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VMO-Teichmüller space on the real line

Yuliang Shen

Abstract. An increasing homeomorphism h on the real line R is said to be strongly symmetric

if it can be extended to a quasiconformal homeomorphism of the upper half plane U onto itself whose

Beltrami coefficient µ induces a vanishing Carleson measure |µ(z)|2/y dx dy on U. We will deal with

the class of strongly symmetric homeomorphisms on the real line and its Teichmüller space, which we

call the VMO-Teichmüller space. In particular, we will show that if h is strongly symmetric on the

real line, then it is strongly quasisymmetric such that log h′ is a VMO function. This improves some

classical results of Carleson (1967) and Anderson–Becker–Lesley (1988) on the problem about the

local absolute continuity of a quasisymmetric homeomorphism in terms of the Beltrami coefficient

of a quasiconformal extension. We will also discuss various models of the VMO-Teichmüller space

and endow it with a complex Banach manifold structure via the standard Bers embedding.

Reaaliakselin VMO-Teichmüllerin avaruus

Tiivistelmä. Reaaliakselin kasvavaa homeomorfismia h sanotaan vahvasti symmetriseksi, jos

se voidaan jatkaa ylemmän puolitason U itselleen kuvaavaksi kvasikonformiseksi homeomorfismiksi,

jonka Beltramin kerroin µ määrittelee puolitason U häviävän Carlesonin mitan |µ(z)|2/y dx dy.

Tarkastelemme reaaliakselin vahvasti symmetristen homeomorfismien luokkaa ja sen Teichmüllerin

avaruutta, jota kutsumme VMO-Teichmüllerin avaruudeksi. Osoitamme erityisesti, että jos h on

vahvasti symmetrinen reaaliakselilla, niin se on vahvasti kvasisymmetrinen ja log h′ on VMO-funktio.

Tämä parantaa eräitä Carlesonin (1967) sekä Andersonin, Beckerin ja Lesleyn (1988) klassisia tu-

loksia, jotka käsittelevät kvasisymmetrisen homeomorfismin lokaalin absoluuttisen jatkuvuuden on-

gelmaa sen kvasikonformisen jatkeen Beltramin kertoimen kautta. Käsittelemme myös useita VMO-

Teichmüllerin avaruuden malleja ja annamme sille standardin Bersin upotuksen kautta kompleksisen

Banachin moniston rakenteen.

1. Introduction

We first fix some basic notations. Let U = {z = x + iy : y > 0} and U∗ =
{z = x + iy : y < 0} denote the upper and lower half plane in the complex plane C,

respectively. R = ∂U = ∂U∗ is the real line, and R̂ = R ∪ {∞} is the extended real

line in the Riemann sphere Ĉ = C ∪ {∞}. Let ∆ = {z : |z| < 1} denote the unit

disk. ∆∗ = Ĉ−∆ is the exterior of ∆, and S1 = ∂∆ = ∂∆∗ is the unit circle.
Let Hom+(R) denote the group of all increasing homeomorphisms of R onto itself.

A homeomorphism h ∈ Hom+(R) is said to be quasisymmetric if there exists some
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constant M(h) > 0 such that

(1.1)
1

M(h)
≤

h(x+ t)− h(x)

h(x)− h(x− t))
≤M(h)

for all x ∈ R and t > 0. The notion of quasisymmetric homeomorphism was first
introduced by Beurling–Ahlfors [BA], who also proved that h ∈ Hom+(R) is qua-
sisymmetric if and only if there exists some quasiconformal homeomorphism of U

onto itself which has boundary values h.
The universal Teichmüller space T is a universal parameter space for all Riemann

surfaces and can be defined as the space of all normalized quasisymmetric homeomor-
phisms on the real line, namely, T = QS(R)/Aff(R). Here, QS(R) denotes the group
of all quasisymmetric homeomorphisms of the real line, and Aff(R) the subgroup of
all real affine mappings z 7→ az + b, a > 0, b ∈ R. It is well known that the uni-
versal Teichmüller space T is an infinite dimensional complex Banach manifold, and
QS(R) has a smooth Banach manifold structure such that QS(R) is diffeomorphic to
T ×Aff(R) (see [Ga], [GL], [Le], [Na]).

A quasisymmetric homeomorphism h is said to be symmetric if

(1.2) lim
t→0+

h(x+ t)− h(x)

h(x)− h(x− t))
= 1

uniformly for all x ∈ R. Let S(R) denote the set of all symmetric homeomorphisms
of the real line. This class was first studied in [Ca] when Carleson discussed the ab-
solute continuity of a quasisymmetric homeomorphism. It was investigated in depth
later by Gardiner–Sullivan [GS] during their study of little Teichmüller spaces and
asymptotic Teichmüller spaces. In particular, it was proved that a quasisymmetric
homeomorphism h is symmetric if and only if h can be extended as an asymptotically
conformal mapping f to the upper half plane, and that the Beurling–Ahlfors exten-
sion of h is asymptotically conformal when h is symmetric (see [Ca], [GS], [Mat]).
Here by an asymptotically conformal mapping f of the upper half plane onto itself
we mean that its complex dilatation µ = ∂f/∂f satisfies the condition µ(x+ iy) → 0
uniformly for all x ∈ R when y → 0+. In a recent paper [HWS] we showed that
T0 =S(R)/Aff(R), which we call the symmetric Teichmüller space, can be endowed
with a complex Banach manifold structure. More recently, Wei–Matsuzaki [WM1]
further generalized and discussed the class of symmetric homeomorphisms in the
setting of the unit circle.

In this paper, we will introduce and discuss a new subclass of quasisymmetric
homeomorphisms, which we call strongly symmetric homeomorphisms. We first recall
the notion of strongly quasisymmetric homeomorphism in the sense of Semmes [Se2].
A homeomorphism h ∈ Hom+(R) is said to be strongly quasisymmetric if there exist
two positive constants C1(h), C2(h) such that

(1.3)
|h(E)|

|h(I)|
≤ C1(h)

(
|E|

|I|

)C2(h)

whenever I ⊂ R is an interval and E ⊂ I a measurable subset. In other words,
h is strongly quasisymmetric if and only if h is locally absolutely continuous so
that h′ belongs to the class of weights A∞ introduced by Muckenhoupt (see [CF],
[Gar]), in particular, log h′ belongs to BMO(R), the space of locally integrable func-
tions on R of bounded mean oscillation (see [FS], [Gar] and section 8 below). Let
SQS(R) denote the set of all strongly quasisymmetric homeomorphisms of R onto
itself. Then SQS(R) is a sub-group of QS(R) and Tb = SQS(R)/Aff(R) is called the
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BMO-Teichmüller space. This sub-class of quasisymmetric homeomorphisms and its
Teichmüller space were much investigated (see [AZ], [CZ], [FHS1-2], [FKP], [HS],
[Ma], [Se2], [SW], [TWS], [We], [WM2], [WS], [WZ]) because of their great impor-
tance in the application to harmonic analysis and elliptic operator theory (see [Da],
[FKP], [Jo], [Se1]). In particular, it was proved in [FKP] (see also [Se2] and [AZ],
[Ma]) that a homeomorphism h ∈ Hom+(R) is strongly quasisymmetric if and only if
it can be extended to a quasiconformal homeomorphism of U onto itself whose Bel-
trami coefficient µ induces a Carleson measure |µ(z)|2/y dx dy on the upper half plane
(see §2 for precise definition). In [SW] we proved that Tb is an infinite dimensional
complex Banach manifold.

Now we say that a homeomorphism h ∈ Hom+(R) is strongly symmetric if it can
be extended to a quasiconformal homeomorphism of U onto itself whose Beltrami
coefficient µ induces a vanishing Carleson measure |µ(z)|2/y dx dy on the upper half
plane (see §2 for precise definition). Let SS(R) denote the set of all strongly symmetric
homeomorphisms of the real line. As a subclass of SQS(R), SS(R) is much related
with and also has wide application to some important problems in real and harmonic
analysis (see [Da]). As it will be shown later, SS(R) is also a subclass of S(R), namely,
a strongly symmetric homeomorphism must be symmetric (see Theorem 4.2 below),
which can not be deduced directly just by definition.

In this paper, we will give some basic properties of a strongly symmetric homeo-
morphism and endow Tv = SS(R)/Aff(R), which we call the VMO-Teichmüller space,
with a complex Banach manifold structure under which Tv can be biholomorphically
embedded as a bounded domain in certain Banach space (see Theorem 2.1 below).
We will also discuss various properties of some other models of the VMO-Teichmüller
space Tv in sections 7 and 8 (see Theorems 7.5, 8.2 below).

Remark 1.1. The BMO-Teichmüller space Tb is usually defined and discussed
on the unit circle S1 (see [AZ], [SW]). In this paper, we consider the real line case and
use strongly quasisymmetric homeomorphisms on the real line to define the BMO-
Teichmüller space Tb (see [FSH2]). Due to the conformal invariance of Carleson
measures and strongly quasisymmetric homeomorphisms, we have a parallel theory
of the BMO-Teichmüller space Tb of the real line model to that of the unit circle
model, which was developed in the papers [AZ] and [SW].

Remark 1.2. A sense preserving homeomorphism g on the unit circle S1 is
called strongly symmetric if it is absolutely continuous such that log g′ belongs to
VMO(S1), the space of integrable functions on S1 of vanishing mean oscillation (see
[Gar], [Sa] and section 8 below), a condition which first appeared in the paper [Pa]
where Partyka studied the so-called eigenvalues of a quasicircle. We discussed the
class of strongly symmetric homeomorphisms on the unit circle in the paper [SW]
and proved particularly there that g is strongly symmetric if and only if it can
be extended to a quasiconformal homeomorphism of ∆ onto itself whose Beltrami
coefficient ν induces a vanishing Carleson measure |ν(z)|2/(1−|z|2) dx dy on the unit
disk. This inspires us to introduce in the paper the new concept of strongly symmetric
homeomorphism on the real line. Since the vanishing Carleson measure does not have
conformal invariance, the notion of strongly symmetric homeomorphism on the real
line does not correspond to the one on the unit circle. Actually, it is not known
how to characterize a strongly symmetric homeomorphism on the real line without
using quasiconformal extensions. In section 8, we will show that if h ∈ Hom+(R) is
strongly symmetric, then it is strongly quasisymmetric such that log h′ ∈ VMO(R),
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the space of locally integrable functions on R of vanishing mean oscillation (see [Gar],
[Sa] and section 8 below). This improves some classical results of Carleson [Ca] and
Anderson–Becker–Lesley [ABL] on the open problem concerning the local absolute
continuity of a quasisymmetric homeomorphism in terms of the Beltrami coefficient
of a quasiconformal extension.

Notations. C, C1, C2 · · · will denote universal constants that might change from
one line to another, while C(·), C1(·), C2(·) · · · will denote constants that depend
only on the elements put in the brackets. The notation A . B (A & B) means that
there is a positive constant C independent of A and B such that A ≤ CB (A ≥ CB).
The notation A ≍ B means both A . B and A & B.

2. Preliminaries and statement of results

In this section, we recall some basic definitions and results on (BMO) Teichmüller
theory and state some results of the paper. For primary references, see Gardiner–
Lakic [GL], Garnett [Gar], Lehto [Le] and Nag [Na].

2.1. Universal Teichmüller space. Let M(U) denote the open unit ball of the
Banach space L∞(U) of essentially bounded measurable functions on the upper half
plane U. For µ ∈M(U), let fµ be the unique quasiconformal mapping on U onto itself
which has complex dilatation µ and keeps the points 0, 1 and ∞ fixed. We say two
elements µ and ν inM(U) are equivalent, denoted by µ ∼ ν, if fµ = f ν on the real line
R. We let [µ] denote the equivalence class of µ. Then the correspondence [µ] 7→ fµ|R
establishes a one-to-one map from M(U)/∼ onto the universal Teichmüller space T .
T =M(U)/∼ is known as the Bers model of the universal Teichmüller space. We let
Φ denote the natural projection from M(U) onto T so that Φ(µ) is the equivalence
class [µ]. [0] is called the base point of T .

It is known that the universal Teichmüller space T is an infinite dimensional
complex Banach manifold. To make this precise, we need to define the so-called Bers
projection and Bers embedding. Let Ω be an arbitrary simply connected domain
in the extended complex plane Ĉ which is conformally equivalent to the upper half
plane. The hyperbolic metric λΩ on Ω can be defined by

(2.1) λΩ(f(z))|f
′(z)| =

1

y
, z = x+ iy ∈ U,

where f : U → Ω is any conformal mapping. Let B(Ω) denote the Banach space of
functions φ holomorphic in Ω with norm

(2.2) ‖φ‖B(Ω) = sup
z∈Ω

|φ(z)|λ−2
Ω (z).

Then the Bers projection is the map S : M(U) → B(U∗) defined as S(µ) = Sfµ|U∗ ,
where fµ is the unique quasiconformal mapping of the complex plane C which has
complex dilatation µ in U, is conformal in U∗, and keeps the points 0, 1 and ∞ fixed,
while Sf is the Schwarzian derivative of a locally univalent function f of a domain

in the extended plane Ĉ, defined as

(2.3) Sf = N ′
f −

1

2
N2
f , Nf =

f ′′

f ′
.

It is known that S is a holomorphic split submersion and descends down to a one-to-
one map β : T → B(U∗), which is known as the Bers embedding. Via the Bers em-
bedding, T carries a natural Banach manifold complex structure so that the natural
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projection Φ: M → T is a holomorphic split submersion, and β is a biholomorphism
from T onto its image.

Let L0(U) be the closed subspace of L∞(U) which consists of those functions µ
such that µ(x + iy) → 0 uniformly for x ∈ R as y → 0+, or more precisely, for
each ǫ > 0 there exists some δ > 0 such that |µ(z)| < ǫ for almost every z = x + iy
with 0 < y < δ. We denote by B0(U

∗) the closed subspace of B(U∗) which consists
of those functions φ such that y2φ(x + iy) → 0 uniformly for x ∈ R as y → 0−.
Set M0(U) = M(U) ∩ L0(U). Then the correspondence [µ] 7→ fµ|R establishes a
one-to-one map from M0(U)/∼ onto the symmetric Teichmüller space T0 (see [Ca],
[GS]). In [HWS] (see also [WM1]) we proved that S maps M0(U) into B0(U

∗) and
is a holomorphic split submersion from M0(U) onto its image, which implies that T0
has a unique complex structure such that the natural projection Φ from M0(U) onto
T0 is a holomorphic split submersion.

2.2. (Vanishing) Carleson measure and BMO (VMO) Teichmüller
space. Let λ be a positive measure on the upper half plane U. For x ∈ R and
h > 0, set

(2.4) Q = Q(x, h) =

{
ζ = ξ + iη : x−

h

2
< ξ < x+

h

2
, 0 < η < h

}
.

Consider

(2.5) Nδ(λ) = sup

{
λ(Q(x, h))

h
: x ∈ R, h < δ

}
,

and let

(2.6) N(λ) = lim
δ→+∞

Nδ(λ),

and

(2.7) N0(λ) = lim
δ→0+

Nδ(λ).

Then λ is called a Carleson measure if N(λ) < +∞. A Carleson measure λ is called
a vanishing Carleson measure if N0(λ) = 0. We denote by CM(U) and CM0(U) the
set of all Carleson measures and vanishing Carleson measures on U, respectively. We
can define CM(U∗) and CM0(U

∗) by the same way.
We denote by L(U) the Banach space of all essentially bounded measurable func-

tions µ on U each of which induces a Carleson measure λµ ∈ CM(U) by λµ(z) =
|µ(z)|2/y dx dy, z = x+ iy ∈ U. The norm on L(U) is defined as

(2.8) ‖µ‖c = ‖µ‖∞ +
√
N(λµ).

L0(U) is the closed subspace of L(U) consisting of all elements µ such that λµ ∈
CM0(U). Set M(U) = M(U) ∩ L(U), M0(U) = M(U) ∩ L0(U). Then M(U)/∼ is
the complex analytic model of the BMO-Teichmüller space Tb (see [FKP] and also
[AZ], [Ma], [Se2]), while by definition M0(U)/∼ is the one of the VMO-Teichmüller
space Tv.

We denote by B(U∗) the Banach space of functions φ holomorphic in U∗ each
of which induces a Carleson measure λφ ∈ CM(U∗) by λφ(z) = |φ(z)|2|y|3 dx dy,
z = x+ iy ∈ U

∗. The norm on B(U∗) is

(2.9) ‖φ‖B =
√
N(λφ).
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Lemma 7.1 below implies that B(U∗) ⊂ B(U∗), and the inclusion map is continuous.
We denote by B0(U

∗) the closed subspace of B(U∗) consisting of all functions φ such
that λφ ∈ CM0(U

∗). Then B0(U
∗) ⊂ B0(U

∗) by Lemma 7.1 again.
Astala–Zinsmeister [AZ] (see also [BJ], [FKP], [Ma], [Se2] and Theorem 7.2 be-

low) proved that S(M(U)) = S(M(U)) ∩ B(U∗) under the Bers projection S :
M(U) → B(U∗). Moreover, we proved in [SW] that S : M(U) → B(U∗) is a holo-
morphic split submersion from M(U) onto its image, which implies that Tb has a
unique complex structure such that the natural projection Φ from M(U) onto Tb is
a holomorphic split submersion (see Remark 1.1).

2.3. Main results. In this paper, we will mainly discuss strongly symmetric
homeomorphisms on the real line and the Bers projection S : M(U) → B(U∗) on
M0(U). Our first main result is

Theorem 2.1. S maps M0(U) onto a connected open subset in B0(U
∗) and is

holomorphic with local holomorphic sections. Consequently, Tv has a unique complex
structure such that β : Tv → B0(U

∗) is a bi-holomorphic map from Tv onto a domain
in B0(U

∗). Under this complex structure, the natural projection Φ from M0(U) onto
Tv is holomorphic with local holomorphic sections.

We will also discuss other models of the VMO-Teichmüller space in the latter part
of the paper. The other main results (Theorems 7.5 and 8.2 below) are contained in
the following

Theorem 2.2. Let µ ∈M(U). Consider the following conditions:

(1) There exists some ν ∈ M0(U) such that [ν] = [µ];
(2) log f ′

µ|U∗ ∈ VMOA(U∗), the space of analytic functions in U∗ of vanishing
mean oscillation (see [FS], [Gar], [Sa]);

(3) S(µ) ∈ B0(U
∗);

(4) h = fµ|R is strongly quasisymmetric such that log h′ ∈ VMO(R).

Then (1) ⇒ (2) ⇔ (3), and (1) ⇒ (4).

Proof. (1) ⇒ (3) follows from Proposition 5.1, (2) ⇔ (3) from Theorem 7.5, and
(1) ⇒ (4) from Theorem 8.2. �

3. More on (vanishing) Carleson measures

In this section we discuss some basic results on (vanishing) Carleson measures,
which will be used later and have independent interests of their own.

We fix some notations which will be used through the paper. For δ > 0 let

U1,δ = {z = x+ iy : y > δ},

U2,δ = {z = x+ iy : 0 < y < δ},

U
∗
1,δ = {z = x+ iy : y < −δ}

and

U
∗
2,δ = {z = x+ iy : − δ < y < 0}.

Let λ be a positive measure on the upper half plane U. Consider

(3.1) Mδ(λ) = sup

{
¨

U

η

|z − ζ̄|2
dλ(z) : ζ = ξ + iη ∈ U2,δ

}
,
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and let

(3.2) M(λ) = lim
δ→+∞

Mδ(λ),

and

(3.3) M0(λ) = lim
δ→0+

Mδ(λ).

Then we have the following result.

Proposition 3.1. Let λ be a positive measure on the upper half plane U. Then
λ is a Carleson measure if and only if M(λ) < +∞, and N(λ) ≍ M(λ), while λ is a
vanishing Carleson measure if and only if M(λ) < +∞, and M0(λ) = 0.

Proof. The first statement was contained (without proof) in Garnett’s well-
known book [Gar]. We will write down a detailed proof, which also gives the proof
of the second statement simultaneously.

First suppose that M(λ) < +∞. For x ∈ R and h > 0, set ζ = x + i
2
h. Noting

that |w − ζ̄| ≤ 2h whenever w ∈ Q = Q(x, h), we have

λ(Q) =

¨

Q

dλ(w) ≤ 4h

¨

Q

h

|w − ζ̄|2
dλ(w) ≤ 4h

¨

U

h

|w − ζ̄|2
dλ(w) ≤ 8hMh

2

(λ),

which implies that

λ(Q)

h
≤ 8Mh

2

(λ).

Consequently, for each δ > 0, N2δ(λ) ≤ 8Mδ(λ). In particular, N(λ) ≤ 8M(λ), and
N0(λ) ≤ 8M0(λ).

Conversely, suppose that λ is a Carleson measure so that N(λ) < +∞. Let
ζ = ξ + iη ∈ U. For n = 0, 1, 2, · · · , set

Qn = Q(ξ, 2n+1η) = {z = x+ iy : ξ − 2nη < x < ξ + 2nη, 0 < y < 2n+1η}.

Then, with Q−1 = ∅, we have

¨

U

η

|z − ζ̄|2
dλ(z) =

+∞∑

n=0

¨

Qn\Qn−1

η

|z − ζ̄|2
dλ(z) ≤

+∞∑

n=0

¨

Qn\Qn−1

η

(2n−1η)2
dλ(z)

≤

+∞∑

n=0

22−2n

η

¨

Qn

dλ(z) ≤

+∞∑

n=0

23−nN2n+1η(λ).

Consequently, for each δ > 0,

(3.4) Mδ(λ) ≤

+∞∑

n=0

23−nN2n+1δ(λ).

So

M(λ) ≤
+∞∑

n=0

23−nN(λ) = 16N(λ).

Now suppose λ is a vanishing Carleson measure so thatN(λ) < +∞, andN0(λ) =
0. For any ǫ > 0, choose n0 sufficiently large so that 2−n0N(λ) < ǫ. Then there exists
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some δ0 > 0 such that N2n0+1δ(λ) < ǫ whenever δ < δ0. Consequently, when δ < δ0,
it follows from (3.4) that

Mδ(λ) ≤

n0∑

n=0

23−nN2n+1δ(λ) +

+∞∑

n=n0+1

23−nN2n+1δ(λ)

≤ 16N2n0+1δ(λ) + 23−n0N(λ) ≤ 32ǫ,

which implies that M0(λ) = 0. �

Lemma 3.2. Let s and t be two real numbers such that s > −1, and 0 ≤ t < s+2.
Then for z, w, ζ = ξ + iη in U,

(3.5)

¨

U

|ζ − ζ̄|s

|z − ζ̄|t|w − ζ̄|2s−t+4
dξdη .

1

|w − z̄|t|w − w̄|s−t+2
.

Proof. (3.5) can be deduced from a known result of Zhao [Zh] in the unit disk

case. Under the assumption that s > −1, and 0 ≤ t < s+ 2, for Z, W , ζ̂ = ξ̂ + iη̂ in
∆, Zhao [Zh] showed that

(3.6)

¨

∆

(1− |ζ̂|2)s

|1− Zζ̂|t|1−Wζ̂|2s−t+4
dξ̂ dη̂ .

1

|1− Z̄W |t(1− |W |2)s−t+2
.

Now we consider any Möbius transformation γ : U → ∆. Then for any two points ζ1,
ζ2 in U, it holds that

(3.7)
γ(ζ1)− γ(ζ2)

1− γ(ζ2)γ(ζ1)
= i

γ′(ζ2)

|γ′(ζ2)|

ζ1 − ζ2
ζ1 − ζ̄2

.

Then

(3.8)
|γ′(ζ2)|

1− |γ(ζ2)|2
=

i

ζ2 − ζ̄2
,

and

(3.9)
γ′(ζ1)γ′(ζ2)

(1− γ(ζ2)γ(ζ1))2
= −

1

(ζ1 − ζ̄2)2
.

For z, w, ζ = ξ + iη in U, setting Z = γ(z), W = γ(w), and ζ̂ = γ(ζ), we
conclude from (3.7)–(3.9) that the left side of (3.6) is

L =
1

|γ′(z)|
t
2 |γ′(w)|s+2− t

2

¨

U

|ζ − ζ̄ |s

|z − ζ̄|t|w − ζ̄|2s−t+4
dξ dη,

while the right side of (3.6) is

R =
1

|γ′(z)|
t
2 |γ′(w)|s+2− t

2

1

|w − z̄|t|w − w̄|s−t+2
.

Now (3.5) follows from L . R immediately. �

Proposition 3.3. Let λ be a positive measure on the upper half plane U. For
α > 0, set

(3.10) λ̃(z) =

¨

U

yαvα

|w − z̄|2α+2
dλ(w), w = u+ iv, z = x+ iy ∈ U.

Then λ̃ ∈ CM(U) if λ ∈ CM(U), and N(λ̃) . N(λ), while λ̃ ∈ CM0(U) if λ ∈
CM0(U).
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Proof. It follows from Lemma 3.2 that
¨

U

η

|z − ζ̄|2
λ̃(z) dx dy =

¨

U

ηvα dλ(w)

¨

U

yα

|ζ − z̄|2|w − z̄|2α+2
λ(w) du dv

.

¨

U

η

|w − ζ̄|2
dλ(w),

which implies that M(λ̃) .M(λ), and M0(λ̃) .M0(λ). Now Proposition 3.1 implies

that λ̃ ∈ CM(U) if λ ∈ CM(U), and N(λ̃) . N(λ), while λ̃ ∈ CM0(U) if λ ∈
CM0(U). �

Proposition 3.4. Let λ be a positive measure on the upper half plane U. For
each δ > 0 set λδ = λχδ, where χδ means the characteristic function on the set U1,δ.
Then λ ∈ CM0(U) if and only if N(λ− λδ) → 0 as δ → 0+.

Proof. Suppose N(λ−λδ) → 0 as δ → 0+. Then for any ǫ > 0 there exists some
δ0 > 0 such that N(λ−λδ0) < ǫ. Thus for x ∈ R and h > 0, (λ−λδ0)(Q(x, h)) < ǫh,
which implies that

λ(Q(x, h)) = (λ− λδ0)(Q(x, h)) < ǫh

when h < δ0. Consequently, λ ∈ CM0(U).
Conversely, suppose λ ∈ CM0(U). Then for any ǫ > 0 there exists some h0 > 0

such that λ(Q(x, h)) < ǫh whenever x ∈ R and 0 < h < h0. Set δ0 = h0/2. Then,
when 0 < h < h0,

(λ− λδ0)(Q(x, h)) ≤ λ(Q(x, h)) < ǫh.

Now suppose h ≥ h0. Choose an integer n such that nh0 ≤ h ≤ (n + 1)h0. Then

(λ− λδ0)(Q(x, h)) ≤ (λ− λδ0)(Q(x, (n + 1)h0) ∩ U2,δ0) < (n+ 1)h0ǫ ≤ 2ǫh.

Thus N(λ− λδ0) < 2ǫ, which implies that N(λ− λδ) → 0 as δ → 0+. �

4. Barycentric extension

Douady–Earle [DE] defined in a conformally natural way a barycentric extension
operator that extends a homeomorphism on the unit circle S1 to a homeomorphism of
the closed disk ∆. In this section, we will translate this operator to the setting of the
real line. This operator will provide a concrete way to extend a strongly symmetric
homeomorphism to an asymptotically conformal mapping on the upper half plane
whose Beltrami coefficient µ induces a vanishing Carleson measure λµ ∈ CM0(U),
which implies that a strongly symmetric homeomorphism is actually symmetric.

The barycentric extension operator ex sends a sense-preserving homeomorphism
g of the unit circle S1 to a quasiconformal self-mapping ex(g) of the unit disk ∆,
which is determined by the following way: for each Z ∈ ∆, W = ex(g)(Z) is the
unique point in ∆ such that

(4.1) Gg(Z,W ) =
1

2π

ˆ

S1

(
g(ζ)−W

1−Wg(ζ)

)
1− |Z|2

|Z − ζ |2
|dζ | = 0.

Although the most distinguished property of the barycentric extension operator ex
is its conformally natural property (see [DE], [EMS], [EN]), we will make use of two
other basic properties of ex, namely,

(1) both ex(g) and its inverse ex−1(g) are real analytic;
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(2) when g has a quasiconformal extension to the unit disk, ex(g) is quasiconfor-
mal and is even bi-Lipschitz under the Poincaré metric, that is,

(4.2)
|d(ex(g))(Z)|

1− | ex(g)(Z)|2
≍ C(g)

|dZ|

1− |Z|2
, Z ∈ ∆.

We will also need a result of Cui [Cu] (see also [CZ]) which gives an estimate of the
Beltrami coefficient of the inverse mapping ex−1(g): Let µ̂ be the Beltrami coefficient
of a quasiconformal extension of g−1, and ν̂ be the Beltrami coefficient of the inverse
mapping ex−1(g). Then it holds that

(4.3) |ν̂(W )|2 ≤ C(g)

¨

∆

|µ̂(Z)|2
(1− |W |2)2

|1−WZ|4
dX dY, W ∈ ∆.

Now let h be an increasing homeomorphism on the real line. Consider the Cayley
transformation γ(z) = (z − i)/(z + i) which maps U onto ∆. Set g = γ ◦ h ◦ γ−1,
and define ex(h) = γ−1 ◦ ex(g) ◦ γ. We call ex(h) the barycentric extension of h.
For µ ∈ M(U), we denote by σ(µ) the Beltrami coefficient of the inverse mapping
ex−1((fµ|R)

−1). Then we have the following result.

Proposition 4.1. Let h be an increasing homeomorphism on the real line. Then

(1) for each z ∈ U, w = ex(h)(z) is the unique point in U such that

(4.4) Hh(z, w) =
1

2π

ˆ

R

(
h(t)− w

h(t)− w̄

)
z − z̄

|t− z̄|2
dt = 0;

(2) both ex(h) and its inverse ex−1(h) are real analytic;
(3) when h is quasisymmetric, ex(h) is quasiconformal and is bi-Lipschitz under

the Poincaré metric, that is,

(4.5)
|d(ex(h))(z)|

| ex(h)(z)− ex(h)(z)|
≍ C(h)

|dz|

|z − z̄|
, z ∈ U;

(4) for each µ ∈M(U), it holds that

(4.6) |σ(µ)(w)|2 ≤ C(‖µ‖∞)

¨

U

|µ(z)|2
|w − w̄|2

|z − w̄|4
dx dy, w ∈ U.

Proof. (2) and (3) are obviously true. For z, w in U, a direct computation by
(3.7)-(3.9) yields that

(4.7) Gg(γ(z), γ(w)) =
γ′(w)

|γ′(w)|
Hh(z, w), g = γ ◦ h ◦ γ−1.

Thus, (1) follows from

w = ex(h)(z) ⇔ γ(w) = ex(g) ◦ γ(z) ⇔ Gg(γ(z), γ(w)) = 0 ⇔ Hh(z, w) = 0.

To prove (4), let µ ∈ M(U), and h = (fµ|R)
−1. Set g = γ ◦ h ◦ γ−1 as above.

Then γ ◦ fµ ◦ γ−1 is a quasiconformal extension of g−1 whose Beltrami coefficient
µ̂ is (µ ◦ γ−1)(γ−1)′/|(γ−1)′|. On the other hand, since ex(h) = γ−1 ◦ ex(g) ◦ γ, the

Beltrami coefficient ν̂ of ex−1(g) is (σ(µ)◦γ−1)(γ−1)′/|(γ−1)′|. Now for w ∈ U, setting
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W = γ(w) ∈ ∆ in (4.3) we obtain by (3.8) and (3.9) that

|σ(µ)(w)|2 ≤ C(‖µ‖∞)

¨

∆

|µ̂(Z)|2
(1− |γ(w)|2)2

|1− γ(w)Z|4
dX dY

= C(‖µ‖∞)

¨

U

|µ(z)|2|γ′(z)|2
(1− |γ(w)|2)2

|1− γ(w)γ(z)|4
dx dy

= C(‖µ‖∞)

¨

U

|µ(z)|2
|w − w̄|2

|z − w̄|4
dx dy.

This completes the proof. �

Remark 4.2. By means of Lemma 3.3 in our paper [HWS], we conclude by (4.6)
that σ(µ) ∈ M0(U) if µ ∈ M0(U), that is, ex−1(h−1) is asymptotically conformal
when h is a symmetric homeomorphism on the real line. This gives a somewhat
concrete asymptotically conformal extension for a symmetric homeomorphism. As
stated in section 1, the Beurling–Ahlfors extension of h is known to be asymptotically
conformal when h is symmetric (see [GS], [Mat]).

Now we prove the main result in this section.

Theorem 4.3. For each µ ∈M(U), σ(µ) ∈ M(U) if µ ∈ M(U), and ‖σ(µ)‖c .
‖µ‖c, while σ(µ) ∈ M0(U) ∩M0(U) if µ ∈ M0(U).

Proof. Except the statement that σ(µ) ∈ M0(U), the result follows from Propo-
sitions 3.3 (α = 1) and 4.1. To prove σ(µ) ∈ M0(U) if µ ∈ M0(U), we follow the
same discussion used to prove Proposition 3.1.

Let ζ = ξ + iη ∈ U. For n = 0, 1, 2, · · · , set as before that

Qn = Q(ξ, 2n+1η) = {z = x+ iy : ξ − 2nη < x < ξ + 2nη, 0 < y < 2n+1η}.

Then, with Q−1 = ∅, we have

|σ(µ)(ζ)|2 ≤ C(‖µ‖∞)

¨

U

|µ(z)|2
η2

|z − ζ̄|4
dx dy

= C(‖µ‖∞)
+∞∑

n=0

¨

Qn\Qn−1

yη2

|z − ζ̄|4
λµ(z) dx dy

≤ C(‖µ‖∞)

+∞∑

n=0

¨

Qn\Qn−1

2n+1η3

(2n−1η)4
λµ(z) dx dy

≤ C(‖µ‖∞)
+∞∑

n=0

25−3n

η

¨

Qn

λµ(z) dx dy

≤ C(‖µ‖∞)

+∞∑

n=0

25−3nN2n+1η(λµ).

Consequently, we conclude by the same reasoning as in the proof of Proposition 3.1
that σ(µ)(ξ + iη) → 0 uniformly for ξ ∈ R as η → 0+, that is, σ(µ) ∈M0(U). �

Remark 4.4. Proposition 4.1 and Theorem 4.3 will play an essential role in the
next section where we prove the existence of local holomorphic sections of the Bers
projection S : M0(U) → B0(U

∗). Theorem 4.3 also implies that a strongly symmetric
homeomorphism must be symmetric, as we have promised in section 1. This fact will
also be used in the proof of Theorems 7.6 and 8.2.
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5. Proof of Theorem 2.1

In this section, we give the proof of Theorem 2.1, the first main result of this
paper. We first note

Proposition 5.1. For each µ ∈M(U), it holds that S(µ) ∈ B(U∗) if µ ∈ M(U),
while S(µ) ∈ B0(U

∗) if µ ∈ M0(U).

Proof. In [HWS] we established the following integral representation of the
Schwarzian derivative S(µ):

(5.1) S(µ)(z) = −
6

π
f ′
µ(z)

¨

U

∂fµ(ζ)

(ζ − z)2(fµ(ζ)− fµ(z))2
dξ dη, z ∈ U

∗,

from which we deduced the following estimate:

(5.2) |S(µ)(z)|2 ≤
C(‖µ‖∞)

y2

¨

U

|µ(ζ)|2

|ζ − z|4
dξ dη, z = x+ iy ∈ U

∗.

Now the result follows directly from Proposition 3.3 (α = 1). �

Remark 5.2. The first statement of Proposition 5.1 (in the unit disk case)
was already proved by Astala–Zinsmeister [AZ]. The second statement implies the
inclusion relation β(Tv) ⊂ β(T )∩B0(U

∗). It is not clear whether the converse is true.

Proof of Theorem 2.1. Proposition 5.1 says that S maps M0(U) into B0(U
∗).

This also implies that S : M0(U) → B0(U
∗) is holomorphic since S : M(U) → B(U∗)

is holomorphic. It remains to show that S : M0(U) → B0(U
∗) has local holomorphic

sections. We write down the standard proof due to Ahlfors [Ah].
Let φ = S(µ), µ ∈ M0(U), be given. Without loss of generality, we may assume

by Theorem 4.3 that µ = σ(µ), that is, fµ is the inverse of the barycentric extension
of (fµ|R)

−1. Set f = fµ, D = f(U), D∗ = f(U∗), and r = f ◦ f−1. Ahlfors [Ah]
showed that r : D → D∗ is a quasiconformal reflection and there exists a constant
C1 = C1(‖µ‖∞) such that

(5.3)
1

C1

≤ |r(z)− z|2λ2D∗(r(z))|∂r(z)| ≤ C1, z ∈ D.

It should be pointed out that, to have the estimate (5.3), fµ needs to be a bi-
Lipschitz diffeomorphism under the Poincaré metric |dz|/y. In the original paper
[Ah], Ahlfors used the Beurling–Ahlfors [BA] extension operator, namely, fµ is the
Beurling–Ahlfors extension of fµ|R, which also appeared in [GS] and our recent paper
[HWS]. However, in order to prove the existence of local holomorphic sections of the
Bers projection S restricted to some subspaces, barycentric extension operator has
to be used (see [EN], [SW], [TT], [TS]), which means that fµ is the barycentric
extension of fµ|R. Here we use the inverse barycentric extension operator, namely,
fµ is the inverse of the barycentric extension of (fµ|R)

−1, which satisfies the required
properties by Proposition 4.1 and Theorem 4.3 (see Remark 4.4). Actually, it is
not clear whether the Beltrami coefficient of the Beurling–Ahlfors extension or the
barycentric extension of fµ|R belongs to M0(U) when u ∈ M0(U).

Consider Bǫ(φ) = {ψ ∈ B0(U
∗) : ‖ψ−φ‖B < ǫ} for ǫ > 0. Then for each ψ ∈ Bǫ(φ)

there exists a unique locally univalent function fψ in U∗ which fixes the points 0, 1,
∞ such that Sfψ = ψ. Set gψ = fψ ◦ f−1. Then Sgψ ◦ f(f ′)2 = ψ − φ, and

(5.4) λ−2
D∗(f(z))|Sgψ(f(z))| = |z − z̄|2|ψ(z)− φ(z)|, z ∈ U

∗.
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When ǫ is small, following Ahlfors [Ah] we proved in [SW] that gψ is univalent and
can be extended to a quasiconformal mapping in the whole plane whose complex
dilatation µψ has the form

(5.5) µψ(z) =
Sgψ(r(z))(r(z)− z)2∂r(z)

2 + Sgψ(r(z))(r(z)− z)2∂r(z)
, z ∈ D.

By (5.3) we have for some constant C2 = C2(‖µ‖∞) that

(5.6) |µψ(z)| ≤ C2|Sgψ(r(z))|λ
−2
D∗(r(z)), z ∈ D.

Consequently, fψ = gψ ◦ f is univalent in U∗ and has a quasiconformal extension to
the whole plane whose complex dilatation νψ is

(5.7) νψ =
µ+ (µψ ◦ f)τ

1 + µ(µψ ◦ f)τ
, τ =

∂f

∂f
.

We proved in [SW] that νψ ∈ M(U) depends holomorphically on ψ. Now, it follows
from (5.6) that

|µψ(f(z))| ≤ C2|Sgψ(r(f(z)))|λ
−2
D∗(r(f(z))) = C2|Sgψ(f(z̄))|λ

−2
D∗(f(z̄))

= C2|ψ(z̄)− φ(z̄)||z − z̄|2,

which implies that µψ ◦ f ∈ M0(U), and we conclude by (5.7) that νψ ∈ M0(U).
Since S(νψ) = ψ, we conclude that ν : Bǫ(φ) → M0(U) is a local holomorphic section
to S : M0(U) → B0(U

∗). This completes the proof of Theorem 2.1. �

6. Pre-logarithmic derivative model of T0

The universal Teichmüller space has several models, one of which is the pre-
logarithmic derivative model (see [AG], [Zu]). In the unit disk case, the pre-logarithmic
derivative models of the universal Teichmüller space and its various subspaces were
much investigated in recent years (see [AZ], [Sh], [SW], [TT] for more details). Unlike
the Schwarzian derivative model (discussed in section 2), the logarithmic derivative
is not invariant under a Möbius transformation. In this section, we will deal with the
pre-logarithmic derivative model of the symmetric Teichmüller space in the half plane
case. The results will be used in the next section to deal with the VMO Teichmüller
space.

Let B(U∗) denote the Bloch space of functions φ holomorphic in U∗ with semi-
norm

(6.1) ‖φ‖B
.
= sup{|φ′(z)||y| : z = x+ iy ∈ U

∗}

and B0(U
∗) the closed subspace of B(U∗) which consists of those functions φ such that

yφ′(x + iy) → 0 uniformly for x ∈ R as y → 0−. Koebe distortion theorem implies
that log f ′

µ|U∗ ∈ B(U∗) for µ ∈ M(U) (see Proposition 6.1 below). Furthermore, the
map L induced by the correspondence µ 7→ log f ′

µ|U∗ is a continuous map from M(U)
into B(U∗) (see [Le]). Actually, L : M(U) → B(U∗) is even holomorphic (see [Ha]).

Proposition 6.1. Let f be a conformal mapping in the upper half plane. Then

(6.2) |Nf(z)|y ≤ 3, z = x+ iy ∈ U.

Furthermore, equality (6.2) holds at z ∈ U if and only if

(6.3) f(ζ) = f(z) + f ′(z)(z − z̄)
(ζ − z)(ζ − z̄)

(2ζ − z − z̄)2
.
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Proof. Proposition 6.1 should be a known result. For completeness and for later
use, we write down the proof here. For each z = x+ iy ∈ U, consider

γ(w) =
z̄w − z

w − 1
, w ∈ ∆,

which maps the unit disk ∆ onto the upper half plane U with γ(0) = z, γ′(0) = z− z̄,
and γ′′(0) = 2(z − z̄). Set

(6.4) g(w) =
f(γ(w))− f(z)

(z − z̄)f ′(z)
.

Then g is conformal in the unit disk ∆ with g(0) = 0, g′(0) = 1, and

g′′(0) = Nf (z)(z − z̄) + 2.

By the well-known result of Bieberbach (see [Po]), we have |g′′(0)| ≤ 4, from which
we obtain (6.2).

Now if equality (6.2) holds we must have Nf (z)(z − z̄) = −6, or equivalently,
g′′(0) = −4. On the other hand, Bieberbach’s result also implies that g(w) is a
rotation of the Koebe function, that is,

g(w) =
w

(1 + w)2
.

Then we obtain from (6.4) that

f(ζ) = f(z) + f ′(z)(z − z̄)
γ−1(ζ)

(1 + γ−1(ζ))2
= f(z) + f ′(z)(z − z̄)

(ζ − z)(ζ − z̄)

(2ζ − z − z̄)2

as desired. �

Now we show

Theorem 6.2. Given µ ∈M(U), the following statements are all equivalent:

(1) There exists some ν ∈M0(U) such that [ν] = [µ];
(2) L(µ) ∈ B0(U

∗);
(3) S(µ) ∈ B0(U

∗);
(4) h = fµ|R is symmetric.

Proof. As stated in section 1, (1) ⇔ (4) is known (see [GS], [Mat]). Now
(1) ⇒ (3) was proved in our previous paper [HWS], while (3) ⇒ (1) was proved
recently by Wei–Matsuzaki [WM1]. We will show that (1) ⇒ (2) ⇒ (3) by means of
some reasoning from our paper [STW].

To show (1) ⇒ (2), we use the continuity of the map L : M(U) → B(U∗). Let
µ ∈ M0(U) be given. For δ > 0, set µδ = µχδ, where χδ is the characteristic
function on the set U1,δ. Then ‖µδ − µ‖∞ → 0 as δ → 0+. By the continuity of
L : M(U) → B(U∗) we obtain ‖L(µδ)− L(µ)‖B → 0 as δ → 0+. On the other hand,
since fµδ is conformal outside U1,δ, it is obvious that L(µδ) ∈ B0(U

∗). In fact, set
fδ(z) = fµδ(z+ iδ). Then fδ is univalent in U∗, which implies by Proposition 6.1 that
|Nfδ(z)||y| ≤ 3 for z = x+ iy ∈ U∗. Since Nfδ(z) = Nfµδ

(z + iδ), we obtain

(6.5) |Nfµδ
(z)||y − δ| ≤ 3, z = x+ iy ∈ U

∗,

which implies that L(µδ) ∈ B0(U
∗) as desired. Since B0(U

∗) is closed in B(U∗), we
conclude that L(µ) ∈ B0(U

∗).
Noting that

(6.6) S(µ) = L′′(µ)−
1

2
(L′(µ))2,



VMO-Teichmüller space on the real line 71

we conclude that (2) ⇒ (3) follows immediately from the following lemma. Here and
in what follows, we use L′(µ) and L′′(µ) respectively to denote the first and second
order derivatives of L(µ). �

Lemma 6.3. Let φ be a holomorphic function on the lower half plane U∗ such
that limy→−∞ φ′(x + iy) = 0 uniformly for x ∈ R. Then φ ∈ B(U∗) if and only if
φ′′ ∈ B(U∗), and ‖φ‖B ≍ ‖φ′′‖B(U∗), while φ ∈ B0(U

∗) if and only if φ′′ ∈ B0(U
∗).

Proof. Suppose φ ∈ B(U∗). For z = x + iy ∈ U∗, it follows from the Cauchy
integral formula that

(6.7) |φ′′(z)| =

∣∣∣∣
1

2πi

ˆ

|ζ−z|=|y|/4

φ′(ζ)

(ζ − z)2
dζ

∣∣∣∣ ≤ 4/|y| sup
|ζ−z|<|y|/4

|φ′(ζ)|.

Noting that the function |φ′|2 is subharmonic in U∗, we have

|φ′(ζ)|2 ≤
16

πy2

¨

|w−ζ|<|y|/4

|φ′(w)|2 du dv, |ζ − z| < |y|/4.

By (6.7) we obtain

(6.8) y4|φ′′(z)|2 ≤
256

π

ˆ

2y<v<y/2

ˆ

|u−x|<|y|

|φ′(w)|2 du dv.

Then

y4|φ′′(z)|2 ≤
256‖φ‖2

B

π

ˆ

2y<v<y/2

ˆ

|u−x|<|y|

|v|−2 du dv =
768‖φ‖2

B

π
,

which implies that φ′′ ∈ B(U∗) with ‖φ′′‖B(U∗) . ‖φ‖B. If φ ∈ B0(U
∗), then for every

ǫ > 0, there is some δ0 > 0 such that

(6.9) |v||φ′(w)| < ǫ, w = u+ iv ∈ U
∗
2,δ0
.

Now we let z = x + iy ∈ U∗
2,δ0/2

. It is easy to see that w = u + iv ∈ U∗
2,δ0

whenever

2y < v < y/2 and |u− x| < |y|. Thus it follows from (6.8) and (6.6) that

y4|φ′′(z)|2 ≤
256ǫ2

π

ˆ

2y<v<y/2

ˆ

|u−x|<|y|

v−2 du dv =
768ǫ2

π
,

which implies that φ′′ ∈ B0(U
∗).

Conversely, suppose φ′′ ∈ B(U∗). Since limy→−∞ φ′(x + iy) = 0 uniformly for
x ∈ R, it holds that

φ′(x+ iy) = i

ˆ y

−∞

φ′′(x+ iv) dv,

which implies that

(6.10) |φ′(x+ iy)| ≤

ˆ y

−∞

|φ′′(x+ iv)| dv.

Thus

|φ′(x+ iy)| ≤

ˆ y

−∞

|φ′′(x+ iv)| dv ≤ ‖φ′′‖B(U∗)

ˆ y

−∞

|v|−2 dv =
‖φ′′‖B(U∗)

|y|
,

which implies φ ∈ B(U∗) with ‖φ‖B ≤ ‖φ′′‖B(U∗). If φ′′ ∈ B0(U
∗), then for every

ǫ > 0, there is some δ0 > 0 such that

|v|2|φ′′(w)| < ǫ, w = u+ iv ∈ U
∗
2,δ0 .
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Then, when z = x+ iy ∈ U
∗
2,δ0
,

|φ′(x+ iy)| ≤

ˆ y

−∞

|φ′′(x+ iv)| dv

=

ˆ −δ0

−∞

|φ′′(x+ iv)| dv +

ˆ y

−δ0

|φ′′(x+ iv)| dv

≤ ‖φ′′‖B(U∗)

ˆ −δ0

−∞

|v|−2 dv + ǫ

ˆ y

−δ0

|v|−2 dv

=
‖φ′′‖B(U∗)

δ0
− ǫ

(
1

δ0
+

1

y

)
.

Thus,

|y||φ′(x+ iy)| ≤
‖φ′′‖B(U∗)

δ0
|y|+ ǫ,

which implies |y||φ′(x + iy)| → 0 uniformly for x ∈ R as y → 0−, that is, φ ∈
B0(U

∗). �

7. Pre-logarithmic derivative model of Tv

We begin with the following basic result.

Lemma 7.1. Let φ be analytic in U∗, n ∈ N, α > 0. Set λ(z) = |φ(z)|n|y|α for
z = x+ iy ∈ U∗. Then the following statements hold:

(1) If λ ∈ CM(U∗), then supz∈U∗ |φ(z)|n|y|α+1 < C(α)N(λ);
(2) If λ ∈ CM0(U

∗), then limy→0 |φ(z)|
n|y|α+1 = 0.

Proof. For x0 ∈ R and h > 0, let

Q∗(x0, h) = {z = x+ iy : x0 − h/2 < x < x0 + h/2, −h < y < 0}.

Denote by D(ζ, r) the ball of center ζ with radius r. For any z ∈ U∗, it is easy to see
that D(z, |y|/2) ⊂ Q∗(x, 3|y|/2). Thus,

¨

D(z,|y|/2)

|φ(ζ)|n|η|α dξ dη ≤ λ(Q∗(x, 3|y|/2)).

On the other hand, for ζ = ξ + iη ∈ D(z, |y|/2), |η| ≥ |y|/2, so
¨

D(z,|y|/2)

|φ(ζ)|n|η|α dξ dη ≥
yα

2α

¨

D(z,|y|/2)

|φ(ζ)|n dξ dη ≥ π
|y|α+2

2α+2
|φ(z)|n.

Consequently,

|φ(z)|n|y|α+1 ≤ π2α+2λ(Q
∗(x, 3|y|/2))

|y|
,

from which we obtain the required results immediately. �

Now let BMOA(U∗) denote the space of all functions φ which are holomorphic
in U∗ and of bounded mean oscillation (see [FS], [Gar]), or equivalently, φ induces a
Carleson measure κφ by κφ(z) = |φ′(z)|2|y| dx dy ∈ CM(U∗), z = x + iy ∈ U∗. The
semi-norm on BMOA(U∗) is

(7.1) ‖φ‖BMOA =
√
N(κφ).
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Lemma 7.1 implies that BMOA(U∗) ⊂ B(U∗), and the inclusion map is continu-
ous. We also denote by VMOA(U∗) the closed subspace of BMOA(U∗) which con-
sists of all holomorphic functions φ of vanishing mean oscillation (see [FS], [Gar],
[Sa]), or equivalently, φ induces a vanishing Carleson measure κφ ∈ CM0(U

∗). Then
VMOA(U∗) ⊂ B0(U

∗) by Lemma 7.1 again.
We recall the following known result on the BMO-Teichmüller space (see [AZ],

[BJ], [FKS], [Ma], [Se2] and Remark 1.1).

Theorem 7.2. Let µ ∈ M(U) be given. Then the following statements are
equivalent:

(1) There exists some ν ∈ M(U) such that [ν] = [µ];
(2) L(µ) ∈ BMOA(U∗);
(3) S(µ) ∈ B(U∗);
(4) h = fµ|R is strongly quasisymmetric.

We now consider how to obtain a similar result on the VMO-Teichmüller space.
We need the following result.

Lemma 7.3. Let φ be a holomorphic function on the lower half plane U∗ such
that limy→−∞ φ′(x+ iy) = 0 uniformly for x ∈ R. Then φ ∈ BMOA(U∗) if and only if
φ′′ ∈ B(U∗), and ‖φ′′‖B ≍ ‖φ‖BMOA, while φ ∈ VMOA(U∗) if and only if φ′′ ∈ B0(U

∗).

Proof. Suppose φ ∈ BMOA(U∗). For z = x+ iy ∈ U∗, it follows from (6.8) that

y4|φ′′(z)|2 .

ˆ x−y

x+y

du

ˆ

y
2

2y

dv|φ′(u+ iv)|2

= y2
ˆ 1

−1

dξ

ˆ − 1

2

−2

dη|φ′(x− yξ − iyη)|2.

Then
¨

Q∗(x0,h)

λφ′′(z) dx dy .

ˆ x0+h

x0−h

dx

ˆ 0

−h

dy

ˆ 1

−1

dξ

ˆ − 1

2

−2

dη|y||φ′(x− yξ − iyη)|2

=

ˆ 1

−1

dξ

ˆ − 1

2

−2

dη

¨

Q∗(x0,h)

|y||φ′(x− yξ − iyη)|2 dx dy

=

ˆ 1

−1

dξ

ˆ − 1

2

−2

dη

¨

w(Q∗(x0,h))

|v|

η2
|φ′(u+ iv)|2 du dv

≤

ˆ 1

−1

dξ

ˆ − 1

2

−2

dη

η2

¨

Q∗(x0,4h)

|v||φ′(u+ iv)|2 du dv

= 3

¨

Q∗(x0,4h)

|v||φ′(u+ iv)|2 du dv

= 3

¨

Q∗(x0,4h)

κφ(w) du dv,

where we have used the change of variables w = u + iv = x − ξy − iηy which maps
Q∗(x0, h) into Q∗(x0, 4h). Consequently, Mδ(λφ′′) . M4δ(κφ), which implies that
φ′′ ∈ B(U∗), and ‖φ′′‖B . ‖φ‖BMOA, while φ′′ ∈ B0(U

∗) if φ ∈ VMOA(U∗).
Conversely, suppose φ′′ ∈ B(U∗) so that φ′′ ∈ B(U∗). It follows from (6.10) that

|y||φ′(x+ iy)|2 ≤

ˆ y

−∞

|φ′′(x+ iv)|2v2 dv.
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Thus
¨

Q∗(x0,h)

κφ(z) dx dy .

ˆ x0+h

x0−h

dx

ˆ 0

−h

dy

ˆ y

−∞

|φ′′(x+ iv)|2v2 dv

=

ˆ x0+h

x0−h

dx

ˆ 0

−h

dy

(
ˆ −h

−∞

|φ′′(x+ iv)|2v2 dv +

ˆ y

−h

|φ′′(x+ iv)|2v2 dv

)

=

ˆ x0+h

x0−h

dx

(
ˆ 0

−h

dy

ˆ −h

−∞

|φ′′(x+ iv)|2v2 dv +

ˆ 0

−h

dv

ˆ 0

v

|φ′′(x+ iv)|2v2 dy

)
(7.2)

=

ˆ x0+h

x0−h

dx

ˆ 0

−h

dy

ˆ −h

−∞

|φ′′(x+ iv)|2v2 dv

+

ˆ x0+h

x0−h

dx

ˆ 0

−h

dv|φ′′(x+ iv)|2|v|3.

Consequently,

κφ(Q
∗(x0, h)) . ‖φ′′‖2B(U∗)h+ λφ′′(Q

∗(x0, h)) . ‖φ′′‖2Bh+ λφ′′(Q
∗(x0, h)),

which implies that φ ∈ BMOA(U∗) with ‖φ‖BMOA . ‖φ′′‖B.
Now suppose φ′′ ∈ B0(U

∗) so that φ′′ ∈ B0(U
∗). Then for any ǫ > 0 there exists

some δ0 > 0 such that

|v|2|φ′′(x+ iv)| < ǫ, x+ iv ∈ U
∗
2,δ0
.

Then, when −δ0 < h < 0, it follows from (7.2) that

κφ(Q
∗(x0, h)) . ‖φ′′‖2B(U∗)

h2

δ0
+ ǫ2h + λφ′′(Q

∗(x0, h)),

which implies that N0(κφ) = 0, that is, φ ∈ VMOA(U∗). �

Examining the proof of Lemma 7.3, we find out that the following general result
holds.

Proposition 7.4. Let φ be a holomorphic function on the lower half plane U∗

such that limy→−∞ φ(x + iy) = 0 uniformly for x ∈ R. For α > 0 set λ1(z) =
|φ(z)|2|y|α and λ2(z) = |φ′(z)|2|y|α+2. Then λ1 ∈ CM(U∗) if and only if λ2 ∈
CM(U∗), and N(λ1) ≍ N(λ2), while λ1 ∈ CM0(U

∗) if and only if λ2 ∈ CM0(U
∗).

Now we can prove the second main result of this paper.

Theorem 7.5.Let µ ∈ M(U) be given. Then L(µ) ∈ VMOA(U∗) if and only if
S(µ) ∈ B0(U

∗).

Proof. It follows from (6.6) that

|S(µ)|2|y|3 . |L′′(µ)|2|y|3 + |L′(µ)|4|y|3 . |L′′(µ)|2|y|3 + |L′(µ)|2|y|,

which implies by Lemma 7.3 that S(µ) ∈ B0(U
∗) whenever L(µ) ∈ VMOA(U∗).

Conversely, suppose S(µ) ∈ B0(U
∗). We want to prove L(µ) ∈ VMOA(U∗), that

is, |L′(µ)(z)|2|y| ∈ CM0(U
∗), or equivalently, |L′(µ)(z̄)|2y ∈ CM0(U), z = x+iy ∈ U.

We will use Proposition 3.1 to prove this. For any ζ = ξ + iη ∈ U, set

γζ(z) =
z − ζ

z − ζ̄
, z = x+ iy ∈ U.
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Then,

(7.3) γ′ζ(z) =
ζ − ζ̄

(z − ζ̄)2
, Nγζ =

γ′′ζ (z)

γ′ζ(z)
= −

2

z − ζ̄
.

Set f(z) = fµ(z̄) for z ∈ U and fζ = f ◦ γ−1
ζ so that f = fζ ◦ γζ . Then

(7.4) Nf = Nfζ◦γζ = (Nfζ ◦ γζ)γ
′
ζ +Nγζ = (Nfζ ◦ γζ −Nγ−1

ζ
◦ γζ)γ

′
ζ.

Since S(µ) ∈ B0(U
∗) ⊂ B0(U

∗), Theorem 6.2 implies that L(µ) ∈ B0(U
∗). Thus,

for z = x+ iy, |Sf(z)|
2y3 ∈ CM0(U), limy→0+ |Sf(z)|y

2 → 0 and limy→0+ |Nf(z)|y →
0 uniformly for x ∈ R. We need to show that |Nf(z)|

2y ∈ CM0(U), or equivalently
by Proposition 3.1,

(7.5) lim
η→0+

¨

U

|γ′ζ(z)|y|Nf(z)|
2 dx dy = 0

uniformly for ξ ∈ R.
Firstly we have

lim
η→0+

¨

U

|γ′ζ(z)|y|Nf(z)|
2 dx dy

=
1

2
lim
η→0+

¨

U

(1− |γζ|
2)|(Nfζ ◦ γζ −Nγ−1

ζ
◦ γζ)γ

′
ζ |

2 dx dy

=
1

2
lim
η→0+

¨

∆

(1− |w|2)|Nfζ (w)−Nγ−1

ζ
(w)|2 du dv

. lim
η→0+

(
|Nfζ(0)−Nγ−1

ζ
(0)|2 +

¨

∆

(1− |w|2)3|N ′
fζ
(w)−N ′

γ−1

ζ

(w)|2 du dv

)

= lim
η→0+

(
|Nf(ζ)|

2η2 +

¨

∆

(1− |w|2)3|Sfζ (w) +
1

2
(N2

fζ
(w)−N2

γ−1

ζ

(w))|2 du dv

)

. lim
η→0+

¨

U

y3|γ′ζ(z)|(|Sf(z)|
2 + |Nf (z)− 2Nγζ (z)|

2|Nf(z)|
2) dx dy

. lim
η→0+

¨

U

y3|γ′ζ(z)|(|Nf (z)|
2 + |Nγζ (z)|

2)|Nf(z)|
2 dx dy.

Here we have used the well-known result (see Theroem 4.28 in [Zhu])
¨

∆

|φ(w)|2(1− |w|2) du dv ≍ |φ(0)|2 +

¨

∆

|φ′(w)|2(1− |w|2)3 du dv

for any function φ holomorphic in the unit disk. It remains to show

(7.6) lim
η→0+

¨

U

y3|γ′ζ(z)|(|Nf (z)|
2 + |Nγζ (z)|

2)|Nf(z)|
2 dx dy = 0.

For any ǫ > 0, choose some y0 > 0 such that |Nf(z)|y < ǫ as 0 < y < y0. Then,
by (7.3) we have

¨

0<y<y0

y3|γ′ζ(z)|(|Nf (z)|
2 + |Nγζ (z)|

2)|Nf(z)|
2 dx dy

≤ ǫ2
¨

U

y|γ′ζ(z)|(|Nf(z)|
2 + |Nγζ (z)|

2) dx dy(7.7)

. ǫ2
(
N(κL(µ)) +

¨

U

yη

|z − ζ̄|4
dx dy

)
.
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On the other hand, we have by (7.3) again that

(7.8)

¨

y>y0

y3|γ′ζ(z)|(|Nf(z)|
2 + |Nγζ (z)|

2)|Nf(z)|
2 dx dy .

¨

y>y0

η

y|z − ζ̄|2
dx dy.

Noting that
¨

U

yη

|z − ζ̄|4
dx dy =

ˆ +∞

0

dy

ˆ

R

yη

|x+ iy − ζ̄|4
dx

=

ˆ +∞

0

yη dy(2πi((z + iy − ζ̄)−2)′|z=iy+ζ)

=
π

2

ˆ +∞

0

yη

(y + η)3
dy =

π

4
,

and
¨

y>y0

η

y|z − ζ̄|2
dx dy =

ˆ +∞

y0

dy

ˆ

R

η

y|x+ iy − ζ̄|2
dx

=

ˆ +∞

y0

η

y
dy(2πi(z + iy − ζ̄)−1|z=iy+ζ)

= π

ˆ +∞

y0

η

y(y + η)
dy = π ln

y0 + η

y0
,

we find out that (7.6) follows from (7.7) and (7.8). �

Theorem 7.6. L : M0(U) → VMOA(U∗) is holomorphic.

Proof. Recall that the holomorphy of L : M(U) → BMOA(U∗) was proved in our
paper [SW] (see Remark 1.1). It follows from Proposition 5.1 and Theorem 7.5 that
L maps M0(U) into VMOA(U∗). Thus L : M0(U) → VMOA(U∗) is holomorphic.

Here we give a direct approach to the fact that L maps M0(U) into VMOA(U∗).
Let µ ∈ M0(U) be given so that λµ ∈ CM0(U). Replacing µ with σ(µ) if necessary,
we may assume that µ ∈ M0(U) as well (see Theorem 4.3). For each δ > 0 let as
before χδ denote the characteristic function on the set U1,δ, and µδ = µχδ. Then
‖µδ − µ‖∞ → 0 as δ → 0+. On the other hand, by Proposition 3.4 we obtain
limδ→0+N(λµ − λµχδ) = 0. Noting that λµχδ = λµδ , we have limδ→0+N(λµ−µδ) = 0.
Consequently, limδ→0+ ‖µ−µδ‖c = 0. By continuity we have ‖L(µ)−L(µδ)‖BMOA → 0
as δ → 0+. On the other hand, for any x0 ∈ R and h > 0, it follows from (6.5) that

¨

Q∗(x0,h)

|L′(µδ)(z)|
2|y| dx dy .

ˆ x0+h

x0−h

dx

ˆ 0

−h

|y|

(y − δ)2
dy .

h3

δ2
,

which implies that |L′(µδ)(z)|
2|y| ∈ CM0(U

∗), that is, L(µδ) ∈ VMOA(U∗). Since
VMOA(U∗) is closed in BMOA(U∗), we obtain L(µ) ∈ VMOA(U∗). �

8. Quasisymmetric homeomorphism model of Tv

Each of the Teichmüller spaces T , T0, Tb and Tv has a quasisymmetric homeomor-
phism model, namely, T = QS(R)/Aff(R), T0 =S(R)/Aff(R), Tb = SQS(R)/Aff(R),
and Tv = SS(R)/Aff(R). Now each of these four Teichmüller spaces has been en-
dowed with the standard complex Banach manifold structure via the Bers embedding.
Furthermore, the BMO-Teichmüller space Tb has another real Banach manifold struc-
ture (see [FHS2] and Theorem 8.1 below). To make this precise, we recall some basic
definitions on BMO functions.
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Let Γ be a locally rectifiable Jordan curve in the complex plane. We denote by
BMO(Γ) the space of locally integrable functions u on Γ of bounded mean oscillation
(see [FS], [Gar]), namely,

(8.1) ‖u‖BMO
.
= sup

1

|I|

ˆ

I

|u(ζ)− uI ||dζ | < +∞,

where the supremum is taken over all finite sub-arcs I of Γ, while uI is the average
of u on the interval I, namely,

(8.2) uI =
1

|I|

ˆ

I

u(ζ)|dζ |.

If u also satisfies the condition

(8.3) lim
|I|→0

1

|I|

ˆ

I

|u(ζ)− uI ||dζ | = 0,

we say u has vanishing mean oscillation and belongs to the space VMO(Γ) (see [Gar],
[Sa]). In the following, we denote by BMOR(Γ) (VMOR(Γ)) the set of all real-valued
BMO (VMO) functions.

Recall that a strongly quasisymmetric homeomorphism h is locally absolutely
continuous such that log h′ is a BMO function. The following result was proved in
our previous papers [SW] and [FHS2].

Theorem 8.1 The correspondence h 7→ log h′ induces a homeomorphism Ψ from
Tb onto a connected open subset of BMOR(R)/R.

Now we continue to consider to what extent one can extend Theorem 7.2 to the
VMO-Teichmüller space and prove the third main result of this paper.

Theorem 8.2. Let h be a strongly symmetric homeomorphism on the real line.
Then h is strongly quasisymmetric such that log h′ is a VMO function.

Proof. Suppose h is a strongly symmetric homeomorphism on the real line.
Then h can be extended a quasiconformal mapping f to the upper half plane U with
Beltrami coefficient µ ∈ M0(U). Clearly, h is strongly quasisymmetric such that
log h′ ∈ BMO(R). As in the proof of Theorem 7.6, we may assume that µ ∈M0(U) as
well, and for each δ > 0 let µδ = µχδ, where χδ is the characteristic function on the set
U1,δ. Then limδ→0+ ‖µ−µδ‖c = 0. By Theorem 8.1 we have ‖ log h′δ− log h′‖BMO → 0
as δ → 0+, where hδ = fµδ |R.

On the other hand, we consider

gδ(x+ iy) =

{
fµδ(x+ iy), 0 ≤ y < δ,

fµδ(x− iy), −δ < y ≤ 0.

Then gδ is conformal in the horizontal strip {z = x+ iy : |y| < δ} with gδ|R = hδ. We
conclude by the following Lemma 8.3 that log h′δ = log g′δ|R is Lipschitz continuous
on the real line. Recall that VMO(R) is the closure under the BMO-norm of the
set of all uniformly continuous BMO functions on the real line (see [Gar], [Sa]), we
conclude by limδ→0+ ‖ log h′δ − log h′‖BMO = 0 that log h′ ∈ VMO(R). �

Lemma 8.3. Let g be a conformal mapping on the horizontal strip Sδ = {z =
x+ iy : |y| < δ}. Then it holds that

(8.4)

∣∣∣∣
2δ

π
Ng(z)− 1

∣∣∣∣ cos(
π

2δ
y) ≤ 3, z = x+ iy ∈ Sδ.

In particular, log g′ is Lipschitz continuous on each horizontal line in Sδ.



78 Yuliang Shen

Proof. Set f(ζ) = g(2π−1δ log ζ − iδ). Then f is a conformal mapping on the
upper half plane U. By Proposition 6.1 we obtain |Nf (ζ)|η ≤ 3 for ζ = ξ + iη ∈ U.
Noting that

Nf(ζ) =
2δ

πζ
Ng(2π

−1δ log ζ − iδ)−
1

ζ
,

we obtain ∣∣∣∣
2δ

πζ
Ng(2π

−1δ log ζ − iδ)−
1

ζ

∣∣∣∣ η ≤ 3.

For z = x + iy ∈ Sδ, letting ζ = i exp( π
2δ
z) ∈ U we obtain (8.4). When g(z) =

exp(−π
δ
z), we have Ng(z) = −π

δ
, which implies that the estimate (8.4) is sharp. On

each horizontal line in Sδ we conclude by (8.4) that Ng = (log g′)′ is bounded, which
implies that log g′ is Lipschitz continuous. �

Remark 8.4. It is not clear whether the converse of Theorem 8.2 is true (see
Problem 9.1 below). Examining the proof of Proposition 4.2 in [Se2], we may find
out that an increasing homeomorphism h on the real line is strongly symmetric if h
is locally absolutely continuous such that log h′ is a VMO function with small BMO
norm ‖ log h′‖BMO.

Here is an appropriate place to relate a well-known result of Carleson [Ca]. For
a Beltrami coefficient µ ∈ M(U), one may consider kδ(µ) = ‖µ|U2,δ

‖∞. Then µ ∈
M0(U) if and only if limδ→0+ kδ(µ) = 0. Carleson [Ca] proved that h = fµ|R is locally
absolutely continuous with h′ ∈ L2

loc
if µ satisfies the following condition

(8.5)

ˆ

0

k2δ(µ)

δ
dδ < +∞.

Later, Anderson–Becker–Lesley [ABL] extended this to the following result. We give
a fast approach to this result by means of Theorem 8.2.

Corollary 8.5. Let µ ∈ M(U) satisfy the condition (8.5). Then h = fµ|R is
locally absolutely continuous such that log h′ is a VMO function on any finite interval
[a, b] on the real line.

Proof. Let µ ∈ M(U) satisfy the condition (8.5). Fix some δ > 0. Set as before
µδ = µχδ, where χδ is the characteristic function on the set U1,δ, and µ̂δ = µ − µδ.
Then µ̂δ ∈ M0(U), or equivalently, λµ̂δ ∈ CM0(U). In fact,

λµ̂δ(Q(x0, h)) =

ˆ x0+h

x0−h

dx

ˆ h

0

|µ̂δ(x+ iy)|2

y
dy

≤

ˆ x0+h

x0−h

dx

ˆ min(h,δ)

0

k2y(µ)

y
dy = 2h

ˆ min(h,δ)

0

k2y(µ)

y
dy,

which implies that λµ̂δ ∈ CM0(U) by the assumption (8.5). Therefore, ĥδ = f µ̂δ |R is

strongly symmetric, which implies by Theorem 8.2 that ĥδ is strongly quasisymmetric
and log ĥ′δ ∈ VMO(R).

Now we set gδ = fµ ◦ (f µ̂δ)−1 so that fµ = gδ ◦ f
µ̂δ . Set Dδ = f µ̂δ(U2,δ),

D∗
δ = f µ̂δ(U∗

2,δ), and Sδ = Dδ ∪ R ∪ D∗
δ . Then gδ is a quasiconformal mapping of

U onto itself and is conformal in Dδ. Clearly, gδ|Dδ can be extended a conformal
mapping to Sδ by reflection, which implies that gδ is real analytic on the real line,
in particular, log g′δ|R is a VMO function on any finite interval [a, b] on the real line.
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Then, h = gδ|R ◦ ĥδ is locally absolutely continuous such that h′ = (g′δ|R ◦ ĥδ)ĥ
′
δ.

Consequently,

log h′ = log(g′δ|R ◦ ĥδ) + log ĥ′δ,

which implies that log h′ is a VMO function on any finite interval [a, b] on the real
line (see Lemma in [ABL]). �

Remark 8.6. It is well-known that a quasisymmetric homeomorphism need not
be locally absolutely continuous (see [BA]). An important problem of long time has
been to determine when a quasisymmetric homeomorphism is locally absolutely con-
tinuous. Carleson [Ca] initiated such an investigation, giving the sufficient condition
(8.5) on the dilatation of a quasiconformal self-mapping of the upper half plane to
have locally absolutely continuous boundary values. Since then there have appeared
many works to deal with this problem (see [ABL], [AZ], [Dy], [FKP], [Ma], [Se2]).
For example, a much satisfactory answer is contained in Theorem 7.2. Very recently,
we established several results on the Weil-Petersson Teichmüller space which are re-
lated to this problem (see [Sh], [ST], [STW], [SWu], [WHS]). Theorem 8.2 can be
considered as a new result on this problem.

9. Additional remarks and problems

We end the paper with several remarks and problems related to strongly sym-
metric homeomorphisms.

By Theorem 8.2 it is natural to consider the following sub-class of quasisymmetric
homeomorphisms

S̃S(R) = {h ∈ SQS(R) : log h′ ∈ VMO(R)}

and the sub-space T̃v = S̃S(R)/Aff(R) of the universal Teichmüller space. Then

SS(R) ⊂ S̃S(R), and Tv ⊂ T̃v by Theorem 8.2. On the other hand, examining the

proof of Lemma 3.3 in our paper [Sh], we find out that S̃S(R) ⊂S(R) so that T̃v ⊂ T0.

Problem 9.1. Determine whether it is true that SS(R) = S̃S(R). If this
were true, we would have an intrinsic characterization for strongly symmetric home-
omorphisms without using quasiconformal extensions, namely, a homeomorphism
h ∈ Hom+(R) is strongly symmetric if and only if h is strongly quasisymmetric such
that log h′ ∈ VMO(R).

Recall that Ψ is the homeomorphism from Tb onto a connected open subset of
BMOR(R)/R induced by the correspondence h 7→ log h′ (see Theorem 8.1). Under the

mapping Ψ, it holds by definition that Ψ(T̃v) = Ψ(Tb)∩ (VMOR(R)/R). Since Ψ(Tb)
is a connected open subset of BMOR(R)/R, we conclude that Ψ(T̃v) is a connected

open subset of VMOR(R)/R, which enables one to endow T̃v with a real Banach
manifold structure.

Problem 9.2. Determine whether or not Ψ(Tv) is an open subset of VMOR(R)/R.
If so, we would be able to endow the VMO-Teichmüller space Tv with another real
Banach manifold structure, which is topologically equivalent to the standard complex
Banach manifold structure via the Bers embedding (see Theorem 2.1).
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