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Geodesic spaces of low Nagata dimension

Martina Jørgensen and Urs Lang

Abstract. We show that every geodesic metric space admitting an injective continuous map

into the plane as well as every planar graph has Nagata dimension at most two, hence asymptotic

dimension at most two. This relies on and answers a question in a recent work by Fujiwara and

Papasoglu. We conclude that all three-dimensional Hadamard manifolds have Nagata dimension

three. As a consequence, all such manifolds are absolute Lipschitz retracts.

Nagatan mielessä matalaulotteisia geodeettisia avaruuksia

Tiivistelmä. Osoitamme, että jokaisen tasoverkon ja jokaisen injektiivisesti ja jatkuvasti

tasoon uppoavan geodeettisen metrisen avaruuden Nagatan ulottuvuus, ja täten asymptoottinen

ulottuvuus, on korkeintaan kaksi. Tulos perustuu ja vastaa Fujiwaran ja Papasoglun viimeaikaisessa

työssä esitettyyn kysymykseen. Johdamme tästä, että jokaisen kolmiulotteisen Hadamardin monis-

ton Nagatan ulottuvuus on kolme, ja täten jokainen tällainen monisto on ehdoton Lipschitzin vetäy-

tymä.

1. Introduction

Gromov’s notion of asymptotic dimension has become an indispensable tool in
the investigation of large scale properties of metric spaces and infinite groups. In
the recent paper [10], Fujiwara and Papasoglu show that all planar geodesic metric
spaces and planar graphs have asymptotic dimension at most three. Here, a geodesic
metric space is said to be planar if it admits an injective continuous map into R

2, and
a not necessarily locally finite (but connected) graph, viewed as a geodesic metric
space with edges of length one, is called planar if it admits an injective map into R

2

whose restriction to every edge, and hence every finite subgraph, is continuous. In
fact, Fujiwara and Papasoglu prove the stronger result that the (Assouad–)Nagata
dimension, which in general is greater than or equal to the asymptotic dimension, is at
most 3 (see Sect. 2 for the definitions of these notions). This is achieved by showing
that for some universal constant C, every metric annulus of width comparable to
s > 0 admits a covering by subsets of diameter at most Cs such that every s-ball
meets no more than two of them. For an appropriate sequence of annuli covering the
underlying space X, the union of the individual covers has s-multiplicity at most 4.
This yields the bound on the dimension, which exceeds the expected value by one.

In this note, we first observe that the bound on the Nagata dimension can be
improved to 2 (see Theorem 2). This answers in particular Question 5.1 in [10] for
the asymptotic dimension. For the proof, we combine the above result for metric
annuli with a simplified version of the Hurewicz-type theorem from [8] for the case of
a Lipschitz function f : X → R (see Theorem 1). The latter holds in all dimensions,
and we provide a streamlined argument. We then take a further step and apply
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Theorem 2 and Theorem 1 to prove that all 3-dimensional Hadamard manifolds have
Nagata dimension 3 (see Theorem 3). The two-dimensional analogue was shown in
Theorem 5.7.3 in [17], but in higher dimensions, previous results depend on addi-
tional curvature bounds or homogeneity assumptions (compare [11, 16]). Finiteness
of the asymptotic dimension or the Nagata dimension has a number of important
consequences (see [4] for a survey). It now follows from Theorem 3 and a general
criterion established in [16] that all 3-dimensional Hadamard manifolds are absolute
Lipschitz retracts (see Theorem 4). Again, this subsumes some earlier results with
extra conditions (compare [9, 15]).

After the posting of the first version [14] of the present paper, another proof
of Theorem 2 based on [10] and [8] appeared in the preprint [6], which was later
superseded by [7]. This work discusses a number of further results pertaining to
non-planar graphs and surfaces.

2. Definitions

We now state the relevant definitions. Let (X, d) be a metric space. A collection
C of subsets of X is called D-bounded, for some constant D, if every set C ∈ C has
diameter

diam(C) := sup{d(x, y) : x, y ∈ C} ≤ D.

Given s > 0, the s-multiplicity of C is the infimum of all integers m ≥ 0 such that
every closed s-ball in X meets at most m members of the collection. The asymptotic

dimension asdim(X) of X, a quasi-isometry and coarse invariant, is the infimum of all
integers n ≥ 0 for which there is a function D : (0,∞) → (0,∞) such that for every
s > 0, X possesses a D(s)-bounded covering with s-multiplicity at most n + 1 [11].
The Nagata dimension or Assouad–Nagata dimension dimN(X) of X, a bi-Lipschitz
and quasi-symmetry invariant, is defined analogously with a linear control function
D(s) = cs [1, 16]. To make the constant c > 0 explicit, we say that X has Nagata
dimension n or at most n with constant c. It is an essential feature of the results
in [10] and those obtained here that they hold uniformly for all members of the class
of spaces considered, that is, with the same constant c.

The following equivalent formulation is often useful. Let C be a collection of
subsets of X. For s > 0, C is called s-disjoint if

d(C,C ′) := inf{d(x, x′) : x ∈ C, x′ ∈ C ′} ≥ s

whenever C,C ′ ∈ C are distinct. More generally, we say that C is (n+ 1, s)-disjoint

if C=
⋃n+1

i=1
Ci for subcollections Ci that are individually s-disjoint. We think of the

indices 1, . . . , n+ 1 as colours of C. Evidently, if C is (n+ 1, s)-disjoint, then C has
λs-multiplicity at most n + 1 for any λ ∈ (0, 1

2
). Hence, a metric space X with an

(n+ 1, s)-disjoint and c′s-bounded cover for every s > 0 satisfies dimN(X) ≤ n with
any constant c > 2c′. Conversely, the following holds (see the proof of Proposition 2.5
in [16]).

Proposition 1. If X is a metric space with a cs-bounded cover of s-multiplicity

at most n + 1 for some c, s > 0, then X also admits an (n + 1, λs)-disjoint and

c′λs-bounded cover, where λ, c′ > 0 depend only on c and n. In particular, if X has

Nagata dimension at most n with constant c, then X possesses an (n+ 1, s)-disjoint

and c′s-bounded cover for every s > 0.
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3. A simple Hurewicz-type theorem

We now proceed to the aforementioned version of the Hurewicz theorem. We
need the following lemma extracted from Theorem 2.4 in [8].

Lemma 1. Let X be a metric space with an (n + 1, t)-disjoint and D-bounded

cover for some n ≥ 1 and t, D > 0. Then there exists an (n + 2, t
3
)-disjoint and

(D + 2

3
t)-bounded cover of X with each point x ∈ X belonging to at least two sets

of different colours.

Proof. By assumption, X has an (n + 1, t)-disjoint and D-bounded cover C =
⋃n+1

k=1
Ck. For C ∈ C, let C ′ denote the closed t

3
-neighbourhood of C. Define a new

cover
⋃n+1

k=1
C′
k, where C′

k := {C ′ : C ∈ Ck}. Notice that this cover is (n+1, t
3
)-disjoint

and (D+ 2

3
t)-bounded. Now define sets of an additional colour as follows. For every

B ∈ C of colour j, let B 0 be the set B minus the union of all C ′ ∈ ⋃

k 6=j C
′
k, and put

C′
n+2 := {B 0 : B ∈ C}. The cover C′ :=

⋃n+2

k=1
C′
k will have the required properties.

Clearly, C′ is still (D+ 2

3
t)-bounded, as diam(B 0) ≤ diam(B) ≤ D for all B ∈ C.

To verify that C′ is (n + 2, t
3
)-disjoint, it remains to check that d(A0, B 0) ≥ t

3

whenever A ∈ Ci, B ∈ Cj, and A 6= B. If i = j, then d(A0, B 0) ≥ d(A,B) ≥ t,
because Ci is t-disjoint. If i 6= j, then A0 ⊂ A and B 0 ⊂ B \ A′ by construction
of C

′
n+2, thus d(A0, B 0) ≥ d(A,B \ A′) ≥ t

3
. Now let x ∈ X. There exist j ∈

{1, . . . , n + 1} and B ∈ Cj such that x ∈ B. If x belongs to some set C ′ ∈ C′
k with

k 6= j, then x ∈ B′ ∩ C ′. If there is no such set C ′ containing x, then x ∈ B′ ∩ B 0.
Thus in either case, x belongs to at least two sets of different colours. �

The following result corresponds to Theorem 7.2 in [8] for the case of a Lipschitz
function f : X → R. The argument can also easily be adapted to the asymptotic
dimension (see Theorem 1 in [3] for an earlier result in this direction).

Theorem 1. Let X be a metric space, and let f : X → R be a 1-Lipschitz

function. Suppose that there exist n ≥ 1 and c > 0 such that for all r ∈ R and t > 0,
the set f−1([r, r + t)) possesses an (n+ 1, t)-disjoint and ct-bounded cover. Then X

has Nagata dimension at most n + 1 with a constant depending only on n and c.

Proof. Fix s > 0 and let t := (n+ 2)s. For every k ∈ Z, put Ik := [kt, (k + 1)t).
For every odd integer k, proceed with the following construction. By assumption,

f−1(Ik) admits an (n + 1, t)-disjoint and ct-bounded cover. Lemma 1 now provides

an (n + 2, t
3
)-disjoint and (c + 1)t-bounded cover Ck =

⋃n+2

i=1
Ci
k with each point

x ∈ f−1(Ik) belonging to two sets of different colours. Let Bk =
⋃n+2

i=1
B

i
k be the

(n + 2, s)-disjoint cover of Ik such that Bi
k consists of the connected components of

Ik \ [kt + (i − 1)s, kt + is). Every point of Ik is in n + 1 sets of pairwise different
colours. For i = 1, . . . , n+ 2, define

D
i
k :=

{

C ∩ f−1(B) : C ∈ C
i
k, B ∈ B

i
k

}

.

Note that if x ∈ f−1(Ik), then x belongs to two sets of different colours of Ck, and
f(x) is in n + 1 sets of pairwise different colours of Bk; thus there exists an index
i ∈ {1, . . . , n+2} such that x belongs to some set C∩f−1(B) ∈ Di

k. Hence,
⋃n+2

i=1
Di

k

is a covering of f−1(Ik). Since Ck is (c + 1)t-bounded, this cover is c′s-bounded for
c′ := (n + 2)(c + 1), and since s ≤ t

3
and f is 1-Lipschitz, D

i
k is s-disjoint. For

i ∈ {1, . . . , n+ 2}, let Di :=
⋃

k odd
Di

k. Note that Di is still s-disjoint.
Now put s′ := (c′+2)s and note that s′ ≥ (n+2)s = t. For every even integer k,

there exists by assumption an (n + 1, s′)-disjoint and cs′-bounded cover
⋃n+1

i=1
Ei
k of
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f−1(Ik) by subsets of f−1(Ik). For i ∈ {1, . . . , n+1}, let E
i :=

⋃

k even
E
i
k. The union

n+1
⋃

i=1

(

D
i ∪ E

i
)

∪ D
n+2

is an (n + 2)-coloured covering of X which we shall modify to satisfy the required
properties. For every E ∈ Ei, let E∗ be the union of E with all sets of Di at distance
< s from E. Clearly diam(E∗) ≤ cs′ + 2(c′ + 1)s = c′′s for some c′′ = c′′(n, c). We
claim that d(E∗, F ∗) ≥ s whenever E, F ∈ E

i are distinct. If E and F belong to
the same family Ei

k, this holds since d(E, F ) ≥ s′ ≥ 2s + diam(D) for all D ∈ Di

and Di is s-disjoint. In the other case, d(E, F ) ≥ t ≥ s, and by construction no set
D ∈ Di is at distance < s from both E and F , so the claim follows again since Di

is s-disjoint. In the final covering, the collection of sets of colour i consists of all E∗

with E ∈ Ei and the remaining elements of Di not belonging to such an E∗. This
gives an (n + 2, s)-disjoint and c′′s-bounded cover of X. Since s > 0 was arbitrary,
dimN(X) ≤ n+ 1. �

4. Planar metric spaces

We now turn to planar geodesic spaces. The proof of Theorem 2 below relies on
the following result from [10].

Proposition 2. There is a universal constant c1 such that the following holds.

Suppose that X is a planar geodesic metric space or a planar graph, and let z ∈ X be

a base point. Then for any r, s > 0, the metric annulus {x ∈ X : r ≤ d(z, x) ≤ r+ s}
admits a c1s-bounded cover of s-multiplicity at most 2.

See Lemma 4.4 in [10] for M = 10m. The very generous estimates show that
one can take c1 = 106. A somewhat modified and optimized argument yielding the
constant c1 = 39 has been worked out in [13].

Theorem 2. There is a universal constant c2 such that every planar geodesic

metric space or planar graph has Nagata dimension at most 2 with constant c2.

Proof. Let X be a planar geodesic metric space or a planar graph, let z ∈ X

be a base point, and put f := d(z, · ). By Proposition 2, for any r, s > 0, the set
f−1([r, r+ s]) admits a c1s-bounded cover of s-multiplicity at most 2. It follows from
Proposition 1 that f−1([r, r+ s]) possesses a (2, λs)-disjoint and c′1λs-bounded cover,
where λ and c′1 depend only on c1. If λ < 1, put t := λs and c := c′1. If λ ≥ 1,
put t := s and c := c′1λ. In either case, for any r, t > 0, the set f−1([r, r + t]) has a
(2, t)-disjoint and ct-bounded cover. Now the result follows from Theorem 1. �

5. Three-dimensional Hadamard manifolds

We proceed to Hadamard manifolds, that is, complete and simply connected
Riemannian manifolds of non-positive sectional curvature.

Theorem 3. There is a universal constant c3 such that every 3-dimensional

Hadamard manifold has Nagata dimension 3 with constant c3.

Proof. Let (Y, d) be a 3-dimensional Hadamard manifold. Fix a Busemann
function f : Y → R. Recall that f is 1-Lipschitz, all horoballs f−1((−∞, s]) are
convex, and the nearest point retraction from Y onto any horoball is 1-Lipschitz.
Furthermore, every horosphere f−1{s} is homeomorphic to R

2, and the induced inner
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metric on f−1{s} is finite and complete, hence geodesic. (See [2]. By Proposition 3.1
in [12], Busemann functions and horospheres are in fact C2, but this is not needed
here.) Now fix r ∈ R and t > 0. Put A := f−1([r− t

2
, r+t]) and H := f−1{r− t

2
}. The

nearest point retraction π : A → H is 1-Lipschitz with respect to d and hence does
not increase the length of curves. Therefore, if dA and dH denote the induced inner
metrics on A and H , then π : (A, dA) → (H, dH) is still 1-Lipschitz. By Theorem 2,
(H, dH) has Nagata dimension at most 2 with constant c2, thus by Proposition 1
there is a universal constant c′2 such that (H, dH) possesses a (3, t)-disjoint and c′2t-

bounded cover B =
⋃

3

i=1
Bi by subsets of H . The sets π−1(B) with B ∈ B form

a (3, t)-disjoint and (c′2 + 3)t-bounded cover of (A, dA). Furthermore, by taking the
intersections with A′ := f−1([r, r + t]), we get a cover of A′ that is (3, t)-disjoint and
(c′2 + 3)t-bounded with respect to d, because d(y, y′) ≤ dA(y, y

′) for all y, y′ ∈ A′,
with equality if d(y, y′) ≤ t. Since r ∈ R and t > 0 were arbitrary, it follows from
Theorem 1 that Y has Nagata dimension at most 3 with a universal constant c3. In
fact, dimN(Y ) = 3, as Y is locally bi-Lipschitz homeomorphic to R

3. �

Finally, we deduce a new Lipschitz extension result. Recall that a metric space
Y is an absolute C-Lipschitz retract, for a constant C ≥ 1, if for every isometric
inclusion Y ⊂ X into another metric space X there is a C-Lipschitz retraction of X
onto Y . Equivalently, for every metric space X and every λ-Lipschitz map f : D → Y ,
where λ > 0 and D ⊂ X, there exists a Cλ-Lipschitz extension f̄ : X → Y of f

(see Proposition 1.2 in [5]). It was shown in [15] that Hadamard manifolds with
pinched negative sectional curvature, homogeneous Hadamard manifolds, and all 2-
dimensional Hadamard manifolds are absolute Lipschitz retracts (in the last case,
one can take C = 4

√
2). Furthermore, by [9], the universal cover of any closed

Riemannian 3-manifold of non-positive curvature is an absolute Lipschitz retract.
We can now settle the 3-dimensional case completely.

Theorem 4. There is a universal constant c4 such that every 3-dimensional

Hadamard manifold is an absolute c4-Lipschitz retract.

Proof. Corollary 1.8 in [16] states that a metric space Y with dimN(Y ) ≤ n is an
absolute Lipschitz retract if and only if Y is complete and Lipschitz n-connected. This
latter condition means that there is a constant γ ≥ 1 such that for m = 0, 1, . . . , n,
every λ-Lipschitz map from the unit sphere Sm ⊂ R

m+1 into Y can be extended
to a γλ-Lipschitz on the unit ball Bm+1 ⊂ R

m+1. The proof (using Theorem 1.6
in [16]) shows in fact that if a complete metric space Y is Lipschitz n-connected
with constant γ and satisfies dimN(Y ) ≤ n with constant c, then Y is an absolute
C-Lipschitz retract for some C = C(n, γ, c). Now if Y is a Hadamard manifold (of
any dimension), then the distance function on Y is convex (see [2]), and it follows
readily that Y is Lipschitz n-connected for all n with an absolute constant γ (see, for
example, Proposition 6.2.2 in [17]). By virtue of Theorem 3, this gives the result. �

It remains an open question whether every Hadamard manifold of dimension
bigger than 3, without extra conditions, has finite Nagata dimension and is therefore
an absolute Lipschitz retract.
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