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The Bohr phenomenon for
analytic functions on shifted disks

Molla Basir Ahamed, Vasudevarao Allu and Himadri Halder

Abstract. In this paper, we investigate the Bohr phenomenon for the class of analytic functions
defined on the simply connected domain

Ωγ =

{
z ∈ C :

∣∣∣∣z +
γ

1− γ

∣∣∣∣ < 1

1− γ

}
for 0 ≤ γ < 1.

We study improved Bohr radius, Bohr–Rogosinski radius and refined Bohr radius for the class of
analytic functions defined in Ωγ , and obtain several sharp results.

Bohrin ilmiö analyyttisille funktioille siirretyissä kiekoissa

Tiivistelmä. Tarkastelemme Bohrin ilmiötä yhdesti yhtenäisessä alueessa

Ωγ =

{
z ∈ C :

∣∣∣∣z +
γ

1− γ

∣∣∣∣ < 1

1− γ

}
määriteltyjen analyyttisten funktioiden luokassa, missä 0 ≤ γ < 1. Tutkimme parannettua Bohrin
sädettä, Bohrin–Rogosinskin sädettä sekä tarkennettua Bohrin sädettä alueessa Ωγ määriteltyjen
analyyttisten funktioiden luokassa ja saamme useita tarkkoja tuloksia.

1. Introduction and preliminaries

Let B(D) be the class of analytic functions in unit disk D = {z ∈ C : |z| < 1}
such that f(D) ⊆ D. The classical Bohr theorem for functions f ∈ B(D) says that if
f(z) =

∑∞
n=0 anz

n, then its associated majorant series Mf (r) satisfies the following
inequality

(1.1) Mf (r) :=
∞∑
n=0

|an|rn ≤ 1 for |z| = r ≤ 1

3

and the constant 1/3, called Bohr radius for the class B(D), cannot be improved.
The inequality (1.1) is known as classical Bohr inequality (1.1) for the class B(D).
The Bohr inequality was first obtained by Harald Bohr [24] in 1914 with the con-
stant 1/6. The optimal value 1/3, which is called the Bohr radius for disk case was
later established independently by Weiner, Riesz and Schur. For the proofs we re-
fer to [41] and [42]. The notion of Bohr inequality has been generalized to several
complex variables by finding the multidimensional Bohr radius. We refer the reader
to the articles [6, 8, 23, 37]. For more information and intriguing aspects on Bohr
phenomenon, we suggest the reader to glance through the articles [1]–[5], [7]–[13]
and [16]–[18]. Bohr phenomenon for operator valued functions have been extensively
studied by Bhowmik and Das (see [21, 22]).
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The main aim of this article is to study the Bohr inequality for the class of analytic
functions that are defined in a general simply connected domain in the complex plain.
Let Ω be a simply connected domain containing D and B(Ω) be the class of analytic
functions in Ω such that f(Ω) ⊆ D. We define the Bohr radius B = BΩ for the class
B(Ω) by

B := sup

{
r ∈ (0, 1) :

∞∑
n=0

|an|rn ≤ 1 for all f ∈ B(Ω) withf(z) =
∞∑
n=0

anz
n, z ∈ D

}
.

In particular, if Ω = D, then BD = 1/3, which is the classical Bohr radius for the class
B(D). Let D(a, r) := {z ∈ C : |z− a| < r}. Clearly, D := D(0, 1). Let 0 ≤ γ < 1. We
consider the disk Ωγ defined by

Ωγ :=

{
z ∈ C :

∣∣∣∣z +
γ

1− γ

∣∣∣∣ < 1

1− γ

}
.

It is easy to see that Ωγ always contains the unit disk D. In 2010, the notion of
classical Bohr inequality (1.1) has been generalized by Fournier and Ruscheweyh [28]
to the class B(Ωγ). More precisely,

Theorem 1.2. [28] For 0 ≤ γ < 1, let f ∈ B(Ωγ), with f(z) =
∑∞

n=0 anz
n in D.

Then,
∞∑
n=0

|an|rn ≤ 1 for r ≤ ρ :=
1 + γ

3 + γ
.

Moreover,
∑∞

n=0 |an|ρn = 1 holds for a function f(z) =
∑∞

n=0 anz
n in B(Ωγ) if, and

only if, f(z) = c with |c| = 1.

In this article, we study the Bohr–Rogosinski radius for the class B(Ωγ). In
2017, Kayumov and Ponnusamy [34] introduced Bohr–Rogosinski radius motivated
from Rogosinski radius for bounded analytic functions in D. Rogosinski radius is
defined as follows: Let f(z) =

∑∞
n=0 anz

n be analytic in D and its corresponding
partial sum of f is defined by SN(z) :=

∑N−1
n=0 anz

n. Then, for every N ≥ 1, we have
|
∑N−1

n=0 anz
n| < 1 in the disk |z| < 1/2 and the radius 1/2 is sharp. Motivated by

Rogosinski radius, Kayumov and Ponnusamy have considered the Bohr–Rogosinski
sum Rf

N(z) is defined by

(1.3) Rf
N(z) := |f(z)|+

∞∑
n=N

|an||z|n.

It is worth to point out that |SN(z)| =
∣∣f(z) −

∑∞
n=N anz

n
∣∣ ≤ |Rf

N(z)|. Thus, it
is easy to see that the validity of Bohr-type radius for Rf

N(z), which is related to
the classical Bohr sum (Majorant series) in which f(0) is replaced by f(z), gives
Rogosinski radius in the case of bounded analytic functions in D. There has been
significant and extensive research carried out on Improved-Bohr inequality and Bohr–
Rogosinski radius (see [14, 29, 30, 34, 31, 32, 33, 35, 36, 38]).

Lemma 1.4. [40] Let a ∈ D and f ∈ B(D) with

f(z) =
∞∑
n=0

αn(z − a)n, |z − a| ≤ 1− |a|.
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Then,

|αn| ≤ (1 + |a|)n−1 1− |α0|2

(1− |a|2)n
, n ≥ 1.

Recently, Evdoridis et al. [27] obtained the following coefficient bounds for func-
tions defined in Ωγ.

Lemma 1.5. [27] For γ ∈ [0, 1), let

Ωγ =

{
z ∈ C :

∣∣∣∣z +
γ

1− γ

∣∣∣∣ < 1

1− γ

}
,

and let f be an analytic function in Ωγ, bounded by 1, with the series representation
f(z) =

∑∞
n=0 anz

n in the unit disk D. Then

|an| ≤
1− |a0|2

1 + γ
for n ≥ 1.

2. Main results

Before we state an improved version of inequality of Theorem 1.2, we prove the
following lemma.

Lemma 2.1. Let g : D→ D be an analytic function, m(≥ 2) be an integer, and
let γ ∈ D be such that g(z) =

∑∞
n=0 αn(z − γ)n for |z − γ| ≤ 1− |γ|. Then

(2.2) |α0|+
∞∑
n=1

(|αn|+ β|αn|m) ρn ≤ 1 for ρ ≤ ρ0 := (1− γ2)/(3 + γ),

where

β =
(1− γ)m(3 + γ)− (1− γ2)

8(m− 1)
for 0 ≤ γ ≤ γ∗ < 1,

where γ∗ is the smallest root of the equation (1− γ)m(3 + γ) + γ2 − 1 = 0.

Using Lemma 2.1, we obtain the following improved version of Theorem 1.2 for
the class B(Ωγ).

Theorem 2.3. For 0 ≤ γ < 1, and integer m (≥ 2), let f ∈ B(Ωγ) with
f(z) =

∑∞
n=0 anz

n for z ∈ D, then we have

|a0|+
∞∑
n=1

(
|an|+ β

|an|m

(1− γ)(m−1)n

)
rn ≤ 1 for r ≤ r0 =

1 + γ

3 + γ
,

where β as in Lemma 2.1. Furthermore, the quantities β and (1 + γ)/(3 + γ) cannot
be improved.

Figure 1 demonstrates values of γ∗ in [0, 1) for which β(γ) > 0 with 0 ≤ γ ≤
γ∗ < 1. The values of γ∗ are γ∗(10) = 0.1083, γ∗(21) = 0.0519, γ∗(50) = 0.0219 and
γ∗(100) = 0.011.

Lemma 2.4. Let g : D → D be an analytic function, λ ∈ [0, 512/243] and let
γ ∈ D be such that g(z) =

∑∞
n=0 αn(z − γ)n for |z − γ| < 1− |γ|. Then

∞∑
n=0

|αn|ρn +

(
8

9
− 27

64
λ

)(
Sγρ
π

)
+ λ

(
Sγρ
π

)2

≤ 1 for ρ ≤ ρ0 =
1− |γ|2

3 + |γ|
,

where Sγρ denotes the area of the image of the disk D(γ; r(1−|γ|)) under the mapping
g.
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Figure 1. The roots γ∗(m) of the equation (1− γ)m(3 + γ) + γ2 − 1 = 0.

By applying Lemma 2.4, we obtain the following improved version of Theo-
rem 1.2.

Theorem 2.5. For 0 ≤ γ < 1 and 0 ≤ λ ≤ 512/243, let f ∈ B(Ωγ) with
f(z) =

∑∞
n=0 anz

n for z ∈ D, then we have

∞∑
n=0

|an|rn +

(
8

9
− 27

64
λ

)(
Sr(1−γ)

π

)
+ λ

(
Sr(1−γ)

π

)2

≤ 1 for r ≤ r0 =
1 + γ

3 + γ
.

Furthermore, the radius r0 is sharp, and the bounds of λ and 8/9 − 27λ/64 cannot
be improved.

Lemma 2.6. For γ ∈ D, let g ∈ B(D) with g(z) =
∑∞

n=0 αn(z−γ)n, for |z−γ| ≤
1− |γ|, then

|g(z)|+
∞∑
n=N

|αn|ρn ≤ 1, for ρ ≤ ρN ,

where ρN is the root of

2(1 + γ)ρN + (1 + γ)(1− γ)N−1(ρ− 1)(1− γ − ρ) = 0

in (0, 1).

Using Lemma 2.6, we obtain the following Bohr–Rogosinski radius for the class
B(Ωγ).

Theorem 2.7. For 0 ≤ γ < 1 and integer N (≥ 1), let f ∈ B(Ωγ) with f(z) =∑∞
n=0 anz

n for z ∈ D. Then, we have∣∣∣∣f (z − γ1− γ

) ∣∣∣∣+
∞∑
n=N

|an|rn ≤ 1 for r ≤ r0 =
ρN

1− γ
,

where ρN is the root of the equation

(2.8) 2(1 + ρ)ρN + (1 + γ)(1− γ)N−1(ρ− 1)(1− γ − ρ) = 0.

Furthermore, the constant ρN/(1− γ) cannot be improved.

Using Lemma 1.5, we establish the following refined Bohr inequality for the class
B(Ωγ).
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Theorem 2.9. For 0 ≤ γ < 1, let f ∈ B(Ωγ) with f(z) =
∑∞

n=1 anz
n for z ∈ D.

Then we have
∞∑
n=1

|an|rn +

(
1

1 + |a1|
+

r

1− r

) ∞∑
n=2

|an|2r2(n−1) ≤ 1 for r ≤ r0 =
1 + γ

3 + γ
.

The constant r0 cannot be improved.

3. Proofs of the main results

Proof of the Lemma 2.1. Without loss of generality, we may assume that
γ ∈ [0, 1). Using Lemma 1.4, we obtain

∞∑
n=1

|αn|ρn ≤
1− |α0|2

1 + γ

∞∑
n=1

(
ρ

1− γ

)n
=

(1− |α0|2) ρ

(1 + γ)(1− γ − ρ)
.(3.1)

Further, we have
∞∑
n=1

|αn|mρn ≤
(1− |α0|2)m

(1 + γ)m

∞∑
n=1

(
ρ

(1− γ)m

)n
=

(1− |α0|2)
m
ρ

(1 + γ)m((1− γ)m − ρ)
.(3.2)

The series in (2.2) contains positive terms for β ≥ 0. Our aim is to find the smallest
value of γ in [0, 1) for which β ≥ 0. That is

β =
(1− γ)m(3 + γ)− (1− γ2)

8(m− 1)
:=

Q(γ)

8(m− 1)
≥ 0,

where Q(γ) = (1−γ)m(3 +γ)− (1−γ2). Clearly, γ = 1 is a root of Q(γ). Since Q(γ)
is a polynomial such that Q(0) = 2 > 0 and m ≥ 2, we have

Q

(
9

10

)
=

3.9

10m
+

81

100
− 1 ≤ 84.9

100
− 1 = −15.1

100
< 0.

Therefore, there exists at least one root of Q(γ) in (0, 1). Let γ∗ be the smallest root
of Q(γ). Then, it is easy to see that Q(γ) ≥ 0, and hence β ≥ 0 for all γ ∈ [0, γ∗]. A
simple computation using (3.1) and (3.2) shows that

|α0|+
∞∑
n=1

|αn|ρn + β
∞∑
n=1

|αn|mρn(3.3)

≤ |α0|+
(1− |α0|2) ρ

(1 + γ)(1− γ − ρ)
+ β

(1− |α0|2)
m
ρ

(1 + γ)m((1− γ)m − ρ)

= 1 + Ψγ(ρ) ≤ 1

provided Ψγ(ρ) ≤ 0, where

Ψγ(ρ) =
1− |α0|2

1 + γ

(
ρ

1− γ − ρ

)
+ β

(
1− |α0|2

1 + γ

)m(
ρ

(1− γ)m − ρ

)
− (1− |α0|).

Since (1−γ)−ρ > (1−γ)m−ρ, it is easy to see that Ψγ(ρ) is an increasing function
of r for r < (1− γ)m. A simplification shows that

Ψγ(ρ)

= K

(
1 + (1− |α0|2)m−1

(
2βρ

(1 + γ)[(1− γ)m − ρ]
+

φγ(ρ)

(1− |α0|2)m−1

)
− 2

1 + |α0|

)
,
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where
K =

1− |α0|2

2
and φγ(ρ) =

2r

(1 + γ)(1− γ − ρ)
− 1.

Let ρ ≤ ρ0 be such that Ψγ(ρ) ≤ Ψγ(ρ0), and φγ(ρ0) = 0. Then, it is easy to see
that φγ(ρ0) = 0 if, and only if, ρ0 = (1−γ2)/(3 +γ). Therefore, it is enough to prove
that Ψγ(ρ0) ≤ 0 for |α0| ≤ 1. Let β = η ((1− γ)m(3 + γ)− (1− γ2)), then it is easy
to see

Ψγ(ρ0) = K

(
1 + 2η(1− |α0|2)m−1 1− γ2

(1 + γ)m
− 2

1 + |α0|

)
:= KGγ(|α0|),

where

(3.4) Gγ(x) = 1 + 2ηA(γ)(1− x2)m−1 − 2

x+ 1

and
A(γ) =

1− γ2

(1 + γ)m
> 0 for γ ∈ [0, 1).

It now remains to show that Gγ(x) ≤ 0 for γ ∈ [0, 1) and x ∈ [0, 1]. Since

A′(γ) = −2(1 + γ)γ +m(1− γ2)

(1 + γ)m+1
≤ 0, for γ ∈ [0, 1)

and A(0) = 1, A(1) = 0, it follows that A(γ) is a decreasing function and hence
A(γ) ≤ A(0) = 1. Since x ≤ 1 and 0 < A(γ) ≤ 1, we have

−A(γ)x(1 + x)2(1− x2)m−2 > −4.

From (3.4), we have

(Gγ(x))′ =
2

(1 + x)2

(
1− 2ηA(γ)(m− 1)x(1 + x)2(1− x2)m−2

)
≥ 2 (1− 8(m− 1)η)

(1 + x)2
.

Clearly, (Gγ(x))′ > 0 for x ∈ (0, 1) whenever η ≤ 1/(8(m − 1)). Therefore, Gγ(x) is
an increasing function on [0, 1] for η ≤ 1/(8(m− 1)). Equivalently,

β ≤ (1− γ)m(3 + γ)− (1− γ2)

8(m− 1)
.

In particular, Gγ(x) ≤ 0 for γ ∈ [0, γ∗] and x ∈ [0, 1], where γ∗ is the smallest root
of the equation (1− γ)m(3 + γ)− (1− γ2) = 0. This completes the proof. �

Proof of Theorem 2.3. For 0 ≤ γ < 1, let

Ωγ =

{
z ∈ C :

∣∣∣∣z +
γ

1− γ

∣∣∣∣ < 1

1− γ

}
and the function f : Ωγ → D be given by f(z) =

∑∞
n=0 anzn. Then the function g

defined by

g(z) = f

(
z − γ
1− γ

)
=
∞∑
n=0

an
(1− γ)n

(z − γ)n for |z − γ| < 1− γ

belongs to B(D). Applying Lemma 2.1 to the function g, we obtain

|a0|+
∞∑
n=1

(
|an|

(1− γ)n
+ β

(
|an|

(1− γ)n

)m)
ρn ≤ 1 for ρ ≤ ρ0 =

1− γ2

3 + γ
.
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That is

|a0|+
∞∑
n=1

(
|an|+ β

|an|m

(1− γ)(m−1)n

)(
ρ

1− γ

)n
≤ 1 for ρ ≤ ρ0 =

1− γ2

3 + γ

which is equivalent to

|a0|+
∞∑
n=1

(
|an|+ β

|an|m

(1− γ)(m−1)n

)
rn ≤ 1 for r ≤ r0 =

1 + γ

3 + γ
,

where ρ = r(1− γ) and

β =
(1− γ)m(3 + γ)− (1− γ2)

8(m− 1)
for 0 ≤ γ ≤ γ∗ < 1.

Here γ∗ is the smallest root of the equation (1− γ)m(3 + γ) + γ2 − 1 = 0.
In order to prove the sharpness of the radius, we consider the composition func-

tion fa = h ◦ H which maps Ωγ univalently onto D, where H : Ωγ → D defined by
H(z) = (1 − γ)z + γ and h : D → D with h(z) = (a − z)/(1 − az), for a ∈ (0, 1). A
simple computation shows that

fa(z) =
a− γ − (1− γ)z

1− aγ − a(1− γ)z
= C0 −

∞∑
n=1

Cnz
n for z ∈ D,

where a ∈ (0, 1) and

C0 =
a− γ
1− aγ

and Cn =
1− a2

a(1− aγ)

(
a(1− γ)

1− aγ

)n
.

A simple computation shows that

|C0|+
∞∑
n=1

(
|Cn|+ β

|Cn|m

(1− γ)(m−1)n

)
rn =

a− γ
1− aγ

+
∞∑
n=1

(
1− a2

a(1− aγ)

(
a(1− γ)

1− aγ

)n
+

β

(1− γ)(m−1)n

(1− a2)m

am(1− aγ)m

(
a(1− γ)

1− aγ

)mn)
rn

=
a− γ
1− aγ

+
(1 + a)(1− a)(1− γ)r

(1− aγ) ((1− aγ)− ar(1− γ))
+

β(1− a)m(1 + a)m(1− γ)r

(1− aγ)m ((1− aγ)m − am(1− γ)r)

= 1− (1− a)Φγ(r),

where

Φγ(r) = − (1 + a)(1− γ)r

(1− aγ)((1− aγ)− ar(1− γ))
− β(1− a)m−1(1 + a)m(1− γ)r

(1− aγ)m ((1− aγ)m − am(1− γ)r)

− 1

1− a

(
a− γ
1− aγ

− 1

)
= − (1 + a)(1− γ)r

(1− aγ)((1− aγ)− ar(1− γ))
− β(1− a)m−1(1 + a)m(1− γ)r

(1− aγ)m ((1− aγ)m − am(1− γ)r)

+
1 + γ

1− aγ
.

We note that for r ∈ (0, 1),

Φ′γ(r) = − (1 + a)(1− γ)

((1− aγ)− ar(1− γ))2 −
β(1− a)m−1(1 + a)m(1− γ)

((1− aγ)m − am(1− γ)r)2 < 0.
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Therefore, Φγ(r) is strictly decreasing function of r in (0, 1). Hence, for r > r0 =
(1 + γ)/(3 + γ), we have Φγ(r) < Φγ(r0). A simple computation shows that

lim
a→1

Φγ(r0) = − 2r0

(1− γ)(1− r0)
+

1 + γ

1− γ
= 0.

Thus, Φγ(r) < 0 for r > r0. Hence, 1 − (1 − a)Φγ(r) > 1 for r > r0, which shows
that r0 is the best possible. This completes the proof. �

Proof of Lemma 2.4. Without loss of generality, we assume that γ ∈ [0, 1). Also
let z ∈ Dγ := D(γ; 1− γ) if, and only if, φ = (z − γ)/(1− γ) ∈ D. Then we have

g(z) =
∞∑
n=0

αn(1− γ)nφn(z) =
∞∑
n=0

bnφ
n(z) := G(φ(z))

for z ∈ Dγ, where bn = αn(1 − γ)n. It is known that for arbitrary function H(z) =∑∞
n=0 hnz

n, z ∈ D, the area functional

Sr
π

= Area
(
H(D(0, r))

)
=

1

π

¨
|z|<r
| H ′(z) |2 dx dy ≤

∞∑
n=1

n|hn|2r2n.

A simple computation shows that
Sγρ
π

=
1

π
Area

(
G(D(0, ρ))

)
≤ (1− |b0|2)2 ρ2

(1− ρ2)2
= (1− |α0|2)2 ρ2

(1− ρ2)2
.(3.5)

Using Lemma 1.4, we deduce that
∞∑
n=1

|αn|ρn ≤
1− |α0|2

1 + γ

∞∑
n=1

(
ρ

1− γ

)n
=

1− |α0|2

1 + γ

ρ

1− γ − ρ
.(3.6)

In view of (3.5) and (3.6), we obtain

|α0|+
∞∑
n=1

|αn|ρn + k

(
Sγρ
π

)
+ λ

(
Sγρ
π

)2

= |α0|+
(1− |α0|2)ρ

(1 + γ)(1− γ − ρ)
+ k

(1− |α0|2)2ρ2

(1− ρ2)2
+ λ

(1− |α0|2)4ρ4

(1− ρ2)4

= 1 + Ψγ
1(ρ),

where

Ψγ
1(ρ) =

(1− |α0|2)ρ

(1 + γ)(1− γ − ρ)
+ k

(1− |α0|2)2ρ2

(1− ρ2)2
+ λ

(1− |α0|2)4ρ4

(1− ρ2)4
− (1− |α0|)

which can be written as

Ψγ
1(ρ) =

1− |α0|2

2

(
1 + 2λ(1− |α0|2)3

((
ρ4

(1− ρ2)4
+
k

λ

ρ2

(1− ρ2)2(1− |α0|2)2

)
+

1

2λ(1− |α0|2)3

(
2ρ

(1 + γ)(1− γ − ρ)
− 1

))
− 2

1 + |α0|

)
.

We note that

(Ψγ
1)′ (ρ) =

(1− |α0|2)

(1 + γ)

1− γ
((1− γ − ρ))2

+ k
(1− |α0|2)2 (2ρ(1− ρ2)2 + 4ρ3(1− ρ2))

(1− ρ2)4

+ λ
(1− |α0|2)44ρ3(1− ρ2)4 + 8ρ5(1− ρ2)3

(1− ρ2)8
> 0.
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Therefore, Ψγ
1(ρ) is an increasing function and hence Ψγ

1(ρ) ≤ Ψγ
1(ρ0) for ρ ≤ ρ0,

where
2ρ0

(1 + γ)(1− γ − ρ0)
= 1, i.e., ρ0 =

1− γ2

3 + γ
.

A simple computation shows that

Ψγ
1(ρ0) =

1− |α0|2

2

(
1 + 2λ(1− |α0|2)3A4(γ) + 2k(1− |α0|2)A2(γ)− 2

1 + |α0|

)
=

1− |α0|2

2
J(|α0|),

where

J(x) = 1 + 2λ(1− x2)3A4(γ) + 2k(1− x2)A2(γ)− 2

1 + x
for x ∈ [0, 1]

and

A(γ) =
(3 + γ)(1− γ2)

(3 + γ)2 − (1− γ2)2
.

It is enough to show that J(x) ≤ 0 for x ∈ [0, 1] and γ ∈ [0, 1) so that Ψγ
1(ρ0) ≤ 0.

We note that A(γ) > 0 for γ ∈ [0, 1). Further,

J(0) = 2λA4(γ) + 2kA2(γ)− 1, and lim
x→1−

J(x) = 0.

It can be seen that A(γ) = (f1 ◦ f2)(γ), where f1(ρ) = ρ/(1 − ρ2) and f2(γ) =
(1− γ2)/(3 + γ). Since A′(γ) = f ′1(f2(γ))f ′2(γ), where

(3.7) f ′2(γ) = −
(
γ2 + 6γ + 1

(3 + γ)2

)
< 0

which implies that f1(ρ) is an increasing function of ρ in (0, 1), and f2 is a decreasing
function of γ in [0, 1). Hence, it follows that A(γ) is a decreasing function of γ in
[0, 1), with A(0) = 3/8 and A(1) = 0. It can be seen that A2(γ) and A4(γ) are
decreasing functions on [0, 1). Therefore, we have

A2(γ) ≤ A2(0) =
9

64
and A4(γ) ≤ A4(0) =

81

4096
.

Since x ∈ [0, 1], we have

x(1 + x)2A2(γ) ≤ 9

16
and x(1 + x)2(1− x2)2A4(γ) ≤ 81

1024
.

As a consequence, we obtain

J ′(x) =
2

(1 + x)2

(
1− 2kx(1 + x)2A2(γ)− 6λx(1 + x)2(1− x2)2A4(γ)

)
≥ 2

(1 + x)2

(
1−

(
9k

8
+

243λ

512

))
≥ 0, if 9k/8 + 243λ/512 ≤ 1.

Since 0 ≤ λ ≤ 512/243 and k ≥ 0, therefore, J(x) is an increasing function in [0, 1]
for k+27λ/64 ≤ 8/9. Hence, J(x) ≤ 0 for all x ∈ [0, 1] and γ ∈ [0, 1). This completes
the proof. �
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Proof of Theorem 2.5. Let f ∈ B(Ωγ) and g(z) = f((z − γ)/(1− γ)). Then, it
is easy to see that g ∈ B(D) and

g(z) =
∞∑
n=0

an
(1− γ)n

(z − γ)n.

Using Lemma 2.4, we obtain
∞∑
n=0

|an|
(1− γ)n

ρn +

(
8

9
− 27

64
λ

)(
Sγρ
π

)
+ λ

(
Sγρ
π

)2

≤ 1 for ρ ≤ 1− γ2

3 + γ

which is equivalent to
∞∑
n=0

|an|
(

ρ

(1− γ)

)n
+

(
8

9
− 27

64
λ

)(
Sγρ
π

)
+ λ

(
Sγρ
π

)2

≤ 1 for ρ ≤ 1− γ2

3 + γ
.(3.8)

Set ρ = r(1− γ), then in view of (3.8), we obtain
∞∑
n=0

|an|rn +

(
8

9
− 27

64
λ

)(
Sγr(1−γ)

π

)
+ λ

(
Sγr(1−γ)

π

)2

≤ 1 for r ≤ 1 + γ

3 + γ
.(3.9)

To show the sharpness of the result, we consider the following function

fa(z) =
a− γ − (1− γ)z

1− aγ − a(1− γ)z
for z ∈ Ωγ and a ∈ (0, 1).

Define φ : D→ D by φ(z) = (a−z)/(1−az) and H : Ωγ → D by H(z) = (1−γ)z+γ.
Then, the function fa = φ ◦H maps Ωγ, univalently onto D. A simple computation
shows that

fa(z) =
a− γ − (1− γ)z

1− aγ − a(1− γ)z
= C0 −

∞∑
n=1

Cnz
n for z ∈ D,

where a ∈ (0, 1) and

C0 =
a− γ
1− aγ

and Cn =
1− a2

a(1− aγ)

(
a(1− γ)

1− aγ

)n
.

A simple computation using (3.9) shows that
∞∑
n=0

|Cn|rn +

(
8

9
− 27

64
λ

)(
Sγr(1−γ)

π

)
+ λ

(
Sγr(1−γ)

π

)2

=
a− γ
1− aγ

+

(
1− a2

1− aγ

)
(1− γ)r

1− aγ − ar(1− γ)

+

(
8

9
− 27

64
λ

)
r2(1− a2)2(1− γ)4

((1− aγ)2 − a2r2(1− γ)4)2
+ λ

r4(1− a2)4(1− γ)8

((1− aγ)2 − a2r2(1− γ)4)4

:= 1− (1− a)Φγ
1(r),

where

Φγ
1(r) = − (1 + a)(1− γ)r

(1− aγ − ar(1− γ))(1− aγ)
−
(

8

9
− 27

64
λ

)
r2(1− a)(1 + a)2(1− γ)4

((1− aγ)2 − a2r2(1− γ)4)2

− λ r
4(1− a)3(1 + a)4(1− γ)8

((1− aγ)2 − a2r2(1− γ)4)4
− 1

1− a

(
a− γ
1− aγ

− 1

)
.
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A simple computation shows that

(Φγ
1)′ (r) = − (1 + a)(1− γ)

(1− aγ − ar(1− γ))2
−
(

8

9
− 27

64
λ

)
2r((1− aγ)2 + a2r2(1− γ)4)

((1− aγ)2 − a2r2(1− γ)4)3

− λ4r3(1− a)3(1 + a)4(1− γ)8((1− aγ)2 + a2r2(1− γ)4)

((1− aγ)2 − a2r2(1− γ)4)5
< 0

for r in (0, 1) and hence Φγ
1(r) is strictly decreasing function of r. Therefore, for

r > r0 = (1 + γ)/(3 + γ), we have Φγ
1(r) < Φγ

1(r0). An elementary calculation shows
that

lim
a→1

Φγ
1(r0) = − 2r0

(1− γ)(1− r0)
+

1 + γ

1− γ
= 0.

Therefore, Φγ
1(r) < 0 for r > r0. Hence, 1− (1− a)Φγ(r) > 1 for r > r0, which shows

that r0 is the best possible. �

Proof of Lemma 2.6. Let g ∈ B(D). Then by the Schwarz–Pick lemma, for any
g ∈ B(D), we have

(3.10) |g(z)| ≤ ρ+ |g(γ)|
1 + ρ|g(γ)|

=
ρ+ |α0|
1 + ρ|α0|

for z ∈ D.

For functions g ∈ B(D), from Lemma 1.4, we have

(3.11) |αn| ≤ (1 + |γ|)n−1 1− |α0|2

(1− |γ|2)n
for n ≥ 1.

A simple computation using (3.11) gives
∞∑
n=N

|αn|ρn ≤
1− |α0|2

1 + γ

∞∑
n=N

(
ρ

1− γ

)n
=

(1− |α0|2)

(1 + γ)(1− γ)N−1

(
ρN

1− γ − ρ

)
.(3.12)

From (3.10) and (3.12) we obtain

|g(z)|+
∞∑
n=N

|αn|ρn ≤
ρ+ |α0|
1 + ρ|α0|

+
(1− |α0|2)

(1 + γ)(1− γ)N−1

(
ρN

1− γ − ρ

)
= 1 +

Φγ
N(ρ)

(1 + ρ|α0|)(1 + γ)(1− γ)N−1(1− γ − ρ)
,

where

Φγ
N(ρ) = (ρ+ |α0|)A(γ)(1− γ − ρ) + (1 + |α0|)(1− |α0|)(1 + ρ|α0|)ρN

− (1 + ρ|α0|)A(γ)(1− γ − ρ)

= (1− |α0|)
(

(1 + |α0|)(1 + ρ|α0|)ρN + A(γ)(ρ− 1)(1− γ − ρ)

)
≤ (1− |α0|)

(
2(1 + γ)ρN + A(γ)(ρ− 1)(1− γ − ρ)

)
,

where A(γ) = (1 + γ)(1− γ)N−1 and |α0| ≤ 1. An observation shows that Φγ
N(ρ) ≤ 0

if 2(1 + γ)ρN + A(γ)(ρ − 1)(1 − γ − ρ) ≤ 0, and this holds for ρ ≤ ρN , where ρN is
the root of

(3.13) FN(γ, ρ) = 2(1 + γ)ρN + A(γ)(ρ− 1)(1− γ − ρ) = 0.

The existence of the root ρN in (0, 1) follows from the fact that FN(γ, ρ) is continuous
and FN(γ, 0)FN(γ, 1) < 0. �
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Proof of Theorem 2.7. For 0 ≤ γ < 1, let f ∈ B(Ωγ) such that f(z) =
∑∞

n=0 anz
n

for z ∈ D. Then, it is easy to see that

g(z) = f

(
z − γ
1− γ

)
∈ B(D) for |z − γ| < 1− |γ|.

Further,

g(z) = f

(
z − γ
1− γ

)
=
∞∑
n=0

an
(1− γ)n

(z − γ)n.

An application of Lemma 2.6 shows that∣∣∣∣f (z − γ1− γ

) ∣∣∣∣+
∞∑
n=N

|an|
(1− γ)n

ρn ≤ 1 for ρ ≤ ρN .(3.14)

Since |z − γ| < 1 − γ, we set z − γ = w(1 − γ) for some w ∈ D and ρ = r(1 − γ).
Then, from (3.14), we obtain

|f(w)|+
∞∑
n=N

|an|rn ≤ 1 for r ≤ ρN
1− γ

,

where ρN as in Lemma 2.6. That is, ρN is the smallest root of the equation 2(1 +
ρ)ρN + A(γ)(ρ− 1)(1− γ − ρ) = 0.

In order to show the sharpness of the result, we consider the following function
fa defined by

fa(z) =
1− γ − (1− γ)z

(1− aγ)− (1− γ)z
= C0 −

∞∑
n=1

Cnz
n for z ∈ D.

For γ ∈ [0, 1), a > γ and ρ = r(1− γ), we obtain

M := |fa(−ρ)|+
∞∑
n=N

|Cn|ρn
(3.15)

=
(a− γ) + (1− γ)ρ

(1− aγ) + a(1− γ)ρ
+

1− a2

a(1− aγ)

(
a(1− γ)

1− aγ

)N
ρN
(

1− aγ
(1− aγ)− a(1− γ)ρ

)
=

(a− γ) + (1− γ)ρ

(1− aγ) + a(1− γ)ρ
+

(1− a2)BNρN

a ((1− aγ)− a(1− γ)ρ)
, where B =

a(1− γ)

1− aγ

=
((a− γ) + (1− γ)ρ) ((1− aγ)− a(1− γ)ρ) + dρN(1− a2) ((1− aγ) + a(1− γ)ρ)

((1− aγ) + a(1− γ)ρ) ((1− aγ)− a(1− γ)ρ)

= 1 +
V (ρ)

((1− aγ) + a(1− γ)ρ) ((1− aγ)− a(1− γ)ρ)
,

where d = BN/a and

V (ρ) := ((a− γ) + (1− γ)ρ) ((1− aγ)− a(1− γ)ρ)

+ dρN(1− a2)((1− aγ) + a(1− γ)ρ)

− ((1− aγ) + a(1− γ)ρ) ((1− aγ)− a(1− γ)ρ)

= (1− a)((1 + a) ((1− aγ) + a(1− γ)ρ) dρN

+ ((1− aγ)− a(1− γ)ρ)(ρ(1− γ)− (1 + γ))).
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From (3.15), it is easy to see that M > 1 if V (ρ) > 0. Note that V (ρ) > 0 if

Wa(ρ) := (1 + a) ((1− aγ) + a(1− γ)ρ) dρN(3.16)
+ ((1− aγ)− a(1− γ)ρ)(ρ(1− γ)− (1 + γ)).

Allowing a→ 1, from the inequality (3.16), it can be seen that

W1(ρ) = 2(1− γ)(1 + ρ)ρN + (1− γ)(1− ρ)(ρ(1− γ)− (1 + γ)).

Now for ρ > ρN and 0 < γ < 1, we obtian

(3.17) W1(ρ) > (1− γ)
(
2(1 + ρN)ρNN + (1 + γ)(1− γ)N−1(ρN − 1)(1− γ − ρN)

)
Since ρN is a root of (3.13), we have

(3.18) 2(1 + γ)ρNN + A(γ)(ρN − 1)(1− γ − ρN) = 0.

In view of (3.17) and (3.18), it is easy to see that W1(ρ) > 0 for ρ > ρN . Thus,
M > 1 if r > ρN/(1− γ). This proves the sharpness. �

Proof of Theorem 2.9. Let f ∈ B(Ωγ) be given by f(z) =
∑∞

n=1 anz
n for z ∈ D.

Then, f can be expressed as f(z) = zh(z), where h ∈ B(Ωγ) with h(z) =
∑∞

n=0 bnz
n

and bn = an+1. Let |b0| = |a1| = a, and h0(z) = g(z) − b0. Using Lemma 1.5, we
obtain

∞∑
n=0

|bn|rn +

(
1

1 + |b0|
+

r

1 + r

) ∞∑
n=1

|bn|2r2n(3.19)

≤ a+
1− a2

1 + γ

r

1− r
+

(
1

1 + a
+

r

1− r

)(
1− a2

1 + γ

)2
r2

1− r2
.

That is,
∞∑
n=0

|bn|rn ≤ a+
1− a2

1 + γ

r

1− r
+

(
1

1 + a
+

r

1− r

)(
1− a2

1 + γ

)2
r2

1− r2
(3.20)

−
(

1

1 + |b0|
+

r

1 + r

) ∞∑
n=1

|bn|2r2n.

Since

(3.21)
∞∑
n=1

|an|rn =
∞∑
n=0

|bn|rn+1 = r

∞∑
n=0

|bn|rn,

in view of (3.20) and (3.21), we obtain
∞∑
n=1

|an|rn ≤ r

(
a+

1− a2

1 + γ

r

1− r

)
+

(
1

1 + a
+

r

1− r

)(
1− a2

1 + γ

)2
r3

1− r2

−
(

1

1 + a
+

r

1− r

) ∞∑
n=1

|an+1|2r2n+1

= ra+

(
1− a2

1 + γ

)
r2

1− r
+

(
1

1 + a
+

r

1− r

)(
1− a2

1 + γ

)2
r3

1− r2

−
(

1

1 + a
+

r

1− r

) ∞∑
n=2

|an|2r2n−1.
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Further simplification shows that
∞∑
n=1

|an|rn +

(
1

1 + a
+

r

1− r

) ∞∑
n=2

|an|2r2n−1

≤ ra+

(
1− a2

1 + γ

)
r2

1− r
+

(
1

1 + a
+

r

1− r

)(
1− a2

1 + γ

)2
r3

1− r2

:= T (a).

It is easy to see that T can be represented as

T (a) = ar + A(1− a2) +B(1− a)(1− a2) + C(1− a2)2,

where

A = A(r) =
r2

(1 + γ)(1− r)
,

B = B(r) =
r3

(1 + γ)2(1− r2)
and

C = C(r) =
r4

(1 + γ)2(1− r)(1− r2)
.

Clearly, B and C are positive. We note that,

T ′(a) = r − 2Aa+B(3a2 − 2a− 1) + 4C(a3 − a),

T ′′(a) = −2A+ 2B(3a− 1) + 4C(3a2 − 1) and
T ′′′(a) = 6B + 24Ca.

Since B and C are positive, it follows that T ′′′(a) > 0 for a ∈ [0, 1]. In other words,
T ′′ is an increasing function of a in [0, 1]. Therefore,

T ′′(a) ≤ T ′′(1) = −2A+ 4B + 8C =
2r2

(1 + γ)2(1− r)(1− r2)
L(r),

where

L(r) = 4r2 + 2r(1− r)− (1 + γ)(1− r2) = (1 + r)(r(3 + γ)− (1 + γ)).

It is easy to see that L(r) ≤ 0 for r ≤ r0 = (1 + γ)/(3 + γ). Hence, T ′′(a) ≤ 0
for a ∈ [0, 1] which implies that T ′ is decreasing in [0, 1]. Therefore, for r ≤ r0 =
(1 + γ)/(3 + γ), we obtain

T ′(a) > T ′(1) = 1− 2A = r
1 + γ − r(3 + γ)

(1 + γ)(1− r)
.

Clearly, for r ≤ r0, we have T ′(1) ≥ 0 for all a ∈ [0, 1]. Since T ′(a) ≥ 0 in [0, 1],
T is an increasing function in [0, 1], and hence, we have T (a) ≤ T (1) = r. A simple
computation shows that

∞∑
n=1

|an|rn +

(
1

1 + |a1|
+

r

1− r

) ∞∑
n=2

|an|2r2(n−1) ≤ 1 for r ≤ r0 =
1 + γ

3 + γ
.

To show that the sharpness of the radius we consider the function f ∗a by

f ∗a (z) := zfa(z) = z

(
a− γ − (1− γ)z

1− aγ − a(1− γ)z

)
= C0z −

∞∑
n=1

Cnz
n+1 for z ∈ D,
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where

C0 =
a− γ
1− aγ

and Cn =
(1− a2)

a(1− aγ)

(
a(1− γ)

1− aγ

)n
.

For n ≥ 2, it is easy to see that a1(fa) = C0 and an(fa) = −Cn−1. For γ ∈ [0, 1], and
a > γ, a simple calculation shows that

D(r) :=
∞∑
n=1

|Cn|rn +

(
1

1 + |C0|
+

r

1− r

) ∞∑
n=2

|Cn|2r2n−1

=

(
a− γ
1− aγ

)
r +

∞∑
n=2

(1− a2)

a(1− aγ)

(
a(1− γ)

1− aγ

)n−1

rn

+

(
1

1 + |C0|
+

r

1− r

) ∞∑
n=2

(1− a2)2

a2(1− aγ)2

(
a(1− γ)

1− aγ

)2(n−1)

r2n−1

=

(
1− 1− a

1− aγ
χ(r)

)
r,

where

χ(r) := 1 + γ − (1 + a)(1− γ)r

1− aγ − a(1− γ)r

−
(

1− aγ
(1 + a)(1− γ)

+
r

1− r

)
(1 + a)(1− a2)

1− aγ
(1− γ)2r2

(1− aγ)2 − a2(1− γ)2r2
.

Note that

χ′(r) = −(1 + a)(1− γ)(1− aγ)

(1− aγ − a(1− γ)r)2
− (1 + a)(1− a2)

(1− aγ)(1− r)2

(1− γ)2r2

(1− aγ)2 − a2(1− γ)2r2

−
(

1− aγ
(1 + a)(1− γ)

+
r

1− r

)
2(1− aγ)(1 + a)(1− a2)(1− γ)2r

((1− aγ)2 − a2(1− γ)2r2)2
< 0.

Therefore, χ is strictly decreasing function in r ∈ (0, 1). Hence, for r > r0, we have
χ(r) < χ(x0). It is worth to point out that

lim
a→1

χ(r0) = 1 + γ − 2(1− γ)r0

1− γ − (1− γ)r0

= 1 + γ − 2r0

1− r0

= 0.

This shows that χ(r) ≤ 0 for r > r0 as a → 1, and hence D(r) > r for r > r0.
Therefore,

∞∑
n=1

|an|rn +

(
1

1 + |a1|
+

r

1− r

) ∞∑
n=2

|an|2r2(n−1) > 1

and hence r0 is the best possible. This completes the proof. �
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