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Note on an elementary inequality and its application
to the regularity of p-harmonic functions

Saara Sarsa

Abstract. We study the Sobolev regularity of p-harmonic functions. We show that |Du|
p−2+s

2 Du

belongs to the Sobolev space W
1,2

loc
, s > −1 − p−1

n−1
, for any p-harmonic function u. The proof is

based on an elementary inequality.

Huomautus eräästä alkeellisesta epäyhtälöstä ja sen sovellus

p-harmonisten funktioiden säännöllisyyteen

Tiivistelmä. Tutkimme p-harmonisten funktioiden Sobolev-säännöllisyyttä. Osoitamme, että

|Du|
p−2+s

2 Du kuuluu Sobolev-avaruuteen W
1,2

loc
, kun s > −1 − p−1

n−1
ja u on p-harmoninen funktio.

Todistus perustuu alkeelliseen epäyhtälöön.

1. Introduction

In [7] Dong, Peng, Zhang and Zhou established the following inequality. Let
v be a smooth real-valued function defined on a domain Ω ⊂ R

n, n ≥ 2. Let
Dv := (vx1

, . . . , vxn
) denote its gradient and D2v := (vxixj

)ni,j=1 its Hessian. The
Laplacian of v is denoted as

∆v := tr (D2v) =
n

∑

i=1

vxixi

and the infinity Laplacian of v as

∆∞v := 〈Dv,D2vDv〉 =

n
∑

i,j=1

vxi
vxixj

vxj
.

Then
∣

∣

∣
|D2vDv|2 −∆v∆∞v −

1

2

(

|D2v|2 − (∆v)2
)

|Dv|2
∣

∣

∣

≤
n− 2

2

(

|D2v|2|Dv|2 − |D2vDv|2
)

(1.1)

holds everywhere in Ω. The authors derived (1.1) as a direct consequence of the
inequality

∣

∣

∣

n
∑

i=1

(λiai)
2 −

(

n
∑

i=1

λi

)(

n
∑

i=1

λia
2
i

)

−
1

2

(

|λ|2 −
(

n
∑

i=1

λi

)2)∣
∣

∣

≤
n− 2

2

(

|λ|2 −

n
∑

i=1

(λiai)
2
)

(1.2)
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that holds for any vectors λ = (λ1, . . . , λn) ∈ R
n and a = (a1, . . . , an) ∈ R

n such that
|a| = 1. For the proof of (1.2), see the proof of Lemma 2.2 in [7]. The inequality
(1.1) is applied to study the regularity of solutions to p-Laplacian equation (see the
equation (1.5) below) and its parabolic counterparts. For further details, we refer
the reader to Theorems 1.1, 1.3 and 1.5 in [7].

The inequality (1.1) in the case n = 2 (when it is sharp) has been used to prove
Sobolev regularity for planar infinity harmonic functions, see [15]. See also [18].

In this paper we show that (1.1) can be derived as a consequence of another
elementary inequality that has been used before by Colding [3] to prove monotonic-
ity formulas for solutions to certain elliptic partial differential equations. See for
instance the proof of Theorem 2.4 in [3]. This elementary inequality says that for
any symmetric matrix A ∈ R

n×n and for any vector e ∈ R we have

(1.3) |e|4|A|2 ≥ 2|e|2|Ae|2 +

(

|e|2 tr (A)− 〈e, Ae〉
)2

n− 1
− 〈e, Ae〉2.

If n = 2, we have equality instead of inequality in (1.3).
For a smooth function v, we apply the inequality (1.3) with A = D2v and e = Dv

to obtain a lower bound for the Hilbert–Schmidt norm of the Hessian D2v with respect
to the gradient Dv. More precisely, we obtain

(1.4) |Dv|4|D2v|2 ≥ 2|Dv|2|D2vDv|2 +

(

|Dv|2∆v −∆∞v
)2

n− 1
− (∆∞v)2.

The main point is that (1.4) implies (1.1) but not vice versa, apart from the case n = 2
where both inequalities reduce to equality. See Section 2 for details. Consequently,
we are able to improve Theorem 1.1 in [7], which concerns regularity of p-harmonic
functions.

Let 1 < p < ∞. A function u ∈ W 1,p(Ω) is called p-harmonic, if it solves the
p-Laplacian equation

(1.5) ∆pu := div
(

|Du|p−2Du
)

= 0

in the weak sense, that is, if
ˆ

Ω

|Du|p−2〈Du,Dϕ〉 dx = 0

for all ϕ ∈ C∞

0 (Ω).
Let u denote a p-harmonic function in Ω ⊂ R

n, n ≥ 2. For s ∈ R, we define the
vector field Vs : R

n → R
n as

(1.6) Vs(z) :=

{

|z|
p−2+s

2 z for z ∈ R
n \ {0};

0 for z = 0.

We study the Sobolev regularity of the vector field Vs(Du) : Ω → R
n. The letter V

refers to the notation used in [1, 12, 21]. The subscript s is a perturbation parameter
that describes the deviation from the “natural” vector field V (Du) := V0(Du). We
may call the vector field V (Du) “natural” in this setting, because its Sobolev regu-
larity arises more naturally than the one of the gradient Du alone. See for instance
Proposition 2 in [2], where the authors apply the difference quotient characterization
of Sobolev functions to show that V (Du) ∈ W

1,2
loc

(Ω). For similar results, see for
instance [23, Lemma 3.1], [11, Remark 8.4] and [21, Lemma 3.2].

In fact, on the contrary to the W
1,2
loc

-regularity of V (Du), it is not certain if
the weak Hessian D2u necessarily exists. Manfredi and Weitsman have shown in [20,
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Lemma 5.1] that p-harmonic functions belong to W
2,2
loc

, provided that 1 < p < 3+ 2
n−2

.
This restriction for the range of p arises from so-called Cordes condition [4].

In this paper we are interested in the W
1,2
loc

-regularity of Vs(Du) when s 6= 0.

Dong, Peng, Zhang and Zhou apply (1.1) to prove that Vs(Du) ∈ W
1,2
loc

whenever

(1.7) s > 2−min
{

p+
n

n− 1
, 3 +

p− 1

n− 1

}

,

see [7, Theorem 1.1]. We improve this bound to

(1.8) s > −1−
p− 1

n− 1
.

In other words, we show that the condition s > 2− p− n
n−1

is redundant and obtain
nontrivial improvement in the case 1 < p < 2 and n ≥ 3.

The following theorem is an application of (1.4) and the main result of this paper.
In the statement of the theorem, and throughout the paper, a generic ball in R

n with
radius r > 0 is denoted briefly as Br.

Theorem 1.1. Let n ≥ 2, 1 < p < ∞, and s > −1 − p−1
n−1

. If u is p-harmonic in

Ω ⊂ R
n, then Vs(Du) ∈ W

1,2
loc

(Ω). Moreover, there exists a constant C = C(n, p, s) >
0 such that

(1.9)

ˆ

Br

|D(Vs(Du))|2 dx ≤
C

r2

ˆ

B2r

|Vs(Du)− z|2 dx

for all vectors z ∈ R
n and all concentric balls Br ⊂ B2r ⊂⊂ Ω.

Proof of Theorem 1.1 follows from establishing the case z = 0 in Section 3
and applying known results of p-harmonic functions in Section 4. Note that the
right hand side of (1.9) is finite due to the well-known C

1,α
loc

-regularity of p-harmonic
functions for some α = α(n, p) ∈ (0, 1). For this classical result, we refer the reader
to [6, 8, 17, 22, 23, 24]. For results concerning optimal regularity of p-harmonic
functions, see [16] and [2, 13].

Using Sobolev–Poincaré inequality and Gehring’s Lemma [9] with the estimate
(1.1) leads to a higher integrability result for D(Vs(Du)). Here and subsequently, we
denote the integral average of a locally integrable function v as

(v)Br
:=

 

Br

v dx =
1

|Br|

ˆ

Br

v dx.

Corollary 1.2. Under the same hypothesis as Theorem 1.1, there exists a con-

stant δ = δ(n, p, s) > 0 such that D(Vs(Du)) ∈ L
q
loc
(Ω) for every 1 ≤ q < 2 + δ.

Moreover, there exists a constant C = C(n, p, s, q) > 0 such that

(1.10)
(

 

Br

|D(Vs(Du))|q dx
)1/q

≤ C
(

 

B2r

|D(Vs(Du))|2 dx
)1/2

for all concentric balls Br ⊂ B2r ⊂⊂ Ω.

Proof. Combination of Sobolev–Poincare inequality and (1.9) with z =
(

Vs(Du)
)

B2r

yields
(

 

Br

|D(Vs(Du))|2dx
)1/2

≤
C

r

(

 

B2r

|Vs(Du)−
(

Vs(Du)
)

B2r
|2dx

)1/2

≤ C
(

 

B2r

|D(Vs(Du))|
2n
n+2dx

)
n+2

2n

.
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Now Gehring’s Lemma is applicable. The estimate (1.10) follows immediately. �

We finish the introduction by mentioning some interesting values of the parameter
s. If 1 < p < 3+ n

n−2
, then we can select s = 2−p. This reproves the W 2,2

loc
-regularity of

p-harmonic functions discussed above. The same conclusion can be drawn also from
the stronger restriction (1.7) due to Dong, Peng, Zhang and Zhou. Our weakening
(1.8) allows us to select s = p− 2, which reproves the known W

1,2
loc

-regularity of the
weakly divergence free vector field |Du|p−2Du, see [5, 19] and [1, Theorem 4.1].

2. An elementary inequality

In this section we explain in detail how we improve the inequality (1.1).

Lemma 2.1. Let A ∈ R
n×n, n ≥ 2, be a symmetric matrix and e ∈ R

n a vector.

Then we have

(2.1) |e|4|A|2 ≥ 2|e|2|Ae|2 +

(

|e|2 tr (A)− 〈e, Ae〉
)2

n− 1
− 〈e, Ae〉2.

If n = 2, equality holds in place of the inequality in (2.1).

Proof. If e = 0, then (2.1) is trivially true, thus we prove (2.1) for e 6= 0.
Since (2.1) is homogeneous, we may assume without loss of generality that |e| = 1.
We fix an orthogonal coordinate system {e1, . . . , en} in R

n, such that en = e. Let
O := (e1, . . . , en) be the corresponding orthogonal rotation matrix, where e1, . . . , en
are interpreted as column vectors.

Denote B := O⊺AO =
(

〈ei, Aej〉
)n

i,j=1
. Let Bn−1 := (Bij)

n−1
i,j=1 be the submatrix

given by the first n− 1 rows and n− 1 columns of B. We may decompose

(2.2) |B|2 = |Bn−1|
2 + 2

n−1
∑

i=1

〈ei, Aen〉
2 + 〈en, Aen〉

2.

Consider the submatrix Bn−1 as an element of the Hilbert space R
(n−1)×(n−1) with

the Hilbert–Schmidt matrix inner product. Apply Pythagoras’s theorem to obtain

(2.3)
|Bn−1|

2 =
(tr (Bn−1))

2

n− 1
+
∣

∣

∣
Bn−1 −

tr (Bn−1)

n− 1
I
∣

∣

∣

2

≥
(tr (B)− 〈en, Aen〉)

2

n− 1
,

where I stands for the identity matrix in R
(n−1)×(n−1). Note that if n = 2, we have

equality in place of inequality in the above display (2.3). Rewrite the middle term
on the right hand side of (2.2) as

2
n−1
∑

i=1

〈ei, Aen〉
2 = 2|Aen|

2 − 2〈en, Aen〉
2.(2.4)

As we plug (2.3) and (2.4) into (2.2), we obtain

|B|2 ≥
(tr (B)− 〈en, Aen〉)

2

n− 1
+ 2|Aen|

2 − 〈en, Aen〉
2.

The desired estimate now follows, since by the cyclic property of trace we have
tr (B) = tr (A), and |B|2 = tr (B⊺B) = tr (A⊺A) = |A|2. �
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Corollary 2.2. If v is a smooth function in a domain Ω ⊂ R
n, n ≥ 2, then we

have

(2.5) |Dv|4|D2v|2 ≥ 2|Dv|2|D2vDv|2 +

(

|Dv|2∆v −∆∞v
)2

n− 1
− (∆∞v)2.

everywhere in Ω. If n = 2, equality holds in the place of the inequality in (2.5).

Proof. Let A = D2v and e = Dv in (2.1). �

2.1. Comparison between Corollary 2.2 and the inequality (1.1). We
rewrite the two inequalities given by (1.1) as two lower bounds for the quantity
|Dv|2|D2v|2. Thus (1.1) is equivalent with the two inequalities

(2.6) (n− 3)|Dv|2|D2v|2 ≥ (n− 4)|D2vDv|2 − |Dv|2(∆v)2 + 2∆v∆∞v

and

(2.7) |Dv|2|D2v|2 ≥
n

n− 1
|D2vDv|2 +

1

n− 1
|Dv|2(∆v)2 −

2

n− 1
∆v∆∞v.

It is easy to show that the bound (2.6) is trivial. We now compare (2.7) with (2.5),
and show that (2.5) is slightly sharper. Namely, we rewrite (2.5) as

|Dv|2|D2v|2 ≥
n

n− 1
|D2vDv|2 +

1

n− 1
|Dv|2(∆v)2 −

2

n− 1
∆v∆∞v

+
n− 2

n− 1

(

|D2vDv|2 −
(∆∞v)2

|Dv|2

)

.

By Cauchy–Schwartz inequality

(∆∞v)2 = 〈Dv,D2vDv〉2 ≤ |Dv|2|D2vDv|2.

Hence (2.5) implies (1.1).

3. Application of the inequality

The following Theorem is an improved version of Theorem 1.1 in [7].

Theorem 3.1. Let n ≥ 2, 1 < p < ∞ and s > −1 − p−1
n−1

. If u is p-harmonic in

Ω ⊂ R
n, then Vs(Du) ∈ W

1,2
loc

(Ω). Moreover, there exists a constant C = C(n, p, s) >
0 such that

(3.1)

ˆ

Br

|D(Vs(Du))|2 dx ≤
C

r2

ˆ

B2r

|Vs(Du)|2 dx

for any concentric balls Br ⊂ B2r ⊂⊂ Ω.

To prove Theorem 3.1, we use essentially the same proof as in [7]. The only
significant difference is that we apply the sharper inequality (2.5) in Corollary 2.2
instead of the inequality (1.1). For the reader’s convenience, we provide a detailed
proof of Theorem 3.1.

Let u be p-harmonic in Ω ⊂ R
n and U ⊂⊂ Ω be a smooth subdomain of Ω. For

ǫ > 0 small, consider the regularized Dirichlet problem

(3.2)

{

div
(

(|Duǫ|2 + ǫ)
p−2

2 Duǫ
)

= 0 in U ;

uǫ = u on ∂U.

By the standard elliptic regularity theory [10], there exists a unique solution uǫ ∈
C∞(U) ∩ C0(U). Furthermore, the family {uǫ}ǫ is uniformly bounded in C

1,α
loc

(U)
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for some α = α(n, p) ∈ (0, 1). That is, for any subdomain V ⊂⊂ U there exists a
constant C = C(n, p, dist (V, ∂U), ‖u‖L∞(U)) > 0 such that

(3.3) ‖uǫ‖C1,α(V ) ≤ C,

see for instance [25]. The Arzelà–Ascoli compactness theorem implies that

(3.4) Duǫ ǫ→0
−−→ Du locally uniformly in U,

up to a subsequence. Hereafter, we always consider appropriate subsequences of the
family {uǫ}ǫ.

For notational convenience, we introduce the regularized version of the vector
field Vs. Let us define V ǫ

s : R
n → R

n as

V ǫ
s (z) := (|z|2 + ǫ)

p−2+s

4 z for z ∈ R
n.

We aim to show a bound similar to (3.1) for V ǫ
s (Duǫ). Namely, we show that there

exists a constant C = C(n, p, s) > 0 such that

(3.5)

ˆ

U

|D(V ǫ
s (Duǫ))|2φ2 dx ≤ C

ˆ

U

(|Duǫ|2 + ǫ)
p+s

2 |Dφ|2 dx

for any φ ∈ C∞

0 (U).
The estimate (3.1) can be derived from (3.5) as follows. Let us fix the concentric

balls Br ⊂ B2r ⊂⊂ Ω and select a subdomain U ⊂⊂ Ω such that B2r ⊂⊂ U . Let
φ ∈ C∞

0 (U) be a cutoff function such that

φ = 1 in Br, spt φ = B2r and |Dφ| ≤
10

r
.

The estimate (3.5) implies that

(3.6)

ˆ

Br

|D(V ǫ
s (Duǫ))|2 dx ≤

C

r2

ˆ

B2r

(|Duǫ|2 + ǫ)
p+s

2 dx

for C = C(n, p, s) > 0. If s > −p, we can apply (3.3) to conclude that the right hand
side of the above display (3.6) is bounded from above by a constant independent
of ǫ. Thus {V ǫ

s (Duǫ)}ǫ is bounded in W 1,2(Br), and consequently we may extract
a subsequence that converges weakly in W 1,2(Br) and strongly in Lq(Br) for any
1 ≤ q < 2n

n−2
. By (3.4) and Dominated convergence theorem

(3.7)

ˆ

B2r

(|Duǫ|2 + ǫ)
p+s

2 dx
ǫ→0
−−→

ˆ

B2r

|Vs(Du)|2 dx

and

(3.8) V ǫ
s (Duǫ)

ǫ→0
−−→ Vs(Du) in L2(Br).

Finally, recalling that norm is lower semicontinuous with respect to the weak con-
vergence, we can let ǫ → 0 in (3.6) to obtain (3.1).

3.1. Caccioppoli type estimates. Let us henceforth denote

µ := (|Duǫ|2 + ǫ)1/2

and

A := I + (p− 2)
Duǫ ⊗Duǫ

|Duǫ|2 + ǫ
,

where I stands for the identity matrix in R
n×n and ⊗ stands for the tensor product

(or outer product) of two vectors in R
n, resulting a matrix in R

n×n. Note that

(3.9) min{1, p− 1}I ≤ A ≤ max{1, p− 1}I
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uniformly in U . Differentiating the PDE in (3.2) yields that the partial derivatives
uǫ
xk

, k = 1, . . . , n solve the linear, degenerate elliptic equation

(3.10) div
(

µp−2ADuǫ
xk

)

= 0.

In this subsection we test the equation (3.10) with various test functions.
The following Lemma is the basic Caccioppoli type estimate related to the equa-

tion (3.10). It will not be needed to prove Theorem 3.1. Instead, it will be employed
in Section 4.

Lemma 3.2. Let uǫ solve (3.2). Then we have for any φ ∈ C∞

0 (U) and z ∈ R
n

that

(3.11)

ˆ

U

µp−2|D2uǫ|2φ2 dx ≤ C

ˆ

U

µp−2|Duǫ − z|2|Dφ|2 dx,

where C = C(p) > 0 is independent of ǫ.

Proof. Let φ ∈ C∞

0 (U) and z = (z1, . . . , zn) ∈ R
n and put

ϕ = φ2(uǫ
xk

− zk).

We have

Dϕ = 2φ(uǫ
xk

− zk)Dφ+ φ2Duǫ
xk
,

and hence
ˆ

U

µp−2〈ADuǫ
xk
, Duǫ

xk
〉φ2 dx = −2

ˆ

U

µp−2〈ADuǫ
xk
, Dφ〉(uǫ

xk
− zk)φ dx

≤ 2

ˆ

U

µp−2
√

〈ADuǫ
xk
, Duǫ

xk
〉
√

〈ADφ,Dφ〉|uǫ
xk

− zk||φ| dx.

Application of Young’s inequality together with the uniform ellipticity of A, (3.9),
yields

ˆ

U

µp−2|Duǫ
xk
|2φ2 dx ≤ C

ˆ

U

µp−2|Dφ|2|uǫ
xk

− zk|
2 dx,

where C = C(p) > 0. Finally sum over k = 1, . . . , n to conclude (3.11). �

The following Lemma is analogous to Lemma 3.1 in [7].

Lemma 3.3. Let uǫ solve (3.2) and let s ∈ R. Then we have for any η > 0 and

for any φ ∈ C∞

0 (U) that

(3.12)

ˆ

U

|D2uǫ|2µp−2+sφ2 dx+ (p− 2 + s− η)

ˆ

U

|D2uǫDuǫ|2µp−4+sφ2 dx

+ (s(p− 2)− η)

ˆ

U

(∆∞uǫ)2µp−6+sφ2 dx ≤
C

η

ˆ

U

µp+s|Dφ|2 dx,

where C = C(p) > 0 is independent of ǫ.

Proof. Let φ ∈ C∞

0 (U) and s ∈ R, and put

ϕ = φ2µsuǫ
xk
.

We have

Dϕ = 2φµsuǫ
xk
Dφ+ sµs−2φ2uǫ

xk
D2uǫDuǫ + φ2µsDuǫ

xk
.

To ease the notation, let

w := µp−2+sφ2.
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We obtain

(3.13)

ˆ

U

〈ADuǫ
xk
, Duǫ

xk
〉w dx+ s

ˆ

U

µ−2〈ADuǫ
xk
, D2uǫDuǫ〉uǫ

xk
w dx

= −2

ˆ

U

〈ADuǫ
xk
, Dφ〉uǫ

xk
φ−1w dx.

Note that

〈ADuǫ
xk
, Duǫ

xk
〉 = |Duǫ

xk
|2 + (p− 2)

〈Duǫ, Duǫ
xk
〉2

µ2

and

〈ADuǫ
xk
, D2uǫDuǫ〉 = 〈Duǫ

xk
, D2uǫDuǫ〉+ (p− 2)

〈Duǫ
xk
, Duǫ〉∆∞uǫ

µ2
.

Summing over k = 1, . . . , n yields

(3.14)

ˆ

U

|D2uǫ|2w dx+ (p− 2 + s)

ˆ

U

µ−2|D2uǫDuǫ|2w dx

+ s(p− 2)

ˆ

U

µ−4(∆∞uǫ)2w dx = −2

ˆ

U

〈AD2uǫDuǫ, Dφ〉φ−1w dx.

The proof follows from the identity (3.14) via an application of Young’s inequality.
For any η > 0, we can estimate the integrand on the right hand side of (3.14) as
follows:

−2〈AD2uǫDuǫ, Dφ〉φ−1w ≤ 2|D2uǫDuǫ||Dφ|φ−1w + 2|p− 2|
|∆∞uǫ||Duǫ||Dφ|

µ2
φ−1w

≤ η|D2uǫDuǫ|2µ−2w +
C

η
|Dφ|2µ2φ−2w

+ η(∆∞uǫ)2µ−4w +
C(p− 2)2

η
|Duǫ|2|Dφ|2φ−2w,

where C > 0 is an absolute constant. The proof is complete. �

The following Corollary gives, roughly speaking, an L2-estimate for the Hessian
D2uǫ in terms of the second order derivative quantity D2uǫDuǫ and the gradient Duǫ.

Corollary 3.4. Let uǫ solve (3.2) and let s ∈ R. Then we have for any φ ∈
C∞

0 (U) that

(3.15)

ˆ

U

|D2uǫ|2µp−2+sφ2 dx ≤ C
(

ˆ

U

|D2uǫDuǫ|2µp−4+sφ2 dx+

ˆ

U

µp+s|Dφ|2 dx
)

where C = C(p, s) > 0 is independent of ǫ.

Proof. Move the second and third integral on the left hand side of (3.12) to the
right hand side of the inequality. Estimate

(∆∞uǫ)2 ≤ |Duǫ|2|D2uǫDuǫ|2 ≤ µ2|D2uǫDuǫ|2

to conclude the proof. �

3.2. Lower bound for |D2uǫ|2 and proof of Theorem 3.1. We begin
with observing that by the smoothness of uǫ, |Duǫ| is locally Lipschitz continuous,
and thus, by Rademacher theorem, differentiable almost everywhere. Moreover, if
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Duǫ = 0 at a point where |Duǫ| is differentiable, we must have D|Duǫ| = 0 at that
point. This allows us to define the normalized infinity Laplacian

∆N

∞
uǫ := 〈

Duǫ

|Duǫ|
, D|Duǫ|〉

almost everywhere in U . Note that if Duǫ 6= 0, we have

∆N

∞
uǫ =

∆∞uǫ

|Duǫ|2
.

We can therefore rewrite

(3.16) |D2uǫDuǫ|2 = |Duǫ|2|D|Duǫ||2 and (∆∞uǫ)2 = |Duǫ|4(∆N

∞
uǫ)2

almost everywhere in U .

Lemma 3.5. Let n ≥ 2 and uǫ solve (3.2). Then

(3.17) |D2uǫ|2 ≥ 2|D|Duǫ||2 + Φ(∆N

∞
uǫ)2

almost everywhere in U , where

Φ :=
(p− 1)2

n− 1
− 1−

ǫ

µ2
·
2(p− 1)(p− 2)

n− 1
+

ǫ2

µ4
·
(p− 2)2

n− 1
.

If n = 2, equality holds in the place of inequality in (3.17).

Proof. By the smoothness of uǫ, the non-divergence form of the PDE in (3.2),

(3.18) ∆uǫ + (p− 2)
∆∞uǫ

|Duǫ|2 + ǫ
= 0,

is equivalent with the original one. The proof follows now immediately from Corol-
lary 2.2, by plugging the non-divergence form (3.18) into (2.5). �

Finally we gather together the above estimates to prove Theorem 3.1.

Proof of Theorem 3.1. Recall that to prove Theorem 3.1 it suffices to show that
the estimate (3.5), that is,

ˆ

U

|D(µ
p−2+s

2 Duǫ)|2φ2 dx ≤ C

ˆ

U

µp+s|Dφ|2 dx,

holds for any φ ∈ C∞

0 (U) with a constant C = C(n, p, s) > 0 independent of ǫ. We
start with
ˆ

U

|D(µ
p−2+s

2 Duǫ)|2φ2 dx =

ˆ

U

µp−2+s
(

|D2uǫ|2 + (p− 2 + s)
|D2uǫDuǫ|2

µ2

+
(p− 2 + s)2

4

|Duǫ|2|D2uǫDuǫ|2

µ4

)

φ2 dx

≤
(

1 + |p− 2 + s|+
(p− 2 + s)2

4

)

ˆ

U

|D2uǫ|2µp−2+sφ2 dx.

We apply Corollary 3.4 to obtain

(3.19)

ˆ

U

|D(µ
p−2+s

2 Duǫ)|2φ2 dx ≤ C(p, s)

(
ˆ

U

|D2uǫDuǫ|2µp−4+sφ2 dx

+

ˆ

U

µp+s|Dφ|2 dx

)

.

This estimate holds for any s ∈ R.
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In the remaining part of the proof, we estimate the first integral on the right
hand side of (3.19) by combining Lemma 3.3 and Lemma 3.5. We estimate the
first integral of the left hand side of (3.12) from below by (3.17). In addition we
rewrite |D2uǫDuǫ|2 and ∆∞uǫ on the left hand side of (3.12) according to (3.16). We
conclude that for any η > 0 and for any φ ∈ C∞

0 (U)
ˆ

U

(

(p− 2 + s− η)
|Duǫ|2

µ2
+ 2

)

|D|Duǫ||2w dx

+

ˆ

U

(

Φ + (s(p− 2)− η)
|Duǫ|4

µ4

)

(∆N

∞
uǫ)2w dx ≤

C

η

ˆ

U

µp+s|Dφ|2 dx,

where C = C(p) > 0 and w := µp−2+sφ2.
Writing

1 =
|Duǫ|2

µ2
+

ǫ

µ2

yields
ˆ

U

(

(p+ s− η)
|Duǫ|2

µ2
+

2ǫ

µ2

)

|D|Duǫ||2wdx+

ˆ

U

Ψ(∆N

∞
uǫ)2wdx

≤
C

η

ˆ

U

µp+s|Dφ|2dx,

where

Ψ := Φ + (s(p− 2)− η)
|Duǫ|4

µ4
.

Observe that, if s > −1− p−1
n−1

then also s > −p, and we may choose η = η(p, s) > 0
so small that we can estimate

η

ˆ

U

|Duǫ|2

µ2
|D|Duǫ||2w dx+

ˆ

U

(

(p+ s− 2η)
|Duǫ|2

µ2
+

2ǫ

µ2
+Ψ

)

(∆N

∞
uǫ)2w dx

≤
C

η

ˆ

U

µp+s|Dφ|2 dx.

Now it remains to show that the condition s > −1 − p−1
n−1

guarantees that we can
adjust η > 0 even further so that

ˆ

U

(

(p+ s− 2η)
|Duǫ|2

µ2
+

2ǫ

µ2
+Ψ

)

(∆N

∞
uǫ)2w dx ≥ 0.

Note that

(p+ s− 2η)
|Duǫ|2

µ2
+

2ǫ

µ2
+Ψ = a

|Duǫ|4

µ4
+ b

ǫ|Duǫ|2

µ4
+ c

ǫ2

µ4

where

a = (p− 1)
(

s+ 1 +
p− 1

n− 1

)

− 3η,

b = p+ s+
2(p− 1)2

n− 1
−

2(p− 1)(p− 2)

n− 1
− 2η = p + s+

2(p− 1)

n− 1
− 2η

and

c = 1 +
(p− 1)2

n− 1
−

2(p− 1)(p− 2)

n− 1
+

(p− 2)2

n− 1
= 1 +

1

n− 1
.

We can now easily see that the restrictive condition for s is indeed s > −1− p−1
n−1

. �
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4. Proof of Theorem 1.1

In this section we explain how to conclude the estimate (1.9) from the estimate
(3.1) and the known regularity results of p-harmonic functions. First, note that it
suffices to find C = C(n, p, s) > 0 and M = M(n, p, s) ≥ 4 such that

(4.1)

ˆ

Br

|D(Vs(Du))|2 dx ≤
C

r2

ˆ

BMr

|Vs(Du)− z|2 dx

for all vectors z ∈ R
n and all concentric balls Br ⊂ BMr ⊂⊂ Ω. Indeed, fix Br ⊂

B2r ⊂⊂ Ω concentric and let ρ := M−1r. There exists an integer N = N(n,M) > 0
such that Br may be covered with a family {Bρ(xi)}

N
i=1, where the center points

xi ∈ Br. Then
ˆ

Br

|D(Vs(Du))|2 dx ≤
N
∑

i=1

ˆ

Bρ(xi)

|D(Vs(Du))|2 dx ≤
N
∑

i=1

C

ρ2

ˆ

BMρ(xi)

|Vs(Du)− z|2 dx

≤
CNM2

r2

ˆ

B2r

|Vs(Du)− z|2 dx.

Also, note that it suffices to show (4.1) for z =
(

Vs(Du)
)

BMr
.

To show (4.1) for some M ≥ 4 to be selected later, we divide the sufficiently small
balls Br inside Ω into two categories. By ‘sufficiently’, we mean that BMr ⊂⊂ Ω. In
our setting, we say a ball Br ⊂⊂ Ω is degenerate if

(4.2)

ˆ

B2r

|Vs(Du)|2 ≤

ˆ

BMr

|Vs(Du)−
(

Vs(Du)
)

BMr
|2 dx;

and non-degenerate if

(4.3)

ˆ

B2r

|Vs(Du)|2 >

ˆ

BMr

|Vs(Du)−
(

Vs(Du)
)

BMr
|2 dx.

In this section such balls Br, B2r and BMr are always assumed to be concentric unless
otherwise stated.

Let us fix a ball Br such that BMr ⊂⊂ Ω. The ball Br must be either degenerate
of non-degenerate. If Br is degenerate, then (4.1) follows directly from (3.1). In this
case we need to restrict s > −1 − p−1

n−1
. If Br is non-degenerate, we apply a method

from the proof of Proposition 5.1 in [1]. The main consequence of the non-degeneracy
condition (4.3) is that we can select M so large that Du is approximately a nonzero
constant vector in B2r. To prove this we use the known C

1,α
loc

-regularity of p-harmonic
functions. We remark that in the non-degenerate case it suffices to restrict s > −p.
If n = 2, the degenerate and non-degenerate conditions for s are the same.

The following Theorem summarizes the basic regularity of p-harmonic functions
that we need to prove Theorem 1.1. For the proof we refer to [17] and [14, Theorem 2],
[21, Lemma 3.1].

Theorem 4.1. Let n ≥ 2 and 1 < p < ∞. There exists α = α(n, p) ∈ (0, 1)
such that any p-harmonic function u in Ω ⊂ R

n belongs to C
1,α
loc

(Ω). Moreover, for

any fixed t > 0, there exists a constant C = C(n, p, t) > 0 such that

(4.4) osc
Br

Du ≤ C
( r

R

)α
(
 

BR

|Du|t dx

)1/t

holds for all concentric balls Br ⊂ B2r ⊂ BR ⊂⊂ Ω.

The following lemma is a straightforward generalization of Lemma 5.3 in [1].
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Lemma 4.2. Let Ω ⊂ R
n and v ∈ L2

loc
(Ω) be such that

(4.5)

ˆ

Bmr

|v|2 dx >

ˆ

BMr

|v − (v)BMr
|2 dx

for some concentric balls Bmr ⊂ BMr ⊂⊂ Ω, where 0 < m < M < ∞. Then for any

κ ∈ [m,M ] we have
 

Bκr

|v|2 dx ≤ 9

 

Bmr

|v|2 dx.

Proof. Apply Minkowski inequality and then Hölder inequality to obtain
(
 

Bκr

|v|2
)1/2

≤

(
 

Bκr

|v − (v)BMr
|2 dx

)1/2

+

 

Bmr

|v − (v)BMr
| dx+

 

Bmr

|v| dx

≤

(
 

Bκr

|v − (v)BMr
|2 dx

)1/2

+

(
 

Bmr

|v − (v)BMr
|2 dx

)1/2

+

(
 

Bmr

|v|2 dx

)1/2

.

Enlarging the integral domains in the first two items on the bottom row of the above
display yields

(
 

Bκr

|v|2
)1/2

≤ 2

(

|Bmr|
−1

ˆ

BMr

|v − (v)BMr
|2 dx

)1/2

+

(
 

Bmr

|v|2 dx

)1/2

.

Now the assumption (4.5) is applicable on the first item on the right hand side of the
above inequality. The desired estimate follows and the proof is complete. �

For the proof of the following algebraic inequalities, see [12, Lemma 2.1].

Lemma 4.3. Let 1 < p < ∞ and s > −p. There exist constants c1 = c1(p, s) > 0
and c2 = c2(p, s) > 0 such that

c1
(

ǫ+ |z|2 + |w|2
)

p−2+s

2 |z −w|2 ≤
∣

∣V ǫ
s (z)− V ǫ

s (w)
∣

∣

2
≤ c2

(

ǫ+ |z|2 + |w|2
)

p−2+s

2 |z −w|2

for any two vectors z, w ∈ R
n.

Let us introduce the notation

λ :=

(
 

B2r

|Du|p+s dx

)
1

p+s

=

(
 

B2r

|Vs(Du)|2 dx

)
1

p+s

.

Note that if λ = 0, then the desired estimate (1.9) is trivial. Hence we may assume
that λ > 0.

The following lemma is an adapted version of Lemma 5.5 in [1].

Lemma 4.4. Let n ≥ 2, 1 < p < ∞ and s > −p. Suppose that u is p-harmonic

in Ω ⊂ R
n. Given any σ > 0, there exists a constant M = M(n, p, s, σ) ≥ 4 such

that for any ball Br ⊂⊂ Ω the non-degeneracy condition (4.3) implies that

(4.6) |Du−Du(x0)| ≤ σλ in B2r,

where x0 ∈ B2r is a point such that |Du(x0)| = λ.

Proof. By mean value theorem, we can fix a point x0 ∈ B2r such that |Du(x0)| =
λ. Let x ∈ B2r. We apply Theorem 4.1 with t = p + s > 0 to estimate

|Du(x)−Du(x0)| ≤ osc
B2r

Du ≤ C
( 2

M

)α
(
 

BMr

|Du|p+s dx

)
1

p+s

,
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where C = C(n, p, s) > 0. The non-degeneracy condition (4.3) allows us to employ
Lemma 4.2 with v = Vs(Du) and m = 2 to obtain

(
 

BMr

|Du|p+s dx

)
1

p+s

≤ 9
1

p+sλ.

We can now adjust M = M(n, p, s, σ) ≥ 4 such that C
(

2
M

)α
9

1

p+s ≤ σ. This completes
the proof. �

We are finally ready to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Let σ = σ(p, s) > 0 be a very small constant to be
selected later, and accordingly let M = M(n, p, s, σ) ≥ 4 be given by Lemma 4.4.
Fix a ball Br ⊂⊂ Ω such that BMr ⊂⊂ Ω. Recall that, in view of Theorem 3.1, it
suffices to study the case when Br is non-degenerate (4.3). To run the computations,
we consider the regularization (3.2) in a subdomain U ⊂⊂ Ω such that BMr ⊂⊂ U .
By (3.4) and Lemma 4.4, we may henceforth consider 0 < ǫ < σλ2 so small that

(4.7) |Duǫ −Du(x0)| ≤ 2σλ and
3

4
λ ≤ µ ≤

5

4
λ in B2r,

where x0 ∈ B2r is a point such that |Du(x0)| = λ, and µ = (|Duǫ|2 + ǫ)1/2.
In what follows, the constants C = C(n, p, s) > 0 and c = c(p, s) > 0 may vary

from line to line. By (4.7)

(4.8) |D(V ǫ
s (Duǫ))|2 ≤ Cµp−2+s|D2uǫ|2 ≤ Cλsµp−2|D2uǫ|2 in B2r.

We employ Lemma 3.2 with a cutoff function φ ∈ C∞

0 (U) such that

φ = 1 in Br, spt φ = B2r and |Dφ| ≤
10

r
,

and use the estimates (4.8) and (4.7) to arrive at

(4.9)

ˆ

Br

|D(V ǫ
s (Duǫ))|2 dx ≤

Cλs

r2

ˆ

B2r

µp−2|Duǫ − z|2 dx

≤
C

r2

ˆ

B2r

µp−2+s|Duǫ − z|2 dx

for any z ∈ R
n. In particular, since V ǫ

s : R
n → R

n is bijective, we may select z =
zǫ ∈ R

n such that

(4.10) V ǫ
s (z

ǫ) =
(

V ǫ
s (Duǫ)

)

B2r
.

Observe that, by Lemma 4.3 and (4.7),

(4.11)

|V ǫ
s (z

ǫ)− V ǫ
s (Du(x0))| ≤

 

B2r

|V ǫ
s (Duǫ)− V ǫ(Du(x0))| dx

≤ c2

 

B2r

(µ2 + λ2)
p−2+s

4 |Duǫ −Du(x0)| dx

≤ cσλ
p+s

2 .

We employ the above estimate (4.11) to estimate |zǫ| from above and below. If
p− 2 + s ≥ 0, we have

(1− cσ)λ
p+s

2 ≤ (|zǫ|2 + ǫ)
p−2+s

4 |zǫ| ≤ ((1 + σ)
p−2+s

4 + cσ)λ
p+s

2 .
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If p− 2 + s < 0, we have similarly

((1 + σ)
p−2+s

4 − cσ)λ
p+s

2 ≤ (|zǫ|2 + ǫ)
p−2+s

4 |zǫ| ≤ (1 + cσ)λ
p+s

2 .

Consequently, we may select σ = σ(p, s) > 0 such that

1

2
λ

p+s

2 ≤ (|zǫ|2 + ǫ)
p−2+s

4 |zǫ| ≤ 2λ
p+s

2 .

We can now restrict ǫ so small, depending on λ, p and s, that

(4.12) c−1λ < |zǫ| ≤ cλ

for some c = c(p, s) > 0.
We apply (4.7) and (4.12), together with Lemma 4.3, to estimate the integrand

on the bottom row of (4.9) with z = zǫ as follows;

(4.13)
µp−2+s|Duǫ − zǫ|2 ≤ c(µ2 + |zǫ|2)

p−2+s

2 |Duǫ − zǫ|2

≤ c|V ǫ
s (Duǫ)− V ǫ(zǫ)|2 in B2r.

Combination of (4.9) and (4.13) yields that

(4.14)

ˆ

Br

|D(V ǫ
s (Duǫ))|2dx ≤

C

r2

ˆ

B2r

|V ǫ
s (Duǫ)−

(

V ǫ
s (Duǫ)

)

B2r
|2 dx,

where C = C(n, p, s) > 0 is independent of ǫ. Therefore, as explained in Section 3,
we can let ǫ → 0 in (4.14) to obtain

(4.15)

ˆ

Br

|D(Vs(Du))|2 dx ≤
C

r2

ˆ

B2r

|Vs(Du)−
(

Vs(Du)
)

B2r
|2 dx.

Note that this implies (4.1). The proof is complete. �
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