the group, see e.g., |7, 6]) and hyperbolic
space H" with A\(r,w) = (sinhr)"~! are examples of X with the polar decomposition
(1.4) with different A(r,w). Also, Cartan-Hadamard manifolds have the following
polar decomposition:

/Mf(x) dx:/ooo - f(expy(pw))J (p,w)p" " dp duw,

where a € M is a fixed point, p(z) = d(x,a) is the geodesic distance between x and
a on M, J(p,w) is the density function on M and exp, is the exponential map from
T, to M (see for more detials, [8], [12] and [28]).

In [28] and [29], the (direct) integral Hardy inequalities on metric measure space
were established for 1 < p < g < o0 and 0 < ¢ < p,1 < p < o0, respectively,
with applications on homogeneous Lie groups, hyperbolic spaces, Cartan-Hadamard
manifolds with negative curvature and on general Lie groups with Riemannian dis-
tance. Also, on Riemannian manifolds the Hardy inequality was obtained in [31],
and on homogeneous Lie groups the Hardy inequality was obtained in [13], [24]-[23]
and [30]. In the present paper, we continue the analysis in the general setting of
metric measure spaces as in [28] and show the reverse integral Hardy inequality with
g <0and p € (0,1). We also discuss its consequences for homogeneous Lie groups,
hyperbolic spaces and Cartan-Hadamard manifolds with negative curvature.

2. Main result

Let us recall briefly the reverse Holder’s inequality.

Theorem 2.1. [1, Theorem 2.12, p. 27| Let p € (0,1), so that p' = p%l <0. If
non-negative functions satisfy 0 < [, fP(z)dz < +oo and 0 < [, ¢* (z) dz < 400,
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we have
1

(21) [ tteas= ([ e dx)’l’ ([owa)".

Let us present the reverse integral Minkowski inequality (or a continuous version
of reverse Minkowski inequality).

Theorem 2.2. Let X, Y be metric measure spaces and let F = F(x,y) € X x Y
be a non-negative measurable function. Then we have

(2.2) UX (/YF(:c,y)dy)q dxr Z/Y(/XFq(a:,y)dx)% dy, q<0.

Proof. Let us consider the following function:

(2.3) A(z) ::/YF(:c,y) dy,

so we have
(2.4) A%(z) = ( /Y F(z,y) dy)q.

By integrating over X both sides and by using reverse Holder’s inequality (Theo-
rem 2.1), we obtain

/X A9(z) d — /X AT () A(z) da

:/XAq—l(g;)/YF(g;,y) dydx:/y/XAq_l(x)F(Ly) dx dy

(25) Y ([armea) ([ o) a

q—1 1

- (/XAq(:c)dx>T/Y</XF‘1(az,y)d:c)q dy.
From this, we get
6) (] m,y)dy)quf > [ ([ Fre dx)%dy,

proving (2.2). O

Remark 2.3. In our sense, the negative exponent g of 0, we understand in the
following form:
(2.7) 09 = (4+00)?=400 and 077 = (+00)?=0.
We denote by B(a,r) the ball in X with centre a and radius r, i.e.
B(a,r) :={x € X: d(z,a) <r},

where d is the metric on X. Once and for all we will fix some point a € X, and we
will write

(2.8) |z|, == d(a,x).

Now we prove the reverse integral Hardy inequality on a metric measure space.
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Theorem 2.4. Assume that p € (0,1) and ¢ < 0. Let X be a metric measure
space with a polar decomposition at a € X. Suppose that u,v > 0 and u,v'* are
locally integrable functions on X. Then the inequality

[ ) ] 2t (o)

holds for some C(p,q) > 0 and for all non-negative real-valued measurable functions
f, if and only if

(210) O<bi=l [(/x\B(a,xa>u<y> dy)% </B(a,|ar| ) i )dy>%] '

Moreover, the biggest constant C(p,q) in (2.9) has the following relation to D;:
1

PN a d
2.11 D, >C > D
(2.11) 1> C(p,q) > (p,+q> (p,+q> 1.

Proof. Let us divide proof of this theorem in several steps.
Step 1. Let us denote g(z) := f(x)v%(x) Let a € (0, —z%) and z(z) = 1)7%(1‘)
where % + ]% = 1. Let us denote, using (1.4),

(2.12) Vi) = [ R / L
(2.13) Hy(s) = /Z N 0)gls,0)2(5,0) o

(2.14) Ha(s) = /z | s, o) (s, )V (5, 0) do

(215) Hy(s) = /Z N0 (5, (5, do

(2.16) U(r) == /z T)\(r W)ulr w) dw

After some calculation, we compute, using reverse Hoélder’s inequality (Theo-

rem 2.1),
. </B(a ) dy)qu(a:) dx
(/B ) )dy)qu(x) dx
(/B olo) )dy)p (/B(m'm'a)g(y)Z(y) dy)qpu(a;) dx
(

/B ! )V (y)2(y) dy)p ( /B e 9(y)2(y) dy)qp w(z) dz

A=

\

Il
T T
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e = [ ([ TV w)([ v ay)'
<([ o) i) utw)ds
([ (o) ([

Let us denote by Hy(s fZ (s,0) do. Then we have

([ o)’ ([ / Nos) o,V (5] M)f’

([ sgzpsg(// (o) p,m)dpdal) s o
N ()

- ([ ([ mors)” o ([ nam))

D
7

Lt ap'>0 1 1+ap’ , P
= 7& Hz ) dp ’0
(1+ap)v

S

p(1+ap’) 7p(1+f¥p/)
a , 7 V P
vt ([ ) D)
(14 ap’) (1+ap)”
where Vi (r fo H2 )dp. By using this fact and reverse Holder’s inequality with

b q—p __
q+ 7 —1 we obtain

P

A> /OO (/ Hy(s) ds) U(r) (/ Hi(s) ds)qp (/0 Hy(s) ds) " dr
(o [ 070

1+ap)ﬁ /Ooo /TH3(5)d5)g (T)‘GW(T)dr>

9—p

([ ([ mrs) r0e)’

-Q\'B
/_\

\Iw
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) (1+(11p)£’ (/ (/ Hy(s 5)_ 1W(T)dr>
(L (L, wwn) o)

4—pP

7112)"’ </ 0 (] ) —”d)
Therefore,
AT 2 (1—1—(11]9) (/ (/ Hals ) f%?m(r)d'ry'

Let us treat the following integral with the reverse Minkowski inequality with
exponent % < 0, so that we obtain

</ </ e >_ 1«1%3116(74) dr>§
: </OOO (/0 SOETIaa® dS) dr)q
) (/m ([ vtomen ™ o as) % dr) |

(2.2) [0 o0 ai+ap’) a
S wys) < / UV ('r’)dr) ds

0

Q3

SN ]

S

= [V ( / . )u(x)V‘“?—"””m da:f dy
> D'(0) [ ') do

q(1+az7 )

where D(a) := inf, ., D(z, o) = inf, 4, V‘“(x)(fX\B(a 2].) u(y)V (y )dy) and
x is the cut-off function. Then we obtain

Al = </X </B(a|$| )f(y)dy)qu(fc)dwf > %/X!JP@)@
ey 770

Step 2. Let us recall Dy, given in the following form:

(2.19) 0 < D; = inf [(/ u(zx) dx)
w70 | \JX\B(a,zla)

Q|
N
o
B
B
3

=
T
’E\
—~
<
S~—
oW
<
~_
.U\
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Let us note a relation between V and V;, where V = V(z) is defined by (2.12),

V(z) = / o5 () dy = / () dy
B(a,||a) B(a,|x|a)

(2.20) :/lela /z 2 (1, W)A(r, w) dr dw

|Zla

= [ () dr =t Vel

where, as before, Hy(r) = fZ 2 (r,w)A(r,w) dw. Then let us calculate and estimate
the following integral:
a(l+ap’)

I = u(y)V dy = h Aryw)u(r,w)Vy 7 (r)drdw
/X\B(av|x|a) g () dy /x/z (r,w)u(r,w) (r)

00 q(1+/ap') o) q(1+/ap/) 0
= / urv, » (r)dr= / Vi "o o(r)d. (— / U(s) ds)
‘:L“a ‘x‘a r

q(1+ap’)

- o) [Cveasl,
L ad+oap) /|°° (/OO U(s) ds) VP 0 av

/
P Z|a

q(1+ap’)
pl

§>0 q(1+f>47') 0o
=0 () / U(s) ds

Z|a

L ad+oap) /|°° (/w U(s) ds) VT  av

/
P Z|a

221)  — v ((al) (/loo U(s) ds) V(o)

Z|a

L 4 +ar) /| h ( / T Us) ds) VY (Ve ) dva(r)

/
P Z|a

q(1 + ap') Dy /°°
|

< DIV (|la) + Vi (r) dVa(r)

/
Z|a

(1 + Oép/)Dg e 0
Oép/ ‘/1 q<r>}‘x‘a

1 "D?
( +O[p) lmaq(,r)_

= DIV (|la) +

(I+ap)D

q
_ qy/7aq : 1 aq
= DIVY(Jel,) + lim Vi ala)

ap’
(1+o¢p/)D(11

<0 ! q
' o (14+ap)Di .
< DIVi'|z]a) - T LV (|2la)

«

22 _ L paye(y),
ap

Then we have [ = DYz, a)V*(x) < —aip,D'fVaq(x). Consequently,

D(x,a) > (—ozp')féDl,

1t means .
D(a) > (—ap') 4 D1.
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Finally, we obtain
1 Di(—ap/ 4 »
4> Dalzap) (/ P (y)o(y) dy) :
’ X
Let us consider the function k(a) := (cop) 7 — (—Ozp/)ié(l + ap’)
(1+ap)P
(0, — z%) Firstly, let us find extremum of this function. We have
dk(a) 1

o= e ap)”

1
¥ where o €

[ .

Y

1

1 1 _1
+ <—?) P +ap) 7 (—ap)

i (Lt ap
=p/(—ap) T 1+ apl) <7( +qap) +a)

(2.22)

/

1
- %(—ap’)‘lll(l +ap) 7 Ha(p +q)+1) =0,
which implies that its solution is

1 6(0 1)
o) = — ,—— |-
' P +q 4

By taking the second derivative of k(«) at the point a; and by denoting k() =

1 4

(—ap’) s (1+ Ozp')_P_l’_l, we obtain
1 a
(2.23) dz’f(a)} AW (P N (e T
’ d 2 =] - / / < .
a q P+q P +q

This means that, function k(«) has supremum at the point @ = «y. Then, the biggest

PN “1
constant has the following relationship C'(p, q) > (p/’;q) e (p,;jrq) ¥ Dy.

Step 3. Let us give a necessity condition of inequality (2.9). By using (2.9) and

test function f(x) = vf%(x)x{(o,t)}(\xb), we can estimate as follows

cwa<|[(f I dy)qu@s) dxr [ e dx];
-1/ ( /| ) dy)qu@s) ts] % [ / Rt te]
2 (] v ws] [ ]
_ [ / ) daz] “ l /|y astvlp’(y) dazr ,

which gives Dy > C(p, q). OJ

Let us give conjugate reverse integral Hardy inequality.

(2.24)

=

Theorem 2.5. Assume that p € (0,1) and ¢ < 0. Let X be a metric measure
space with a polar decomposition at a. Suppose that u,v > 0 and u,v'?" are locally
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integrable functions on X. Then the inequality

e |[(/ \B(m'mla)f(y)dy)qumda:]% > ) fp(x)v(x)das)’l’

holds for some C(p,q) > 0 and for all non-negative real-valued measurable functions
f, if only if

1 1
(2.26) 0 < Dy := inf [(/ u(y) dy) ' (/ P () dy)p ] :
e B(a,|z[a) X\B(a,|e|a)

Moreover, the biggest constant C(p,q) in (2.25) has the following relation to Ds:

1
o

(2.27) DQZC(p,q)Z( v )( a ) Ds.

P+q P +q
Proof. The proof of this theorem is step by step similar to that of Theorem 2.4
so we omit the details. O

3. Consequences

In this section, we consider some consequences of the reverse integral Hardy
inequality.

3.1. Homogeneous groups. Let us recall that a Lie group (on R™) G with the
dilation

Dy(x) .= (ANxq,...,\"x,), v1,...,v, >0, Dy:R" = R"

which is an automorphism of the group G for each A > 0, is called a homogeneous
(Lie) group. For simplicity, throughout this paper we use the notation Az for the
dilation D). The homogeneous dimension of the homogeneous group G is denoted by
Q :=v1+ ...+ v,. Also, in this note we denote a homogeneous quasi-norm on G by
|z|, which is a continuous non-negative function

(3.1) G 3 xw— x| €]0,00),
with the properties
i) |z| = |z~ for all x € G,
ii) [Az| = A|z| for all x € G and A > 0,
iii) |z| =0iff x = 0.
Moreover, the following polarisation formula on homogeneous Lie groups will be used

in our proofs: there is a (unique) positive Borel measure o on the unit quasi-sphere
S :={x € G: |z| =1}, so that for every f € L'(G) we have

(3.2) /G f(z)dr = /0 h /6 f(ry)rtdo(y)dr.

We refer to [7] for the original appearance of such groups, and to [6] for a recent
comprehensive treatment. Let us define the quasi-ball centered at x with radius r in
the following form:

(3.3) B(z,r) :={y €G: |2 'y| < r}.

Then we have the following reverse integral Hardy inequality on homogeneous Lie
groups.
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Corollary 3.1. Let G be a homogeneous group of homogeneous dimension ()
with a quasi-norm | -|. Assume that ¢ < 0, p € (0,1) and «, 8 € R. Then the reverse
integral Hardy inequality

L(meﬂw@YMWMrzc<éﬂ@MWMy,

holds for C' > 0 and for all non-negative measurable functions f, if only if
Q+a n Q+pB(1—p)
q P

(3.4)

= 0.

(3.5) a+Q<0, fAl-p)+Q>0 and

Moreover, the biggest constant C' for (3.4) satisfies
1
p/

(3.6) <%) <Q+5(61p/)) ic i

1 _
= (mra) (ema-n) (7)) (%)
“\le+@Q[) \Q+5(1—-p) P'+q r+q)

where |G| is the area of unit sphere with respect to | - |.

Proof. Let us check condition (2.10) with u(z) = |z|* v(z) = |2|® and with
a = 0. Let us calculate the first integral in (2.10):

/ U(y)dyz/ ly|* dy % / / p® ! dpdo(w)
G\B(0,z]) 6\B(012) 2]

:|6\ Q+a 1d Q+g<0 |6| | ‘QJra: |6| ‘x|Q+a
2| Q+ o [Q +al

where |G| is the area of the unit quasi-sphere in G. Then,

||
o ) (3,2) o _
/ 1P () dy:/ |y|ﬁ(1 p)dy = / /pﬁ(l p)pQ 1d,0dcr(w)
B(0,]z]) B(0,|z)) 0 G

j ,
(3.8) —|&| / pRTBA=)=1q,
0

(3.7)

Q+B(=p)>0 Sl | j@rsa-m),
Q+5(1-p)
_'_ Q""ﬂ( _p

Finally by summarising above facts with Q+°‘ = 0, we have

1

| )é ( | )p, Q50 @290y
Dy = £
1 (|a+@| Qro-p))

B <Ia|f|cz|)% (méi'_m)p/ >0

Then by using (2.11), we obtain

() () =

() =) ) )
~ \Ja+ Q) Q+pB(1—p) P +q P +q

completing the proof. O

(3.9)

S

(3.10)

3
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Then we have conjugate reverse integral Hardy inequality on homogeneous Lie
groups.

Corollary 3.2. Let G be a homogeneous Lie group of homogeneous dimension
() with a quasi-norm | - |. Assume that ¢ < 0, p € (0,1) and «,5 € R. Then the
conjugate reverse integral Hardy inequality

[ (o) o] (o)’

holds for C' > 0 and for all non-negative measurable functions f, if only if

Q+a+Q+BZ(),1—p’)

(3.12) a+Q >0, B1-p)+Q<0 and =0.

Moreover, the biggest constant C' for (3.11) satisfies
1

(3.13) (oz|f|Q> (\Q+5|(61|_p,>|> | >C

() (o) () )
“\a+Q |Q+ B(1 —p)| P +q P +q

where |G| is the area of unit sphere with respect to | - |.

Q=
]

3

Proof. Proof of this corollary is similar to the previous case. O

3.2. Hyperbolic space. Let H" be the hyperbolic space of dimension n and
let a € H". Let us set

(3.14) u(z) = (sinh |z],)*, v(z) = (sinh |z],)".

Then we have the following result of this subsection.

Corollary 3.3. Let H" be the hyperbolic space of dimension n and let a € H".
Assume that ¢ < 0, p € (0,1) and «, 8 € R. Then the reverse integral Hardy
inequality

(3.15) { / ( /B " f(y) dy)q (sinh |z],) da;r > ¢ ( () (sinh Iz].) dx) "

holds for C' > 0 and for all non-negative measurable functions f, if

1—p 1 1
(3.16) 0<a+n<1, B(1-p)+n>0 and a+n+ﬁ( ]?)—i-n > -+ —.
q p qg p
Proof. Let us check condition (2.10). By using the polar decomposition for the
hyperbolic space, we have

1

/

|z|a , P
</ (sinh p)P-P)Hn-1 dp) :
0

If a+n < 1and B(1—p')+n > 0, then (3.17) is integrable. Let us check the finiteness
and positiveness of the infimum (3.17). Let us divide the proof in two cases.

(3.17) D, = inf ( / Oo(sinh p)etnt dp)

r#a 2l
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First case, |z|, > 1. Then sinh |z|, ~ exp |z, if |x|, > 1. Then we obtain,

1
ol

oo i []a / P
D! = inf (/ (sinh p)>1 d,o) / (sinh p)?t=P)+n=1 g,
|z|a>>1 |z]a 0

L
7

00 % || P
~ inf atn—1 g / B=p')4n=1 g
(3.18) ot ( /x ‘a(exp p) p) ( i (exp p) p

1
ol

1 /
= inf ((exp |x|a)0‘+n—1) a ((exp |2], )PP )+n—1> P

|z]a>>1

X at+n—1 3(1—Pl)+n—1
= inf (exp|z|,) ¢ + % ,

lz]a>>1

infimum of the last term is positive, if only if ‘”Z’l + B(l_p;J“"_l >0, ie., % +
PUzpin > 1y L then D} > 0.

Let us consider the another case |z, < 1. For |z|, < 1 we have sinh pro<,c|s).) &
p, then we calculate

ol

o0 q j]a , Z
inf (/ (sinh p)*tm—t d,o) / (sinh p)P=P)Hn=1 g,
[Zla<<l \ S |2]q 0

1
R 00 q
~ inf </ (sinh p)o‘+"_1dp+/ (sinhp)a+"_1dp)
\

lz]a1 zla
(3.19) | K

1

|| ) p’
. (/ pﬁ(lfp )+n—1 dp)
0

R 0o % B(l—z;')Jrn
~ inf (/ (sinh p)**" 1 dp —|—/ (sinh p)‘””%lp) |zl * .
\

|$|a<<1 x‘a R

Similarly, for small R we have sinh py.|.<,<ry = p, so that we obtain

1
o

00 % |z|a , P
inf (/ (sinh p)*+mt dp) / (sinh p)?1=P)+n=1q,
[Zla<<l \J|2]q 0

1
R o0 7 BO=p)tn
~ inf </ (sinhp)a+"_1dp+/ (sinhp)””r"_ldp) lz]e ™
(3.20) l2la<l \ |2, R

R o0 % 3(17;;/)+n
~ inf </ ptnt dp+/ (sinh p)*tnt dp) |zla P
|

lzla<1 z|q R

1 3(1717//)+n
~ inf (\x|g+"+CR)q\:c|a P
|7|a<1

If « +n >0, we have % < 0, then we have

1

> % |z]a , '
D} = inf ( / (Sinhp)“+"‘1dp) < / (sinhp)ﬁ(l‘p”"‘ldp)
(3.21) [2le <1 \ S ala 0

1 B1—p)+n B(I—PI')-HL
~ inf (|z|¢""+ Cr)?|z|a * ~ inf |z|, 7 > 0,
lz]a <1 lz]a <1
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and infimum is positive, if only if M <0,ie, f(1—=p)+n>0. O
Let us give the reverse conjugate 1ntegral Hardy’s inequality in hyperbolic spaces:

Corollary 3.4. Let H" be the hyperbolic space of dimension n and a € H".
Assume that ¢ < 0, p € (0,1) and let a, f € R. Then the reverse conjugate integral
Hardy inequality

s |[ (] ) ) fsinh o) ] "o ([ rrsinn el dx)% ,

holds for all non-negative measurable functions f, if

1-9p 1 1
a+n>0, 1>p(1-p)+n>0 and a+n+ﬂ( ]?)+n2_+_,_
q p qg p

Proof. Similarly to the previous case, check condition (2.26) and then, we have

1
|z|a q 0o
3.23 Dy = inf sinh p)*t14 sinh p)P0-P)tn=14
; P P P P
TFa 0 |$|a

If a+n>0and f(1 —p')+n <1, then the integrals in (3.23) are finite for each
|z|q. If |z|q > 1, we obtain,

4
Y

1
ol

1
o) q ‘x‘a , 4
D) = inf (/ (sinh p)*tnt d,o) / (sinh p)PU=P)Fn=1 g
[2[a>1 \ J |2, 0

L
7

00 % || P
~ inf atn=1 g / BU-p -1 g
(324) ‘1'1‘(111>>1 (/‘1:(1 <eXp p) p) ( 0 <eXp p> p

= inf ((eXp|x|a)a+"_1)% <(exp|x|a) p)+n=— 1>7,

|z|a>>1
a+n 1, B(1— p)+n 1
— inf (exp fal)
|z]a>1

infimum of the last term is positive, if only if O‘J’Z_l + B(l_p;J“"_l >0, ie., % +
w> +]7,thenD1>0
It |z, << 1, we obtain

|| é 00
inf / (sinh p)*™™ 1 dp (/ (sinh p)#0-p)+n-1 d,o)
|zla <1 0 |z]a

|| q
~ |mi|n<f<1 (/ paJrnfl dp)
(3.25) ‘ 0

R () I
: (/ (sinh p)?=P)Fn=1 g 4 / (sinh p)Pt—p)Fn—t dp)
\

Z|a R
1

R , o0 , o/ atn
~ inf (/ (sinh p)PU=P)tn=1 gy 4 / (sinh p)PU-p)Fn-l dp) |z|a? .
|

|$|a<<1 $|a R
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Similarly, for small R we have sinh py,|,<,<ry = p, so that we obtain

(3.26)

|z|a % 00 >
inf / (sinh p)** L dp </ (sinh p)P—P)+n-1 dp)
lzla<1 \ Jo |z]a
P a+n

R 00
~ inf </ (sinh p)PU=P)+n=1 g, 4 / (sinh p)P—P)Hn—1 dp) |z o
|

|‘T|a<<1 $|a R

=

- Baprn | o )7 o
~ inf (\x|a P +CR> |zfa?® .
|z|a<<1

If (1 —p') +n >0, we have 5“%{”" < 0, then we have

1
ol

#la % o / p
D3 = inf </ (sinh p)>t1 dp) (/ (sinh p)P-#)+n—1 dp)
(3.27) rles \ Jo 2l

1 a+n a+n
. —p q g . g
~ inf <|ZL‘|5(1 Phtn 4 C’%) |z|o? =~ inf |z|o?
lzla1 lzla1
and infimum is positive, if only if % <0, ie,a+n>0. O

3.3. Cartan—-Hadamard manifolds. Let (M, g) be the Cartan-Hadamard
manifold with curvature Ky, If Ky, = 0 then J(t,w) = 1 and we set

(3.28) u(z) = |z|%, v(x) =|zl?, when K =0.

. n—1
If Kp <0 then J(t,w) = <Sm\}}%) and we set

(3.29) u(x) = (sinh \/—Kp|z|)% v(z) = (sinh /—Ky|z]a)?, when Ky < 0.
Then we have the following result of this subsection.

Corollary 3.5. Assume that (M,g) be the Cartan-Hadamard manifold of di-
mension n and with curvature K;. Assume that ¢ < 0, p € (0,1) and «, 5 € R.
Then we have

i) if Ky =0, u(z) = |22, v(x) = |z|?, then

0 [ ([ 8] o] (] o)

holds for C' > 0 and for non-negative measurable functions f, if only if a+n <
0, 5(1—p")+n>0 and %O‘Jrinﬂgg*p) =0;
i) if Ky =0, u(x) = |2|% v(z) = |z|?, then

san [ ([ \B(awa)f(y)dy)q\xlad:crZC( / f”(:c)\x|5d:c)%,

holds for C' > 0 and for non-negative measurable functions f, if only if a+n >

o n+a | nHB(A-p) _ .
0, 6(1—p")+n<0 and i = 0;
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i) if Ky <0, u(x) = (sinh /= Ky/|z|,)®, v(x) = (sinh|z|,)?, then

1

{ ( a|zla > dy>q (sinh v=Kiufelo)® dx} E
> ( (/M FP(2)(sinh /= K| z]a)” dx) : :

holds for C' > 0 and for all non-negative measurable functions f, if 0 < a+n <
1,6(1—p’)+n>0and%+ﬁ(lfpw2%+i'

iv) if Ky <0, u(z) = (sinh =K y|2|)®, v(z) = (sinh /= Ky/|z].)?, then

1

(] o dy) (s /=Rl ds|
>0 ([ e @\xwd:c)’l’ ,

holds for C' > 0 and for all non-negative measurable functions f, if a+n > 0,
1 >6(1—p’)+n20and%Jriﬁ(l*;Hn >4 L

- aq p

(3.32)

(3.33)

Proof. In the case Kj; = 0 the proof of this corollary is similar to Corollary 3.1
and 3.2. Also, in the case K, < 0 the proof is similar to hyperbolic space case. [
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